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PURE BRAID GROUPS IN MAPPING CLASS GROUPS OF 
SURFACES 

TAKUYA KATAYAMA 

ABSTRACT. This paper summarizes the author's talk at RIMS workshop en­
titled "Geometry of discrete groups and hyperbolic spaces" in 2021. We give 
a necessary and sufficient condition for embedding pure braid groups into the 
mapping class groups of surfaces. This is joint work with Erika Kuno. 

1. BACKGROUND AND MAIN RESULTS 

Let SZ,P be a connected orientable surface of genus g with p punctures and b 
boundary components. In the case where b = 0 or p = 0, we drop the suffix that 
denotes 0, excepting g, from SZ,P- For example, the 2-sphere S8,o is simply denoted 
as S0 . The mapping class grnup Mod(SZ,p) of SZ,P is the group of orientation­
preserving homeomorphisms of SZ,p, fixing the boundary pointwise, up to isotopy 
relative to the boundary. We write En for the braid group on n strands, which is 
identified with Mod(S5 n). The pure braid group PMod(S5 n) is denoted by P En. 
We define the Euler ch~cteristic of SZ,P as ' 

x:,P := 2 - 2g - p - b. 

Theorem 1.1. PEn '----+ Mod(S9 ,p) if and only if 

Theorem 1.2. 

((g,p) E {(0,0), (0, 1), (0,2), (0,3)}) 
((g,p) E {(0,4), (1,0), (1,1)}) 
(g = 0, p?. 5) 
(g?. 2, p = 0) 
(otherwise). 

Suppose b ?. l. Then P En '----+ Mod(SZ,p) if and only if 

(g ?. 1, p + b ~ 2) 
(otherwise). 

{ 
2 b n ~ - X5,P 

1 - Xg,p 

The study of injective homomorphisms between the mapping class groups of sur­
faces has been extensively developed by various researchers. Aramayona-Leininger­
Souto [1], Birman-Hilden [3] and Paris-Rolfsen [13] gave injective homomorphisms 
induced by inclusion maps and (possibly branched) coverings of surfaces. Aramayona­
Souto [2] proved that PMod(St,p) cannot be embedded in PMod(St'.,P,) if g?. 6 
and either g1 ~ 2g - 2 or g1 = 2g - 1 and p1 + b'?. l. Ivanov-McCarthy [8] proved 
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that every injective homomorphism between the mapping class groups of surfaces 
with the almost same topological complexity is necessarily an isomorphism. Castel 
[5] characterized (injective) homomorphisms from the braid groups to the mapping 
class groups of surfaces without punctures by defining transvections of monodromy 
representations of the braid groups. Castel's result implies neither Theorem 1.1 nor 
Theorem 1.2, because there is an injective homomorphism from a pure braid group 
into the mapping class group of a surface, which cannot be extended to the braid 
group (see Proposition 2.7). The topological complexity [4] and virtual cohomolog­
ical dimension [7] are obstructions to the existence of an injective homomorphism 
between finite index subgroups of mapping class groups. Theoretically, right-angled 
Artin groups in mapping class groups can also be such obstructions. What can say 
about injective homomorphisms between finite index subgroups of mapping class 
groups by using right-angled Artin groups? Theorems 1.1 and 1.2 give an answer 
to this question. 

Acknowledgements. The author would like to express his sincere gratitude to 
Michihiko Fujii, Hidetoshi Masai and Takuya Sakasai for the invitation and their 
help at the online workshop. The author was supported by JSPS KAKENHI 
through the grant number 20J01431. This work was supported by the Research 
Institute of Mathematical Sciences, an International Useage/Research Center lo­
cated in Kyoto University. 

2. EMBEDDING PURE BRAID GROUPS 

In this section, we explain how to obtain injective homomorphisms from (pure) 
braid groups into the mapping class groups of surfaces. 

We first review homomorphisms induced by embeddings of surfaces. Let i: S---+ 
F be an inclusion map between connected orientable surfaces of finite type. In this 
paper we call i an extension of S for convenience sake. The extension i is said to 
be admissible if i(S) is a closed subset of F and every component of i(8S) is not 
parallel to a component of 8F. Additionally, we say that an admissible extension 
i is annular if F \ Int( i(S)) is a disjoint union of annuli. 

Proposition 2.1 ([13]). Suppose that i: S---+ F is an admissible extension. 

(1) If the extension i is annular, then the kernel of the induced homomorphism 
Mod(S) ---+ Mod(F) is a free abelian group generated by 

A= {[Tc1 ][Tc2 ]-1 I c1, c2 are the boundary components of an outer annulus}. 

(2) If F \ Int(i(S)) is a disjoint union of annuli and once-punctured disks, 
then the kernel of the induced homomorphism Mod(S) ---+ Mod(F) is a free 
abelian group generated by A and 

{[Tc] I c is the boundary component of an outer once-punctured disk}. 

Here, Tc is a Dehn twist about a curve c. 

When each component of the exterior of an admissible extension has negative 
Euler characteristic, then the extension induces an injective homomorphism. 

