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Abstract – An exact computational algorithm for the solution of a discrete time multiclass tandem network with a primary class and 
cross-traffic at each queue is developed. A sequence of truncated Lindley recursions is defined at each queue relating the delays experienced 
by the first packet from consecutive batches of a class at that queue. Using this sequence of recursions, a convolve-and-sweep algorithm is 
developed to compute the stationary distributions of the delay and inter-departure processes of each class at a queue, delays experienced 
by a typical packet from the primary class along its path as well as the mean end-to-end delay of such a packet. The proposed approach is 
designed to handle the non-renewal arrival processes arising in the network. The algorithmic solution is implemented as an abstract class 
which permits its easy adaptation to analyze different network configurations and sizes. The delays of a packet at different queues are shown 
to be associated random variables from which it follows that the variance of total delay is lower bounded by the sum of variances of delays 
at the queues along the path. The developed algorithm and the proposed lower bound on the variance of total delay are validated against 
simulation for a tandem network of two queues with three classes under different batch size distributions.
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1. INTRODUCTION

Communication networks carry packet traffic 
through connections between multiple source-des-
tination pairs. Traffic from each connection passes 
through a network path consisting of a sequence of 
intermediate nodes and faces contention at each of 
these nodes from other connections. Delays experi-
enced by the connection along the path are random, 
and their characterization and estimation are crucial 
measures of network performance. For this purpose, 
the connection can be modelled as a tandem network 
of queues [1-5].

In discrete time queues and their network models, the 
time axis is divided into equal intervals, termed “slots”. In 
each slot, a batch of packets from each of the sources is 
generated and enters the queue or network and one or 
more packets leave the queue or network [3-4]. 

In a network, the joint distribution of queue lengths 
and delays as well as the end-to-end delay are useful 
measures of network performance but have proved 
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to be hard problems to solve [2]. Analogous to the 
analysis of their continuous time counterparts, de-
composition of the stationary joint distribution of the 
queue lengths at different queues in a discrete time 
network into a product of marginal distributions is 
shown for a large class of networks [6]. To employ this 
for obtaining the delays, one needs to establish arrival 
theorems which are known for only special models of 
networks [7]. However, product-form decomposition is 
employed as a heuristic approximation in general net-
works. This paper addresses the problem of computing 
the delays in a discrete tandem network with batch ar-
rival processes and cross-traffic. An exact algorithm for 
computing the distributions of delays at each queue as 
well as the mean end-to-delay of a typical packet is de-
veloped, along with a lower bound for the variance of 
the end-to-end delay.

Different models of tandem queueing networks with 
and without arrivals and with and without departures 
at the intermediate nodes are studied in the literature. 
In [8], a tandem network of two queues in continuous 
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time with Poisson arrivals only at the first queue and 
identical and independent service times is studied. 
Joint delays in a continuous time tandem network 
without intermediate arrivals are analyzed in [9]. In 
[10], an approximate analysis of the queue lengths and 
busy periods at each node in a discrete time tandem 
network with arrivals and departures at intermediate 
nodes is carried out. The departures are modelled as 
random packet drops after service. The authors of [11] 
consider a model identical to the model analyzed in the 
current paper and propose recursive algorithms for the 
computation of delay distributions without presenting 
any results. In the current paper, a sequence of trun-
cated Lindley processes is introduced for expressing 
the delays in the queues of the tandem network, and 
a convolve-and-sweep algorithm is devised for com-
puting the delay distributions. This approach has the 
advantage that the algorithm does not require renewal 
arrival processes and hence can be applied to all the 
queues in the tandem network.

Discrete time tandem network with arrivals and de-
partures at intermediate nodes under Furthest-to-Go 
service discipline is analyzed in [12] and expressions 
for queue length distributions are obtained. The com-
ponents of end-to-end delay in a Software Defined 
Network (SDN) are modelled and experimentally esti-
mated in [5].

