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HOMOLOGY CYLINDERS AND SKEIN ALGEBRAS 

HJlril:k"F liJl'J'E • j;QJtt~HIM\lff!i l±~$ill 
SHUNSUKE TSUJI 

ORGANIZATION FOR THE STRATEGIC COORDINATION 
OF RESEARCH AND INTELLECTUAL PROPERTIES 

MEIJI UNIVERSICY 

ABSTRACT. In this paper, we introduce a construction of an invariant for a homology cylinder of a 
surface ~- It is an element of the skein algebra of ~ and has two aspects. The first is a quantization 
of the action of homology cylinders on fundamental groups. In the second aspect, we can extend the 
Ohtsuki series, one for integral homology spheres, to our invariant. We use the HOMFLY-PT skein 
algebra in this paper. But the main theorem holds in other skein algebras. 
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In this paper, we introduce a construction of an invariant for a homology cylinder of a 
surface I;. It is an element of the skein algebra of I; and has two aspects. 

The first is a quantization of the action of homology cylinders on fundamental groups. 
Turaev [12] used the word, "quantization", considering the skein algebras as a refinement of 
the Goldman Lie algebra. In this paper, we use the word with the same meaning. 

In the second aspect, we can extend the Ohtsuki series, an invariant for integral homology 
spheres, to ours in this paper. In other words, considering them as homology cylinders of 
the closed disk, the first one equals the second one. The action of the homology cylinders on 
fundamental groups does not have the information of quantum invariants, but our invariant 
has. 
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In this paper, we will explain some essential definitions and main theorems without proof. 
In our theory, a formula for Dehn twists plays an important role. We use the HOMFLY-PT 
skein algebras, but the results in this paper hold in other skein algebras. 

1.1. Outline. In the second section, we define skein modules. Ignoring the h-torsion part, we 
consider simplified skein modules. Furthermore, we set filtrations of them using "detours". 

In the third section, we introduce a formula for the action of Dehn twists on skein modules 
using the Lie action of a skein algebra. Using it, we construct an embedding from the Torelli 
group in the completed skein algebras and the Ohtsuki series, which is an invariant for integral 
homology 3-spheres. 

In the fourth section, we explain how to define homology cylinders. Furthermore, we set 
their action on the completed skein modules. It is an analogy for the one on the completion 
of the fundmental group. 

In the last section, we state our main theorem. We construct an invariant for homology 
cylinders being an element of the completed skein algebra and explain its properties. 

2. SKEIN MODULES 

2.1. Definition of skein modules. In this subsection, we set the HOMFLY-PT skein mod
ules. Let M be a compact oriented 3-manifolds, /3 a non-negative integer, and Jan embedding 
J : {1, • • • , 2/3} x I-+ 8M. Here the symbol I is the unit interval [O, l]. We set E(M, J) as 
the set of embeddings e' : Af(l) x I -+ M satisfying the following conditions. 

• M(1) is an oriented comapct 1-manifold. 
• e'(fJM(l) x I) C J( {l, · · · , 2/3} x I). 
• The embedding J-1 o e18M(l) xJ : fJM(l) x I -+ {1, · · · , 2/3} preserves the orientations 

and indeces the bijective map 1r0 (M(1)) -+ 1r0 ( {1, • • • , 2/3} x I). 

We call an isotopy class of an embedding of E(M, J) a ribbon tangle and denote by T(M, J) 
the set E(M, J)/isotopy. 

Let A+(M, J) be the quotient of Q[p][[h]]T(M, J) by the relation 

EB- EB=hEB, 
Ee)= exp(ph) El), 

2sinh(ph) 
(trivial knot) = h (empty knot). 

Furthermore, in this paper, considering the other one 

{y E At(M, J)lthere exists m E Z::::1 s.t. hmy = O.}, 

we set the h-torsion-free skein algebra 

A(M, J) = At(M, J) 

d~f- A+(M, J)/{y E At(M, J)lthere exists m E Z::::1 s.t. hmy = 0.}. 

We remark that the Q[p][[h]]-module homomorphism map 

A(M, J) -+ A(M, J), y-+ hy 
2 
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is injective. If /3 equals 0, we use a simple denote 

A(M) <l~. A(M, J). 

Remark 2.1. In general, the (Q)[p][[h]]-module homomorphism map A+(M, J) ➔ At(M, J) is 
not injective. In this paper, we use the simplified skein module A+(M, J) in this meaning. 

