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Xiaoyu Lu 

DISCOVERY AND INTERPRETATION OF SUBSPACE STRUCTURES IN OMICS 

DATA BY LOW-RANK REPRESENTATION 

 

Biological functions in cells are highly complicated and heterogenous, and can be 

reflected by omics data, such as gene expression levels. Detecting subspace structures in 

omics data and understanding the diversity of the biological processes is essential to the 

full comprehension of biological mechanisms and complicated biological systems. In this 

thesis, we are developing novel statistical learning approaches to reveal the subspace 

structures in omics data. Specifically, we focus on three types of subspace structures: low-

rank subspace, sparse subspace and covariates explainable subspace. For low-rank 

subspace, we developed a semi-supervised model SSMD to detect cell type specific low-

rank structures and predict their relative proportions across different tissue samples. SSMD 

is the first computational tool that utilizes semi-supervised identification of cell types and 

their marker genes specific to each mouse tissue transcriptomics data, for better 

understanding of the disease microenvironment and downstream disease mechanism. For 

sparsity-driven sparse subspace, we proposed a novel positive and unlabeled learning 

model, namely PLUS, that could identify cancer metastasis related genes, predict cancer 

metastasis status and specifically address the under-diagnosis issue in studying metastasis 

potential. We found PLUS predicted metastasis potential at diagnosis have significantly 

strong association with patient’s progression-free survival in their follow-up data. Lastly, 

to discover the covariates explainable subspace, we proposed an analytical pipeline based 

on covariance regression, namely, scCovReg. We utilized scCovReg to detect the pathway 
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level second-order variations using scRNA-Seq data in a statistically powerful manner, and 

to associate the second-order variations with important subject-level characteristics, such 

as disease status. In conclusion, we presented a set of state-of-the-art computational 

solutions for identifying sparse subspaces in omics data, which promise to provide insights 

into the mechanism in complex diseases.  
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Chapter 1 Introduction 

1.1 Background 

With the advent of high-throughput biotechnology, we could now investigate the 

genetic material of a biological object with multiple bioassays, including its genomic, 

transcriptomic, epigenomic, proteomic and metabolic profiles, which are altogether called 

Omics data  [1]. On one hand, the analysis of omics data is often challenged by the high 

dimensionality of its feature space; on the other hand, the high-dimensional omics data 

provide us comprehensive assessment of genetic molecules, and great opportunities to 

derive underlying biological mechanisms for different biomedical problems.  

In omics data, the tens of thousands of genetic features are often highly inter-

correlated, as the underlying molecules are coordinated into different functional units to 

perform cellular functions and maintain its viability. In other words, an omics dataset can 

often be represented by the combination of some subspace structures whose rank and 

complexity is much less than the original matrix. Those low-rank structures are more 

interpretable than the original high-dimensional matrix, due to lower dimensionality and/or 

sparse structures. In machine learning, low-rank representation is usually used for data 

denoising, missing data imputation, matrix decomposition, submatrix detection, bi-

clustering and feature extraction [2]. Meanwhile, the high-dimensional biological data 

often contains subspace structures that enables intelligent representation and processing. It 

will be more explainable and useful when a dataset is represented by a set of low-rank 

subspaces. Therefore, it is reasonable to consider transcriptomic data as a combination of 

several subspaces, namely, the data is considered as samples approximately drawn from a 

mixture of several low-rank subspaces. Those underlying low-rank structures in 
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biomedical data may represent many biomedical phenomena and disease mechanisms. In 

this thesis, I built up a series of methods for low-rank structure detection, explanation and 

knowledge extraction using transcriptomic data.  

1.2 Matrix decomposition and transcriptomic data deconvolution 

Matrix decomposition is a technique that breaks down a matrix into the product of 

two different low-rank matrixes. It is widely used in rank estimation, solving linear systems 

as well as solving other scientific and engineering applications [3]. The low-rank matrices 

carry the structure information of the original dataset, and is often more robust in 

information transfer from one system to another. Hence, finding a subspace structure that 

can reveal the inherent characteristics in high-dimensional data will enable us to transfer 

knowledge in a more robust fashion, and maximize the utility of public data.  

Tissue transcriptomic data display convoluted signals from different cell types [4]. 

Deconvoluting cell components and identifying strain-/tissue-/experimental condition-

specific cell types and gene expressions are crucial for understanding how experimentally 

perturbed conditions are associated with cellular level characteristics and cell-cell 

interactions [5]. Currently, ImmuCC and its varied versions are the only methods 

specifically focusing on mouse data deconvolution [6]. The core computational algorithm, 

which was adapted from CIBERSORT designed for human [7], assumes fixed cell types 

and signature gene expressions (subject to simple transformations) regardless of the 

experimental conditions of the target data. Meanwhile, multiple deconvolution methods 

have been developed for investigating the heterogeneous cell types in human cancer or 

other tissue data [7-16]. TIMER [17] only makes estimations on six immune cell types. 

xCell [18] make estimations on the higher number of different immune cell types but may 
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fail to detect signals from homogeneous samples. EPIC [9] can directly generate scores 

interpreted as cell fractions. But they may not be directly applicable to mouse tissue data. 

First of all, the cell type specific genes for human cells differ from mouse cells; secondly, 

compared with human, the variations among different mouse tissue samples may be 

considerably higher, as they are collected from different strains with varied genetic 

backgrounds and experimental conditions.  

In chapter 2, I developed a novel semi-supervised deconvolution method, namely 

Semi-Supervised Mouse data Deconvolution (SSMD) [19], to infer data/tissue specific cell 

type marker genes and expression profiles as well as estimate their relative abundances 

from mouse transcriptomics data. 

1.3 Sparse subspace and cancer metastasis prediction 

Sparse signal representation has proven to be an extremely powerful tool for 

representing high-dimensional signals. This success is mainly due to the fact that important 

patterns have natural sparse representations with respect to fixed bases [20]. Although 

biomedical datasets are very high-dimensional, most of them lie on low-dimensional sparse 

subspaces to exhibit similar biological phenomena. This gives us the capability to uncover 

meaningful information using sparse subspace representations. 

Metastatic cancer accounts for over 90% of all cancer deaths and compared with 

well-confined primary tumors. Metastatic cancer remains incurable because of its systemic 

nature and the resistance of disseminated tumor cells to existing therapeutic agents [21, 22]. 

So evaluations of metastasis potential are vital for minimizing metastasis associated 

mortality and achieving optimal clinical decision-making [23, 24]. Previous work has 

provided strong evidence indicating that a number of genomic markers in primary tumors 
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form a sparse subspace structure which is associated with the development of metastasis, 

and those distant metastasis events can be inferred from gene expression profiles within 

the primary tumor bulk [25, 26].  A recent study used machine-learning techniques to 

determine metastatic tumor organ of origin using the somatic mutation data [27]. Several 

studies have defined gene expression signatures that predict overall and metastasis-free 

survival as well as progression and metastatic growth in breast cancer patients [28-32]. 

Tang et al. identified 13 genes can be used to predict locoregionally advanced 

nasopharyngeal carcinoma metastasis in a large cohort study [33]. Deep learning models 

are applied to image data for metastasis prediction [34]. The under-diagnosis of metastasis 

events often happens, but most of the existing study doesn’t consider this from cancer gene 

expression aspect. Computationally evaluating a cancer patient’s metastasis potential is 

vital for clinical decision-making and understanding the biological mechanism of 

metastasis which is the first step toward targeted therapeutics.   

In chapter 3, I designed PLUS [35] to detect biologically explainable sparse 

subspace structure in patients’ transcriptomic data and build a positive and unlabeled 

learning classifier which enables early metastasis event prediction at the pan-cancer level, 

as well as infer biologically meaningful gene markers for metastasis potential. Upon 

successfully completing this aim, we delivered a computational tool for predicting cancer 

metastasis potential with transcriptomic data for clinical and research use.  

1.4 Covariance-explainable subspace structure and gene-gene interaction 

In human body, the biological functions of different cells are not determined by one 

single gene but by the modulations of a group of genes. Computational detection of gene 

expression variations may help us to better understand the gene-gene associations with 
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similar biological functions. Currently, a common approach to investigating grouped gene 

signals involves pathway enrichment methods and co-expression module detection using 

either the differentially expressed genes or genes' importance ranking [36, 37]. But the 

current enrichment or co-expression-based pathway analysis methods suffer from the 

selection of a proper threshold, and the biggest unmet need in the current pathway-level 

analysis of scRNA-Seq data is the lack of a rigorous and powerful statistical framework to 

make inferences on important variables.  

Covariance regression has been utilized in studying regression problems when the 

outcome variable is a covariance matrix [38-44]. In chapter 4, I introduce a statistically 

powerful framework [45] based on covariance regression, to discover the covariates 

explainable subspace in covariance matrix and model the pathway level second-order 

variations using scRNA-Seq data and associate the second-order variations with important 

subject-level characteristics, such as disease status.  

1.5 Contribution of this thesis  

• We seek to reveal and interpret biologically meaningful low-rank subspace 

structures in gene expression data in complicated biological systems. 

• We propose the first computational tool which utilizes semi-supervised 

identification of non-fixed cell types and their marker genes specific to each mouse 

tissue transcriptomics data. 

• We propose a positive and unlabeled learning framework to classify cancer 

metastasis and specifically address the under-diagnosis issue in studying metastasis 

potential. 
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• We firstly integrate the covariance regression technique to model the impact of 

important variables such as disease status, age, and sex, which is explainable of 

gene-gene correlation in individual pathways in a statistically powerful manner on 

scRNA-Seq data. 
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Chapter 2 Development software for mouse bulk tissue gene expression data 

deconvolution 

2.1 Introduction  

The mouse has long served as the premier model organism for studying human 

biology and disease, due to their striking genetic homologies and physiological similarity 

to humans, as well as the relatively low cost of maintenance. Currently, thousands of 

unique inbred strains and genetically engineered mutants have been made available for a 

wide array of specific disease types [46]. Research on mouse models have provided added 

impetus and indispensable tool for studying human disease, regarding its initiation, 

maintenance, progression and response to treatment, as well as evaluating drug safety and 

efficacy. Amongst all, the ability to examine physiological states and interactions between 

diseased cells and their microenvironment in vivo represents the most important tool for 

studying disease dynamics. To this end, numerous omics data have been collected from 

mouse that vary in terms of genetic perturbations, cell/tissue types, and treatment 

conditions [47-50]. A strong computational capability is needed to study the interactions 

of components within the mouse tissue microenvironment subject to different genetic and 

physiological perturbations, the knowledge gained from which could be projected to 

human disease scenarios and provide invaluable insight and guidance for effective human 

therapeutic regimes. 

Tissue transcriptomic data display convoluted signals from different cell types [4]. 

Deconvoluting cell components and identifying mouse strain-/tissue-/experimental 

condition-specific cell types and gene expressions are crucial for understanding how 

experimentally perturbed conditions are associated with cellular level characteristics and 
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cell-cell interactions [5]. While multiple deconvolution methods have been developed for 

investigating the heterogeneous cell types in human cancer or other tissues data [7-16], 

they may not be directly applicable to mouse tissue data. First of all, the cell type specific 

genes for human cells differ from mouse cells; secondly, compared with human, the 

variations among different mouse tissue samples may be considerably higher, as they are 

collected from different strains with varied genetic background and experimental 

conditions.  

Currently, ImmuCC and its varied versions are the only method specifically 

focusing on mouse data deconvolution [6]. The core computational algorithm, which was 

adapted from CIBERSORT designed for human [7], assumes fixed cell type and signatures 

gene expressions (subject to simple transformations) regardless of experimental conditions 

of the target data. This assumption becomes problematic as mouse data, which are collected 

from different strains, have varied genetic background, thus, it is expected the tissue 

compositions are highly adaptable regarding the existent cell types and their expression 

profiles [51-53]. Aside from prominent variability in the appearance of cell types and the 

expression levels of markers genes, mouse data deconvolution also suffers from the 

following challenges: diverse experimental platforms, prevalently small sample size of 

mouse experiments, and limited training data sets available for deriving signature genes of 

cell types. 

To address these challenges, we developed a novel semi-supervised deconvolution 

method, namely Semi-Supervised Mouse data Deconvolution (SSMD), to infer data/tissue 

specific cell type marker genes and their expression profiles and estimate their relative 

abundances from transcriptomics data. SSMD is capable to infer the relative proportion of 
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35 cell types in the blood, inflammatory, cancer, central nervous system and hematopoietic 

system. To the best of our knowledge, SSMD is the only mouse data deconvolution method 

considering strain, tissue type and data specificity of cell type specific gene markers. We 

demonstrated SSMD achieved a high sensitivity in identifying the appearance of immune 

and stromal cell types in inflammatory tissue and brain cell types in central nervous tissue, 

and with a high accuracy in estimating their relative proportion on single cell RNA-seq 

simulated bulk tissue data sets. We also experimentally validated that the cell populations 

inferred by SSMD accurately recapitulates the true cell proportions measured by 

fluorescence-activated cell sorting (FACS) on a leukemia bone marrow data. Applications 

of SSMD on a large collection of public mouse blood, brain, cancer, and other 

inflammatory tissue data suggested that the method achieved a robust performance 

throughout diverse types of experimental conditions and platforms including RNA-seq, 

microarray and immuno-assay. In addition, the software of SSMD grants users to build in 

their own tissue/data specific knowledge of cell type specific markers to reinforce the 

method. An R package of SSMD is released through GitHub: 

https://github.com/xiaoyulu95/SSMD and a R Shiny based web server of SSMD is 

available at https://ssmd.ccbb.iupui.edu/. 

2.2 Materials and Methods 

2.2.1 Random walk based identification of cell type specifically expressed genes 

from tissue data 

We applied a non-parametric random walk based approach to screen genes with 

higher expression in certain cell types comparing to others, using bulk cell training data. 

On the combined expression matrix containing M genes for N samples of K cell types, we 

https://github.com/xiaoyulu95/SSMD
https://ssmd.ccbb.iupui.edu/


10 
 

first calculated the expected frequency of each cell type, i.e. dividing the total number of 

samples for the cell type (𝑁𝑘 , 𝑘 = 1, … , 𝐾) by the total number of samples N, denoted as 

𝐸𝑘 = 𝑁𝑘/𝑁 , 𝑘 = 1, … , 𝐾. For a given gene 𝑔 , denote 𝒙 and 𝒙𝑘 as vectors of expression 

profile for cells of all types and type 𝑘. Denote 𝑂𝑗𝑘 as the percentage of values in 𝒙𝑘 that 

are no less than the jth largest value in vector 𝒙. A random walk vector 𝒅1×𝑁 that describes 

the non-negative discrepancy between the observed and expected cell type frequency of 

the gene was defined as 𝑑𝑗 = ∑ (𝑂𝑗𝑘 − 𝐸𝑘)
2𝐾

𝑘=1 , 𝑗 = 1, … , 𝑁, which attains a minimum 

value of zero at N. A higher peak of the random walk 𝒅1×𝑁  suggests gene g is more 

enriched in certain cell types than the others. Denote 𝑚 as the index of the maximum of 

𝒅1×𝑁, i.e. m = argmax (𝒅1×𝑁), and the cell type frequency at 𝑚 as 𝑒𝑘
𝑚 = 𝑂𝑚𝑘 − 𝐸𝑘. Cell 

types were further ordered by 𝑒𝑘
𝑚 decreasingly, and a labeling matrix 𝐿 was built such that 

𝐿𝑔,k = 0, 𝑖𝑓 𝑒𝑘
𝑚 ≤ 0; otherwise, 𝐿𝑔,k =

1

𝑝
, 𝑖𝑓 𝒙𝑘 has the pth largest mean among 𝒙1, … , 𝒙𝐾. 

It is noteworthy the approach can be directly applied to scRNA-seq data for marker 

training. In this study, due to the relatively limited availability of existing scRNA-seq data, 

especially the mouse strain and tissue type coverage, we generate core marker list purely 

by using bulk cell data. 

2.2.2 Identification of rank-1 cell type uniquely expressed gene modules 

To screen genes that form tight rank-1 modules on various tissue training datasets, 

SSMD performs a community detection method among the genes specifically expressed in 

each cell type as stored the labeling matrix. A correlation matrix was first built among cell 

type specifically expressed genes, and the significance cutoff of correlation was determined 

by random matrix theory. Random matrix theory (RMT) has been widely used to 

understand the low-rank structure encoded in biological data. In this study, an RMT based 
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approached developed by Luo et al was used to determine the threshold of significant 

correlation for each dataset [54]. rm.get.threshold functions in the RMThreshold R package 

was utilized. Specifically, RMT indicated that the nearest neighbor spacing distribution of 

eigenvalues will have a characteristic change when the threshold properly separates signal 

from noise. By removing all the below-threshold correlation elements, the co-expression 

modules can be more robustly unraveled. Then, hierarchical clustering was performed 

using the correlation matrix as similarity measure.  

