SHELAH－STRONG TYPE AND ALGEBRAIC CLOSURE OVERA HYPERIMAGINARY（Model theoretic aspects of the notion of independence and dimension）

AUTHOR（S）：
LEE，HYOYOON

[^0]ISSUE DATE：
2022－05
URL：
http：／／hdl．handle．net／2433／277123
RIGHT：

SHELAH-STRONG TYPE AND ALGEBRAIC CLOSURE OVER A HYPERIMAGINARY

HYOYOON LEE
DEPARTMENT OF MATHEMATICS, YONSEI UNIVERSITY

Abstract

We characterize Shelah-strong type over a hyperimagianary with the algebraic closure of a hyperimaginary. Also, we present and take a careful look at an example that witnesses $\operatorname{acl}^{\text {eq }}(\boldsymbol{e})$ is not interdefinable with $\operatorname{acl}(\boldsymbol{e})$ where \boldsymbol{e} is a hyperimaginary.

Fix a first order language \mathcal{L}, complete theory T and monster model \mathcal{M}. Throughout, fix a hyperimaginary $e=a_{E}$ where a is a (possibly infinite) real tuple and E is an \emptyset-type-definable equivalence relation on $\mathcal{M}^{|a|}$.

Most of the facts and remarks whose proofs are omitted can be found in the author's dissertation [6].

Fact 1.
(1) A real tuple b is simply $b /\left(\bigwedge_{i<\alpha} x_{i}=y_{i}\right)$ where $b=\left(b_{i}\right)_{i<\alpha}$, hence can be seen as (that is, interdefinable with) a hyperimaginary; an imaginary tuple $\left(b_{i} / F_{i}\right)_{i<\alpha}$ is $\left(b_{i}\right)_{i<\alpha} /\left(\bigwedge_{i<\alpha} F_{i}\left(x_{i}, y_{i}\right)\right)$ where all x_{i}, y_{i} 's are disjoint, hence is a hyperimaginary as well. In this regard, considering over a set of real elements or a set of imaginaries can be safely replaced by considering over a single hyperimaginary.
(2) In the same manner as above, a sequence of hyperimaginaries can be regarded as a single hyperimaginary: A tuple of hyperimaginaries $\left(b_{i} / F_{i}\right)_{i<\alpha}$ is interdefinable with $\left(b_{i}\right)_{i<\alpha} /\left(\bigwedge_{i<\alpha} F_{i}\left(x_{i}, y_{i}\right)\right)$ where all x_{i}, y_{i} 's are disjoint.

Definition 2.

(1) For any hyperimaginary \boldsymbol{e}^{\prime}, we denote $\boldsymbol{e}^{\prime} \in \operatorname{dcl}(\boldsymbol{e})$ and say \boldsymbol{e}^{\prime} is definable over \boldsymbol{e} if $f\left(\boldsymbol{e}^{\prime}\right)=\boldsymbol{e}^{\prime}$ for all $f \in \operatorname{Aut}_{e}(\mathcal{M})$.
(2) For any hyperimaginary \boldsymbol{e}^{\prime}, we denote $\boldsymbol{e}^{\prime} \in \operatorname{bdd}(\boldsymbol{e})$ and say \boldsymbol{e}^{\prime} is bounded over \boldsymbol{e} if $\left\{f\left(e^{\prime}\right): f \in \operatorname{Aut}_{e}(\mathcal{M})\right\}$ is bounded.
Remark 3. In Definition 2, $\boldsymbol{e}^{\prime} \in \operatorname{dcl}(\boldsymbol{e})$ and $\boldsymbol{e}^{\prime} \in \operatorname{bdd}(\boldsymbol{e})$ are independent of the choice of a monster model \mathcal{M}.

Proof. It is easy, but anyway we prove it. Let $\mathcal{M} \prec \mathcal{M}^{\prime}$ be monster models of T. Suppose that there are only κ-many automorphic images of \boldsymbol{e}^{\prime} in \mathcal{M}, whereas there are at least κ^{+} images in \mathcal{M}^{\prime}. Say $\boldsymbol{e}^{\prime}=b_{F}$ where b is a real tuple and F is an \emptyset-type-definable equivalence relation. Let $\left(b_{i} / F\right)_{i<\kappa^{+}}$be an enumeration of automorphic images of b_{F} in \mathcal{M}^{\prime}. Since there is $\left(b_{i}^{\prime}\right)_{i<\kappa^{+}} \equiv_{a}\left(b_{i}\right)_{i<\kappa^{+}}$where each $b_{i}^{\prime} \in \mathcal{M}$, there are at least κ^{+}-many conjugates of b_{F} in \mathcal{M} (recall $\boldsymbol{e}=a / E$), a contradiction.
Fact 4.
(1) A hyperimaginary b_{F} is called countable if $|\vec{b}|$ is countable. It's not so difficult to prove that any hyperimaginary is interdefinable with a sequence of countable hyperimaginaries(see, for example [5, Lemma 4.1.3]).