2.2. Filrtrations and completions. At first, we set a finite-type filtration of the free Z
module with basis T(M, J). Using graphs we define them. We prepare the notations of 
graphs. 

• A uni-quad-valent graph is a graph, whose every vertex is either univalent, bivalent, 
or quadvalent. 

• A vertex-ordered uni-bi-quad-valent graph is a uni-bi-quad-valent graph such that, for 
each vertex of it, we fix a cyclic orientation of edges around the vertex. 

Definition 2.2. A vertex-ordered uni-bi-quad-valent directed detour-graph r is a vertex
ordered uni-bi-quad-valent directed graph whose edges Edge(r) are classified as detour edges 
and direct ones satisfying the conditions. 

• The indegree of a quad-valent vertex or a bi-valent vertex equals the outdegree of it. 
• A uni-valent vertex or a bi-valent vertex does not have detour edges. 
• The neighborhood of a quad-valent is as the figure. 

~etour(°)detour 
direct ~ direct 

Let M be a compact oriented 3-manifold, (3 a non-negative integer, and J an embedding 
{1, • • • , 2/3} xI ➔ 8M. We set [Vd(M, J) as the set consisting of all embeddings e: r xI ➔ M 
satisfying the conditions for a vertex-ordered uni-bi-quad-valent directed detour-graph r. 

(1) Denoting the set of uni-valent vertex of r by Base(r), we have 

e(Base(r) x I) c J( {1, • • • , 2/3} x I). 

(2) The embedding 

(]+)-1 0 elBase(r')xI : Base(r) XI ➔ {1, ... '2/3} XI 

preserves the orientations and induces the bijective map 
- -1 ((J) 0 elBase(r')xI)• : 1ro(Base(r) x I) ➔ 1ro( {1, · · · , 2/3} x I). 

(3) For any q11ad-valent vertex of r, the neighborhood of e( o x I) is as the figure. 

. . cyclic order ( e1, e2, e3, e4) 

eM0 ,})#e3 ) . . ! . . ) 
e1 (o,O) e2 

We denote by E;(d(M, J) c [Vd(M, J) the subset 

E";:d(M, J) d~. {e: r x I ➔ Mle E [Vd(M, J), {quad-valent vertex of r} = n}. 

For an embedding eVd : r x I ➔ M being an element of [Vd(M, J), we set w[vd(eVd) E 

ZT(M, J) by the following steps. 
3 
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• Let 01, · · · , on be the quad-valent vertices of r. We denote by ei the detour edge 
attaching oi. 

• We denote by Cross the set of quad-valent vertices of r. For a map¢: Cross---+ {O, +1 }, 
we choose the embedding eevd,¢ E E(M, J) satisfying the conditions. 
(1) The image of eevd,¢ equals the one of the original eVd as oriented ribbon tangles 

except for the neighborhood of uj=l eVd(ej)-
(2) In the neighborhood of eVd(ej), the image of eevd,¢ is as 

(the neighborhood of eVd(ej)) n (the image of eevd,¢) 

if¢(oj) = 0. 

• The embedding eevd,¢ represents Tevd,¢ E 'T(M, J). 
• We set w[vd(eVd) E Z'T(M,J-,J+) as 

>T,T ( Vd) d~. 
"'fVd e -

¢:Cross-+{+ 1,0} 

( -l)~ojECrnss(I') ef>(oj)T 
eVd,q,· 

For a non-negative integer n, we denote by pnz'T(M, J) c Z'T(M, J) the submodule gener
ated by 

{w[vd(eVd)leVd E E";(d(M, J)}. 

We set a finite-type filtration {FnA(M, J)}n::,:o as the set 

U2i+j:C:n{hiXIX E pJzr(M, J)} 

generates the submodule pn A(M, J) as (Q)[p] [[hl]-module. Using it, we consider the completion 

A(M, J) d~. ~i-+ooA(M, J)/FiA(M, J) 

and a finite-type filtration { pn A(M, J) }n::,:o of A(M, J) by 

Fn A(M, J) d~. ker(.A(M, J)---+ A(M, J)/Fn A(M, J)). 