Specifically, SSMD gradually increases the height of the hierarchical clustering at 

which the tree is cut. At each height, the number of genes, the average correlation among 

the genes, and the rank of the matrix composed of the genes in each of the cluster, is 

calculated. Here, matrix rank is determined by a modified bi-cross validation (BCV) 

algorithm. SSMD stops scanning the  hierarchical tree if all the clusters contain less than 

𝑞0 genes, or the three following criterior is met for all the clusters:  (1) with at least 𝑞0 

genes, (2) the average correlation among the genes is above the threshold determined by 

RMT, and (3) the rank of the expression matrix profile of the genes in the cluster is 1. In 

this study, 𝑞0=7 is used. Such an iterative approach will eventually select the clusters with 

at least 𝑞0 genes, each of which is considered as possible cell specific marker genes specific 

to this data set. SSMD merges modules until the canonical correlation between any pair of 

modules is lower than a cutoff 𝑐𝑜𝑟𝑐𝑢𝑡 or the number of current modules is not larger than 

the total rank of the gene expression profile of the selected data set specific markers genes. 

In this study, we utilized 𝑐𝑜𝑟𝑐𝑢𝑡 = 0.9. 
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2.2.3 A modified Bi-cross validation rank test 

Bi-cross validation (BCV) has been developed to estimate the matrix rank for 

singular value decomposition (SVD) and Non-negative Matrix Factorization (NMF) , 

which requires a prefixed low dimension 𝐾 and two low-rank matrices for the 

approximation 𝑋𝑀×𝑁 = 𝑊𝑀×𝐾 ∙ 𝐻𝐾×𝑁. The error distribution of gene expression data is 

usually non-identical/independent, mostly because a gene’s expression can be affected by 

its major transcriptional regulators, other biological pathways and experimental bias. 

Hence undesired biological characteristics and experimental bias may form significant 

dimensions in a gene expression data [55]. In sight of this, we developed a modified BCV 

rank test (Algorithm 1) to minimize the effect of the non-i.i.d errors in assessing the matrix 

rank of a gene expression data. 
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Algorithm 1: Modified Bi-cross validation matrix rank test 

 

 
 

  

Input: Matrix 𝑋𝑀×𝑁, parameters 𝑀0, 𝑁0, 𝑅, 𝑚𝑠𝑝. 
For r=1…R 

 𝑆𝑎𝑚𝑝𝑙𝑒 row index set 𝐼𝑟 = {i1, i2, … , i𝑀0
|𝑖𝑝 ∈ {1 … 𝑀}}, 𝐼�̅� = {1 … 𝑀}\𝐼𝑟 

 𝑆𝑎𝑚𝑝𝑙𝑒 column index set 𝐽𝑟 = {j1, j2, … , j𝑁0
|𝑗𝑝 ∈ {1 … 𝑁}}, 𝐽�̅� = {1 … 𝑁}\𝐽𝑟 

 𝑆𝑝𝑙𝑖𝑡 𝑋 into four submatrices |
𝐴𝑟 𝐵𝑟

𝐶𝑟 𝐷𝑟
| , 𝑤ℎ𝑒𝑟𝑒 𝐴𝑟 = 𝑋[𝐼𝑟 , 𝐽𝑟], 𝐵𝑟 = 𝑋[𝐼𝑟 , 𝐽�̅�],  

 𝐶𝑟 = 𝑋[𝐼�̅� , 𝐽𝑟], 𝐷𝑟 = 𝑋[𝐼�̅� , 𝐽�̅�] 
 𝐹𝑜𝑟 𝑘 = 1 … min(𝑀0, 𝑁0) 

  BCV(𝑘, 𝑟) = ∑ ∑ ‖𝐴𝑟 − 𝐵𝑟𝐷�̂�
(𝑘)+

𝐶𝑟‖
𝐹

2
𝑁0
𝑗=1

𝑀0
𝑖=1  (∗)   

 End 

End 

Rankx ← 0 

𝐹𝑜𝑟 k = 1 … min(𝑀0, 𝑁0) 

 𝐷𝑜 t test between {BCV(𝑘, 𝑟)|𝑟 = 1 … 𝑅} and {𝐵𝐶𝑉(𝑘 + 1, 𝑟)|𝑟 = 1 … 𝑅} 

 𝑖𝑓 (p. value < 0.01 & mean (BCV(𝑘 + 1, 𝑟)) − mean (BCV(𝑘, 𝑟)) > msp) 

  Rankx ← 𝑘 

End 

𝑅𝑒𝑡𝑢𝑟𝑛 Rankx 

(∗) Denote the SVD of a matrix 𝐷 as 𝐷 = 𝑈𝛴𝑉′, and Moore– Penrose inverse of 𝐷  

as 𝐷+, 𝐷+ = 𝑉′𝛴+𝑈, where 𝛴+ is a diganol matrix diag(𝜎1
+, 𝜎2

+, … 𝜎𝑝
+) with 𝜎1

+ ≥  

𝜎2
+ ≥ ⋯ ≥ 𝜎𝑝

+ ≥ 0. Define �̂�(𝑘)+
= ∑ 𝜎𝑖

+𝑣𝑖
𝑘
𝑖=1 𝑢𝑖 
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After running the rank-1 module detection on all the training bulk tissue datasets, 

those genes commonly identified in the rank-1 modules in more than 40% (70%) data sets 

were selected as core (stringent) markers. The list of stringent marker sets was derived with 

more stringent criterion, which is particularly useful for the analysis of small sample sized 

target data. Core markers of cells in central nervous systems were identified by a similar 

approach on the brain training tissue datasets.  Due to the limitation of hematopoietic 

system tissue training data, its core markers were selected as the genes specifically over 

expressed in each hematopoietic cell type, by using the criteria: the gene’s expression level 

is above 10% quantile in one cell type and below 50% in the other cell types. Complete 

lists of selected core and stringent marker sets were given. 

2.2.4 Estimation of cell proportion 

Two methods were utilized to estimate cell proportion: (1) SVD based computation. 

With cell type specific markers derived, the first row base of the gene expression profile of 

the marker genes is directly utilized as an estimation of the cell proportion, which can be 

directly computed by SVD. (2) Constraint NMF based computation. With the number of 

identifiable cell types and cell type specific markers identified, the signature matrix �̃�𝑀0×𝐾0
 

and proportion matrix �̃�𝐾0×𝑁  can be estimated by minimizing the following objective 

function: 

min
𝑆𝑀0×𝐾0 ,�̃�𝐾0×𝑁

(‖�̃�𝑀0×𝑁 − �̃�𝑀0×𝐾0
∙ �̃�𝐾0×𝑁‖

𝐹

2
+ 𝜆 ∙ trace (�̃�𝑀0×𝐾0

T
∙ (𝟏M0

𝟏K0

T − C𝑀0×𝐾0
))) 

, where C𝑀0×𝐾0
[𝑖, 𝑗] = 1 if gene 𝑖 is marker of the cell type 𝑗, and 0 otherwise. 𝜆 is 

the hyper parameter. In this study, we tuned 𝜆 by using single cell data simulated tissue 

data. 𝜆=10 is empirically utilized in the analysis. 
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2.2.5 Explanation score and Comparison with state-of-the-arts methods 

An explanation score (ES) was utilized to evaluate the goodness that each marker 

gene’s expression is fitted by the predicted cell proportions: 

𝐸𝑆𝑐𝑜𝑟𝑒(𝑥) = 1 − ∑ (𝑥𝑗
∗ − �̂�𝑗)2𝑁

𝑗=1 / ∑ (𝑥𝑗
∗)2𝑁

𝑗=1 , 𝑥�̂� = ∑ 𝛽𝑘
𝑥𝑝𝑗

𝑘𝑘𝑥
𝑘=1 , 𝛽𝑘

𝑥 ≥ 0 

where 𝑥𝑗
∗  is the observed expression of marker gene 𝑥  in sample 𝑗 , �̂�𝑗  is the 

explainable expression by cell proportions, obtained by a non-negative regression 𝑥 on the 

predicted proportion 𝑝𝑗
𝑘 , 𝑘 = 1 … 𝑘𝑥 . Here, 𝑘𝑥  represents the number of cell types that 

express 𝑥, and 𝛽𝑘
𝑥  are the non-negative regression parameters. Intuitively, with correctly 

selected marker genes, the marker gene’s expression can be well explained by the predicted 

proportions of the cell types that express the gene.  Hence, a high ES score is a necessary 

but not sufficient condition for correctly selected marker genes and predicted cell 

proportion. 

2.2.6 Data used in this study  

Bulk cell training data sets: for mouse blood, solid cancer and inflammatory tissue 

microenvironment, we retrieved 116 datasets of sorted mouse cells of 12 selected cell types, 

totaling 1106 samples from GEO database. For mouse brain tissue microenvironment, we 

collected 2130 bulk cell samples of the nine selected cell types in central nerve systems. 

For mouse hematopoietic microenvironment, two datasets were available that cover 14 

hematopoietic cell types. All the bulk cell training data were generated by the Affymetrix 

GeneChip Mouse Genome 430 2.0 Array platform and normalized with MAS5 method 

[56]. Samples of the same cell type were further merged together with batch effect removed 

using Combat [57].  
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Single Cell RNA-sequencing data: One mouse melanoma scRNAseq data set (6638, 

9) was acquired from the Human Cell Atlas database [58]. Three scRNA-seq datasets of 

lung (4485, 12), pancreas (4405, 8), and small intestine (4764, 10) and two sets of brain 

tissue (3679, 7 and 1099, 6) were accessed from Mouse Cell Atlas (MCA) data portal [59]. 

The two numbers in the parenthesis indicate the number of cell samples and cell types of 

each data set. We specifically selected the cells with UMI more than 500 to exclude low 

quality cells. Cell labels were either provided in the original data or curated using Seurat 

v3 with cell type specific genes [60, 61]. 

Training tissue data from cancer and blood: 33 cancer tissue datasets of 9 cancer 

types generated by four popular experimental platforms were collected, namely Illumina 

HiSeq 2000 Mus musculus, Affymetrix Mouse Genome 430 2.0 Array, Illumina HiSeq 

2500 Mus musculus and Affymetrix Mouse Genome 430A 2.0 Array from GEO database. 

Each data set has at least 15 samples. We didn’t consider datasets from immunodeficient 

mouse, mouse cell lines, and PDX models, as only real cancer or blood micro-environment 

is considered. A data set of liver tissue collected from 31 mouse strains (GSE55489) were 

utilized to evaluate the variation of cell type specific markers through different mouse 

strains [62]. 

Brain tissue data: 14 datasets of mouse brain tissues generated by two experimental 

platforms, namely Illumina HiSeq 2500 Mus musculus and Affymetrix Mouse Genome 

430 2.0 Array were collected from Gene Expression Omnibus. Datasets were split into sub 

data sets of different brain regions. Each data set has at least 40 samples. The complete 

training data information are available. 
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Hematopoietic System tissue and FACS data: We generated a RNA-seq data set 

with matched FACS data of bone marrow cells isolated from the hind limbs of C57BL/6, 

Tet2-/-Flt3ITD , DNMT3A-/-Flt3ITD , and DNMT3A-/-Tet2-/-Flt3ITD mice (n=3 for 

each group). RNA (600 ng/ sample) was used to prepare single indexed strand specific 

cDNA library using TruSeq stranded mRNA library prep kit (Illumina). The library prep 

was assessed for quantity and size distribution using Qubit and Agilent 2100 Bioanalyzer. 

The pooled libraries were sequenced with 75bp single-end configuration on NextSeq500 

(Illumina) using NextSeq 500/550 high output kit. The quality of sequencing was 

confirmed using a Phred quality score. The sequencing data was next assessed using 

FastQC (Babraham Bioinfomatics, Cambridge, UK) and then mapped to the mouse 

genome (UCSC mm10) using STAR RNA-seq aligner [63], and uniquely mapped 

sequencing reads were assigned by featureCounts. The data were normalized to RPKM. 

FACS data were collected from same biological prep by IU School of Medicine 

Flowcytometry Core. Hematopoietic stem cells were identified by lineage negative, C-Kit 

high and Sca1 high cells, general myeloid progenitor cells were identified by Cd34 and 

Cd16/32 high cells, mature myeloid cells were identified by Gr1 and Cd11b high cells, and 

PreB cells were identified by B220 and SSC-A high cells.  

2.2.7 Generation of simulated bulk tissue data from scRNA-seq data 

Cell types in each scRNA-seq data were labeled by the cell clusters provided in the 

original works or by using Seurat pipeline with default parameters. Detailed information 

of the scRNA-seq data and cell type annotation is given. For each data set, we simulate 

bulk tissue data by: (1) removing insignificantly expressed genes, (2) randomly generate 

the proportion of each cell type, called true proportion in this paper, that follows a Dirichlet 
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distribution, and (3) draw cells randomly from the cell pool with replacement according to 

the cell type proportion, and sum up the expression values of all cells to produce a pseudo 

bulk tissue data. The insignificant expressed genes were identified by left truncated mixture 

Gaussian model [64, 65]. The Dirichlet distribution matrix was generated with R package 

“DirichletReg” [66]. 

2.3 Results 

2.3.1 Mathematical consideration and problem formulation 

Denote �̃�𝑀×𝑁 as a tissue data of 𝑀 genes and 𝑁 samples, a deconvolution analysis 

assumes �̃�𝑀×𝑁 as the following non-negative product form: 

�̃�𝑀0×𝑁 = �̃�𝑀0×𝐾0
∙ �̃�𝐾0×𝑁 + 𝐸, �̃�𝑀0×𝐾0

≥ 0, �̃�𝐾0×𝑁 ≥ 0     (1) 

Here, �̃�𝑀0×𝑁 represents the observed gene expression matrix of 𝑀0 selected genes 

(a subset in 𝑀) in 𝑁 tissue samples, and columns in �̃�𝑀0×𝐾0
, and rows in �̃�𝐾0×𝑁, denote the 

expression signatures, and the relative proportions of the 𝐾0 cell types respectively. In the 

conventional formulation of deconvolution analysis, with fixed 𝑀0  and 𝐾0, �̃�𝑀0×𝐾0
 and 

�̃�𝐾0×𝑁  are solved to minimize the ℒ2 loss of the above linear equation. Because of the 

highly varied genetic and phenotypic background of mouse experiment, �̃�𝑀0×𝐾0
, 𝑀0 and 

𝐾0 are usually varied and unknown, i.e. for each �̃�𝑀×𝑁 collected from tissues of certain 

microenvironment, what cell types are present, what gene markers each cell type expresses 

and how much they were expressed, could vary drastically due to the genetic and 

physiological perturbations. Correctly specified cell types 𝐾0, and selected cell type marker 

genes 𝑀0 can largely increase the prediction accuracy of �̃�𝐾0×𝑁. Table 2.1 lists the key 

mathematical definitions utilized in this study. 
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In this study, we define a cell type 𝑘  is “transcriptomically identifiable” if its 

ground-truth proportion 𝑃1×𝑁
𝑘  and estimated as �̃�1×𝑁

𝑘  have high correlation, 

i.e.. 𝑐𝑜𝑟(𝑃1×𝑁
𝑘 , �̃�1×𝑁

𝑘 ) = 1 − 𝜖 and 𝜖 is substantially small, where �̃�1×𝑁
𝑘  is the 𝑘th row of 

�̃�𝐾0×𝑁, and 𝐾0 as the number of “identifiable” cell types. A strong condition for a cell type 

to be identifiable is that it has uniquely expressed genes [67]. Here we provided a 

comprehensive mathematical derivation of the relationship between cell type unique 

expression and identifiability of cell proportion. We derived the identity of cell type 

uniquely expressed gene markers, denoted as the set 𝐺𝑘, is a necessary but non-sufficient 

condition for the identifiability of cell type 𝑘: – if 𝑘 is “transcriptomically identifiable”, 

�̃�𝐺𝑘×𝑇  must be a matrix of rank one, for ∀ 𝑇 ⊂ {1, … , 𝑁} . This condition forms the 

foundation of how SSMD discover cell type marker genes that are not fixed, but instead 

specific to each dataset. Fortunately, we do not need to scan for all the local rank-1 matrices 

within �̃�𝑀×𝑁 , where 𝑀  is usually to the tens of thousands. In fact, with an effective 

knowledge transfer of the gene labels derived from single or bulk cell training data, the 

genes that are more likely to be cell type specific markers of identifiable cell types can be 

detected, which forms the core algorithm of SSMD pipeline. 
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Terminology Mathematical Definition in this study 

Rank-1 matrix 

A matrix with rank = 1, i.e. the matrix is generated by the product of 

two vectors, X = A ∙ BT. In this study, we consider all 

transcriptomics data are with error. Hence the rank-1 matrix is 

defined by X = A ∙ BT + E, where the matrix rank of X is 1 can be 

computed by the bi-cross validation (BCV) algorithm detailed in 

Methods. 

Local rank-1 

matrix 

A submatrix with rank = 1, i.e. denoting I and J as the indices of the 

submatrix, XI×J  is generated by the product of two vectors with 

error, XI×J = A ∙ BT + E. 

Transcriptomica

lly identifiable 

cell type 

The cell type with a high correlation between the true proportion 

P1×N
k  and estimated P̃1×N

k  

Prediction 

accuracy 

Pearson correlation between true proportion and predicted 

proportion of each cell type 

Detection 

accuracy 

The number of true cell type signature genes were identified as 

signature genes of an identifiable cell type 

Matrix total 

Rank 

The total rank of a data matrix that can be tested by the BCV 

algorithm 

 

Table 2.1. Definition of mathematical terms in SSMD 
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2.3.2 SSMD Analysis pipeline 

SSMD is a semi-supervised method composed by (1) training a large candidate list 

of cell type specific marker genes, (2) evaluating the identifiability of each cell type and 

confirming their marker genes for each to-be-deconvolved data, and (3) estimating the 

proportion of each cell type. 