HYOYOON LEE DEPARTMENT OF MATHEMATICS, YONSEI UNIVERSITY

(2) From now on, definable closure of $\boldsymbol{e}, \operatorname{dcl}(\boldsymbol{e})$ will be seen as an actual (small) set, the set of all countable hyperimaginaries which are definable over \boldsymbol{e} : In this way, $\boldsymbol{e}^{\prime} \in \operatorname{dcl}(\boldsymbol{e})$ now means that there is a sequence of countable hyperimaginaries that is interdefinable with \boldsymbol{e}^{\prime} and fixed by any $f \in \operatorname{Aut}_{\boldsymbol{e}}(\mathcal{M})$. Also note that $f \in \operatorname{Aut}_{\operatorname{dcl}(e)}(\mathcal{M})$ if and only if f fixes all hyperimaginaries that are definable over \boldsymbol{e}. As pointed out in Fact 1(2), dcl(e) also can be seen as a single hyperimaginary.
(3) Likewise, the bounded closure of $\boldsymbol{e}, \operatorname{bdd}(\boldsymbol{e})$ is the set of all countable hyperimaginaries which are bounded over \boldsymbol{e}. In the same way as above, $\boldsymbol{e}^{\prime} \in \operatorname{bdd}(\boldsymbol{e})$ means that there is a sequence of countable hyperimaginaries that is interdefinable with \boldsymbol{e}^{\prime}, and the number of \boldsymbol{e}-automorphic images of it is bounded. Again, $f \in \operatorname{Aut}_{\mathrm{bdd}(e)}(\mathcal{M})$ is equivalent to saying that f fixes all hyperimaginaries that are bounded over \boldsymbol{e}.

Remark \& Definition 5.

(1) For a hyperimaginary \boldsymbol{e}^{\prime}, denote $\boldsymbol{e}^{\prime} \in \operatorname{acl}(\boldsymbol{e})$ and say \boldsymbol{e}^{\prime} is algebraic over \boldsymbol{e} if $\left\{f\left(\boldsymbol{e}^{\prime}\right): f \in \operatorname{Aut}_{\boldsymbol{e}}(\mathcal{M})\right\}$ is finite. As in Remark 3, this definition is independent of the choice of a monster model.
(2) As in Fact 4, the algebraic closure of $\boldsymbol{e}, \operatorname{acl}(\boldsymbol{e})$ can be regarded as a bounded set of countable hyperimaginaries, which is interdefinable with a single hyperimaginary $b_{F} \in \operatorname{bdd}(\boldsymbol{e})$ (but possibly $b_{F} \notin \operatorname{acl}(\boldsymbol{e})$).
(3) Note that given $d_{i} / L_{i} \in \operatorname{acl}(\boldsymbol{e})(i \leq n)$, as pointed out in Fact $1,\left(d_{0} / L_{0}, \cdots, d_{n} / L_{n}\right)$ is interdefinable with a single $d_{L} \in \operatorname{acl}(\boldsymbol{e})$. Hence by compactness, for any hyperimaginaries b_{F} and c_{F},

$$
b_{F} \equiv_{\operatorname{acl}(e)} c_{F} \text { if and only if } b_{F} \equiv_{d_{L}} c_{F} \text { for any } d_{L} \in \operatorname{acl}(\boldsymbol{e}) .
$$

Definition 6.

(1) $\operatorname{Aut}_{\boldsymbol{e}}(\mathcal{M})=\{f \in \operatorname{Aut}(\mathcal{M}): f(\boldsymbol{e})=\boldsymbol{e}\}(f$ may permute the elements of $\boldsymbol{e})$.
(2) $\operatorname{Autf}_{e}(\mathcal{M})$ is a subgroup of $\operatorname{Aut}_{e}(\mathcal{M})$ generated by $\left\{f \in \operatorname{Aut}_{\boldsymbol{e}}(\mathcal{M}): f \in \operatorname{Aut}_{M}(\mathcal{M})\right.$ for some $M \models T$ such that $\left.\boldsymbol{e} \in \operatorname{dcl}(M)\right\}$.
It can be easily seen that $\operatorname{Autf}_{e}(\mathcal{M})$ is a normal subgroup of $\operatorname{Aut}_{e}(\mathcal{M})$.
(3) The Lascar group over of $T \boldsymbol{e}$ is the quotient group

$$
\operatorname{Gal}_{\mathrm{L}}(T, \boldsymbol{e})=\operatorname{Aut}_{e}(\mathcal{M}) / \operatorname{Autf}_{e}(\mathcal{M})
$$

Remark 7.