3. LIE ACTIONS AND A FORMULA FOR DEHN TWISTS. 

3.1. Skein algebras and a Lie structure. Let S be a compact oriented surface, (3 a non
negative integer, and j be an injective map. We use simple denotes 

A(S,j) d~. A(S X I,j X id1), A(S,j) d~. A(S X I,j X id1), 

A(S) d~. A(S XI), A(S) d~. A(S XI), 

4 
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where the symbol I means the unit interval [O, 1]. Using the embeddings 

l+t 
eup : S XI--+ S XI, (p, t) >---+ (p, - 2-), 

t 
eaown: S XI--+ S XI, (p, t) >---+ (p, 2), 

we define the multiple of A(S) by 

A(S) x A(S) --+ A(S), L1 x L2 >---+ L1L2 d~. eup(L1) U eaown(L2)

Fu.rthermore, we set the right and left actions of A(S) on A(S, j) by 

A(S) x A(S, j) --+ A(S, j), L x T >---+ LT d~. eup(L) U eaown(T), 

A(S,j) x A(S)--+ A(S,j), T x L >---+ TL d~. eup(T) U eaown(L). 

Then, for any elements x, x1, x2 EA(~), z EA(~, j), we have 

X1X2 - X2X1 E hA(S), 

xz - zx E hA(S, j) 

by the skein relation. Since the homomorphism map 

A(S,j)--+ A(S,j),y--+ hy 

is injective, we can define the bracket and the action by 

def 1 
[x1,x2] =· h(x1x2 - x2x1) E A(S), 

a(x)(z) d~. ¾(xz - zx) E A(S,j). 

The first makes (A(S), [·, -]) a Lie algebra, and the second (A(S, j), a) a Lie module of A(S). 
The finite type filtrations satisfy the following. 

Proposition 3.1 ([11]). For any n, m E Z::,o, we have 

pn A(S)Fm A(S) c pn+m A(S) 

pn A(S)Fm A(S,j) C pn+m A(S,j) 

pn A(S,j)Fm A(S) C pn+m A(S,j) 

[Fn A(S), pm A(S)] c pn+m-2 A(S) 

a(Fn(A(S)))(Fm A(S,j)) c pn+m-2 A(S,j). 

Using this proposition, we can define the above operations in completions such as 

A(S) X A(S) --+ A(S) 

A(S) X A(S, j) --+ A(S, j) 

A(S, j) X A(S) --+ A(S, j) 

[·, ·] : A(S) X A(S) --+ A(S) 

a(·)(·): A(S) x A(S,j)--+ A(S,j). 
5 
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3.2. A formula for Dehn twists. In this subsection, we introduce a formula for the action 
of a Dehn twists using the Lie action. In our theory, this formula plays an important role. 
There exist other versions of this formula in some skein algebras. 

At first, we set a significant element LA E .A(81 x I) by the following steps where 81 = JR/Z. 
• For any n E Z:::,1, we denote by Zn an element of A(81 x I) represented by a knot 

presented by the figure. 

~ 
~~ 

• For any n E Z:::,o, we set l~ as 

Z' d~. DJ=l J L-i1 +·· ,i1=n,i1,EZec 1 i1 ij {"'n (-h)j-l "'· . . l· .. · l 

n 2p 

• For any n E Z:::,o, we set Z~ E A(81 x I) as 

n I 
l11 d~."""' n. (-1r-jzt 
n D j!(n _ j)! 1· 

J=O 

Then we have z~ E pn A(81 XI) . 

(n E Z:::,1) 

(n = 0). 

• Setting a sequence {vn}nEZ,c2 by ½(log(x)) 2 = I:nEZ>2 Vn(x - 1r, we define LA E 

A(81 x I) as -

The above equations to define LA E .A(81 x I) is complicated, but we can characterize it by 
the theorem. 

Theorem 3.2 ([11]). Lett= t8 1x{½} be the Dehn twist along the simple closed curve 81 x {½}. 
For z E .A(81 x I), z satisfies the two conditions 

(1) We have 

for any (3 E Z>1, any j: {1, · · · , 2(3}---+ 8(81 x I), and any y E .A(81 x l,j). 
(2) The embedding from the annulus 8 1 x I to the disk D 2 induces a Q[p][[h]]-module 

homomorphism map 

etrivial knot : .A(81 XI) ---+ .A(D2 ) c:,,, Q[pl[[hl]. 

Then we have 

etrivial knot ( Z) = 0. 

if and only if z = LA. 
6 
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The first condition is crucial in our theory. We use the skein relation crucially only to 
prove the first one. By the second condition, there exists no ambiguity of LA. To construct 
invariants, we use the second one. Using this theorem, we have the following. 