The training step is to look for genes that are more likely to serve as cell type marker 

genes through different tissue types and data sets, named as core marker lists. Specifically, 

we identified the genes that are commonly over expressed in one cell type comparing to 

the others in bulk cell data and commonly form rank-1 matrices in tissue data, by using a 

very extensive set of training data sets collected from different mouse strains and tissue 

types (see details in Methods). Figure 2.1A illustrates the procedure of SSMD to construct 

cell type core marker lists. On the bulk cell training data, we adopted a random-walk based 

approach to detect genes that are significantly expressed in higher quantities in one or a 

few cell types, than others (see details in Methods). As a result, a labeling matrix that 

annotates cell type specifically expressed genes will be constructed, which forms the first 

evidence of the potential marker genes for each cell type. Then on each bulk training tissue 

dataset, we further identified marker genes that form rank-1 submatrices with a community 

detection approach as detailed in methods. Only those modules, whose genes significantly 

and consistently over-represent one and only one cell type across multiple training tissue 

datasets, are selected to form the core marker list. Noted, variations caused by different 

experiment batches, tissue types and mouse strains were handled by enabling certain errors 

in the random-walk based cell type specific marker identification, i.e. identifying the genes 

overly expressed in the cell type comparing to the others in a certain proportion of the 
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collected bulk cell data. In addition, data batch variation was also considered in the bulk 

data based training step, by identifying the genes commonly serve as cell type specific 

marker in more than 50% of analyzed bulk tissue training data. The goal of this training 

procedure is to summarize a relatively large list of commonly observed cell type specific 

marker genes, which can be used to as semi-supervised information to identify data set 

specific cell type marker for a further un-supervised deconvolution analysis. 

Based on the cell type core markers, the deconvolution of any given bulk tissue 

dataset is composed by the steps as illustrated in Figure 2.1B. SSMD first identifies all the 

rank-1 modules on the target dataset by an iterative hierarchical clustering and bi-cross 

validation approach. Then SSMD selects the rank-1 modules that are likely to be markers 

of a certain cell type for this data set, if genes in the modules largely overlap with the core 

marker list of one and only one cell type. Modules that are highly co-linear will be merged. 

Consequently, genes in each module is called gene markers of one cell type, that satisfy 

the necessary condition for “transcriptomically identifiable”. Notably, two modules may 

represent the same cell type, and they are treated as marker genes of different subtypes of 

the cell type. Here, the total number of modules is an estimate of the number of “identifiable” 

cell types, i.e., 𝐾0. Importantly, SSMD is an “semi-supervised” approach, because the cell 

marker genes do not solely depend on the training data, but also the co-expression patterns 

of the marker genes in the target dataset. In other words, SSMD addresses the variability 

issue of signature genes from one dataset to another, and has the potential to discover cell 

types not pre-defined. Algorithms of each computational step are detailed in Materials and 

Methods. 
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The prediction of the cell type proportions is conducted using a constrained Non-

negative Matrix Factorization (NMF) method by solving the following optimization 

problem:  

min
𝑆𝑀0×𝐾0 ,�̃�𝐾0×𝑁

(‖�̃�𝑀0×𝑁 − �̃�𝑀0×𝐾0
∙ �̃�𝐾0×𝑁‖

𝐹

2
+ 𝜆

∙ trace (�̃�𝑀0×𝐾0

T
∙ (𝟏M0

𝟏K0

T − C𝑀0×𝐾0
)))   (2) 

where C𝑀0×𝐾0
[𝑖, 𝑗] = 1 if gene 𝑖 is marker of the cell type 𝑗, and 0 otherwise. 𝟏d 

denotes an all-1 column vector of length 𝑑 , 𝜆  is a hyperparameter selected by cross 

validation, and other annotations follow equation (1). The constraint matrix C𝑀0×𝐾0
 is 

enforced upon the regular NMF to guarantee similarity of the solved signature matrix 

�̃�𝑀0×𝐾0
 and constraint C𝑀0×𝐾0

, namely, in the 𝑘th column of �̃�𝑀0×𝐾0
, it should have higher 

expressions for genes that are markers of cell type 𝑘. The solution to (2) is by alternative 

update where each time one of �̃�𝑀0×𝐾0
, �̃�𝐾0×𝑁 is held fixed, and the other is updated. 𝜆 can 

be tuned by using simulated tissue data with known cell proportion. In this study, we tuned 

𝜆 and empirically select 𝜆 as 10 when �̃�𝑀0×𝑁 is log normalized microarray data or log(X+1) 

normalized FPKM/CPM/TPM RNA-seq data. 

Following these procedures, and on a large collection of mouse bulk cell and tissue 

training data, we generated core marker gene lists for different tissue microenvironments: 

(1) for mouse blood, solid cancer and inflammatory tissues, 980 genes of 12 cell types 

namely T cell, B cell, NK cell, hematopoietic stem cell, monocyte, macrophage, neutrophil, 

mast cell, adipocytes, fibroblast, dendritic cell, and endothelial cell were discovered 

(Figure 2.1C); (2) for mouse hematopoietic system, 2877 genes of 14 cell types namely 

hematopoietic stem cell, common lymphoid progenitor, granulocyte-macrophage 
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progenitors, megakaryocyte lineage-committed progenitor, erythroid cell, megakaryocyte-

erythrocyte progenitors, multipotent progenitors, early myeloid progenitor, mature 

myeloid cell, pre colony forming unit erythroid, pre-megakaryocytic/erythroid progenitor, 

B cell, CD4+ T and CD8+ T cell were discovered, and (3) for mouse central nervous system 

tissue, 1570 genes of nine cell types namely ependymal cell, general glial cell, 

oligodendrocyte, stromal-like cell, Schwann cell, microglial, neuron, and astrocyte were 

discovered (Figure 2.1D). It is noteworthy that the size of core marker list ranges from 27 

to 547 for different cell types. However, our analysis suggested that more than 5 marker 

genes that form a rank-1 matrix is sufficient for an accurate estimation of cell proportion. 

Note that, compared with conventional regression-based deconvolution analysis, SSMD 

only uses labels of the core markers as the semi-supervised information and identifies data 

set specific cell type markers for a further unsupervised estimation of cell types, which 

grants a flexibility and robustness to handle the variation of cell type specific marker genes 

and their expression scale through different mouse strains, tissue types and experimental 

platforms. In addition, the semi-supervised formulation of SSMD enables the inference of 

identifiability of each cell type and identification of rare or sub cell types. 
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Figure 2.1. Analysis pipeline of SSMD and core cell type-specific markers. (A) Analysis 

pipeline of the core marker training procedure. (B) Analysis pipeline of the deconvolution 

procedure. In (A) and (B), input data including training and target data, computational 

procedure and key intermediate outputs were colored by orange, green and blue, 

respectively. (C) Core markers of 12 cell types in blood, solid cancer and inflammatory 

tissue. An edge between two genes means the two genes are coidentified as markers of one 

cell type in more than 50% of the training data sets. (D) Core markers of nine cell types in 

central nervous system. Notably, core markers for the endothelial cell in the inflammatory 

tissue and central nervous system were separately trained by comparing with other cell 

types in the same tissue system.  
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2.3.3 Benchmarking based on artificial tissue data simulated by using single cell 

RNAseq data 

We first benchmarked SSMD on a set of artificial tissue data simulated from four 

single cell RNAseq (scRNA-seq) datasets of mouse lung, pancreas, small intestine and 

melanoma. For each data set, we simulated 100 tissue samples by randomly drawing and 

mixing cells of different types whose proportions follow random Dirichlet distributions. 

Prediction accuracy of each cell type was assessed by the Pearson correlation coefficients 

between its known mixing cell proportions and the predicted relative proportion. We 

compared SSMD with three state-of-arts deconvolution methods of mouse data, namely 

ImmuCC (ICC), tissue-ImmuCC (TICC) and EPIC [9]. Our analysis suggested that SSMD 

achieved 93.2% prediction accuracy on average in the four simulated data sets and 23 out 

of the 28 cell types (82.1%) are with higher than 0.9 prediction accuracy (Figure 2.2A-D). 

In contrast, EPIC, ICC and TICC achieved 69.7%, 45.2% and 48.5% averaged prediction 

accuracy on the cell types covered by these methods, and the proportion of cell types with 

higher than 0.9 prediction accuracy are 32.2% (9/28), 0% (0/28) and 7.2% (1/14), 

respectively. We also tested the popular human data deconvolution methods such as 

CIBERSORT (CIBERSORTx) and TIMER [5, 7], by using the known human and mouse 

homolog genes. Non-surprisingly, predictions made by CIBERSORT and TIMER on the 

mouse are less accurate than SSMD. TIMER and CIBERSORT achieved 49.25% and 47.5% 

averaged prediction accuracy, and the proportion of cell types with higher than 0.9 

prediction accuracy are 17.9% (5/28) and 3.6% (1/28).  

It is noteworthy that the SSMD enables the detection of sub cell types defined as 

transcriptomically identifiable. SSMD successfully identified two sub populations of 
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fibroblast cells in the melanoma data and different subtypes of neutrophils in lung and 

small intestine data. In contrast, ICC, TICC and EPIC are not capable of providing cell 

subtype predictions due to their fixed cell type assumption.  

We also benchmarked SSMD on simulated brain tissue data using two scRNA-seq 

data of central nervous systems. SSMD achieved more than 0.9 correlation in predicting 

the cell types microglial, stromal-like, and ependymal subtypes in the simulated tissue data 

(Figure 2E-F). To the best of our knowledge, SSMD is the first of its kind method to 

specifically target mouse central nervous system decomposition. To benchmark SSMD, we 

selected MUSIC as the state-of-the-art method, which requires an additional input of an 

scRNA-seq data to train context specific gene signatures [68]. Here we first utilized the 

same scRNA-seq data for tissue data simulation and signature training in MUSIC. Non-

surprisingly, MUSIC achieved consistently good predictions (averaged cor=0.99), and the 

predictions made by SSMD are very close to MUSIC with slightly lower correlations 

compared with MUSIC under this ideal setup. In sight the possible disparity caused by 

tissue, strain, and experimental platform variations between the target tissue data and 

available scRNA-seq data for training cell markers, we also conducted a robustness test of 

MUSIC and SSMD. Our analysis suggested that MUSIC highly depends on the consistency 

of cell type specific marker genes and their expression scale between the target tissue and 

the training scRNA-seq data. In contrast, the de novo data set specific marker identification 

by SSMD enables a broader application to the tissue data without matched scRNA-seq data. 

Because EPIC, ImmuCC and tissue-ImmuCC cannot analyze brain tissue data and the 

melanoma and pancreas tissue were not covered by tissue-ImmuCC, we did not include the 

comparison with these methods on the brain tissue data. 
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To further validate the specificity of SSMD, we tested the total rank of the identified 

marker genes and compared with the number identified cell types (TIMER and 

CIBERSORT achieved 49.25% and 47.5% averaged prediction accuracy. and the 

proportion of cell types with higher than 0.9 prediction accuracy are 17.9% (5/28), and 3.6% 

(1/28).). We also compare the total matrix rank of the marker genes used in other methods 

and the number of cell types assumed in those methods. Comparing to the fixed number of 

cell types in other methods, the number of cell types predicted by SSMD better matches 

the total rank of the expression profile of identified marker genes. Our observation 

suggested SSMD can correctly estimate the number of cell types and select proper markers 

for cell type proportion estimation. It is noteworthy the predicted number of cell types may 

not exactly match the total rank of selected markers because possible co-linearity among 

the true proportion of the cell types. 
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Figure 2.2. Method evaluation on scRNA-seq simulated tissue data. (A–D) Correlation 

between true and predicted cell proportions in the simulated lung (A), pancreas (B), small 

intestine (C) and mouse melanoma (D) tissue data. The x-axis represents cell type and y-

axis represents prediction accuracy. Predictions made by SSMD, EPIC, ICC and TICC 

were dark blue, green, yellow and orange colored, respectively. The red dash line 

represents the 0.9 correlation cutoff. (E, F) Correlation between true and predicted cell 

proportions in the two simulated brain tissue data. (G) The total rank of the gene expression 

profile of selected marker genes in the six simulated tissue data (gray), and the total number 

of cell types identified by SSMD in each data set or assumed in other methods (left three 

gray bars).  

 

 

 

 

 

 

  



30 
 

2.3.4 Experimental validation of SSMD by using matched RNA-seq and cell sorting 

data 

We generated a tissue RNA-seq data of 11 mouse bone marrow tissue samples with 

matched cell counting using Fluorescence activated cell sorting (FACS) (see details in 

Methods). Application of SSMD on the RNA-seq data identified hematopoietic stem cell 

(HSC), general myeloid progenitor (GMP), mature myeloid cell and Pre-B cells, and their 

cell type specific markers. We also observed that the correlation between SSMD predicted 

and FACS measured amount of HSC, GMP, mature myeloid cell and B cells are 0.92, 0.8, 

0.86, and 0.97, respectively, suggesting a high prediction accuracy of SSMD. Figure 2.3A-

D shows the correlation between the SSMD predicted cell proportion and the FACS 

measured cell proportion of the four cell types. Figure 3E-H illustrate the FACS based cell 

counting of the four cell types. Complete cell type specific markers, cell proportions 

counted by FACS and predicted by SSMD were given. It is noteworthy that SSMD is not 

compared with other methods as none of the existing method is capable of predicting 

proportions of hematopoietic cell types.  
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Figure 2.3. Method evaluation on hematopoietic tissue data. (A–D) Correlation between 

SSMD-predicted (x-axis) and FACS-identified (y-axis) cell proportions of HSC, GMP 

mature myeloid cell and pre-B cell. (E–H) Marker proteins utilized to identify the four cell 

types by using FACS. The x- and y-axis of the plots represent the level of cell type markers. 

The black block in (E), the green block in (F), the upper-right block in (G) and the block 

in (H) are the sorted HSC, GMP, myeloid and pre-B cell, respectively. 
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2.3.5 Application of SSMD to real mouse tissue transcriptomics data 

We applied SSMD to nine cancer and eight central nervous system tissue data of 

four different experimental platforms, including one data set measured by immune-assay. 

On average, SSMD identified more than seven cell types in each of the cancer data, and 

the number of identified cell types is highly consistent with the total rank of the expression 

profile of the detected cell type specific marker genes (Figure 2.4A). This indicates that 

SSMD is capable of capturing the latent structure of the data. We further examined the 

explanation score (E-score), defined as the averaged absolute residual of the non-negative 

linear regression of each marker gene’s expression on the predicted cell proportion, i.e. the 

average measure of how the predicted proportions could explain all the marker genes’ 

expression levels. A high E-score is a necessary condition for an accurate cell proportion 

prediction. On average, the data set specific markers genes of each cell type identified by 

SSMD achieved 0.73 E-score while the average E-score of the marker genes used by EPIC 

and ImmuCC is 0.45 and 0.3 (Figure 2.4B). Similarly, application of SSMD on eight 

central nervous system tissue data identified more than seven cell types on average. The 

number of identified cell types is highly consistent with the total rank of the gene 

expression profile of the marker genes (Figure 2.4C). And the marker genes identified by 

SSMD achieved averaged 0.77 E-score for the cell types in central nervous system (Figure 

2.4D). It is noteworthy that multiple marker sets of fibroblasts, myeloid or microglial cells 

that forming distinct rank-1 bases were identified in numerous data sets, suggesting the 

possible sub types of these cell types identified by SSMD. 
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Figure 2.4. Prediction of SSMD on real tissue data. (A, C) The total rank of the gene 

expression profile of selected marker genes (gray) in different (A) cancer tissue and (C) 

brain data and the total number of cell types identified by SSMD in each data set (colored). 

(B, D) E-score for different cell types identified by SSMD (blue) in (B) cancer and (D) 

brain data set or assumed in other methods (EPIC: red, ICC: yellow).  
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2.3.6 Robustness analysis  

We first evaluated the variation of cell type specific markers through different 

mouse strains on one transcriptomic dataset of mouse liver tissue samples collected from 

31 different mouse strains [62]. To the best of our knowledge, this is the only dataset in the 

public domain that systematically measured gene expression profiles of the same tissue 

type for different mouse strains by using the same experimental platform. SSMD was 

applied to the data of each mouse strain respectively. 9 cell and their sub types were 

commonly identified in the liver tissue of most strains. The identifiability of the cell types 

and the detected cell type markers among different strains were compared (Figure 2.5). We 

analyzed all the identified marker genes that form rank-1 modules, i.e. the necessary 

condition for gene markers of identifiable cell types, and noticed that only 9.1% of the 

identified marker genes are shared in more than 50% strains, while 58.4% of the identified 

marker genes only served as a cell type marker in less than 20% of the analyzed strains, 

suggesting a high variation of cell type specific markers among different mouse strains, 

and the necessity to consider strain or data set specificity in deconvolution analysis. 