Apart from computational approaches, simulation 
and bounds are also employed in the analysis of tandem 
networks. Simulation analysis of the performance of 
high-speed networks is carried out in [13-14].  In [15], the 
output process of a GI/GI/1 queue is approximated by a 
renewal process and this is applied to a tandem network 
of queues without interfering traffic. This approach is ap-
plied in [16] to analyze general discrete time networks. 
Worst case bounds on the end-to-end delay under ac-
tive queue management scheduling algorithms are 
derived in [17]. A general network calculus approach to 
the end-to-end analysis of queueing networks when the 
inputs are modelled as deterministic or stochastic affine 
envelop processes is developed in [18-19] and the same 
has been applied to SDN in [20-21].

Computation of the end-to-end delay in a network 
is feasible for product-form networks wherein the sta-
tionary joint distribution of delays at various queues 
factors into the product of the marginal distributions. 
This follows if a stronger assumption that the delays in 
the queues are independent random variables is made. 
The product-form decomposition and independence 
assumption are commonly employed as a heuristic for 
end-to-end analysis. Lower bounds on the moments of 
total delay are established by showing that the delays 
in the individual queues are associated random vari-
ables [22]. This property is proved in [23] for a tandem 
network wherein the service times at all but the last 
server are all a constant. In [23] it is employed to derive 
an upper bound on the mean total delay. In the current 
paper, it is established for the tandem network model 

considered and is employed to obtain a lower bound 
on the variance of the total delay. The exact mean total 
delay is computed as the sum of computed marginal 
distributions.

The rest of the paper is organized as follows: Section 
2 describes the model, notation employed and analysis 
of a first queue in the tandem network as a single dis-
crete queue highlighting the need for careful analysis 
of the other queues.  Section 3 begins by defining a 
sequence of truncated Lindley processes to recursively 
relate the delays experienced by the first packet from 
two consecutive batches of Class 0 at each queue in the 
tandem network. A computational algorithm is derived 
from these recursions by adapting the convolve-and-
sweep algorithm to the truncated Lindley processes. 
The delays of a typical packet in the queues are shown 
to be associated random variables providing a lower 
bound on the variance of the end-to-end delay. This 
section also describes the details of implementation 
and benchmark simulations. The results of computa-
tional and their validation via simulation are presented 
in Section 4. Section 5 concludes the paper with some 
directions for future work. Appendix 1 presents a proof 
of Theorem 1 stated in Section 3.

2. MODEL, NOTATION AND PRELIMINARIES  

 This section presents the tandem discrete time 
queueing network model, notation employed and ap-
proaches to the analysis of a single discrete queue. The 
model consists of discrete time queues in series, each 
with arrivals and departures. The tandem network 
models the path of a packet stream of interest in a gen-
eral network.

2.1 TaNDEM NETwoRK MoDEl

The discrete time model analyzed in this paper con-
sists of a tandem of one or more discrete time queues 
and multiple streams of traffic. Each stream can tra-
verse multiple queues. Figure 1 depicts an instance of 
such a tandem network with two queues Q1 and Q2, 
and three streams of traffic that are designated as be-
longing to Classes 0, 1 and 2. Class 0 traffic enters the 
first queue Q1 and passes through both the queues 
before leaving the system. Traffic from Class i, i=1,2 en-
ters the ith queue and leaves the system after service at 
that queue. Classes 1 and 2 can be considered as “cross-
traffic” at queues Q1 and Q2, respectively.

Packets from all the classes are assumed to be of 
the same size and the servers at all the queues have 
identical service rates. Thus, all the jobs need the same 
amount of server time at the queues. This constant 
amount of time is taken as a unit of time and time is 
discretized into slots of this duration. The system works 
in discrete time: all the arrivals to a queue arrive at the 
beginning of the slot and the first job (after ordering for 
service) will be served at the beginning of the earliest 
slot that the server is free. The arrivals from each Class 
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occur as a single batch with a general batch size distri-
bution and it is assumed that the batches are ordered 
for service according to a stationary policy. One can in 
principle remove this assumption at the cost of a cum-
bersome analysis.