Proposition 2.2 ([13]). Suppose that F \ i(S) is a disjoint union of surfaces with 
negative Euler characteristics. Then Mod(S) Y Mod(F). 
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We say that an admissible extension i is hyperbolic if i satisfies the assumption 
in Proposition 2.2. The embedding given in the following corollary is induced by a 
hyperbolic extension S'J,n ---+ S6,m· 

Corollary 2.3. If n::; m, then Bn '----+ Bm. 

We next recall injective homomorphisms from braid groups induced by branched 
coverings of surfaces. Consider the double branched covering S;-i,o ---+ S'J, 29 in­
duced by the hyperelliptic involution of S;-i,o· According to the Birman-Hilden 
theory, it follows that B29 is embedded in Mod(S;_ 1) as the symmetric mapping 
class subgroup with respect to the hyperelliptic involution. By gluing S;_1 and 

sg~2 along their boundaries, we obtain an admissible extension S;_1 ---+ Sg_v 
This extension is either annular or hyperbolic, thereby inducing a homomorphism 
Mod(S;_ 1 ) ---+ Mod(SZ,p), whose restriction to the subgroup B 29 is injective. There­
fore, B29 is embedded in Mod(SZ,p). 

Similarly, the double branched covering S~ ---+ S'J,29+1 induces an embedding 
B29+1 '----+ Mod(S~)- If b + p ?: 2, then an extension S~ ---+ Sg_P is hyperbolic 
and induces an embedding B 29+1 '----+ Mod(SZ,p). For more information about the 
Birman-Hilden theory, see [3] and [12]. 

We also use the following embedding to establish our main theorems. 

Proposition 2.4. B29+2 '----+ Mod(S~,i). 

Definition 2.5. Let S be a surface with punctures and F a surface. By S, we 
denote the compactification of S that has circles at infinity (if S ~ sg,p, then 

s ~ sz+P). An extension i: s ---+ F is said to be pseudo-annular if i is obtained 

from a disjoint union of S and copies of an annulus and once-punctured disk by 
gluing each annulus A (resp. once-punctured disk D) to S along their boundaries 
so that a boundary component of A (resp. the boundary of D) is identified with a 
component of 88-S, and that another boundary component of A is either identified 
with a component of 88 or unattached. Note that any pseudo-annular extension is 
not admissible, because the image is not a closed subset. 

The pure mapping class group of a sphere is naturally embedded in the mapping 
class group of its compactification as follows. 

Lemma 2.6 ([6]). PMod(S8,p) x '/!} ~ PMod(Sg+b). 

Every pseudo-annular extension of a sphere induces an injective homomorphism 
between the pure mapping class groups. 

Proposition 2. 7. Let S ---+ F be a pseudo-annular extension. If S is a sphere, 
then PMod(S) is embedded in PMod(F). 

3. RIGHT-ANGLED ARTIN SUBGROUPS IN MAPPING CLASS GROUPS 

For a finite simple graph r, we define the right-angled Artin group A(r) to be 
the group with the following finite presentation: 

A(r) := (V(r) I vivj = vjvi if {vi,vj} E E(r)). 

Here, V(r) is the vertex set of r and E(r) is the edge set of r. The following 
theorem implies that every right-angled Artin group is a subgroup of the mapping 
class group of some surface. 
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Theorem 3.1 (Koberda's embedding theorem [11]). Let S be a surface with nega­
tive Euler characteristic, and r a finite graph. If r::; C(S), then A(r) '-+ Mod(S). 

Here, C(S) is the 1-skeleton of the Harvey's curve complex of a surface S. 
Let c;;, denote the complement graph of the cyclic graph on m vertices. 

Theorem 3.2. A(C;;,) is embedded in Mod(S9 ,p) if and only if m satisfies 

0 
3 
5 

((g,p) E {(0,0), (0, 1), (0,2), (0,3)}) 
((g,p) E {(0,4), (1,0), (1, l)}) 
((g,p) = (1, 2), (0, 5)) 

2g+2 
2g+p+ 1 
2g+p 

(g?. 2, p = 0) 
(g?. 2, 1 ::;p::; 2) 
(otherwise). 

Theorem 3.3. A(C;;,) x Z is embedded in Mod(S9 ,p) if and only if m satisfies 

0 
3 
p-1 
p+2 
2g+ 1 
2g+p 

(g,p) E {(0,4), (1, l)} 
(g,p) E {(0,5), (1,2)} 
(g = 0, p?. 6) 
(g = l, p?. 3) 
(g?. 2, p = 0) 
(g?.2, p?_l). 

Theorem 3.4 ([9]). Suppose n?. 3. A(C~+l) x Z '-+ PBn. 

The "if parts" of the above theorems can be proved by applying Koberda's 
embedding theorem. In order to prove the "only if parts", we use the normal form 
theorem, due to Kim-Koberda[lO], for injective homomorphisms from right-angled 
Artin groups into the mapping class groups of surfaces. 

Theorems 1.1 and 1.2 are consequences of the results in Sections 2 and 3. 
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