Corollary 3.3. The orientation preserving diffeomorphism irev : 8 1 x I -+ 8 1 x I, (s, t) f--'t 

(-s,-t) induces a (Ql[p][[h]]-algebra homomorphism map irev: A(81 x I)-+ A(81 x I). Then 
we have 

We can prove this corollary by the direct computation but can do it using Theorem 3.2. 
Since irev(LA) also satisfies the two conditions in Theorem 3.2, we have irev(LA) = LA. 

We return to the story about a compact oriented surface 8. For any simple closed curve 
c C 8, we choose an embedding ec: 81 x I-+ 8 satisfying 

1 
ec(81 X { 2}) = c. 

Then ec induces a (Ql[p] [[h]]-algebra homomorphism map 

ec : A(81 X I) -+ A(8). 

We set an element LA(c) E A(8 x I) by 

LA(c) d~. ec(LA)-

By Corollary 3.3, this element LA(c) does not depend on the choice of the orientation of c. 
Using this element, we have the following theorem. 

Theorem 3.4. For any (3 E Z>o, any injective map j : {1, · · · , 2/3} -+ 88, and any y E 
A(8,j), we have -

In other words, we have 

L (-ltl (tc - id)i(y) = <I(LA)(y). 
i 

iEZ;:,1 

We prove the theorem using the first condition of Theorem 3.2. We call LA(c) an element 
describing a formula for the Dehn twists in the HOMFLY-PT skein algebra. Kawazumi
Kuno [3][4] abd Massuyeau-Turaev [5] discovered one for the Dehn twists in the Goldman Lie 
algebra. Our formula is an analogy for one of them. 

3.3. Applications of the formula for the Dehn twists. In this subsection, we introduce 
some applications of Theorem 3.4. Let E9 ,1 be a surface of genus g with a connected non-empty 
boundary. Considering the action of the mapping class group 

M(Eg,1) d~. 1ro(DiffEg,1fixing aEg,l pointwise) 

of E9 ,1 on the homology groups H1(E,Z), we call its kernel 

ker(M(E9 ,1)-+ Aut(H1(E9,1,Z)) 
7 
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the Torelli group and denote it by I(~g,1). It is well-known that the set 

{ tc1 t ;;;,1 I ( c1, c2) : bounding pair} 

generates I(~g,1), where a bounding pair is a pair of simple closed curves bounding a compact 
subsurface. 

Theorem 3.5. We can consider the set F 3 A(~g,1) as a group whose multiple is the Baker

Campbell-Hausdorff series bch. We set a group homomorphism (: I(~g,1) -+ (F3 A(~g,1), bch) 
by 

((tcit~_}) = LA(c1) - LA(c2)

Then it is well-defined and injective. 

We prove the theorem by Theorem 3.4 and Putman's relation [6] of the Torelli group. It is 
needless to say that the first condition in Theorem 3.4 is essential, but the second one is also 
essential. 

Using this embedding, we construct an invariant for integral homology 3-spheres. We obtain 
them by the following steps. 

• We take a standard embedding eH9 : Hg-+ 8 3 from a handle body Hg in the sphere 

8 3 , which means the closure 8 3\eH9 (Hg) is also a handle body. We remark that we 
do not need the assumption that eH9 is standard. 

• We take a diffeomorphism representing an element l; E I(~g,1) and denote it by the 
same symbol l;. 

• We fix a closed disk Din the boundary 8Hg of the handle body Hg and consider the 

closure 8Hg \D as 8g,l· We obtain a 3-manifold 

83( eHg' l;) d~. Hg UeH 1aH o(~Uidv) Hg \eHg (Hg) 
g g 

gluing the two handle bodies Hg and Hg \eH9 (Hg) by a new map eH9 1aH9 o (l; U idv). 
Then 8 3 (eH9 ,l;) is an integral homology 3-sphere. Conversely, it is well-known that 
we can get any integral homology 3-sphere in this way. 

About the integral homology 3-sphere 8 3 (eH9 ,l;) obtained in this way, we set a series defined 
by the following. 

• Considering ~g,l as an embedded surface in the sphere 8 3, the tubular neighborhood 

eE 1 : ~g 1 x I -+ 8 3 
g, , 

of the embedding induces a Q[p] [[h]]-module homomorphism map 

eE9 , 1 : A(~g,1)-+ A(83 ) ~ Q[p][[h]]. 