The interval [k,k + 1) is termed the kth slot. The traffic 
from each class is assumed to arrive as batches per slot 
with the batch size following an iid distribution

Fig. 1. A Tandem Queueing Network 
with Cross Traffic

2. 2 NoTaTIoN

The following notation is used throughout the paper: 

Qi : The ith Queue in the tandem

Xk
(i) : Number of Class i arrivals in the kth slot

Aj,k
(i) : Arrival slot of the first job of Class i at Qj

Δj,k
(0) : Interval between the arrival of the kth and (k+1)st 

 batch of Class 0 at Qj

Wi,k : Workload of Qi at the beginning of kth slot

Dj,k
(0) : Delay of the first job of Class the kth 

  batch of Class 0 at Qj

2.3. PRElIMINaRIES

The workload W1,k , evolves as follows:

(1)

where, x+=max{x,0}. Indeed, the total arrivals in the kth 
slot are Xk

(0)+Xk
(1) and one packet gets served if there 

are a non-zero number of packets, leaving W1,k+1 pack-
ets at the beginning of the (k+1)st slot. The Markov 
Chain {W1,k, k≥0} has a unique stationary distribution 
π under the stability condition E(Xk

(0)+ Xk
(1))<1 and can 

be computed using Ramaswamy Algorithm [25]. By the 
arrival theorem for geometric arrivals, Dj,k

(0)=W1,k~π. 
The delay distribution of a typical Class 0 packet in the 
kth batch can then be obtained as

(2)

where θ is the rank of the typical packet in its batch.

This analysis does not extend to the rest of the 
queues in the tandem since the arrival stream from 
Class 0 packets is non-renewal. Hence, a new approach 
for developing a computational solution for the tan-
dem networks is needed, as developed in Section 3.

3. COMPUTATIONAL SOLUTION 
AND ALGORITHM DEVELOPMENT

Eq. (1) is a Lindley Recursion [5, 24] of the form

(3)

and the process {Zn} is called a Lindley process. The 
convolve-and-sweep algorithm for computing the dis-
tribution of the Lindley process is given by:

(4)

where it is assumed that Z0 is independent of {Xk }. 

In this paper, Lindley Recursion and the convolve-
and-sweep algorithm will be used to derive a sequence 
of truncated Lindley processes defined by generalizing 
Eq. (3) (Cf. Eqs. (5)-(7) and (9)-(12)) and build a compu-
tational algorithm for obtaining the distributions of 
delays of each class of packets using the convolve-and-
sweep algorithm expressed by Eq. (4).  

The advantage of computing the stationary dis-
tributions of delays using the convolve-and-sweep 
algorithm is that no independence assumptions on 
the arrival processes are required. This is essential for 
computing the distributions of delays at Q2 and oth-
er downstream nodes where the arrival process from 
Class 0 is not a renewal process. The stationary distribu-
tions of delays are computed as limits of the transient 
distributions.

3.1 TRuNCaTED lINDlEy PRoCESSES

From the Lindley process {W1,k } of Eq. (1), a sequence 
of truncated Lindley processes is defined:

(5)

(6)

for l=1, 2,..., Δ1,k
(0)-1, using the notation of Sec. 2. Then, 

the delay of the first packet in the (k+1)st batch of Class 
0, D1,k+1

(0), is given by:

(7)

Eqs. (5)-(7) can be used to compute the transient 
distributions of the delays {D1,k

(0); k=0,1,…} by extend-
ing the convolve-and-sweep algorithm for the stan-
dard Lindley Recursion to the sequence of truncated 
Lindley processes, {W1,k (l)}. Since Δ1,k