 We further examined the robustness of SSMD by evaluating its (1) sensitivity and 

(2) specificity in identifying cell types specific marker genes and its (3) accuracy in 

assessing of cell proportions, on the data of different sample sizes. Previous studies 

revealed that the robustness of the computation of co-expression correlation will decrease 

when the sample size is below 25. To comprehensively evaluate the method’s robustness, 

we selected five data sets, namely GSE76095, GSE67186, GSE90885, GSE94574, and 

GSE126279, with sample size ranging from 15 to 30 and randomly drew samples from 

each data set to build testing data sets of different sample size. We assumed the cell type 
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markers and cell proportion inferred from whole data as “true” markers and proportions, 

and evaluated the consistency between the “true” ones and the ones predicted from small 

sub data sets. Accuracy in cell proportion prediction was assessed by the Pearson 

correlation between proportions predicted from small data and the “true” proportion on 

overlapped samples.  
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Figure 2.5. Correlation between expression level of strain-specific cell type marker genes 

and predicted cell proportion. High correlation is a necessary but nonsufficient condition 

for the genes to serve as marker genes of the cell types in corresponding mouse strain. In 

the heatmap, x- and y-axis represent genes and mouse strains, respectively. Genes in the 

core marker list of four selected cell types, namely neutrophil, NK, macrophage and 

monocyte, were colored on the column side bar.  
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Figure 2.6. Performance evaluation of different sample size. (A) Prediction accuracy (y-

axis) in different sample size (x-axis) using all core markers. Accuracy is the Pearson 

correlation between predicted proportion using only selected small sample and using all 

samples. (B) Prediction accuracy (y-axis) in different sample size (x-axis) using selected 

stringent markers. (C) True positive rate (y-axis) of the cell type-specific markers identified 

by using the stringent markers (blue) and core markers (green) with respect to different 

sample size (x-axis). (D) E-score for using coexpression modules consisting of all core 

markers and only selected stringent markers. From top to bottom, the statistics were derived 

from GSE76095, GSE67186, GSE90885, GSE94574 and GSE126279. 
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On average, all of the marker genes of the “true” cell types were also identified 

when sample size is low (Figure 2.6A). In addition, the cell proportion of 92.3%, 94.6% 

and 98.9% of the correctly identified cell types were with more than 0.9 correlation with 

their “true” proportions when the sample size is 6, 12 and above 20 (Figure 2.6A). Our 

analysis suggested a high robustness of the sensitivity and prediction accuracy of SSMD 

when sample size is as small as 6, i.e. the commonly used sample size in two-condition-

comparison experiment (3 samples vs 3 samples). However, as a trade-off, there is a high 

false discovery rate of cell type specific modules when sample size is small, due to the low 

specificity of gene co-express analysis. To control the false discoveries on small data sets, 

we further derived a more “stringent” set of 341 cell type specific marker genes among the 

core marker set (see details in Methods). Our method validation demonstrated a slight drop 

of the sensitivity and prediction accuracy when using the stringent marker set on small data 

set (Figure 2.6B), while the specificity of the identified cell type specific markers increased 

to from 54.4% to 72.6% when sample size is above 12 (Figure 2.6C). Figure 2.6D 

illustrates the E-score of the cell type specific marker genes identified by using the core 

and the more stringent marker set with respect to different sample size. The E-score of the 

cell types marker genes identified by using the more stringent marker set were significantly 

higher than the ones identified by using the general core marker sets when sample size is 

below 10, also demonstrating the stringent core marker sets can effectively increase the 

analysis specificity when sample size is small. 

2.4 Discussion 

Over the years, research using well-established mouse models to mimic human 

conditions have provided extensive insight into the mechanisms underlying many human 
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diseases. We developed SSMD to study mouse tissue microenvironment of complex traits, 

to mine the interactions of cell components in the microenvironment, which will feed back 

to studying human microenvironment. In order to have a robust prediction of cell 

component abundance in mouse tissue, SSMD detects a subset of the genes and identifiable 

cell types that are the most representative to the tissues to be analyzed, instead of using 

fixed gene signatures and cell types as in classic deconvolution schemes. The limitation in 

expression profiling and the intrinsic and mysterious variability in microenvironments 

excludes the possibility to have a unified set of cell type specific genes that have absolutely 

constant expression across all conditions. The way SSMD flexibly defines cell type marker 

genes mitigates the impact of variable marker genes due to experimental platforms and 

microenvironment alterations. This strategy allows our model to fully recapitulate the 

disparity of cell types and their marker genes across different microenvironment and data-

generating platforms. In addition, the semi-supervised formulation enables the detection of 

sub cell types, which has been validated on scRNA-seq data simulated tissue data. Hence, 

a relatively coarse standard for categorizing the cell types was used in training the core 

marker list, which enabled a high robustness of the core markers. The unsupervised 

constrained-NMF or SVD-based deconvolution on the selected marker genes further 

excludes the adversarial batch effects.  

It is noteworthy a successful identification of the rank-1 modules depends on a 

relatively large samples (>25) sharing cell types and marker genes. Currently, SSMD 

cannot be applied to the data with a single or small sample size. However, we consider 

such a tradeoff between sample size and prediction robustness is highly worthwhile, 

especially considering using SSMD as an exploratory tool in large scale publicly available 
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mouse transcriptomics data. After all, the predicted proportions are often to be associated 

with other biological and clinical features, which will be severely underpowered with a 

small sample size. 

We released a R package of SSMD via https://github.com/xiaoyulu95/SSMD and 

a web server via https://ssmd.ccbb.iupui.edu/. The input data is a mouse tissue 

transcriptomics data and user selected tissue specific cell type core marker sets. Currently, 

SSMD offers general core and stringent marker sets of 6 cell types in blood system, 12 cell 

types in normal, inflammatory and cancer tissue, 9 cell types in central nerve systems, and 

14 cell types in hematopoietic systems. We have a practical guide for using SSMD of 

different tissues and sample size. The input of SSMD is a mouse tissue expression data set 

and user selected tissue environment category. The output of SSMD includes the identified 

data set specific cell type markers and the estimated sample-wise relative proportion of 

each identifiable cell type. We consider the currently included cell types are comprehensive 

enough to cover major cell types in mouse. However, the tissue specific cell types (for 

example, liver cells in liver tissue, colon cells in colon tissue, etc) were not included in our 

training scope. As forming rank-1 pattern among marker genes is a necessary but non-

sufficient condition of identifiable cell types, SSMD R package can also output rank-1 

modules that do not enrich the core markers of any cell type, which could possibly be 

markers of rare cell types. The user could further investigate whether the gene module 

corresponds to a real cell type or not. Another key feature of the webserver is that users are 

welcome to contribute their data to reinforce the training of cell type specific marker genes.

  

https://github.com/xiaoyulu95/SSMD
https://ssmd.ccbb.iupui.edu/
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Potential future directions of SSMD include (1) enabling identification of cell type 

specific varied functions, which is not generally available for tissue data analysis in the 

public domain, (2) identifying data set specific cell type markers forming rank-1 submatrix 

in a subset of samples, i.e. local rank-1 submatrix, which can benefit from state-of-the-arts 

subspace clustering methods [69-71] and (3) extending and implementing the semi-

supervised framework of SSMD with other state-of-the-arts deconvolution methods by 

refining data set specific cell marker genes. We anticipate that our computational concept, 

which is to identify data set specific and computationally “identifiable” cell types and their 

marker genes, can provide high robustness in deconvolution analysis, by which the 

predicted cell proportions can be reliably correlated with experimental features to provide 

biologically meaningful interpretation of the roles of microenvironmental changes in 

different disease tissues. 

  



42 
 

Chapter 3 PLUS: predicting cancer metastasis potential based on positive and 

unlabeled learning 

3.1 Introduction 

Metastatic cancer is responsible for over 90% of all cancer deaths [23, 24]. 

Compared with well-confined primary tumors, metastatic cancer remains incurable 

because of its systemic nature and the resistance of disseminated tumor cells to existing 

therapeutic agents [21, 22]. Hence, for a substantial number of cancer patients, effective 

treatment is largely dependent on an understanding of and capacity to interdict metastasis. 

Cancer metastasis is a multistep process by which cancer cells disperse from a primary site 

and progressively colonize distant organs. This process is often schematized as a sequence 

of discrete steps, termed the invasion-metastasis cascade [72-74]. Although advances have 

accelerated dramatically over the past decade and provided valuable insights regarding the 

molecular changes in the process of metastasis, metastatic cancer still represents an 

emerging field replete with major unanswered questions. In this context, evaluating a 

cancer patient’s metastasis potential is vital for clinical decision-making and understanding 

the biological mechanism of metastasis is the first step towards targeted therapeutics.  

Previous work has provided strong evidence indicating that a number of genomic 

markers in primary tumors are associated with the propensity of a patient to develop 

metastatic relapse, and that distant metastasis events can be inferred from gene expression 

profiles within the primary tumor bulk [25, 26]. For example, a recent study used machine-

learning techniques to determine metastatic tumor organ of origin using the somatic 

mutation data [27]. Several studies have defined gene expression signatures that predict 

overall and metastasis-free survival as well as progression and metastatic growth in breast 
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cancer patients [28-32]. Kikuchi et al. identified 40 metastasis-related genes by comparing 

lymph node-positive and lymph node-negative lung cancer patients [75]. Schell et al. [76] 

developed a score that can separate metastatic and non-metastatic tumors. Klein et al. [77] 

used the Cox multivariable proportional hazard model and survival C-index to evaluate the 

ability of a genomic classifier to predict metastasis and validated its robust performance. 

Goossens-Beumer et al. [78] performed differential MicroRNA (miRNA) expression 

analysis between metastatic and non-metastatic cases to establish miRNA-based metastasis 

risk predictions. Md Jahid et al. [79] proposed a personalized approach for improving the 

prediction of breast cancer metastasis.  

On one hand, many of these metastasis predictors have been developed for a certain 

cancer type and thus are less generalizable to other cancer types. In fact, the molecular 

signatures of cancer metastasis reported in different studies hardly overlap [80]. Recently, 

the development of high-throughput sequencing technology has produced a large amount 

of molecular data at the pan-cancer level.  Hence, harnessing the power of large-scale 

projects such as The Cancer Genome Atlas (TCGA) would enable us to systematically 

study the abnormalities in cancer progression at the molecular level in a statistically more 

powerful manner. On the other hand, to develop a cancer metastasis predictor, the 

following challenges remain unsolved by existing methods, which may largely limit the 

ability to predict early metastasis events and derive biological insights: 1) Metastasis events 

are not easily detectable, especially when we consider the hibernating disseminating cancer 

cells; thus, clinical metastasis diagnoses often tend to underestimate metastatic events. For 

classification-based methods, training a classifier with under-detected metastatic instances 

may lead to an under-estimated metastasis potential. 2) Many survival-based studies were 
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principally designed to detect molecular markers that can best predict patient overall, 

progression-free, or metastasis-free survival, instead of directly targeting metastasis events 

itself. Therefore, the detected markers may not have any functional implication in 

metastasis. 3) High-dimensional molecular features complicate the classification and 

feature selection process. Therefore, a substantial refinement of the statistical 

considerations for model training and marker identification is required in order to increase 

the power to predict metastatic potential at the pan-cancer level. In summary, the 

combination of under-detected metastasis events and high-dimensionality in molecular 

features in transcriptomics data presents both statistical and computational challenges.  

We have developed an algorithm called Positive and unlabeled Learning from 

Unbalanced cases and Sparse structures (PLUS) to address the aforementioned challenges. 

The ultimate goal of PLUS is to enable early metastasis event prediction at the pan-cancer 

level, as well as to infer biologically meaningful gene markers for metastasis potential. 

PLUS belongs to a category of classifiers called positive and unlabeled learning (PU 

learning). Whereas the input to a binary classifier normally consists of positive and 

negative incidence sets, in PU learning, a learner has access to only positive and unlabeled 

incidences, and it is assumed that the unlabeled data can contain both positive and negative 

incidences [81]. PLUS is particularly well-suited for studying metastasis potential: only 

patient samples diagnosed as metastatic are available and trustable, called positive samples; 

the samples that are not diagnosed as metastatic, due to a short follow-up time, are either 

metastatic or non-metastatic and are thus categorized as the unlabeled samples. In addition, 

PLUS is built on a penalized likelihood estimation framework for variable selection, and 



45 
 

its iterative bootstrapping procedure makes it robust to bias caused by unbalanced 

allocations of positive and unlabeled samples.  

PLUS represents a first-of-its-kind method to specifically address the under-

diagnosis issue in studying cancer metastasis potential using the PU learning framework. 

Its robustness enables the power of big data to be harnessed through integration of large-

scale datasets collected from different cancer types. Insights gleaned from this research 

will prove useful to the early diagnosis and treatment of metastatic disease. We 

benchmarked PLUS on extensively simulated data sets and demonstrated the superiority 

of PLUS over all other PU learning methods across all simulation scenarios. Application 

of PLUS to TCGA pan-cancer gene expression dataset resulted in metastasis potential 

estimations consistent with the clinical follow-up data. Moreover, PLUS selected a set of 

genes that are highly predicative of metastasis potential, and the differentiating potency of 

these genes was validated on independent single-cell RNA-sequencing (scRNA-seq) 

datasets, as well as existing literature.  

3.2 Materials and Methods 

3.2.1 Model setup 

Let 𝑥 ∈ ℛ𝑝, 𝑦 ∈ ℛ be a 𝑝-dimensional covariate and binary response variable. To 

model the probability of observing an event 𝑦  conditioning on covariates 𝑥 , logistic 

regression is commonly used to estimate the probability 𝑃𝑟(𝑦 = 1|𝑥) when both positive 

outcomes 𝑦 = 1 and negative outcomes 𝑦 = 0 occur in the observation. In the PU setting, 

however, only positive labeled instances are observed, while the labels for the remaining 

instances are unknown, or too noisy, as in the case of cancer metastasis diagnosis. In other 

words, we denote the observed outcome by 𝑧, where 𝑧 = 1 represents positively labeled 
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instances, and 𝑧 = 0 represents unlabeled instances. For a subject 𝑖 with 𝑧𝑖 = 1, it clearly 

follows that 𝑦𝑖 = 1. However, if 𝑧𝑖 = 0, then either 𝑦𝑖 = 1 or 𝑦𝑖 = 0. The main purpose 

of PU-learning is to estimate 𝑃𝑟(𝑦𝑖 = 1|𝑥𝑖)  from observed data tuples (𝑥, 𝑧) . Direct 

application of logistic regression in which 𝑧 is treated as the response is severely biased. 

Because only part of 𝑦 is observed, the PU problem can be viewed as a missing data 

problem, and one commonly used method for missing data problems is the EM algorithm 

[82]. In the following sections, we will first introduce the existing EM algorithm designed 

for the PU problem and then propose our PLUS algorithm, which is more tailored for the 

unbalancedness and sparsity issues in cancer metastasis prediction. 

3.2.2 Case-control framework  

We adopt the case-control framework proposed by Wald et al. [82], i.e., the positive 

instances are sampled from one distribution, deemed as “cases”, while the negative 

instances are sampled from the other one, deemed as “controls”. It is based on two 

reasonable assumptions:  

Assumption 1: Positive instances are completely randomly selected from the 

positive population. In other words, whether an instance is observed as positive is 

regardless of its covariates 𝑥, that is, 

𝑃𝑟(𝑧 = 1|𝑥, 𝑦 = 1, 𝑠 = 1) = 𝑃𝑟(𝑧 = 1|𝑦 = 1, 𝑠 = 1); 

Assumption 2: The unlabeled instances are a random sampling from the population, 

that is:  

𝑃𝑟(𝑦 = 1|𝑥, 𝑧 = 0, 𝑠 = 1) = 𝑃𝑟(𝑦 = 1|𝑥) 
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Here, 𝑠 = 1  indicates that an instance is in the sample, which is always the case 

when we are working with the sample. The observed likelihood under this case-control 

sampling scheme is 

𝐿𝑜𝑏𝑠(𝜃|𝑥, 𝑧, 𝑠 = 1) = ∏ 𝑃𝜃(𝑧𝑖|𝑠𝑖 = 1, 𝑥𝑖)

𝑖

 

= ∏ 𝑃𝜃(𝑧𝑖 = 1|𝑠𝑖 = 1, 𝑥𝑖)

𝑖

𝑧𝑖

(1 − 𝑃𝜃(𝑧𝑖 = 1|𝑠𝑖 = 1, 𝑥𝑖))
1−𝑧𝑖

, (1) 

and the full likelihood is 

𝐿𝑓𝑢𝑙𝑙(𝜃|𝑥, 𝑦, 𝑧, 𝑠 = 1) = ∏ 𝑃𝜃(

𝑖

𝑦𝑖 , 𝑧𝑖|𝑠𝑖 = 1, 𝑥𝑖) 

   ∝ ∏ 𝑃𝜃(

𝑖

𝑦𝑖 = 1|𝑠𝑖 = 1, 𝑥𝑖)
𝑦𝑖𝑃𝜃(𝑦𝑖 = 0|𝑠𝑖 = 1, 𝑥𝑖)

1−𝑦𝑖 . (2) 

Direct optimization with respect to the observed likelihood function is difficult; 

thus, an EM procedure is introduced to accomplish the optimization according to the 

expectation of the observed likelihood. 