(1) Up to isomorphism, $\operatorname{Gal}_{\mathrm{L}}(T, \boldsymbol{e})$ is independent of the choice of a monster model \mathcal{M}.
(2) There are well-defined maps μ and ν such that:

$$
\begin{gathered}
\operatorname{Aut}_{e}(\mathcal{M}) \xrightarrow{\mu} S_{M}(M) \xrightarrow{\nu} \operatorname{Gal}_{\mathrm{L}}(T, \boldsymbol{e}) \\
f \mapsto \operatorname{tp}(f(M) / M)
\end{gathered}>\bar{f}=\pi(f)
$$

where M is a small model of T such that $\boldsymbol{e} \in \operatorname{dcl}(M)$, and $\pi: \operatorname{Aut}_{e}(\mathcal{M}) \rightarrow$ $\operatorname{Gal}_{\mathrm{L}}(T, \boldsymbol{e})$ is the canonical projection.

The topology of $\operatorname{Gal}_{\mathrm{L}}(T, \boldsymbol{e})$ is given by the topology induced by the quotient $\operatorname{map} \nu$, and it is independent of the choice of M.
Fact 8.
(1) $\operatorname{Gal}_{\mathrm{L}}(T, \boldsymbol{e})$ is a topological group.
(2) Let $H \leq \operatorname{Aut}_{e}(\mathcal{M})$ and let $H^{\prime}=\pi(H) \leq \operatorname{Gal}_{\mathrm{L}}(T, \boldsymbol{e})$. Then H^{\prime} is closed in $\operatorname{Gal}_{\mathrm{L}}(T, \boldsymbol{e})$ and $H=\pi^{-1}\left(H^{\prime}\right)$, if and only if $H=\operatorname{Aut}_{e^{\prime} e}(\mathcal{M})$ for some hyperimaginary $\boldsymbol{e}^{\prime} \in \operatorname{bdd}(\boldsymbol{e})$.
(3) Let $H^{\prime} \leq \operatorname{Gal}_{L}(T, \boldsymbol{e})$ be closed and F be an \emptyset-type-definable equivalence relation. Then for $H=\pi^{-1}\left(H^{\prime}\right), x_{F} \equiv_{e}^{H} y_{F}$ is equivalent to $x_{F} \equiv_{e^{\prime} e} y_{F}$ for some hyperimaginary $\boldsymbol{e}^{\prime} \in \operatorname{bdd}(\boldsymbol{e})$, and hence $x_{F} \equiv_{e}^{H} y_{F}$ is an $\boldsymbol{e}^{\prime} \boldsymbol{e}$-invariant type-definable bounded equivalence relation. Especially, if $H^{\prime} \unlhd \operatorname{Gal}_{\mathrm{L}}(T, \boldsymbol{e})$, then $x_{F} \equiv_{e}^{H} y_{F}$ is e-invariant.

Definition 9.

(1) $\operatorname{Gal}_{\mathrm{L}}^{0}(T, \boldsymbol{e})$ denotes the connected component of the identity in $\operatorname{Gal}_{\mathrm{L}}(T, \boldsymbol{e})$.
(2) $\operatorname{Autf}_{\mathrm{s}}(\mathcal{M}, \boldsymbol{e}):=\pi^{-1}\left(\operatorname{Gal}_{\mathrm{L}}^{0}(T, \boldsymbol{e})\right)$.
(3) Two hyperimaginaries b_{F} and c_{F} are said to have the same Shelah-strong type if there is $f \in \operatorname{Autf}_{\mathrm{s}}(\mathcal{M}, \boldsymbol{e})$ such that $f\left(b_{F}\right)=c_{F}$, denoted by $b_{F} \equiv_{e}^{\mathrm{s}} c_{F}$.

Remark 10. Note that $\operatorname{Gal}_{\mathrm{L}}^{0}(T, \boldsymbol{e})$ is a normal closed subgroup of $\operatorname{Gal}_{\mathrm{L}}(T, \boldsymbol{e})$ ([4]) and \equiv_{e}^{S} is the orbit equivalence relation $\equiv_{e}^{\operatorname{Autf}_{s}(\mathcal{M}, e)}$, thus \equiv_{e}^{s} is type-definable over \boldsymbol{e} by Fact $8(3)$. We denote

$$
\operatorname{Gal}_{\mathrm{s}}(T, \boldsymbol{e}):=\operatorname{Gal}_{\mathrm{L}}(T, \boldsymbol{e}) / \operatorname{Gal}_{\mathrm{L}}^{0}(T, \boldsymbol{e}) \cong \operatorname{Aut}_{\boldsymbol{e}}(\mathcal{M}) / \operatorname{Autf}_{\mathrm{s}}(\mathcal{M}, \boldsymbol{e}) .
$$

Thus $\mathrm{Gal}_{\mathrm{s}}(T, \boldsymbol{e})$ is a profinite (i.e. compact and totally disconnected) topological group. $\operatorname{Gal}_{\mathrm{L}}^{0}(T, \boldsymbol{e})$ is the intersection of all closed (normal) subgroups of finite indices in $\operatorname{Gal}_{\mathrm{L}}(T, \boldsymbol{e})$, since such an intersection is the identity for a profinite group ([4]).

Proposition 11.