(0) is random, the 
computation is carried out by conditioning on Δ1,k

(0)=l, 
l=1,2,…, using the distribution of Δ1,k

(0).
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3.2 INTER-DEPaRTuRE DISTRIbuTIoN 
 FRoM Q1

For computing the delay distributions at Q2, the dis-
tribution of the inter-arrival time between the first jobs 
of Class 0 from two successive batches of arrivals at Q1 
that have at least one Class 0 job is needed. For this, the 
following relation is used:

(8)

Eq. (8) follows from the fact that the departure times 
of the first packet from kth and (k+1)st Class 0 batches 
are A1,k

(0) + D1,k
(0) and A1,k+1

(0) + D1,k+1
(0), respectively, and 

Δj,k
(0)= Aj,k+1

(0) - Aj,k
(0), j=0,1, by definition.

3.3 DElay aND INTER-DEPaRTuRE  
 DISTRIbuTIoNS aT Q2

As observed above, the computation of delay dis-
tributions at Q1 using Eqs. (5)-(7) can be applied even 
when the arrival processes are non-renewal as is the 
case for the Class 0 process at Q2. The corresponding 
truncated Lindley processes at Q2 are now derived.

To simplify the notation, it is assumed that the Class 0 
jobs are arranged to be at the beginning of all the arrivals 
in a slot at Q2. In Q2, the evolution is given by slight modi-
fications of Eqs. (5)-(7) since now Class 0 packets from its 
kth batch form a train of  number arrivals at Q2 starting 
from slot A2,k

(0). The workload process evolution is charac-
terized by the Eqs. (9)-(11) below (Cf. Eqs. (5)-(7)):

where

(9)

(10)

and

(11)

for l=1,2,…,Δ2,k
(0)-1. Eq. (10) follows from the fact that, 

in slots  , there is a single 
Class 0 packet arriving and being served at Q2. Then, as 
in Eq. (7), the delay is given by

(12)

It can be observed that Eq. (10) has a variable num-
ber,  of terms. In addition, Δ2,k

(0) is positively corre-
lated with this number, . Hence, the computation 
of D2,k+1

(0) needs to condition on . With this modi-
fication, the computational procedure developed for 
computing the stationary distribution of delays D2,k+1

(0)  

as well as that of the inter–departure times Δ3,k
(0), at Q1, 

carries over to Q2.

3.4 SoluTIoN oF TaNDEM NETwoRK

The computational solutions developed for delays 
and inter-departure distributions at Q2 can be em-
ployed at each of the downstream queues in the tan-
dem network with changes in the input processes. The 
algorithm for computing the tandem network process-
es is listed as Algorithm 1.

algorithm 1

Input: Batch size distributions for Classes with exter-
nal arrivals, X0

(i) and initial queue lengths W0
(i)

output: Stationary distributions of delays Dj,∞
(i) and 

inter-departure times Δj,∞
(i) at Qj

Initialization: 

a) Set precision value EPSILON (typical: 1e-06)

b) Set the distributions {Dj,0
(i)} and{Δ1

(i)}, for all Classes 
 i to degenerate distribution δ0

c) Initialize the distribution of batch inter-arrival 
 time Δ1,∞

(0) to Geom(p=P(X1
(0)>0))

Iteration:

For each queue Qj, j = 1,2,…, in the tandem do:

 For k=1,2,…until convergence do:

  Compute the distribution of Dj,k+1
(0) using 

  Eqs. (5)-(7) for Q1 or Eq. (9)-(12) for Q2, Q3, …

 End

 Compute the distribution of Δj,∞
(0) using Eq. (8)

End

The iteration for the computation of the stationary 
distributions{Dj,∞

(0)} in Algorithm 1 is repeated until a) 
The CDF of the computed distribution is greater than 
1.0-EPSILON, and b) The l∞ distance between the com-
puted successive distributions is less than EPSILON.