E-step:  

Given the estimated model parameter 𝜃(𝑘) from the 𝑘𝑡ℎ  iteration, the conditional 

expectation of full log-likelihood is thus  

𝑄(𝜃|𝜃(𝑘)) = 𝐸[ℓ𝑓𝑢𝑙𝑙(𝜃|𝑥, 𝑦, 𝑧, 𝑠 = 1)|𝑥, 𝑧, 𝑠 = 1, 𝜃(𝑘)] 

= ∑{𝐸[𝑦𝑖|𝑧𝑖 , 𝑥𝑖 , 𝑠𝑖

𝑖

= 1, 𝜃(𝑘)]𝑙𝑜𝑔𝑓𝜃
∗(𝑥𝑖) + (1 − 𝐸[𝑦𝑖|𝑧𝑖 , 𝑥𝑖 , 𝑠𝑖 = 1, 𝜃(𝑘)])log (1 − 𝑓𝜃

∗(𝑥𝑖))}, 

where 𝑓𝜃
∗(𝑥𝑖) = 𝑃𝜃(𝑦 = 1|𝑥, 𝑠 = 1). We are also aware of  

𝐸[𝑦𝑖|𝑧𝑖 , 𝑥𝑖 , 𝑠𝑖 = 1, 𝜃(𝑘)] = 𝑃𝜃(𝑘)(𝑦𝑖 = 1|𝑧𝑖 , 𝑥𝑖 , 𝑠𝑖 = 1) = 𝑓𝜃(𝑘)(𝑥𝑖)
(1−𝑧𝑖), 
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where 𝑓𝜃(𝑘)(𝑥) = 𝑃𝜃(𝑘)(𝑦𝑖 = 1|𝑥𝑖). This expression holds because when 𝑧 = 1 , 

the outcome 𝑦 can only equal to 1, and when 𝑧 = 0, we know from assumption 2 that 

𝑃𝑟(𝑦 = 1|𝑥, 𝑧 = 0, 𝑠 = 1) = 𝑃𝑟(𝑦 = 1|𝑥). 

M-step: 

In the M-step, we maximize the expectation of full log-likelihood described in the 

E-step with a penalty term 𝜆𝐽(𝜃) to account for the sparsity 

                                      

𝜃(𝑘+1) = 𝑎𝑟𝑔 𝑚𝑎𝑥𝜃 𝑄(𝜃|𝜃(𝑘)) + 𝜆𝐽(𝜃), (3)                        

where 𝜆 is a penalty coefficient, and 𝐽(⋅) is a proper regularization function. Here, 

we adopt the 𝐿1 norm to select informative variables. The penalized likelihood method 

based on EM was implemented in a similar manner as PUlasso [83]. 

After the M-step, we obtained 𝜃(𝑘+1) as well as 𝑓
𝜃(𝑘+1)
∗ , and to obtain 𝑓𝜃(𝑘+1)for the 

next E-step, we derive the connection between these two terms: 

𝑓𝜃(𝑥) =
(𝑐 − 1)𝑓𝜃

∗(𝑥)

𝑐 − 𝑓𝜃
∗(𝑥)

, (4) 

where 

𝑐 =
𝑃𝑟(𝑦 = 1|𝑠 = 1)

𝑃𝑟(𝑧 = 1|𝑠 = 1)
. 

𝑃𝑟(𝑧 = 1|𝑠 = 1) is directly observed in the sample, but 𝑃𝑟(𝑦 = 1|𝑠 = 1) requires 

knowledge of the population prevalence 𝜋 = 𝑃(𝑦 = 1) . However, this parameter is 

unknown in our case, as we do not have prior information on the population prevalence of 

metastasis, which is indeed what we are seeking. A randomly assigned population 

prevalence may work as well when the two classes in the population are clearly separated 

and have a balanced presence; however, as we will see in the simulation data, this approach 
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severely impacts PUlasso performance when the true prevalence is close to 0 or 1, or, in 

other words, when the population allocation is unbalanced. 

3.2.3 PLUS framework 

Even with the penalized likelihood estimation to enable feature selection, using 

such a framework similar to PUlasso for predicting cancer metastasis potential is not 

applicable for two reasons: 1) the observed unbalancedness, in which there are fewer 

positive samples (metastatic diagnosis) than unlabeled samples (non-metastatic diagnosis), 

and 2) unknown population prevalence, meaning that there is no prior knowledge on how 

many patients are metastatic in the population. Both challenges may significantly impact 

the performance of the case-control framework. 

To address the challenges in existing algorithms, the proposed PLUS algorithm is 

particularly tailored to deal with potential unbalancedness in both observation and 

population allocation, along with a sparse data structure. Sparsity is solved by adopting a 

variable selection procedure, which can be naturally embedded in the EM structure with 

the LASSO penalty in the M-step. Unbalancedness can occur at 1) population level or 2) 

observation level as follows. 1) The population prevalence is extreme, that is, 𝜋 is either 

close to 0 or close to 1, or 2) the number of observed positives is outnumbered by the 

unlabeled instances. Both types of unbalancedness, along with the PU setting, makes this 

problem even more complicated.  

We rewrite 𝑐 in equation (4) as 

𝑐 = 1 + Pr(𝑦 = 1|𝑧 = 0, 𝑠 = 1)
Pr(𝑧 = 0|𝑠 = 1)

Pr(𝑧 = 1|𝑠 = 1)
, (5) 

where both types of unbalancedness are explicitly included. The population 

unbalancedness is expressed by 𝑃𝑟(𝑦 = 1|𝑧 = 0, 𝑠 = 1), since 𝑃𝑟(𝑦 = 1|𝑧 = 0, 𝑠 = 1) =
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𝑃𝑟(𝑦 = 1)  under assumption 2. Meanwhile, 
𝑃𝑟(𝑧=0|𝑠=1)

𝑃𝑟(𝑧=1|𝑠=1)
 is a measure for observation 

unbalancedness. Clearly, when the positive prevalence is high or the unlabeled instances 

outnumber the positive instances, 𝑐 will be a relatively large number. From S2 Figure, we 

find that the larger the 𝑐, the little difference between 𝑓𝜃
∗ and 𝑓𝜃. Consequently, when these 

unbalanced scenarios occur, the traditional EM-based algorithm approach is prone to 

perform little correction on the 𝑓𝜃
∗ . In practice, this behavior causes PUlasso to fail in 

unbalanced situations. 

According to this observation, we propose a new way to transform 𝑓𝜃
∗ to 𝑓𝜃, which 

does not require a knowledge of the population prevalence 𝑃(𝑦 = 1) and also works for 

unbalanced scenarios. Unlike the EM algorithm, in which 𝑓𝜃
∗(𝑥)  is always smaller than 

𝑓𝜃(𝑥) , our transformation adopts a bipolar function such that extreme estimated 

probabilities will become more extreme. Here, we choose a sigmoid function:  

𝑓𝜃(𝑥) =
1

1 + 𝑒−𝛼𝑔(𝑓𝜃
∗(𝑥)−𝑝0)

, (6) 

where 𝑝0  is the anchor probability. Based on this sigmoid function, any 𝑓𝜃
∗(𝑥) 

larger than 𝑝0 will be projected from 0.5 to 1 or 0 to 0.5 for those smaller than 𝑝0. 𝑝0 is 

determined by the 𝑞0-th percentile of the estimated probability for the positive cases, or 

𝐸(𝑦|𝑥, 𝑧 = 1, 𝑠 = 1). Here, we use the predicted probability of the positive samples to help 

distinguishing the unlabeled instances. PLUS is not sensitive to the choice of  𝑞0  if the 

rank of probability is applied (see S3 Figure). 𝑔(⋅) is a function that linearly maps 𝑓𝜃
∗(𝑥) −

𝑝0  to an arbitrary symmetric domain of the sigmoid function, for example [−1, 1], 

calibrated at 0. 𝛼 is a scale parameter that determines the magnitude of transformation. In 

practice, this parameter parimarily determines the speed of convergence. We suggest 
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choosing a value between 5 to 10 if the domain is [−1, 1]. In S2 Figure, we show a direct 

comparison of the sigmoid transformation and the EM transformation.  

At each iteration, we 1) randomly sample the same number of observed positive 

instances from the unlabeled set with replacement and 2) conduct a one-step EM 

calculation, but only use only the new transformation function (6). In this manner, we can 

handle observation unbalancedness by maintaining a reasonably high ratio at each step. 

Then we 3) update the estimated probability for each unlabeled instance. Repeat step 1-3 

until the estimated probabilities are stabilized. We take advantage of this bootstrap scheme 

to reduce the noise and increase the robustness. The details of the algorithm, as well as a 

flowchart, are given in Algorithm 1.   

Note that, theoretically, the penalized logistic regression adopted in each iteration 

requires binary outcomes, while 𝐸[𝑦𝑖|𝑧𝑖 = 0, 𝑥𝑖 , 𝑠𝑖 = 1, 𝜃(𝑘)] typically lie between 0 and 1 

and are not binary. However, most logistic procedures are currently able to handle non-

integer responses, or we can work on augmented dataset as long as weights can be 

incorporated [24]. Thus, adopting 𝐸[𝑦𝑖|𝑧𝑖 = 0, 𝑥𝑖 , 𝑠𝑖 = 1, 𝜃(𝑘)]  as responses is 

computationally feasible. 
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PLUS Algorithm: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input: 𝑋𝑀×𝑁(Covariate matrix), the indices and labels of 

positive instances P, and 𝐿𝑃 , its size 𝑁0, and parameters 

𝑞0, 𝛼. 
𝑂𝑢𝑡𝑝𝑢𝑡: 𝑓𝜃𝑓𝑖𝑛𝑎𝑙  

Initialization: Labels for the unlabeled instances 𝐿𝑈=0 

While stopping criteria are not met, do  

1. Randomly sample 𝑁0  unlabeled instances with 

replacement, denoted as 𝑆, where 𝑁0 is the 
number of positive instances. 

2. Run a PLR based on all positive instances P and 

𝑆. Record the estimated outcomes for P and S, 

which are 𝑓𝜃
∗(𝑃) and 𝑓𝜃

∗(𝑆).  

3. Calculate 𝑝0 based on the 𝑞0-th percentile of 

𝑓𝜃
∗(𝑃). 

4. Perform a sigmoid transformation on 𝑓𝜃
∗(𝑆) by 

                𝑓𝜃(𝑆) =
1

1+𝑒
−𝛼𝑔(𝑓𝜃

∗ (𝑆)−𝑝0 )
. 

5. Update the corresponding labels for S by 

𝑓𝜃(𝑆): 

𝐿𝑈[𝑆] ← 𝑓𝜃(𝑆). 

End;  
Run a PLR based on 𝐿𝑃  and the new 𝐿𝑈 , to yield the final 
estimation 𝑓𝜃𝑓𝑖𝑛𝑎𝑙 , which tells the selected features, as 

well as the class probability, i.e., 𝑃(𝑌 = 1|𝑋). 
 



53 
 

To comprehensively assess the proposed method, we designed a series of 

simulation studies. Four different scenarios for the noise distribution were simulated, 

corresponding to a balanced population with two well-separated classes (a clear balanced 

scenario), a balanced population with two classes not well-separated (a noisy balance 

scenario), an unbalanced population with two well-separated classes (a clear unbalanced 

scenario), and an unbalanced population with two classes not well-separated (a noisy 

unbalanced scenario). Alterations to the population unbalancedness and separation are 

achieved by designing different propensity score functions as follows: 

Clear Balanced Scenario: 𝑙𝑜𝑔𝑖𝑡(𝑃𝑟(𝑌 = 1)) = 2𝑋1 + 4𝑋2(𝑋3 + 5) − 3 𝑠𝑖𝑛(𝑋4 + 𝑋5) − 0.1𝑋6
4  

Noisy Balanced Scenario: 𝑙𝑜𝑔𝑖𝑡(𝑃𝑟(𝑌 = 1)) = 2𝑋1 + 4𝑋2𝑋3 − 3 𝑠𝑖𝑛(𝑋4 + 𝑋5) − 0.1𝑋6
4 

Clear Unbalanced Scenario: 𝑙𝑜𝑔𝑖𝑡(𝑃𝑟(𝑌 = 1)) = 2𝑋1 + 8𝑋2𝑋3 − 3 𝑠𝑖𝑛(𝑋4 + 𝑋5) − 3(𝑋6 − 1)4 

Noisy Unbalanced Scenario: 𝑙𝑜𝑔𝑖𝑡(𝑃𝑟(𝑌 = 1)) = 2𝑋1 + 1.5𝑋2𝑋3 − 3 𝑠𝑖𝑛(𝑋4 + 𝑋5) − (𝑋6 − 1)4 

The functions look similar, but their non-linear properties are distinguished. Here, 

we show distributions of 𝑃𝑟(𝑌 = 1) for each of the scenario. In addition, the direction of 

the population unbalancedness is also altered, causing the positive instances to be either 

the larger or smaller class.  

We simulate the covariate matrix 𝑋n×p ~ 𝑀𝑉𝑁(0, 𝐼𝑝×𝑝), where the total number of 

covariates 𝑝  can take is 100, 200, and 400 and the sample size 𝑛  is 2000. For all 

environments, only six of the variables are relevant to the binary outcome 𝑌. To generate 

PU instances, we randomly flip the true label 1 to 0, and the probability of a sample being 

flipped determines the observation balancedness. A higher flipping probability corresponds 

to a lower observation balancedness, with the sum of these two values equaling 1. The level 
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of observation balancedness ranges from 0.2 to 0.5. Its impact is shown in Figure 3.2 on 

the x-axis. 

3.2.4 Benchmark methods and comparison 

PLUS was compared with six state-of-the-arts PU learning or binary classification 

methods and one oracle reference method: (1) The PUlasso algorithm, which implements 

the EM algorithm for penalized likelihood estimation [83], and it utilizes a majorization-

minimization framework to improve the stability of the EM-algorithm-based solution. The 

(2) Ada-KNN, (3) Ada-Logit, and (4) Ada-SVM methods all belong to a multi-method 

wrapper, called AdaSample [84]. AdaSample utilizes an adaptive sampling procedure to 

estimate the class mislabeling probability and to reduce the risk of selecting mislabeled 

instances. It is presented as a wrapper that can integrate support vector machine (SVM), k-

nearest neighbor (KNN), logistic regression (logit), linear discriminant analysis (LDA), 

and feature weighted KNN [2]. (5) XGBoost is a state-of-the-art decision-tree-based 

classification algorithm that uses a gradient boosting framework [85]. (6) The random 

forest is a classification algorithm consisting of many decisions trees, which uses bagging 

and feature randomness when building each individual tree in an attempt to create an 

uncorrelated forest of trees whose combined prediction is more accurate than that of any 

individual tree [86]. (7) PRL places an L1 penalty on the logistic regression coefficients to 

enable variable selection. Notably, the PLR method was applied to the synthetic data using 

the true underlying label for method validation. For real data, PLR was also applied as a 

baseline method with the observed labels treated as true, which leads to an underestimated 

metastasis potential. Of all the methods, the Ada- methods, like most of the PU-learning 

methods, are incapable of variable selection. For each simulation setting, we conducted 
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100 repetitions. In each repetition, a predictive model is trained by each method, which 

generates an ROC curve with false and true positive rates at the x- and y- axis and the AUC. 

The average AUC among the 100 repetitions is used to evaluate the prediction performance 

for each method and simulation setting.  

3.2.5 Data analyzed in this study 

TCGA transcriptomics data. We retrieved the RNA-seq data from the PanCanAtlas 

[87]. The retrieved data includes the expression profiles of 20,531 genes in 10,332 samples 

from 33 cancer types. We combined COAD and READ into one cancer type called 

COADREAD. Among all cancer types, we extracted the 20 cancer types with at least one 

sample that was initially diagnosed as metastatic, with a total sample size of 7,467. Among 

these samples, 553 were confirmed to be metastatic. The detailed cancer types and 

corresponding frequencies of initial metastasis diagnosis. We first applied EB++ to remove 

the batch effect introduced by the different cancer datasets, as suggested by PanCanAtlas. 

EB++ is a recently developed batched effect removal method for TCGA pan-cancer data 

analysis that can adjust for sequencer platform differences 

(https://bioinformatics.mdanderson.org/BatchEffectsViewer/). Specifically, the UNC GA- 

and BCCA GAII-sequenced samples were separately adjusted to the UNC HiSeq data. 

TCGA clinical information. Baseline and follow-up clinical information for all 

cancer samples was retrieved from the Genomic Data Commons Data Portal. Baseline 

diagnosis of a distant metastasis event was retrieved from the baseline clinical data, based 

on whether the patient is diagnosed as stage M1 in the TNM stage information. Specifically, 

a patient is determined to be diagnosed with metastasis if (1) the patient is in the M1 stage 

according to at least one of the “ajccmetastasis pathologic pm”, “ajcc metastasis clinical 
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cm”, “clinical M”, and “pathologic M” criteria in the TCGA clinical information or (2) 

there exists direct evidence of metastasis under one of the following terms: “metastatic dx 

confirmed by”, “metastatic dx confirmed by other”, “metastatic tumor site”, “metastasis 

site”, “metastatic site other”, “metastasis site other”, “metastatic tumor indicator”, 

“metastatic disease confirmed”, “metastatic site”, and “other metastatic site”. Based on 

these criteria, 553 samples were confirmed to have a metastasis diagnosis while the 

remainder were treated as unlabeled samples. 

To evaluate the accuracy of the predicted metastasis potential, we utilized the 

available TCGA follow-up data and collected PFS data. We specifically defined events in 

PFS as a patient having a new tumor event, whether this event was a progression of disease, 

local recurrence, distant metastasis, new primary tumor at any sites, or deceased with the 

cancer and no new tumor event, including cases with a new tumor event whose type is N/A, 

based on which the PFS specific to metastasis events can be computed. The unit of 

progression-free interval time is days. For the progression events, we collected either new 

tumor event dx days to or death days to, whichever was applicable, and for the censored 

cases, we collected either last contact days to or death days to, whichever was applicable. 