(1) $\operatorname{Autf}_{\mathrm{s}}(\mathcal{M}, \boldsymbol{e})=\operatorname{Aut}_{\operatorname{acl}(e)}(\mathcal{M})$.
(2) Let b_{F}, c_{F} be hyperimaginaries. The following are equivalent.
(a) $b_{F} \equiv_{e}^{\mathrm{s}} c_{F}$.
(b) $b_{F} \equiv_{\operatorname{acl}(e)} c_{F}$.

Proof. (1). We claim first that

$$
\operatorname{Gal}_{\mathrm{L}}^{0}(T, \boldsymbol{e})=\bigcap\left\{\pi\left(\operatorname{Aut}_{d_{L}}(\mathcal{M})\right): d_{L} \in \operatorname{acl}(\boldsymbol{e})\right\} .
$$

Let $d_{L} \in \operatorname{acl}(\boldsymbol{e})$ where d_{L} is a hyperimaginary. Say $d_{L}^{0}\left(=d_{L}\right), \cdots, d_{L}^{n}$ are all the conjugates of d_{L} over \boldsymbol{e}. Then any $f \in \operatorname{Aut}_{e}(\mathcal{M})$ permutes the set $\left\{d_{L}^{0}, \cdots, d_{L}^{n}\right\}$. Hence it follows that $\operatorname{Aut}_{d_{L} e}(\mathcal{M})$ has a finite index in $\operatorname{Aut}_{e}(\mathcal{M})$. Thus (due to Fact $\left.8(2)\right) \pi\left(\operatorname{Aut}_{d_{L} e}(\mathcal{M})\right)$ is a closed subgroup of finite index in $\operatorname{Gal}_{\mathrm{L}}(T, \boldsymbol{e})$. Then as in Remark 10, we have $\operatorname{Gal}_{\mathrm{L}}^{0}(T, \boldsymbol{e}) \leq$ $\pi\left(\operatorname{Aut}_{d_{L} e}(\mathcal{M})\right)$.

Conversely, given a normal closed subgroup $H^{\prime} \leq \operatorname{Gal}_{\mathrm{L}}(T, \boldsymbol{e})$ of finite index and $H:=$ $\pi^{-1}\left(H^{\prime}\right)$, Fact $8(2)$ says $H^{\prime}=\pi\left(\operatorname{Aut}_{b_{F} e}(\mathcal{M})\right)$ for some $b_{F} \in \operatorname{bdd}(\boldsymbol{e})$. But since H^{\prime} is of finite index, the same holds for $H=\operatorname{Aut}_{b_{F} e}(\mathcal{M})$ in $\operatorname{Aut}_{e}(\mathcal{M})$, and we must have $b_{F} \in \operatorname{acl}(\boldsymbol{e})$. Thus the claim follows from Remark 10.

Therefore

$$
\begin{aligned}
\operatorname{Autf}_{\mathrm{s}}(\mathcal{M}, \boldsymbol{e}) & =\pi^{-1}\left(\operatorname{Gal}_{\mathrm{L}}^{0}(T, \boldsymbol{e})\right)=\pi^{-1}\left(\bigcap\left\{\pi\left(\operatorname{Aut}_{d_{L} \boldsymbol{e}}(\mathcal{M})\right): d_{L} \in \operatorname{acl}(\boldsymbol{e})\right\}\right) \\
& =\bigcap\left\{\operatorname{Aut}_{d_{L} e}(\mathcal{M}): d_{L} \in \operatorname{acl}(\boldsymbol{e})\right\}=\operatorname{Aut}_{\text {acl }(\boldsymbol{e})}(\mathcal{M}),
\end{aligned}
$$

where the last equality follows by Remark \& Definition 5(3).
(2) follows from (1).

HYOYOON LEE DEPARTMENT OF MATHEMATICS, YONSEI UNIVERSITY

Recall that $\operatorname{acl}^{\mathrm{eq}}(\boldsymbol{e}):=\{\boldsymbol{e}\} \cup\left(\operatorname{acl}(\boldsymbol{e}) \cap \mathcal{M}^{\mathrm{eq}}\right)$ is the eq-algebraic closure of \boldsymbol{e}, where as usual $\mathcal{M}^{\text {eq }}$ is the set of all imaginary elements (equivalence classes of \emptyset-definable equivalence relations) of \mathcal{M}. Good summary of basic facts concerning imaginary elements can be found in [1, Chapter 1]. The following remark is proved using the proof of [9, Theorem 21].
Remark 12. For any small set A of imaginaries, $\operatorname{acl}^{\text {eq }}(A)\left(=\operatorname{acl}(A) \cap \mathcal{M}^{\text {eq }}\right)$ is interdefinable with $\operatorname{acl}(A)$.