3.5 aSSoCIaTIoN oF DElayS IN ThE TaNDEM

The total delay in the tandem network is an important 
performance measure in communication networks. To 
compute it, the distribution of the sum of delays at in-
dividual queues in the tandem is needed. Algorithm 1 
does not provide this since only the marginal distribu-
tions of delays are computed. 

On the other hand, most network monitoring and 
control applications employ the moments of the total 
delay. The mean of the total delay is the sum of mean 
delays in the individual queues; the latter quantities are 
readily computed from the obtained marginal distribu-
tions of the delays. Regarding the variance of the total 
delay, the following result is established to provide a 
computable lower bound:
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Theorem 1. The random variables corresponding to 
the delays experienced by an arbitrary Class 0 job at Q1 
and Q2 are associated random variables [24]; i.e., using 
Eq. (2), Cov(f (Y1,k

(0)), g (Y2,k
(0))≥0 for all increasing func-

tions f and g. 

The theorem is proved in the Appendix.

In particular, the theorem implies Cov(Y1,k
(0), Y2,k

(0))≥0. 
This is used to compute a lower bound on the variance 
of the total delay Y1,k

(0) + Y2,k
(0):

3.6 IMPlEMENTaTIoN oF alGoRIThM 1

The computational Algorithm 1 for analysis at each 
queue in a tandem network is implemented in Python 
programming language. The iterative computation of 
the distributions of the delays {Dj,k

(0)} at Q1 using the 
truncated Lindley recursions given by Eqs. (5)-(7) is 
implemented abstractly so that it can be employed 
for both Q1 and downstream queues with suitable 
parametrization. The abstraction is implemented in 
an Object-Oriented fashion as a generic Q class with 
methods tabulated in Table 1.

Q1, Q2, Q3, …, are realized by sub-classing the generic 
Q class. When instantiated as Q1, the given inter-batch 
arrival time distribution of Class 0 (resp, Class 1) traffic 
is returned by the method Delta1. The method Zn_Zn1 
implements the Lindley Recursion Eq. (3) for computing 
the distribution of Zn+1  from that of Zn; it starts with a call 
to method Z0_Z1 for incorporating a call to the method 
Delta1. Using Zn_Zn1, the result of l-step convolve-and-
sweep D1,l

(0) (resp. D1,l
(1)), starting from D1,0

(0) (resp. D1,0
(1)) 

and conditioned on the stationary distribution of Δ1,k
(0) 

(resp. Δ1,k
(1)) being l, is carried out by Dn_Dn1. Dn_Dn1 

is applied iteratively till convergence to compute the 
stationary distribution of the delays D1,0

(0) (resp. D1,0
(1)). 

Finally, the inter-batch departure distribution Δ2,∞
(0) is 

computed by Delta2 from Eq. (8). 

For Q2, this inter-batch arrival distribution of Class 2 
is computed by Delta1 and the Algorithm 1 is executed 
with Class 0 and Class 2 as inputs. This procedure is re-
peated for the rest of the downstream nodes.

All the methods in Table 1 work with discrete prob-
ability distribution functions. To facilitate this, a Py-
thon library for definition and manipulation of discrete 
probability distributions with finite or infinite integer 
support (spanning positive and negative axis) is devel-
oped. The library consists of Dist Class and a set of func-
tions on Dist objects as listed in Table 2.

Specific probability distributions are defined by sub-
classing Dist. Two of them are used in the results pre-
sented in this paper. Geom(10, 0.29825) is the truncat-
ed version of the Geometric distribution with param-
eter 0.29825 with support restricted to {0,1,…,10} and 
having a mean of 0.425007 and a variance of 0.605592. 
The mean of about 0.425 for the arrival distributions 

is chosen so that the average load at a queue with a 
stream of interest and a cross-traffic stream becomes 
0.85 which makes the queue load typical of a commu-
nication network node.