These collection criteria are in accordance with the existing literature [88]. 

scRNA-seq datasets. Two scRNA-seq data sets for human breast cancer 

(GSE75688) and head and neck cancer (GSE103322) were retrieved from the Gene 

Expression Omnibus database [89-91]. The datasets were selected based on the presence 

of cancer cells of varied metastasis status in the original bulk tissue or bulk cell samples. 

All data were downloaded as the counts or TPM profiles used in the original work. Cell 

labels generated in the original work were directly utilized. Specifically, GSE75688 
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includes data for 281 cancer cells from 10 cancer tissues, of which 3 have a high metastasis 

potential defined by metastasis to more than 2 lymph nodes and 7 have a low metastasis 

potential. GSE103322 contains data for 1040 cancer cells from 6 primary head and neck 

cancer tissues with extracapsular extension, a significant indicator of a metastasis event at 

a primary site, and 1468 cancer cells from 14 primary cancer tissues without extracapsular 

extension. Notably, the cancer cells from each scRNA-seq dataset can be classified as 

having high or low metastasis potential by the provided pathological or phenotypic 

information.  

3.2.6 Analysis of scRNA-seq data 

Both GSE75688 and GSE103322 were collected by using C1-Fluidigm or C1-

SMART-seq protocol, and the sequencing saturation for both datasets are high. We 

selected only the malignant cells based on the cell labels provided in the original works. 

Seurat 3.0 was utilized for basic data processing [92]. All the analyzed cells have at least 

1000 UMI measured. Cell clustering analysis was conducted via Seurat 3.0 with default 

parameters. Specifically, the cell clusters inferred from all genes were based on all genes 

with significant dispersion detected by Seurat, and the clustering inferred from the 

metastasis-predictive genes was based on the intersection of the metastasis-predictive 

genes identified by PLUS from the TCGA dataset and the significantly varied genes in 

each scRNA-seq dataset. The silhouette width 𝑠(𝑖)  of each cell and the silhouette 

coefficient defined below were utilized to determine whether the cells from the tissues with 

higher metastasis potential were more closely clustered when the metastatic-predictive 

genes were used. We note that there are only two oracle cell clusters, namely, cells of high 

and low metastasis potential, in each dataset. 
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𝑎(𝑖|𝑖 ∈ 𝐶𝑚) =
1

|𝐶𝑚| − 1
∑ 𝑑(𝑖, 𝑗)

𝑗∈𝐶𝑚,𝑖≠𝑗 

, 𝑏(𝑖|𝑖 ∈ 𝐶𝑚) =
1

|𝐶𝑛𝑚|
∑ 𝑑(𝑖, 𝑗)

𝑗∈𝐶𝑛𝑚 

 

𝑠(𝑖|𝑖 ∈ 𝐶𝑚) =
𝑏(𝑖) − 𝑎(𝑖)

max {𝑎(𝑖), 𝑏(𝑖)}
 

Silhouette coefficient (𝐶𝑚) = 𝑚𝑒𝑎𝑛(𝑠(𝑖|𝑖 ∈ 𝐶𝑚)), 

where 𝐶𝑚 and 𝐶𝑛𝑚 represent cells with high and low metastasis potential, 𝑑(𝑖, 𝑗) is 

the distance between cells 𝑖  and 𝑗  in the dimension-reduced space, and 𝑠(𝑖)  is the 

silhouette width of the cell 𝑖. Notably, only the cells in 𝐶𝑚 are utilized to compute the 

silhouette width and silhouette coefficient. The rationale here is that the silhouette 

coefficient can validate the use of the predicted metastasis-predictive genes and can better 

cluster the cells of high metastasis potential in independent scRNA-seq data. Here, 2D 

UMAP-based dimension reduction was utilized for the results visualization and 

computation of the distance 𝑑(𝑖, 𝑗) . The average 𝑠(𝑖)  values of the cells with high 

metastasis potential derived from the cell clusters inferred by using all genes or metastasis-

predictive genes were compared, where a higher average silhouette width suggests a better 

clustering of the cells with high metastasis potential. 

In addition to the silhouette width, we also assessed whether the PLUS-selected 

metastatic-predictive genes are more enriched by genes that are significantly associated 

with the metastasis status in each scRNA-seq dataset. For each gene, the association 

between the single cells’ gene expression and their metastasis potential, which is defined 

as the metastasis potential of the patients where the cells were derived from, was tested by 

a Student’s t-distribution-based test of their Pearson correlation, with p<0.01 as the 

significance cutoff. Genes with significant positive association with the metastasis 

potential are called meatstasis Enrichment of the scRNA-seq data-derived metastasis-
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associated genes in the TCGA data-derived metastatic-predictive genes was tested by a 

hypergeometric test. 

3.3 Results 

3.3.1 Problem formulation and methods overview 

Diagnoses of metastatic cancer are often confirmed by detection of tumor masses 

at a distant site or effusions on clinical examination or by imaging [93]. Unfortunately, 

there is currently no panel of basic tests that can aid in revealing metastatic tumor events. 

Hence, many patients that are not diagnosed with metastatic tumors may have developed 

metastasis, but could not be diagnosed at an early phase due to weak symptoms (Figure 

3.1a). Take the cancer patients enrolled in the TCGA project as an example. Among 

patients initially diagnosed as non-metastatic (M0), a large portion have a good prognosis 

and do not develop metastasis (M0: NP-Alive in Figure 3.1b). However, a significant 

portion of these patients do develop metastasis (M0: P-Alive in Figure 3.1b) or die (M0: 

Deceased in Figure 3.1b) based on their follow-up data. This is especially true for such 

cancer types as BLCA, ESCA, HNSC, LIHC, LUAD, LUSC, MESO, PAAD, SKCM, and 

STAD. This trend indicates a possible under-detection of metastasis at initial diagnosis. 

Given the relatively short follow-up time of these cancer types (Figure 3.1c), we believe 

that this discrepancy may be even greater if we considered longer follow-up data. In 

contrast, among patients who are initially diagnosed as metastatic, a majority develop 

metastasis (M1: P-Alive in Figure 3.1b) or die (M1: Deceased in Figure 3.1b) based on the 

follow-up diagnosis. This trend indicates that metastasis diagnoses, but not the non-

metastasis diagnosis, are often trustable. These observations are the motivation of our 

proposed PLUS algorithm. PLUS is built upon the framework of PU learning, where 
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patients diagnosed as metastatic and non-metastatic are treated as positive and unlabeled 

instances, respectively. Abbreviations for cancer types, and their initial diagnosis 

frequencies are given. 

PLUS builds upon the case-control framework proposed in [82], and the modeling 

formulation of PLUS is detailed in the Materials and Methods section. Different from many 

other PU-learning algorithms, the solution of PLUS is achieved by incorporating both an 

EM-type algorithm and a bootstrap technique tailored for three main challenges that are 

particularly important for predicting cancer metastasis: (1) The genes that are informative 

in differentiating the true metastatic and non-metastatic classes are a sparse set of the whole 

transcriptome, representing a sparse structure. (2) The observed positive incidences (M1 

diagnoses) are largely outnumbered by the unlabeled samples (M0 diagnoses), indicating 

observation unbalancedness. (3) One class (true metastatic patients) may be much larger 

or smaller than the other class (true non-metastatic patients), indicating population 

unbalancedness. Unfortunately, the true metastasis prevalence is usually unavailable. 

Specifically, for (1), we introduce a LASSO penalty into the objective function to select 

informative features [94]. For (2), we recursively bootstrap from the unlabeled instances 

of equal size to the positive instances to maintain a relatively high information ratio for the 

subsequent analyses. For (3), a sigmoid transformation is applied to the probability 

function in the EM procedure to account for the population unbalancedness.  
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Figure 3.1. The motivation of PLUS. (a) Under-diagnosis occurred among patients who 

were not diagnosed as metastatic. To predict the metastasis potential for non-metastatic 

samples, PLUS builds upon the PU learning framework and is specifically designed to 

recognize the bias in under-diagnosis, and to address the computational challenges in 

feature selection, unknown prevalence, and unbalanced allocation. (b) For patients who 

were clinically diagnosed as non-metastatic (M0) at baseline for each cancer type (columns) 

in TCGA Pan-Cancer study, the top three rows show the proportions of patients with 

follow-up information who were found alive and with non-progressed disease (NP-Alive), 

alive and with progressed disease (P-Alive), and deceased (Deceased). The bottom three 

rows show the same proportions for patients who were diagnosed as metastatic (M1) at 

baseline. (c) The median follow-up time (y-axis) for patients who were diagnosed as non-

metastatic (blue) and metastatic (yellow) at baseline for each cancer type (x-axis).  
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The general idea of PLUS is that we first bootstrap a subset of unlabeled samples 

equal in size to the positive set and perform a one-step EM-type procedure to generate the 

estimated probability for the unlabeled samples. We then repeated this procedure with 

another sample. The whole process stops when the assigned probability for unlabeled 

samples is stabilized in the recursive process. Ultimately, the algorithm provides the 

predicted probability of a sample being positive, denoted as the metastasis potential, as 

well as genes that may be predictive of metastasis potential.  

3.3.2 Method validation on synthetic data 

Using extensive simulated datasets, we compared PLUS with four other state-of-

the-art PU-learning algorithms, namely, PUlasso [83], Ada-KNN, Ada-Logit, and Ada-

SVM [84], as well as three popular binary classification methods, including the penalized 

logistic regression (PLR), XGBoost, and random forest. The input of each method includes 

the covariate matrix 𝑋 (simulated gene expression matrix) and an observed response or 

label for either positive instances (purely true positive, corresponding to an M1 diagnosis) 

or unlabeled instances (consisting of true positive and true negative, corresponding to an 

M0 diagnosis). The output is the predicted probability of a sample being positive (i.e., 

metastasis potential) for each sample. 

Basically, the covariate matrix 𝑋 and true response 𝑦 are linked by a logit model. 

In addition, to mimic the sparseness of gene features, the covariate matrix is simulated to 

contain both truly predictive covariates, as well as a large number of noisy features that do 

not contribute to the prediction of the response. To mimic the under-detection of metastasis, 

a certain portion of positive instances are randomly selected to be flipped to negative, 

resulting in an observed negative set that consists of both true negatives and true positives. 
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Both PLUS, PUlasso, and PLR are based on a logit model, and as a wrapper, AdaSample 

is capable of implementing logistic regression as its core. The XGBoost and random forest 

approaches are powerful tree-based methods for handling non-linear relationships between 

the high-dimensional predictors and responses. Hence, simulation data based on the logit 

model would have a minimal bias towards any methods. The simulation procedure is 

detailed in the Materials and Methods section. We evaluated the prediction accuracies of 

the methods in various simulation environments, where four parameters are altered: (i) the 

ratio of true positive and negative instances in the population, which is usually 

unobservable in real data scenarios, (ii) the level of separation of the two classes, or the 

noise level, where a higher noise level means that classes are less separable; (iii) the level 

of unbalancedness for observed positive and unbalanced instances, and (iv) the number of 

informative covariates among all features.  

We assessed the prediction accuracy of all methods on only the unlabeled instances, 

which contain both true positive and negative instances. The average Area Under the ROC 

curve (AUC) calculated using the true labels was obtained from 100 repetitions of each 

simulation setting as the metric for methods evaluation. A higher AUC indicates a better 

prediction. Here, PLR was applied to provide an “oracle” estimation, as we intentionally 

provided the PLR with the true positive and negative label information, while the 

remaining methods were all provided with positive and unlabeled information. Hence, the 

performance of the PLR served as an oracle prediction that can be made if the given labels 

are all correct.  

Figure 3.2 compares the performance of the PLUS, PUlasso, Ada-KNN, Ada-Logit 

and Ada-SVM, XGBoost, and random forest, as well as the reference method, PLR, which 
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was provided with the true labels, under different settings: (1) Different levels of 

observation unbalancedness. On the x-axis of each figure, a higher ratio indicates that the 

number of observed positive samples is closer to that of the unlabeled samples, with 0.5 

indicating that the numbers are equal. (2) Different levels of the population unbalancedness. 

From the left-most to middle to right-most images, we show results for simulation settings 

with more true positive than true negative samples, more true negative than true positive 

samples, and equal true positive and true negative samples. (3) Different noise levels of the 

logit model. From top to bottom, we show results for simulation settings in which the true 

positive and true negative sets are well-separated (top) and not well-separated (bottom).  
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Figure 3.2. Performance comparisons of the competing methods on simulated data. The 

top panel shows results for simulation settings in which the positive and negative sets are 

clearly separable, while the bottom panel shows results for simulation settings in which the 

two sets are less separable. The left-most column shows results for simulation settings in 

which there are more true positive samples than true negative samples, the middle column 

shows results for less true positive samples than true negative samples, and the right-most 

column shows results for an equal number of true positive and negative samples. The dotted 

line corresponds to an AUC of 0.9. Here, the y-axis represents the AUC. And x-axis shows 

levels of observation unbalancedness, where a larger number indicates that the number of 

observed positive samples is closer to that of the unlabeled samples, with 0.5 indicating 

that the numbers are equal.   
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In summary, the three Ada- methods and the random forest all performed 

substantially worse than the other methods, with an average AUC of less than 0.6 for all 

simulation parameter settings. This result is probably due to the inability to handle high-

dimensional features for Ada- methods or to handle unlabeled cases for the random forest, 

worsened by the population and observation unbalancedness issues. In general, all methods 

tend to have a higher AUC as the ratio of the observed positive samples increases (change 

on the x-axis in Figure 3.2). Among the methods, PLUS is the most robust to the ratio of 

the true positive samples, as it is specifically designed to handle the population 

unbalancedness issue with a bootstrapping procedure. In contrast, the performances of 

PUlasso and XGBoost fall sharply as the ratio of observed positive samples decreases. 

When the true positive and true negative sets become less separatable, all the methods tend 

to perform worse; here, PLUS still maintains an AUC above 0.8 for almost all scenarios, 

while PUlasso and XGBoost drop well below 0.8 for most cases. Interestingly, all tested 

methods tend to achieve the best performance when the ratio of true positive samples is 

lower (middle column), while they have the worst performance for a higher ratio of true 

positive samples (left-most column). This trend is reasonable because a higher rate of true 

positive samples corresponds to a higher contamination of true positive samples in the 

unlabeled cases, making it more difficult to achieve an accurate estimate on the distribution 

of true negative samples among unlabeled cases. After all, the best scenario for a prediction 

arises when all unlabeled cases are truly negative, with the least contamination of true 

positive samples. When we varied the ratio of informative features, our analysis suggested 

that the performances did not vary much for PLUS or PUlasso; however, this parameter 

moderately affects the performance of XGBoost and the random forest, and severely 
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impacts the performance of the AdaSample methods. This result arises from the built-in 

model selection capability for PLUS and PUlasso whereas AdaSample methods cannot 

handle high-dimensional features, and the random forest and XGBoost are known to suffer 

from scalability/memory issues with high-dimensional features.  

Overall, our analysis clearly suggests that PLUS achieves the best performance 

under all parameter settings over the other tested methods. The AUC of PLUS, averaging 

over 0.8 for all settings, is closest to the optimal AUC obtained by PLR. Notably, in our 

real data analysis on TCGA dataset shown in the next section, we have much fewer 

observed positive samples and a high-dimensional set of features, even though we do not 

know the ratio of true positive samples. Hence, we expect that PLUS will perform better 

than the other methods. The complete statistics of the methods evaluation based on 

simulations are provided at the GitHub link: https://github.com/xiaoyulu95/PLUS. 

3.3.3 TCGA pan-cancer data analysis 

Next, we applied PLUS to the transcriptomic profiles of all 7,467 cancer samples 

from 20 cancer types in the TCGA cohort. Among these, only 12 cancer types have at least 

10 samples confirmed as metastatic at initial diagnosis, totaling 553 samples across the 12 

cancer types. These 553 samples are treated as our observed positive samples, while the 

remainder are treated as unlabeled samples. Details on data pre-processing and sample 

metastasis diagnosis are provided in the Materials and Methods section. We applied PLUS, 

PLR, PUlasso, and XGBoost to this pan-cancer dataset. All four methods obtained the 

estimated metastasis potential as the probability of being metastatic for all the samples. 