Proof. Recall that $\operatorname{Gal}_{\mathrm{L}}^{0}(T, A)$ is the intersection of all closed (normal) subgroups of finite indices in $\operatorname{Gal}_{L}(T, A)$ (Remark 10). Let H^{\prime} be a closed subgroup of finite index in $\operatorname{Gal}_{L}(T, A)$. It suffices to show that $H^{\prime}=\pi\left(\operatorname{Aut}_{b A}(\mathcal{M})\right)$ for some $\boldsymbol{b} \in \operatorname{acl}^{\text {eq }}(A)$; by Fact 8(2), we have

$$
\begin{aligned}
\operatorname{Gal}_{\mathrm{L}}^{0}(T, \boldsymbol{e}) & =\bigcap\left\{H^{\prime}: H^{\prime} \text { is a closed subgroup of finite index in } \operatorname{Gal}_{\mathrm{L}}(T, A)\right\} \\
& \subseteq \bigcap\left\{\pi\left(\operatorname{Aut}_{d_{L} A}(\mathcal{M})\right): d_{L} \in \operatorname{acl}^{\text {eq }}(A)\right\} ;
\end{aligned}
$$

thus if we show that $H^{\prime}=\pi\left(\operatorname{Aut}_{b A}(\mathcal{M})\right)$ for some $\boldsymbol{b} \in \operatorname{acl}^{\text {eq }}(A)$, then $\operatorname{Gal}_{\mathrm{L}}^{0}(T, A)=$ $\bigcap\left\{\pi\left(\operatorname{Aut}_{d_{L} A}(\mathcal{M})\right): d_{L} \in \operatorname{acl}^{\text {eq }}(A)\right\}$. Taking π^{-1}, we get $\operatorname{Aut}_{\text {acl }(A)}(\mathcal{M})=\operatorname{Aut}_{\operatorname{acleq}^{\text {eq }}(A)}(\mathcal{M})$ (by a similar manner as in the last lines of the proof of Proposition 11(1)).

Since H is closed in $\operatorname{Gal}_{\mathrm{L}}(T, A)$, by Fact $8(3), H=\pi\left(\operatorname{Aut}_{c_{F} A}(\mathcal{M})\right)$ for some hyperimaginary $c_{F} \in \operatorname{bdd}(A)$. But H has finite index in $\operatorname{Gal}_{\mathrm{L}}(T, A)$, hence (by Fact 8(2),) $c_{F} \in \operatorname{acl}(A)$. Say $\left\{c_{F}=c_{0} / F, \cdots, c_{n-1} / F\right\}$ is the set of all A-conjugates of c_{F}.

We may assume that F is closed under conjunction and all formulas in F are symmetric and reflexive. Note that by compactness, there is $\delta \in F$ such that for all $i<j<n$,

$$
c_{i} c_{j} \not \models \exists z_{0} z_{1} z_{2}\left(\delta\left(x, z_{0}\right) \wedge \delta\left(z_{0}, z_{1}\right) \wedge \delta\left(z_{1}, z_{2}\right) \wedge \delta\left(z_{2}, y\right)\right) .
$$

Let $\delta^{4}(x, y) \equiv \exists z_{0} z_{1} z_{2}\left(\delta\left(x, z_{0}\right) \wedge \delta\left(z_{0}, z_{1}\right) \wedge \delta\left(z_{1}, z_{2}\right) \wedge \delta\left(z_{2}, y\right)\right)$, and define $\delta^{m}(x, y)$ similarly for $m<\omega$. Note that in particular, $\delta\left(c_{i}, \mathcal{M}\right)$'s are pairwise disjoint.

Let d be any realization of $\operatorname{tp}\left(c_{0} / A\right)$. Then $d \models \bigvee_{i<n} F\left(x, c_{i}\right)$, thus $d \models \bigvee_{i<n} \delta\left(x, c_{i}\right)$, implying that there is $\varphi(x) \in \operatorname{tp}\left(c_{0} / A\right)$ such that $\varphi(x) \models \bigvee_{i<n} \delta\left(x, c_{i}\right)$, that is, $\varphi(\mathcal{M})$ can be partitioned as $\left\{\varphi(\mathcal{M}) \cap \delta\left(c_{i}, \mathcal{M}\right): i<n\right\}$. Note that we can say $\varphi(x)$ is A-invariant; this is possible because A is a set of imaginaries, not a hyperimaginary.
Claim 1. For any $a^{\prime}, a^{\prime \prime} \models \varphi(x)$,
$a^{\prime} a^{\prime \prime} \models \delta^{2}(x, y)$ if and only if $a^{\prime}, a^{\prime \prime} \in \varphi(\mathcal{M}) \cap \delta\left(c_{i}, \mathcal{M}\right)$ for some $i<n$.
Proof. Assume $\models \delta^{2}\left(a^{\prime}, a^{\prime \prime}\right)$, hence there is some a^{*} such that $\models \delta\left(a^{\prime}, a^{*}\right) \wedge \delta\left(a^{*}, a^{\prime \prime}\right)$. Suppose a^{\prime} and $a^{\prime \prime}$ belong to different components for a contradiction. Then

$$
\models \delta\left(c_{i}, a^{\prime}\right) \wedge \delta\left(a^{\prime}, a^{*}\right) \wedge \delta\left(a^{*}, a^{\prime \prime}\right) \wedge \delta\left(a^{\prime \prime}, c_{j}\right)
$$

for some $i \neq j<n$, implying $c_{i} c_{j} \models \delta^{4}(x, y)$, a contradiction.
For the converse, suppose $a^{\prime}, a^{\prime \prime} \in \varphi(\mathcal{M}) \cap \delta\left(c_{i}, \mathcal{M}\right)$ for some $i<n$. Then $\models \delta\left(a^{\prime}, c_{i}\right) \wedge$ $\delta\left(c_{i}, a^{\prime \prime}\right)$.