Another distribution, termed Prob9by2, with the 
same support, mean of 0.425002, close to that of 
Gem(10,0.29825), but with a different variance of 
1.31788, is also defined. The distributions are listed in Ta-
ble 3 and are plotted in Figure 2. Prob9by2 has a heavier 
tail than Geom(10,0.29825) as can be inferred from Table 
3 and Figure 2. The choice of these distributions allows 
a comparative analysis of the effect of light and heavy-
tailed arrival distributions on the network delays. 

Method Purpose

Delta1 For computing the Class 0  
batch inter-arrival distribution to Q

Z0_Z1 Basic Convolve-and-Sweep Recursion step for computing 
the distribution of Z1 from that of Z0

Zn Zn1 Basic Convolve-and-Sweep Recursion step for computing 
the distribution of Zn+1 from that of Zn

D0_D0l For computing the distribution of l-fold convolution of D0
(0) 

when Δ1,k
(0) = l using Z0_Z1 and Zn_Zn1 repeatedly

Dn_Dn1 Recursion step for computing the distribution of Dn+1
(0) 

from that of Dn
(0)using Zn Zn1 repeatedly

D_stat For computing the stationary delay distribution D∞
(0), by 

repeatedly applying the Dn_Dn1 iteration

Delta2 For computing the stationary 
 inter-departure distribution from Q

Table 1. The Q Abstract Class

Table 2. Library for Working with Discrete 
Distributions

Dist 
Methods

”name”, ”min_val”, ”max_val”, ”prob_mass”, ”variate”, 
”moment”, ”var”, ”std_dev”, ”display_par_data”, ”set_
name”, ”set_min_val”,”set_max_val”, ”set_prob_dist”, 
”par_data”, ”set_par_data”, ”put_mass”, ”linf_norm”, ”cdf”

Functions 
on Dists

”scale_mass”, ”scale_dist”, ”plot”, ”add_dists”, ”linf_
distance_dists”, ”convolve_dists”, ”normalize”, ”truncate_
normalize”

Table 3. Two Discrete Probability Distributions

Point
Mass (Rounded to 4 decimals for display)

Geom(10,0.29825) Prob9by2

0 0.7018 0.7827

1 0.2093 0.1267

2 0.0624 0.0517

3 0.0186 0.0142

4 0.0056 0.0067

5 0.0017 0.0042

6 0.0005 0.0042

7 0.0001 0.0030

8 4.394e-05 0.0022

9 1.310e-05 0.0020

10 5.569e-06 0.0022

(13)
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Fig. 2. Two Discrete Probability Distributions

Specific probability distributions are defined by sub-
classing Dist. Two of them are used in the results pre-
sented in this paper. Geom(10, 0.29825) is the truncat-
ed version of the Geometric distribution with param-
eter 0.29825 with support restricted to {0,1,…,10} and 
having a mean of 0.425007 and a variance of 0.605592. 
The mean of about 0.425 for the arrival distributions 
is chosen so that the average load at a queue with a 
stream of interest and a cross-traffic stream becomes 
0.85 which makes the queue load typical of a commu-
nication network node.

Another distribution, termed Prob9by2, with the 
same support, mean of 0.425002, close to that of 
Gem(10,0.29825), but with a different variance of 
1.31788, is also defined. The distributions are listed in Ta-
ble 3 and are plotted in Figure 2. Prob9by2 has a heavier 
tail than Geom(10,0.29825) as can be inferred from Table 
3 and Figure 2. The choice of these distributions allows 
a comparative analysis of the effect of light and heavy-
tailed arrival distributions on the network delays. 

3.7 SIMulaTIoN FoR bENChMaRKING

The results obtained from the computational algo-
rithms are validated against those from simulation. An 
event-driven simulation program is developed for this 
purpose. The event-driven program generates colum-
nated output files recording the Queue Lengths and 
Waiting Times of different classes of jobs at each of the 
queues as well as the total waiting time in both the 
queues. The simulations are repeated for multiple runs 
and empirical quantities are computed using the time 
and ensemble statistics. Statistical routines for analyz-
ing the data from individual runs as well as aggregated 
statistics from multiple runs are developed. The statis-
tical quantities estimated include mean, variance and 
distribution of queue lengths and waiting times. 