Note that because we cannot observe whether metastasis developed in each patient, 

validating the classification accuracy using the ROC curve is impossible. Instead, we 

https://github.com/xiaoyulu95/PLUS
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evaluate the performance of the methods on this real dataset by examining the association 

between the predicted metastasis potential with the progression-free survival (PFS) 

extracted from the TCGA clinical follow-up data, using only those patients that were 

initially diagnosed as non-metastatic at the time of tumor tissue collection. The event of 

disease progression is defined in the Materials and Methods section. The predicted 

metastasis potentials obtained by the four methods for all samples, as well as the PFS data 

for each sample. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



69 
 

 M0 sample  PLUS PLR PUlasso XGBoost 

ACC 62 0.019 1.000 1.000 1.000 

BLCA 346 0.123 1.000 1.000 1.000 

BRCA 1054 0.062 0.590 1.000 1.000 

BRCA_TNBC 111 <0.001 1.000 0.887 1.000 

CESC 294 <0.001 <0.001 <0.001 0.394 

COADREAD 528 0.214 0.073 1.000 1.000 

ESCA 167 0.007 0.349 1.000 1.000 

HNSC 514 <0.001 <0.001 0.003 1.000 

KICH 64 <0.001 <0.001 0.261 1.000 

KIRC 452 <0.001 <0.001 <0.001 1.000 

KIRP 278 <0.001 <0.001 <0.001 1.000 

LIHC 367 0.009 0.046 0.005 1.000 

LUAD 490 <0.001 <0.001 0.003 1.000 

LUSC 495 0.062 0.091 0.042 0.387 

MESO 84 0.004 0.001 0.010 <0.001 

PAAD 174 0.009 0.044 0.016 1.000 

SARC 203 0.020 0.145 0.139 1.000 

SKCM 380 0.219 1.000 1.000 0.272 

STAD 396 0.019 0.091 0.821 1.000 

THCA 491 0.020 0.243 0.042 1.000 

UVM 75 <0.001 0.022 0.024 1.000 

 

Table 3.1. Significance of the association between PFS and metastasis potential predicted 

by PLUS (column 3), PLR (column 4), PUlasso (column 5) and XGBoost (column 6) using 

only the patient samples not diagnosed as metastatic (M0 samples). The p-values are 

adjusted for multiple comparisons. The second column shows the number of M0 samples 

for each cancer type. 
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Recognizing that different cancer types have different baseline metastasis 

potentials, we conducted an association analysis of between patients’ PFS data and their 

predicted metastasis potential given by each method. The association analysis was 

conducted using the Cox proportional-hazards model considering continuous predictors 

[95]. The significance of associations between PFS and predicted metastasis potential, 

given by PLUS, PUlasso, PLR and XGBoost, is presented in Table 3.1, and the p-values 

were adjusted for multiple comparisons via the Holm method [96]. Clearly, 16 cancer types 

showed a significant association between the PLUS-predicted metastasis potential with 

PFS (p-value < 0.05), with higher predicted metastasis potentials related to worse survival 

outcomes. For BRCA and LUSC, we observed marginally significant associations (p-value 

< 0.08). Notably, for BRCA, we observed a significant association for its most aggressive 

subtype, namely, the triple negative breast cancer (TNBC) (p-value < 0.001). We did not 

observe significant associations between PLUS prediction and PFS for BLCA, 

COADREAD, or SKCM. We argue that the follow-up time for BLCA and COADREAD 

is too short (see Figure 3.1c), with the follow-up occurring before a metastasis event could 

be confirmed. Overall, we have demonstrated that for patients initially diagnosed as non-

metastatic, PLUS is able to predict the metastasis potential for these patients and detect 

possible under-diagnosis incidences; moreover, its predicted metastasis events are in strong 

accordance with true metastasis events based on the follow-up data. For PLR, PUlasso, and 

XGBoost, strong associations were identified between the predicted metastasis potential 

and PFS in 9,10, and 1 cancer types, respectively. To visually compare the performances 

of the four methods, we also compared PFS for high and low metastasis potential groups 

within each cancer type. Specifically, for each cancer type, we divided the patients (initially 
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diagnosed as non-metastatic) into two equal-sized groups, one with high metastasis 

potential and another with lower potential, according to each method. Figure 3.3 shows a 

survival comparison between the two groups for all 20 cancer types and 1 subtype based 

on PLUS and the three other methods. Our results and comparisons clearly demonstrate 

the advantage of applying PLUS for predicting metastasis potential, owing to its robustness 

in the PU learning setting, with possible unbalancedness in sample collection and 

population incidence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



72 
 

 

 

Figure 3.3. Progression-free survival curves of patients with different metastasis potentials. 

Higher metastasis potential (red) and lower metastasis potential (blue) for 21 cancer 

(sub)types are predicted by (A) PLUS; (B) PLR; (C) PUlasso; and (D) XGBoost. The x-

axis represents time in days and y-axis represents the percentage of patients without 

metastasis event at a particular time point. 
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Together, Table 2.1 and Figure 3.3 strongly suggest that the metastasis potential 

predicted by PLUS is highly consistent with the actual follow-up data for many different 

cancer types. This finding has three primary implications: (1) Gene expression at early 

stages can predict the propensity of patients to subsequently develop metastasis. (2) PLUS 

is the first prediction tool for cancer metastasis that works for a general set of cancer types, 

by harnessing the power of large-scale data integration. (3) The success of PLUS in 

predicting cancer metastasis potential further confirms that cancer metastasis is often 

under-detected, posing a threat to timely disease management.  

3.3.4 Functional mechanism of the metastasis predictive genes 

A total of 191 metastasis-predictive genes were identified by PLUS that optimally 

predict metastasis potential in the TCGA pan-cancer data. A complete list of the 191 genes 

is provided. We first evaluated functional clusters of these genes by a pathway enrichment 

test against Msigdb canonical pathways and Gene Ontology [97]. The top 50 enriched 

pathways are mainly related to (1) responses to the oxidative stress such as hydroperoxide; 

(2) the regulation of calcium ion transport, and (3) responses to cytokines. More details are 

given. These pathways are known to be closely associated with cancer metastasis. In 

particular, hydrogen peroxide has been viewed as a "fertilizer“ of inflammation, cancer 

metabolism and metastasis [98], and metastasis is the route for cancer cells to escape from 

the oxidative stress [99]. Moreover, the calcium ion is a ubiquitous second messenger that 

acts as crucial regulator of cell migration [100], and cytokines are central mediators in 

remodeling the local microenvironment to support the growth, survival, and invasion of 

primary tumors and enhance metastatic colonization [101].  
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We further investigated the correlations between all the individual genes and the 

PLUS predicted metastasis potential and selected the genes with significant positive 

correlations. Similar enrichment analysis demonstrated that the pathways positively 

associated with metastasis potential are non-surprisingly well-known metastasis-related 

pathways, and the most highly enriched genes are related to the immune system and 

inflammatory responses, extracellular matrix organization, and angiogenesis. This 

functional enrichment analysis presents partial evidence for the concordance of the PLUS-

selected genes with the current body of literature. Below, we will examine whether these 

genes are truly potent in differentiating the metastasis potential of cancer cells using single-

cell data. 

3.3.5 Validation of metastasis predictive genes in independent scRNA-seq datasets 

To validate the metastasis-predictive genes selected by PLUS from TCGA pan-

cancer data, we collected two scRNA-seq datasets of human breast and head and neck 

cancer. Both data sets contain cancer cells from cancer bulk tissue samples with different 

metastasis statuses. We first conducted cell clustering analysis on each dataset by using (1) 

general genes with high expression dispersion and (2) the 191 metastasis-predictive genes 

identified by PLUS. As reported in the original works [89-91], cancer cells from different 

patients possess strong inter-tumoral heterogeneity and tend to cluster together. Hence, the 

cancer cells in both breast and head and neck cancer data sets can be separated into two 

groups of primary cancer cells with high and low metastasis potential. A silhouette 

coefficient [102] was applied to determine whether cells of different metastasis potential 

are closer together in certain cell clustering results. Specifically, a larger silhouette 
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coefficient value indicates that cells tend to be clustered together if they have similar 

metastasis potentials. 

In the scRNA-seq data for breast cancer (GSE75688), the cancer cells were 

collected from three cancer tissues with high metastasis potential and seven tissues with 

low metastasis potential, determined by the number of lymph node metastases. Our 

analysis gave silhouette coefficients of 0.07 and 0.36 for the cells with high metastasis 

potential in the formed clusters when using all genes (see Figure 3.4a) and the PLUS-

selected metastasis predicative genes (see Figure 3.4b), respectively. In the scRNA-seq 

dataset for head and neck cancer (GSE103322), cancer cells were collected from 6 patients 

with pathologically detected extracapsular extension, a significant indicator of a metastasis 

event at the primary site [103], and 14 patients without extracapsular extension. Cell 

clusters inferred by using all genes form distinct patient-specific groups (see Figure 3.4c), 

which does not show a strong dependency on the extracapsular extension event. In contrast, 

the cell clusters inferred from the PLUS metastasis-predictive genes clearly form two 

groups of cells, one from extracapsular extension cancer and one group of cells from the 

14 cancer samples with lower metastasis potential (see Figure 3.4d). The average silhouette 

coefficients for the cells from extracapsular extension cancer are 0.1 and 0.3 in the cell 

clusters obtained by using all genes and the PLUS metastasis predictive genes, respectively. 

In addition to the performance of cell clustering analysis, we observed that TCGA-derived 

metastasis-predictive genes are significantly enriched by metastasis-potential-associated 

genes (24/147, p = 0.02 and 28/162, p = 0.0059), compared with background result 

(3037/31656 and 1977/21030) for the breast and head and neck cancer data, respectively. 
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Figure 3.4. Functional validation of the metastasis-predictive genes inferred by PLUS from 

TCGA data. (a-b) Cell clusters of the cancer cells with high (High_M, red) and low 

(Low_M, blue) metastatic potential obtained by using all genes (a, silhouette coefficient = 

0.07) and the PLUS selected metastasis predictive genes (b, silhouette coefficient = 0.36) 

in the scRNA-seq dataset for breast cancer (GSE75688). (c-d) Cell clusters of cancer cells 

from cancer tissues with (ECE, red) and without (LMT, blue) extracapsular extension 

obtained by using all genes (c, silhouette coefficient = 0.1) and the PLUS-selected 

metastasis-predictive genes (d, silhouette coefficient = 0.3) in the scRNA-seq dataset for 

head and neck cancer (GSE103322). 
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Our analysis of independent scRNA-seq data sets clearly demonstrates that the 191 

metastasis-predictive genes derived by PLUS from TCGA pan-cancer data are relevant to 

metastasis. Details regarding the analysis approaches applied to the scRNA-seq data are 

provided in the Materials and Methods section. Complete statistics and codes of the 

scRNA-seq data analysis are available at https://github.com/xiaoyulu95/PLUS. 

3.3.6 Robustness analysis 

To evaluate the robustness of PLUS on the TCGA pan-cancer data, we intentionally 

removed the data from one cancer type at each time, and then ran PLUS using only the 

remaining samples. We examined the robustness of PLUS based on the overlap of the 

selected genes, as well as the correlations of the predicted metastasis potential on the M0 

samples. We showed the number of overlapping genes and correlations of predicted 

metastasis potential, for any two PLUS predictions made with two different cancer type 

data removed. We also included the prediction with no samples removed (labeled as 

“ALL”). On the left panel, we observed that the correlation between any two predicted 

metastasis potential is consistently high, with a minimum correlation of 0.43, and a median 

of 0.90. For the overlapping genes, the minimum number of overlapping genes is 34, with 

a median of 116, for any pair of predictions. Note that PLUS implements a sparsity 

assumption on gene selection using 𝐿1 penalty, which may make the gene selection less 

stable. It is well known that sparsity and stability are at the odds of each other, especially 

when there is strong feature collinearity in the data [104], which may be the case for our 

gene expression data. Interestingly, six genes, including ALS2, DAPL1, HS6ST1, IGFBP2, 

MGC12982, PPIAL4C, are selected in all predictions, i.e., when no sample is removed, or 

one cancer type data is removed. The six genes are highly potential to be indicators of 

https://github.com/xiaoyulu95/PLUS


78 
 

metastasis potential given their robustness, though they certainly warrant further 

experimental validation. 

3.4 Discussion 

Metastasis is the major cause of cancer-related deaths, and evaluations of metastasis 

risk are essential for tailored treatment of cancer patients. Existing computational tools for 

predicting the cancer metastasis potential fall under two categories: 1) methods that build 

a classifier using the clinical metastasis diagnoses as responses and 2) methods that 

evaluate the behavior of gene features found to be significantly associated with metastasis-

related survival outcomes. Such predictors exist in many even for the same cancer type; 

however, selected gene features rarely overlap, not to mention the little consistency of 

metastasis predictor genes among different cancer types. Thus, there is an urgent need for 

a powerful tool to characterize the cancer metastasis potential and to delineate the 

important gene features of cancer metastasis that is applicable across a wide span of cancer 

types. 

Traditional classification methods for predicting cancer metastasis overlook an 

important fact in cancer metastasis diagnosis: while it is easy to confirm metastasis events 

with detected metastatic cancer cells in lymph nodes or distant locations, it is much more 

challenging to confirm non-metastasis events. Disseminating cancer cells may undergo 

hibernation, temporarily causing few or no complications in the patients, and clinical 

procedures are often not sufficiently accurate to capture ongoing events. In both cases, we 

see that cancer metastasis events tend to be under-diagnosed. Comparing the initial 

metastasis diagnosis and follow-up metastasis occurrence in TCGA pan-cancer clinical 

data confirmed this unfortunate finding: despite an initial non-metastatic diagnosis, many 
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patients of various cancer types develop metastasis in the following years (see Figure 1b). 

A good classifier for metastasis should be designed to account for this under-diagnosis 

issue. However, finding prognostic markers from survival data by treating metastasis as a 

censored event may not reveal the genes with true biological and functional relevance to 

metastasis. 

Our proposed PLUS algorithm builds on the framework of PU learning by 

considering patients with metastasis diagnosis as positive instances and the remainder as 

unlabeled instances, meaning they are either metastatic or non-metastatic. Under this 

framework, the selected genes become truly relevant to the biology of metastasis. Indeed, 

the classifier given by PLUS rendered concordance between the predicted cancer 

metastasis and observed metastasis survival outcomes in the follow-up data for almost all 

cancer types considered. The selected genes were found to perform functions consistent 

with experimental research findings and are capable of clustering the single cells based on 

their levels of metastasis potential. PLUS fully exploits the power of big data by training 

on ~7,000 patients samples, where only a very small portion are diagnosed as metastatic 

samples. The superiority of PLUS over other methods lies in its tailored designed that 

overcomes the high-dimensionality of gene features, the unbalancedness issue in instance 

allocation (more non-metastatic than metastatic diagnoses), and the possible 

unbalancedness in the underlying population distribution (unknown population prevalence 

of metastasis), which fully recapitulates the case of cancer metastasis. The computational 

tool designed and insights gained from this research will prove useful to the diagnosis and 

treatment of clinical metastatic disease.  
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Notably, while different cancer types and subtypes may have different metastasis 

mechanisms, the successful application of PLUS to pan-cancer data demonstrates its power 

to identify common hallmarks for early metastasis prediction across cancer types, 

confirming the accuracy, reliability, and robustness of this model. In addition, the gene 

markers identified by PLUS are related to early metastasis events, including a series of 

actions for invading cancer cells to overcome stromal barriers, survive in the circulation 

system, and settle and colonize at a distant metastasis site, which have been revealed as 

common metastasis hallmarks for diverse cancer types. In fact, researchers have been 

harnessing the power of big data by integrating the omics data of multiple cancer types to 

find biomarkers that underlie a common pathway of oncogenesis and particularly the EMT 

process [105, 106]. As a result, a pan-cancer EMT signature gene has been discovered that 

is independent of cancer types [107]. These findings suggest the rationality of applying 

PLUS to pan-cancer data. 
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Chapter 4 Detecting cell-type specific variations of within pathway interaction in 

AD using covariance regression 

4.1 Introduction  

In 2021, an estimated 6.2 million Americans aged 65 and older were living with 

Alzheimer’s Disease (AD), and this number is projected to reach 13.8 million by 2060 

[108]. As the population ages, AD and related dementias will become a major public health 

concern. Currently, no existing treatments can reverse, stop, or slow down the associated 

progressive neuronal and neurophysiological changes that occur in patients. Therefore, a 

deeper understanding of the disease pathology on a molecular and cellular level is critical 

to better understand the mechanisms behind AD and devise treatments to slow down the 

disease progression. Currently, large-scale multi-omics data from brain tissues, have been 

collected, and analysis of multi-omics data on the postmortem human brain bulk tissues 

has led to numerous findings including those on the epigenomic and transcriptomic 

signatures of AD [109-121]. However, the bulk tissue profiles fail to capture the cell type-

specific abnormality in the disease progression. For example, the following pathways are 

known to be varied in AD for only specific cell types: synapse pathway in neuron cells 

[122, 123], inflammatory pathways in microglia [124, 125], protective myelin sheaths 

retraction in oligodendrocyte [126-128], etc. Recent advancement in single-cell technology 

provides new avenues for molecular profiling at the single-cell resolution [129], which 

improves the -omics studies by making increasingly greater precision and granularity 

possible [130-132], and this is particularly true for AD research [133-139]. Both gene-level 

and pathway-level analysis have been carried out using single cell data. It has been known 

that compared to the pathway-level analysis, single-gene analysis may miss important 
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effects on pathways, realizing that cellular processes often affect sets of genes acting in 

concert [140, 141]. For example, genes in the same pathway may present weak but 

consistent patterns, but they are very likely to be disregarded due to low statistical power. 

Moreover, knowledge on single genes is less robust and transferable across studies because 

when different groups study the same biological system, the list of statistically significant 

genes from the studies may show distressingly little overlap [36].  