• Using the injective map ( in Theorem 3.5, we set a series ZA(83(eH9 ,l;)) as 

ZA(83(eH9 ,l;)) d~-f i!~ieE9 ,1 ((((l;))i) E Q[p][[h]]. 
i=l 

Then we have the following theorem. 
8 
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Theorem 3.6. The above map 

ZA: {diffeomorphism types of integral homology cylinders}-+ Q[p][[h]] 

is well-defined. In other words, for any integral homology 3-sphere M, the series ZA(M) is 
an invariant. 

Using the Reidemeister-Singer stabilizer, we prove the theorem. Furthermore, in our recent 
work, this invariant has the following property. 

Theorem 3.7. For any integral homology 3-sphere M, changing variables 

Nlogq -1 
p f-'t --_-1' h f-'t -q + q ' q-q 

we obtain a series (zA(M))(N)) from ZA(M). Then (zA(M))(N)) equals the sl(N)-quantum 
invariant, the sl(N)-Ohtsuki series. 

The theorem says that the invariant 

ZA: { diffeomorphism types of integral homology cylinders}-+ Q[p] [[h]] 

has no new information but all information of sl(N)-quantum invariant. 

Remark 3.8. The above results hold in Kauffman bracket skein modules. For details, you 
can see our paper [8] [9] [10]. 

4. HOMOLOGY CYLINDERS 

In this section, we recall the definition of homology cylinders and introduce an action of 
homology cylinders on skein modules. 

Let I: be a compact, connected, and oriented surface with a non-empty boundary. A 
homology cylinder of I: is a pair (M, a) of a 3-manifold and a diffeomorphism a : [)M -+ 
a(I: x I) satisfying the two conditions. The first is that M is compact, connected, and 
oriented. The second is that a has the property 

ker( a : H1 (a(I: x I), Z) -+ H1 (M, Z)) 

= ker(H1(a(I: x I),Z)-+ H1(a(I: x I),Z)induced by the natural embedding). 

For two homology cylinders (M1, a 1) and (M2 , a 2), if a diffeomorphism x : M 1 -+ M 2 satisfies 
a 1 = a 2 o x1aM1, we call they are isomorphic. We denote by 1l(I:) the set of isomorphic classes 
of homology cylinders of I:. 

We can define the composition of 1l(I:). We fix two homology cylinders (M1, a 1) and 
(M2 , a 2) of I:. We set a new 3-manifold M 1 o M 2 as the quotient of M 11J M 2 by the relation 

a 2 (p, 1) ~ a 1 (p, 0) 

and a new diffeomorphism (a1 LJ a 2)MloM2 : a(I: XI) -+ a(M1 0 M 2 ) as 

9 

if t = 1 

iftE[½,l] 

if t E [O, ½l 
if t = 0. 
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Then the pair (M1 o M 2 , (a1 LJ a 2 )M1aM2) is also a homology cylinder. The composition 

(·) o (·) :H(E) x 1-i(E)--+ H(E), 

((M1, a 1), (M2 , a 2)) >-+ (M1 o M2 , (a1 LJ a 2)M1aM2) 

makes H(E) a monoid. 
We fix a homology cylinder (M, a) and an injective map j : {1, · · · , 2,8}--+ 8E. We consider 

the following three embeddings. 

• Let ii : 8(E x I) x I <-+ M be the tubular neighborhood of the embedding surface 
8M = a(8(E x I)). 

• Let lo : E x I --+ 8(E x I) x I be the tubular neighborhood of the embedding surface 
Ex {0} x {1} satisfying the conditions. 

- For any p E E, we have lo(P, 0) = (p, 0, 1). 
- There exist a positive number E > 0 such that lo(P, t) = (p, Et, 1) for any p E 8E 

and t E [0, l]. 
• Let l 1 : E x I --+ o(E x I) x I be the tubular neighborhood of the embedding surface 

E x {1} x {1} satisfying the conditions. 
- For any p EE, we have l1(P, 1) = (p, 1, 1). 
- There exist a positive number E > 0 such that l1(P, 1 - t) = (p, 1 - Et, 1) for any 

p E 8E and t E [0, 1]. 