Now define

$$
L(x, y) \equiv(\neg \varphi(x) \wedge \neg \varphi(y)) \vee\left(\varphi(x) \wedge \varphi(y) \wedge \delta^{2}(x, y)\right)
$$

Since $\varphi(x)$ is A-invariant, L is an A-definable equivalence relation with finitely many classes, $\neg \varphi(\mathcal{M}), \varphi(\mathcal{M}) \cap \delta\left(c_{0}, \mathcal{M}\right), \cdots, \varphi(\mathcal{M}) \cap \delta\left(c_{n-1}, \mathcal{M}\right)$. Note that some imaginary $\boldsymbol{b}(\in \operatorname{acl}(A))$ is interdefinable with $c / L([1$, Lemma 1.10] $)$.

Claim 2. c / F and \boldsymbol{b} (or equivalently, c / L) are interdefinable over A.
Proof. Let $f \in \operatorname{Aut}_{A}(\mathcal{M})$. Then

$$
\begin{aligned}
& f(c / F)=c / F \text { iff } F(f(c), c) \text { holds iff } \models \delta^{2}(f(c), c) \\
& \text { iff } L(f(c), c) \text { holds iff } f(c / L)=c / L
\end{aligned}
$$

where the second logical equivalence follows since: Otherwise, $\models \delta^{2}(f(c), c)$ but $F\left(c_{i}, f(c)\right)$ and $F\left(c, c_{j}\right)$ hold for some $i \neq j<n$. But then we have $\models \delta^{4}\left(c_{i}, c_{j}\right)$, a contradiction.

By Claim 2, $H=\pi\left(\operatorname{Aut}_{c_{F} A}(\mathcal{M})\right)=\pi\left(\operatorname{Aut}_{b A}(\mathcal{M})\right)$ where $\boldsymbol{b} \in \operatorname{acl}^{\text {eq }}(A)$.

However, contrary to [5, Corollary 5.1.15], in general acl(e) and acleq (\boldsymbol{e}) need not be interdefinable; the error occurred there due to the incorrect proof of $[5,5.1 .14(1) \Rightarrow(2)]$. An example presented in [3] for another purpose supplies a counterexample. Consider the following 2 -sorted model:

$$
M=\left(\left(M_{1}, S_{1},\left\{g_{1 / n}^{1}: n \geq 1\right\}\right),\left(M_{2}, S_{2},\left\{g_{1 / n}^{2}: n \geq 1\right\}\right), \delta\right) \text { where }
$$

(1) M_{1} and M_{2} are unit circles centered at origins of two disjoint (real) planes.
(2) S_{i} is a ternary relation on M_{i}, defined by $S_{i}(b, c, d)$ holds if and only if b, c and d are in clockwise-order.
(3) $g_{1 / n}^{i}$ is a unary function on M_{i} such that $g_{1 / n}^{i}(b)=$ rotation of b by $2 \pi / n$-radians clockwise.
(4) $\delta: M_{1} \rightarrow M_{2}$ is the double covering, i.e. $\delta(\cos t, \sin t)=(\cos 2 t, \sin 2 t)$.
(5) Let \mathcal{M} be a monster model of $\operatorname{Th}(M)$ and $\mathcal{M}_{1}, \mathcal{M}_{2}$ be the two sorts of \mathcal{M}.

In [2, Theorems 5.8 and 5.9], it is shown that each $\operatorname{Th}\left(\mathcal{M}_{i}\right)$ has weak elimination of imaginaries (that is, for any imaginary element c, there is a finite real tuple b such that $c \in \operatorname{dcl}(b)$ and $b \in \operatorname{acl}(c))$, using the B. Poizat's notion of weak elimination of imaginaries ([7, Chapter 16.5]). The following fact is a folklore, whose explicit proof was observed in RIMS model theory workshop by I. Yoneda ([8]).
Fact 13. A (complete) theory T has weak elimination of imaginaries if and only if every definable set has a smallest algebraically closed set over which it is definable.

Remark \& Definition 14.