4. RESULTS AND DISCUSSION

The developed computational algorithm is validated 
using two instances of the tandem network shown 
in Figure 1, each with batch sizes given by Geom(10, 

0.29825) and Prob9by2 distributions from Table 3 and 
Figure 2. The results are benchmarked against a simula-
tion-based analysis of the same as outlined in Sec. 3.7. 

The computational routines developed (Sec. 3.6) are 
executed with a precision of 10-6. Stationary distribu-
tions of waiting times of an arbitrary Class 0 job at Q1 
and Q2 are computed. The computed results are used 
to obtain a lower bound on the end-to-end delay. For 
benchmarking, the simulation program is executed 
with the same arrival distributions and repeated for 
25 runs. Results from the numerical computation and 
simulation are compared and discussed. 

4.1 MaRGINal DElay DISTRIbuTIoNS

Figures 3-8 present the results of estimated delay dis-
tributions from simulation and computation; Figures 
3-5 depict the results for the Geom(10,0.29825) batch 
size distribution and Figures 6-8 show the results for 
Prob9by2 batch size distribution. 

Fig. 3. Simulation Results: Geom(10, 0.29825) Data

Fig. 4. Stationary Delay Distribution of Class 0 at Q1: 
Geom(10,0.2985) Batch Sizes

Figures 3 and 6 present the baseline simulation-
based estimated distributions of delay experienced 
by a typical packet from each of the three classes at 
Q1 and Q2 as well as the total delay of a typical Class 
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0 packet in the two queue tandem, respectively for 
Geom(10,0.29825) and Prob9by2 distributions.

Fig. 5. Stationary Delay Distribution of Class 0 
at Q2: Geom(10,0.2985) Batch Sizes

Fig. 6. Simulation Results: Prob9by2) Data

Figures 4 and 5 present the comparison of the com-
puted and simulated delay distributions for a typical 
Class 0 packet in Q1 and Q2, respectively. For values of 
the delays whose probabilities are reliably estimated 

Fig. 7. Stationary Delay Distribution of Class 0 at Q1: 
Prob9by2 Batch Sizes

by the simulation, there is very good agreement be-
tween the simulated and computed quantities. Since 
large delays are rare events, their estimation via simula-
tion is unreliable, as seen in the plots. 

Figures 7 and 8 present the validation of computed 
delay distributions for a typical Class 0 packet at Q1 and 
Q2, against simulation for Prob9by2 data. Again, it can 
be observed that the computed results are validated by 
their simulation-based estimations.

Since Geom(10,0.29825) has a lighter tail than Prob-
9by2 (cf. Figure 2), the delay distributions of the former 
case are lighter (stochastically less than) compared to 
those of the latter case, as observed in Figures 4 and 7 
as well as in Figures 5 and 8.

Fig. 8. Stationary Delay Distribution of Class 0 at Q2: 
Prob9by2 Batch Sizes

4.2 END-To-END DElayS

The associativity of the stationary delays at Q1 and 
Q2 is verified for results of numerical computation as 
well as simulation for Geom(10,0.29825) and Prob9by2 
batch size distributions. The results are summarized in 
Tables 4 and 5.

In both cases, it is observed that the variance of the 
stationary total delay (estimated by simulation) is lower 
bounded by the sum of variances of these stationary 
delays at individual queues (for both simulation and 
numerical computation). This provides a validation of 
the lower bound given by Eq. (13). The variance of de-
lays with Prob9by2 batch arrival distributions is larger 
than those with Geom(10,0.29825) distributions since 
the heavier tail of Prob9by2 leads to larger variances.