The compositions ii o lo and ii o l1 of them induce the (Ql[p][[hl]-module homomorphism maps 

(ii o lo). : .A(E, j) --+ A(M, a o (j x id1 )), 

(ii o l1).: .A(E,j)--+ A(M, a o (j x id1)). 

Then we have the following. 

Theorem 4.1. Using the above notation, the (Q)[p][[h]]-module homomorphism maps 

(ii o lo). : A(E, j) --+ A(M, a o (j x id1) ), 

(ii o l1).: A(E,j)--+ A(M, a o (j x id1)) 

are isomorphisms. 

It is easy to check that the maps (ii o lo). and (ii o l1). are surjective. We can prove that 
(ii o lo). and (ii o l1). are injective using the formula for Dehn twists. We remark that we 
need the skein modules to be h-torsion free in our proof. 

Remark 4.2. By the above theorem, the structure of the skein algebm A(M, j) simplified in 
two ways becomes clear. The first is to simplify it like Stallings 's theorem [7] in a group. The 
second is to ignore the h-torsion part of A+(M,j). 

Using the above theorem, we set a monoid homomorphism map as 

IJ!~utA: H(E)--+ Aut(.A(E,j)), (M, a)--+ (ii o l1);;-1 o (ii o lo) •. 

We call the map w~utA an action of H(E) on the completed skein algebra .A(E,j). This 
monoid homomorphism map is related closely to an invariant defined in the next section. 

10 
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5. MAIN THEOREMS 

We can construct an invariant 

for homology cylinders in a similar way in Theorem 3.6. We do it in the following. First, we 
obtain a homology cylinder in the steps. 

• We take an embedding eH9 : Hg -+ Ex I from a handle body Hg in the 3-manifold 
EX I. 

• We take a diffeomorphism of the surface Eg,1 representing an element~ E I(Eg,1) and 
denote it by the same symbol~-

• Taking a closed disk D in the boundary a Hg, we consider the closure a Hg \D as the 
surface Eg,1· We get a 3-manifold (Ex I)(eH9 ,~), the quotient of the disjoint sum 

Hg U E x I\eH9 (Hg) by the relation 

x E oHg ~ eH9 1aH9 o (~ U idD)(x) EE x l\eH9 (Hg)-

Then the pair (Ex I)(eH9 ,~) = ((Ex I)(eH9 ,0,ida(ExI)) is a homology cylinder. 
Conversely, Habegger [1] proved that we obtain any homology cylinder in this way. 

Next, we construct an invariant (A((E x I)(eH9 ,~)) E A(E) of (Ex I)(eH9 ,~) in the following 
steps. 

• Considering the surface Eg,l is an embedded one in E x I, the tubular neighborhood 

eE9 ,1 : Eg,l x I -+ E x I 

induces a homomorphism map 

eE9 ,1 : A(Eg,1) -+ A(E). 

• Using the embedding (A in Theorem 3.5, we set an element (A((E x I)(eH9 ,~)) of the 

completion A(E) as 

- def. (A(~) 
(A((E X I)(eHg,rn = hlog(eEg,l(exp-h-)). 

Then the theorem holds. 

Theorem 5.1. The above map 

is well-defined. In other words, for an isomorphic class B E 1-i(E) of a homology cylinder-, 

(A(B) is an invariant. Further-more, we have 

'±'~utA(B)(y) = exp(u((A(B)))(y) 

for any f3 E Z>o, any injective map j: {1, · · · , 2/3}-+ aE, and any y E A(E,j). 

In this way, we obtain an invariant (A : 1-i(E) -+ F 3 A(E) for it describing the action w~utA 

on the completed skein module A(E,j). Furthermore, (A has the following property. 
11 
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Theorem 5.2. We fix an embedding e : ~ x I--+ S 3 , which induces the two maps 

eij : H(~) --+ { diffeomorphism types of integral homology cylinders}, 
~ ~ 3 

e* : A(~) --+ A(S ). 

Here we consider A(S3 ) as (Q[pl[[h]]. Then we have 

for any B E H(~). 

((~) 
ZA(eij(B)) = e.(exp( ';; )) 

Remark 5.3. It is unclear whether the element 
- def. (A(() 
(A((~ x I)(eHg,()) = hlog(e~". 1 (exp-h-)) 

belongs to F 3 A(~). Using another algebraic definition not introduced in the paper, we can 

check (A((~ X l)(eHg,e}) E F 3.A(~)-
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