(1) For each element b of sort $i=1,2, g_{r}^{i}(b)$ means $\left(g_{1 / n}^{i}\right)^{m}(b)$ where r is a rational number m / n.
(2) For each element b of sort $2, \delta^{-1}(b)=\left\{c_{0}, c_{1}\right\}$, the δ-preimage of b.
(3) For a set of elements $B=B_{1} \cup B_{2}$ of \mathcal{M} where each element of B_{i} is of sort i,

$$
\begin{aligned}
\operatorname{cl}(B)= & \left\{g_{r}^{1}(b): r \in \mathbb{Q}, b \in B_{1}\right\} \cup\left\{\delta\left(g_{r}^{1}(b)\right): r \in \mathbb{Q}, b \in B_{1}\right\} \\
& \cup\left\{g_{r}^{2}(b): r \in \mathbb{Q}, b \in B_{2}\right\} \cup \bigcup_{r \in \mathbb{Q}, b \in B_{2}} \delta^{-1}\left(g_{r}^{2}(b)\right) .
\end{aligned}
$$

(4) Note that in the above item, the substructure generated by B is formed by omitting the last union: $\bigcup_{r \in \mathbb{Q}, b \in B_{2}} \delta^{-1}\left(g_{r}^{2}(b)\right)$.

Lemma 15. Let $B=\left\{b_{0}, \cdots, b_{n-1}\right\}$ be a subset of \mathcal{M}. Then

$$
\operatorname{acl}(B)=\operatorname{cl}(B)
$$

HYOYOON LEE DEPARTMENT OF MATHEMATICS, YONSEI UNIVERSITY

Proof. Say $B=\left\{b_{0}, \cdots, b_{m-1}, b_{m}, \cdots, b_{n-1}\right\}$ where b_{0}, \cdots, b_{m-1} are of sort 1 and the others are of 2 . Choose any element b of sort 1 . If

$$
b \notin\left\{g_{r}^{1}\left(b_{i}\right): r \in \mathbb{Q}, i<m\right\} \cup \bigcup_{r \in \mathbb{Q}, m \leq i<n} \delta^{-1}\left(g_{r}^{2}\left(b_{i}\right)\right),
$$

then $b \notin \operatorname{acl}(B)$ since there are infinitely many elements which are infinitesimally close to b and there is an B-automorphism mapping b to each such element.

Likewise, for an element b of sort 2, if

$$
b \notin\left\{g_{r}^{2}\left(\delta\left(b_{i}\right)\right): r \in \mathbb{Q}, i<m\right\} \cup\left\{g_{r}^{2}\left(b_{i}\right): r \in \mathbb{Q}, m \leq i<n\right\},
$$

then $b \notin \operatorname{acl}(B)$. Thus $\operatorname{acl}(B) \subseteq \operatorname{cl}(B)$.
For the converse, it is easy to observe that

$$
\begin{gathered}
\left\{g_{r}^{1}\left(b_{i}\right): r \in \mathbb{Q}, i<m\right\} \cup\left\{g_{r}^{2}\left(\delta\left(b_{i}\right)\right): r \in \mathbb{Q}, i<m\right\} \\
\cup\left\{g_{r}^{2}\left(\delta\left(b_{i}\right)\right): r \in \mathbb{Q}, m \leq i<n\right\} \subseteq \operatorname{dcl}(B) \text { and } \\
\bigcup_{r \in \mathbb{Q}, m \leq i<n} \delta^{-1}\left(g_{r}^{2}\left(b_{i}\right)\right) \subseteq \operatorname{acl}(B)
\end{gathered}
$$

since each $b \in \bigcup_{r \in \mathbb{Q}, m \leq i<n} \delta^{-1}\left(g_{r}^{2}\left(b_{i}\right)\right)$ has at most two B-automorphic images (has only one B-automorphic image if $m \neq 0$).
Proposition 16. $\operatorname{Th}(\mathcal{M})$ has weak elimination of imaginaries.
Proof. Let $\varphi\left(x, y_{0}, \cdots, y_{n-1}\right) \in \mathcal{L}$ and $B=\left\{b_{0}, \cdots, b_{n-1}\right\}=\left\{b_{0}, \cdots, b_{m-1}\right\} \cup\left\{b_{m}, \cdots, b_{n-1}\right\}$ where b_{0}, \cdots, b_{m-1} are of sort 1 and the others are of 2. According to Fact 13, it suffices to show that there is a smallest algebraically closed set over which $\varphi(\mathcal{M}, B) \equiv$ $\varphi\left(\mathcal{M}, b_{0}, \cdots, b_{n-1}\right)$ is definable.

Since there is some c_{i} such that $\delta\left(c_{i}\right)=b_{i}$ for each $i \in\{m, \cdots, n-1\}$, we may assume that every element of B is of sort 1 . Choose $D=\left\{d_{0}, \cdots, d_{k-1}\right\} \subseteq B$ such that $\left\{g_{r}^{1}\left(d_{i}\right): r \in \mathbb{Q}, i<k\right\}=\left\{g_{r}^{1}\left(b_{i}\right): r \in \mathbb{Q}, i<n\right\}$ and $d_{i} \notin \operatorname{cl}(D) \backslash\left\{d_{i}\right\}$ for each $i<k$. Then $\varphi(\mathcal{M}, B)$ is definable over D and there is some minimal subset D^{\prime} of D such that $\varphi(\mathcal{M}, B)$ is definable over $\operatorname{acl}\left(D^{\prime}\right)$ by Lemma 15.