Table 4. Stationary Delay Variances: 
Geom(10,0.29825) Data

Simulated Computed

Var [Delay at Q 1] 21.0888 21.2862

Var [Delay at Q 2] 16.7995 18.6227

Sum of Variances 37.8883 39.9089

Var [Total Delay] 44.7317 NA
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Table 5. Stationary Delay Variances: Prob9by2 Data

Simulated Computed

Var [Delay at Q 1] 107.5180 111.9067

Var [Delay at Q 2] 84.4776 108.3647

Sum of Variances 191.9956 220.2714

Var [Total Delay] 226.5120 NA

5. CONCLUSION

A computational approach to the delay distributions 
in multiclass discrete time tandem networks with gen-
eral batch size distributions and interfering traffic at 
each node is developed. The delays of the first pack-
ets from consecutive batches of a class are related by 
using a sequence of truncated Lindley recursions. A 
convolve-and-sweep algorithm is developed to handle 
the non-renewal arrival processes and solve these re-
cursions and compute the distributions of the delays 
and inter-departure distributions.  

The delays experienced by a typical packet at differ-
ent queues are shown to be associated random vari-
ables. This is used to compute a lower bound on the 
variance of the end-to-end delay as the sum of varianc-
es of the individual delays experienced at the queues. 

An object-oriented implementation of the devel-
oped algorithm is carried out facilitating the modelling 
of different network configurations. A library of rou-
tines to compute with discrete probability distributions 
is also developed to aid the computations. 

The developed computational algorithm for the de-
lay distributions and the lower bound on the variance 
of the total delay are validated using simulation for a 
tandem network of two queues with cross-traffic at 
each node under two different batch size distributions. 

There are several directions for extending the work 
presented in this paper. Algorithm 1 can be applied to 
tandem networks with more than two classes at each 
node and each stream traversing several nodes. It can 
be extended to handle more general arrival processes 
such as Markov modulated arrivals. The solution ap-
proach may be extended to compute the joint distribu-
tions of the delays in different queues which will allow 
exact computation of the total end-to-end delays. A 
non-trivial extension of the developed approach would 
be to extend it to networks with routing and feedback.

6.  APPENDIX

In this Appendix, Theorem 1 is proved using Math-
ematical Induction.

The delays experienced by an arbitrary Class 0 job 
at Q1 and Q2 are, respectively, Yj,k

(0) = Dj,k
(0)+θ,j=1,2 (cf. 

Eq. (2)). Since θ is independent of Dj,k
(0), it is enough 

to prove that Dj,k
(0), j = 1,2 are associated random vari-

ables.

The idea of the proof from [23] is adapted for show-
ing that D1,k

(0) and D2,k
(0) are associated. 

For any non-negative integers x0 and x1, 

(14)

Applying it iteratively on Eqs. (5)-(6), we obtain

(15)

from Eq. (7). Similarly, from Eqs. (9)-(12),

(16)

Inserting Eq. (8) into Eq.(16) gives,

(17)

Hence, from Eq. (10), it follows that

(18)

Now, assume D1,k
(0) and D2,k

(0) are associated random 
variables. From Eqs. (15) and (18), D1,k+1

(0)and D2,k+1 
(0) 

are increasing functions of the random vector

(19)

Since  and -Δ1,k
(0) are independent random vari-

ables, they are associated [22]. Also, as a pair, they are 
independent of pair of random variables {D1,k

(0), D2,k
(0)} 

which are assumed to be associated. Hence, the vec-
tor in Eq. (19) is a vector of associated random variables 
[22]. Since D1,k+1

(0)and D2,k+1
(0) are increasing functions 

of this random vector, they are associated [22]. This 
proves the induction hypothesis.

For the system starting with zero packets, the same 
argument as in the above paragraph shows that D1,1

(0) 
and D2,1

(0) are associated random variables, establish-
ing the basis case. 

Hence, by Mathematical Induction, it follows that 
D1,k

(0) and D2,k
(0) are associated random variables, for all 

k≥0, completing the proof.
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