Now for $i=1,2$, we let $E_{i}(x, y)$ if and only if x and y in \mathcal{M}_{i} are infinitesimally close, i.e.

$$
E_{i}(x, y):=\bigwedge_{1<n}\left(S_{i}\left(x, y, g_{1 / n}^{i}(x)\right) \vee S_{i}\left(y, x, g_{1 / n}^{i}(y)\right)\right)
$$

which is an \emptyset-type-definable equivalence relation. Let $b \in \mathcal{M}_{2}, c, c^{\prime} \in \mathcal{M}_{1}$ where $\delta(c)=$ $\delta\left(c^{\prime}\right)=b$. Note that c, c^{\prime} are antipodal to each other and $c / E_{1}, c^{\prime} / E_{1}$ are conjugates over b / E_{2}, hence $c / E_{1}, c^{\prime} / E_{1} \in \operatorname{acl}\left(b / E_{2}\right)$.
Theorem 17. $\operatorname{acl}\left(b / E_{2}\right)$ and $\operatorname{acl}^{\text {eq }}\left(b / E_{2}\right)$ are not interdefinable.
Proof. We prove following Claim and then conclude.
Claim. $\operatorname{acl}^{\text {eq }}\left(b / E_{2}\right)$ is interdefinable with b / E_{2}.
Proof. To lead a contradiction, suppose that there are distinct imaginaries $d_{1}, d_{2} \in \operatorname{acl}^{\mathrm{leq}}\left(b / E_{2}\right)$ such that $d_{1} \equiv_{b / E_{2}} d_{2}$. Weak elimination of imaginaries of $\operatorname{Th}(\mathcal{M})$ (Proposition 16) implies that $\operatorname{acl}^{\mathrm{eq}}\left(d_{1}, d_{2}\right)$ and $D:=\left\{d \in \mathcal{M}: d \in \operatorname{acl}^{\mathrm{eq}}\left(d_{1}, d_{2}\right)\right\}$ are interdefinable ($*$). In particular, $D \subseteq \operatorname{acl}^{\text {eq }}\left(b / E_{2}\right) \cap \mathcal{M}$. However, for any infinitesimally close $d, d^{\prime} \in \mathcal{M}_{i}(i=1,2)$, there is $f \in \operatorname{Aut}_{b / E_{2}}(\mathcal{M})$ sending d to d^{\prime}. Hence indeed $D=\emptyset$, which contradicts $(*)$ (because $d_{1} \equiv_{b / E_{2}} d_{2}$ and $d_{1} \neq d_{2} \in \operatorname{acl}^{\text {eq }}\left(d_{1}, d_{2}\right)$).

SHELAH-STRONG TYPE AND ALGEBRAIC CLOSURE OVER A HYPERIMAGINARY

Now $c / E_{1}, c^{\prime} / E_{1} \in \operatorname{acl}\left(b / E_{2}\right) \backslash \operatorname{dcl}\left(b / E_{2}\right)=\operatorname{acl}\left(b / E_{2}\right) \backslash \operatorname{dcl}\left(\operatorname{acl}{ }^{\mathrm{eq}}\left(b / E_{2}\right)\right)$.

References

[1] Enrique Casanovas, Simple theories and hyperimaginaries (Lecture Notes in Logic), Cambridge University Press, 2011.
[2] Jan Dobrowolski, Byunghan Kim and Junguk Lee, The Lascar groups and the first homology groups in model theory, Annals of Pure and Applied Logic 168, (2017), 2129-2151.
[3] Jan Dobrowolski, Byunghan Kim, Alexei Kolesnikov and Junguk Lee, The relativized Lascar groups, type-amalgamation, and algebraicity, Journal of Symbolic Logic, 86, (2021), 531-557.
[4] Karl H. Hofmann and Sidney A. Morris, The structure of compact groups, De Gruyter, 2013.
[5] Byunghan Kim, Simplicity theory, Oxford University Press, 2014.
[6] Hyoyoon Lee, Quotient groups of the Lascar group and strong types in the context of hyperimaginaries, PhD thesis, Yonsei University, in preparation.
[7] Bruno Poizat, A Course in Model Theory: An Introduction to Contemporary Mathematical Logic, Springer, 2000.
[8] Ikuo Yoneda, On two definitions of weak elimination of imaginaries, RIMS Model Theory Workshop 2021, December 2021.
[9] Martin Ziegler, Introduction to the Lascar group, Tits buildings and the model theory of groups, London Math. Lecture Note Series, 291, Cambridge University Press, (2002), 279-298.

Department of Mathematics
Yonsei University
50 Yonsei-ro Seodaemun-gu
SEOUL 03722
South Korea
Email address: alternative@yonsei.ac.kr

[^0]: CITATION：
 LEE，HYOYOON．SHELAH－STRONG TYPE AND ALGEBRAIC CLOSURE OVER A HYPERIMAGINARY（Model theoretic aspects of the notion of independence and dimension）．数理解析研究所講究録 2022，2218：93－99