Currently, a common approach to aggregate the individual gene signals involves 

pathway enrichment methods and co-expression module detection using either the 

differentially expressed genes or genes' importance ranking [36, 37]. On one hand, the 

current enrichment or co-expression based pathway analysis methods suffer from the 

selection of a proper threshold, and the biggest unmet need in the current pathway-level 

analysis of scRNA-Seq data is the lack of a rigorous and powerful statistical framework to 

make inferences on important variables such as disease status, sex and age [142, 143] with 

limited sample size; on the other hand, existing research on AD disease gene and pathway 

detection are mainly focused on first-order analysis, while few methods were designed to 

model the changes in the interactions of the genes in a statistically solid manner, namely, 

the gene-gene covariance structure in the same pathway associated with the disease 

progression. Biological processes are not chiefly controlled by individual proteins, but 

rather by a complex system-level network of molecular pathways [140, 141]. 

Understanding the changes of molecular interaction in biological pathways may lead to 

discoveries of pathogenically dysregulated pathways that are not detectable by merely 

analyzing absolute abundance level changes. And such discoveries are equally crucial to 

understanding complex phenotypes in AD. In summary, despite the power of scRNA-Seq 
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technology in dissecting the cell type heterogeneity and delivering high-resolution 

molecular mechanisms for AD, current existing analytical approaches lack sufficient 

statistical power to detect robust or higher order changes on a pathway level, that could 

largely completement traditional single-gene or enrichment analysis methods [144].   

To bridge this gap, we introduce a statistically powerful framework based on 

covariance regression [145], to model the pathway level second-order variations using 

scRNA-Seq data, namely, single cell Covariance Regression (scCovReg), and to associate 

the second-order variations with important subject-level characteristics, such as disease 

status. Covariance regression has been utilized in studying regression problems when the 

outcome variable is a covariance matrix [38-44]. In our case, when studying the impact of 

subject-level characteristics on within-pathway gene-gene correlations, the pathway 

covariance structures of single cells are regressed over the covariates. We call this the 

covariates-explainable Gene-Gene Correlation (eGGC). Importantly, this covariance 

regression model will enable us to draw inference on the statistical significance of the 

considered factors, as well as their interactions, on how well they could explain the gene 

correlation changes among the single cells. In addition, for each pathway, our covariance 

regression-based model enables finer analysis on its individual gene members. For example, 

one may find the correlation patterns among a few genes in a pathway are the best 

differentiable among healthy control and AD patients, while the correlation changes among 

other genes are not explainable by the disease status.  

We applied the scCovReg pipeline on the Religious Orders Study and Memory and 

Aging Project (ROS/MAP) single nucleic RNA-Sequencing dataset, for 10,402 pathways 

collected from the Gene Ontology (GO) database [146]. It remains our key novelty in using 
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the covariance regression technique for modeling scRNA-Seq data to detect the cell type 

specific second order changes of many pathways that are possibly attributable to important 

subject-level variables. We have discovered that: 1) most of the pathways tend to have 

lower eGGC strengths in AD cells than in healthy cells for cell types including astrocyte, 

neuron, and microglial in females, and neuron cells in males. 2) Compared to males, 

females demonstrate a much larger number of pathways with significantly different eGGC 

levels between AD and healthy conditions, in neuron and astrocyte cells. 3) By categorizing 

the pathways into 17 categories, we consistently observed that among females, the 

pathways are more likely to have differential eGGC levels between AD and healthy 

astrocyte and neuron cells. 4) Compared to healthy subjects, different subtypes of neurons 

and astrocytes tend to be more homogeneous in terms of eGGC in AD patients among 

females, indicating a loss of functional specialization in diseased cells for female. This is 

not observed in male subjects. 5) Compared with the traditional first-order based pathway 

enrichment method, the scCovReg pipeline gives rise a much larger number of pathways 

that are significantly different between AD and healthy conditions for most of the cell types 

considered, particularly in female subjects. This indicates the necessity of delineating the 

molecular level changes for AD pathological pathways in terms of their second order 

changes. Ultimately, our approach may aid the transition from a limited single-alteration 

perspective in disease to a comprehensive network-based mindset, which will potentially 

result in precision medicine paradigms for disease diagnosis and treatment. 
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4.2 Materials and Methods 

4.2.1 Data access and processing 

Religious Orders Study and Memory and Aging Project (ROS/MAP): The 

ROS/MAP dataset is a longitudinal cohort of aging and dementia in elderly nuns, priests, 

and brothers. The cohort includes rich clinical data collected annually, detailed post- 

mortem pathological evaluations, and extensive genetic, epigenomic, transcriptomic, 

proteomic, and metabolomic bulk tissue profiling. The ROS/MAP single-cell data were 

collected from 24 AD patients and 24 healthy controls with matched age and sex. In total, 

~80,000 single cells spanning six cell types were profiled. Among them, five cell types 

including astrocyte, microglia, neuron, oligodendrocyte, and oligodendrocyte progenitor 

cell (OPC) have sufficient number of cells present in each individual, and were kept for 

further analysis.  

GSE157827: This dataset contains 21 prefrontal cortex tissue samples from patients 

with AD (8 male and 4 female) and NC subjects (6 male and 3 female). Single-nucleus 

RNA sequencing was conducted, and 179392 single cells were collected, where four cell 

types are present: astrocytes, neuron, microglia and oligodendrocyte. This dataset serves 

as a validation dataset. 

4.2.2 Covariance regression on scRNA-Seq data 

A covariance regression approach [145] was employed to capture the 

population/individual variations in gene-gene interaction. This approach was originally 

designed to study the variations in brain functional connectivity. Here, we applied it to the 

single-cell sequencing data to reveal the association of gene-gene interaction with AD, sex, 

and their interaction and examine the discrepancy between subgroups with three 
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comparisons, including (1) AD vs. control in female, (2) AD vs. control in male, and (3) 

male vs. female in AD. The covariance regression approach assumes that there exists a 

linear projection such that in the projection space (called a component), data variation 

satisfies a log-linear model of the covariates of interest. Thus, the approach uncovers the 

variations in gene-gene interaction at a network level. In addition, compared to a pair-wise 

modeling approach, statistical power is significantly improved by using a covariance 

regression approach. Before running the covariance regression, two steps of data 

processing were performed: a screening step to remove genes with 0 expression in over 80% 

of cells and a data-transformation step to make the distribution close to normal. The 

covariance regression was applied to each cell type and each pathway separately. For each 

model, multiple components might be identified, where the number of components was 

determined using the average deviation from diagonality metric with a threshold of two as 

suggested. For each component, subgroup comparisons were performed, and the p-value 

and 95% confidence interval were obtained from 500 bootstrap samples. Considering 

multiple components, pathways, and cell types, a FDR less than 0.05 is considered to be 

significant. 

4.2.3 Pathway collection and organization 

The human pathways are well organized into different hierarchies, and eventually, 

findings from all pathways, which form the basic circuit of cellular functions, could be 

further organized and visualized to get a more comprehensive understanding of the general 

functional groups that show abnormalities in gene-gene interactions. We here collected in 

total 10,402 pathways from GO, with 7658 biological processes; 1006 cellular 
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compartments; 1738 molecular functions. 17 pathway categories are curated by hand, and 

the total number of pathways in each category is shown. 

4.2.4 Single cell clustering and subtype annotation 

Processed data was downloaded from AD Knowledge Portal [147]. Under R v3.5.2, 

function readMM in package Matrix and CreateSeuratObject in Seurat package was used 

to generate Seurat object. Then, we selected 70633 single cells with more than 200 unique 

molecular identifiers (UMIs) and mitochondrial content less than 10 percent for further 

analysis. The original paper provided cell type and sub cell type annotation for all the cells. 

We directly applied their annotation into our analysis. 

4.2.5 Measuring within cell type heterogeneity 

Intraclass correlation coefficient (ICC) was first introduced [148] as a modification 

of Pearson correlation coefficient and widely used to evaluate reflects the variation 

between 2 or more raters who measure the same group of subjects [149]. Here ICC is 

utilized to evaluate the eGGC variations among different sub-cell types in each patient 

group. We calculated eGGC in sub-cell type level for each patient. After this, we get a 

matrix which columns represent different sub-cell types of one cell type and rows represent 

individuals. Then ICC was calculated for each patient group which shows if eGGC highly 

variant among sub-types in the same condition. Higher ICC means the eGGC is more 

consistent between subtypes.  

4.3 Results 

4.3.1 Analytical pipeline 

The scCovReg pipeline takes as input the single cell gene expression profiles 

collected from subjects across different pathological or demographic conditions, as well as 
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a set of curated biological pathways whose correlation pattern changes across conditions 

are to be studied. The core algorithm of scCovReg is covariance regression [145], which 

was originally designed to study the variations in brain functional connectivity using 

functional imaging data. Application of covariance regression method on single cell 

expression data for detecting gene-gene correlation changes is innovative. For a pathway 

or a set of selected genes, scCovReg makes statistical inferences on how well the genes’ 

correlation pattern for cells of the same type could be explained by subject-level covariates 

of interest. Considering the existence of sex discrepancy in AD pathology, throughout the 

analysis, we included sex as a predictor when comparing samples from AD-pathology 

versus non-pathology groups. Overall, our covariates of interest are disease status, sex, and 

their interaction.  

As shown in Figure 4.1, for each cell type and each curated pathway, correlation 

matrices among genes are first constructed for each subject from normalized single cell 

expression data (I, II). The covariates explainable correlation network is then solved by 

covariance regression, which maximizes a likelihood function connecting the variance of 

the weighted expression of genes in the pathway, and the covariates, under certain 

distribution and regularity assumptions (III). Importantly, the weights of the genes indicate 

the contribution of each gene: a higher weight means that the corresponding gene tends to 

dominate the changes of the correlation network, i.e., its correlation with other genes are 

more important in determining the variations of eGGC with respect to the independent 

variables. Such a process is applied to all the curated pathways and all the cell types, using 

single cell data collected from subjects of AD and healthy control conditions for both 

female and male subjects (IV). In total, we collected 10,402 pathways from GO and 
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analyzed 5 cell types including neuron, astrocytes, oligodendrocyte, oligodendrocyte 

progenitor cell (OPC), and microglia collected by the ROS/MAP cohort. We ran the 

scCovReg pipeline for each cell type separately, considering the intrinsically different 

capture or dropout rate of each cell type [64, 150, 151]. 

Output of the analytical pipeline is the statistical inferences for sex and disease 

status in explaining the genes’ correlation network variations in all collected pathways 

across all different cell types. Specifically, for each pathway and cell type, we obtain how 

significant the independent predictors including sex, disease status and their interaction, 

could explain the variations of the gene correlation matrices calculated on the single cells. 

For each varied pathway, the important genes will be identified as those with larger weights, 

and the direction of association between predictors and pathway second-order changes 

could be revealed as the signs associated with each predictor. The significance of 

explainability for the predictors is evaluated through a nonparametric bootstrap procedure. 

A pathway that could be significantly explained is called a differentially correlated 

pathway (DCP). Similar to multiple linear regression, contrast analysis for each pair of 

disease-sex condition could be also obtained, namely diseased vs healthy condition in both 

female and male subjects respectively. 
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Figure 4.1. scCovReg analytical pipeline to study disease- and sex-specific abnormalities 

in gene-gene correlation network for curated pathways in cell-type-specific manner. 
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In total, we identified 3,513 unique GO pathways whose eGGC are significantly 

different between AD and healthy subjects for both genders respectively, in at least one of 

the five major cell types (Fig. 4.2 A-B).  

4.3.2 Overall trend of pathway connectivity and difference with enrichment-based 

analysis 

To better look for the sex specificity in AD, we did three contrast analyses: AD 

versus healthy in female or male, and female versus male in AD patients, based on the 

covariance regression analysis results. In Figure 4.2A, we present the overall trend of the 

pathway eGGC in each contrast, and compared how in general AD and sex modify the 

pathway eGGC in the five cell types. Here each dot on the x-axis represents one pathway, 

and the y-axis shows the covariance regression coefficients for AD vs. control in the 

females (top row), and males (middle row), and the coefficients for male vs. female in AD 

patients (bottom row). Note that covariance regression strives to identify all components 

of the feature correlation network that are explainable by the predictors, where each 

component may have a different set of weight parameters for the features, and regression 

coefficients for the predictors. In other words, for each pathway, we may obtain more than 

one sub-networks that are explainable by the predictors, and the level of explain-ability 

and direction of association may differ for the different sub-networks. Again, the different 

sub-networks could be characterized by the different weight vectors for the genes in the 

pathway. The exact numbers of DCPs, and DCPs with positive and negative coefficients 

under different contrasts are shown in Table 4.1. Considering the large number of pathways 

being studied, we control the false discovery rate, the expected proportion of false 

discoveries amongst the rejected hypotheses [152]. 
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As shown in Figure 4.2A, for female (top row), diseased astrocyte, microglia, 

neuron, and OPC all showed a strong trend of pathway “decoupling” with weaker eGGC 

strength in AD vs healthy patients, and such decoupling is particularly true for astrocyte, 

microglia, neuron; while on the contrary oligodendrocyte tend to have pathways better 

coupled in AD condition vs healthy condition. There is no obvious trend for OPC. If we 

look at the DCPs only, we see the same trend. For neuron, 1,810 of the 1,939 DCP were 

less correlated in AD vs healthy, while only 322 of the 1,939 DCP are more correlated in 

AD. Note that when a pathway has two components with opposite signs of associations 

with the predictor, we may count the pathway twice, one towards the positive count, and 

another towards the negative count. Similarly, for astrocyte, majority (1,739) of the 1,848 

DCPs are less connected in AD with weaker eGGC strength, and majority (127) of the 132 

DCPs in OPC are less coupled in AD. On the contrary, 258 of the 315 DCPs in 

oligodendrocyte are positively associated with AD, meaning better coupling of the genes 

in these pathways under diseased condition. For microglia, we see only a very small 

fraction of the pathways showing differential correlation patterns between AD and disease. 

We suspect that the difficulty in detecting difference in microglia is due to large amount of 

zero expression genes. 

For male (middle row), the general trend of pathway correlation in AD vs healthy 

conditions seem to hold the same as for female, except for microglia where better coupled 

pathways seem to dominate in AD. When looking at the DCPs only, the total number of 

DCPs in each cell type is much less in male than in female, and the numbers are negligible 

for astrocyte and microglia. In neuron, pathways tend to be less connected with 64 DCPs 

less connected, given the overall negative coefficients for neuron cells in this contrast 
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group. This is in contrast to other cell types, where oligodendrocyte has 302 pathways 

much stronger connected. When we compare female to male AD patients (bottom row), 

clearly, there is a strong sex discrepancy for different cell types, particularly for astrocyte, 

neuron cells and oligodendrocyte, as we see the coefficients tend to be away from zero. 

Notably, for OPCs cell types, eGGC varied between male and female AD patients. This is 

consistent with the current findings on the role of sex in AD pathology [142, 143]. Overall, 

the numbers of DCPs for non-neuronal populations were substantially smaller, probably 

owing to reduced power in lower-abundance cell types. These contrasting observations on 

the number and dominant directionality of DCPs reveal a heterogeneous response to AD 

pathology between cell types and sex groups—a recurrent theme that we observed 

throughout the study. These indicate that all major cell types are affected at the 

transcriptional level by AD pathology and sex, and that single-cell-level resolution is 

critical because changes in gene expression—including directionality—can be conditional 

on cell type and sex. We also observed that in healthy condition, female tend to have 

weaker connection compared with males in neuron, oligodendrocyte and OPC cells. 

Notably, compared with traditional pathway-enrichment based analysis that aim to detect 

to pathways enriched by genes with significant first-order changes, our scCovReg pipeline 

detected a lot more pathways that show second-order changes, as shown in Figure 4.2B. 

This indicates that covariance regression is more statistically powerful in detecting 

abnormal pathways with variations on the level of gene-gene correlation; however, the 

detected DCPs may not necessarily have changes on the level mean expressions. 
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Pathway 

with Result 

AD-Healthy 

Female 

AD-Healthy 

Male 

Male-Female 

Healthy 

Male-

Female AD 

Astrocyte 5218 440 5 59 6 

Microglia 2772 0 0 0 0 

Neuron 4258 480 71 22 38 

Oligodendrocyte 2651 392 459 6 1 

OPC 6223 11 14 80 50 

 

(A) 

 
 

Pathway 

with Result 

AD-Healthy 

Female 

AD-Healthy 

Male 

Male-Female 

Healthy 

Male-

Female AD 

Astrocyte 2888 1739 10 2090 279 

Microglia 1510 11 0 3 0 

Neuron 2309 1810 64 30 32 

Oligodendrocyte 1604 82 2 587 77 

OPC 3361 127 51 2226 1135 

 

(B) 

 

Table 4.1. Number of (A) positive and (B) negative DCPs in each cell type under each 

contrast. 
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(B) 

 

Figure 4.2. (A) Overall trend. (B) Number of significant pathways in CapReg and PE 
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4.3.3 The patterns of pathway connectivity for known pathway categories 

While Figure 4.2 presented an overall trend of the pathway connectivity, in order 

to get a more mechanistic understanding of the AD based on the analysis results, we further 

look into the detailed pathway level alterations. We organized pathways in large and 

distinct categories, and examined the impact of AD on the pathway connectivity in a sex- 

and cell type-specific manner. The pathways are organized based on the original structures 

of the pathway database. For example, a pathway category “lipid metabolism” in GO 

contains 314 pathways that are related to cell lipid metabolism functionals. In total, 17 

pathway categories have been summarized, which includes neuronal system, the immune 

system, general metabolism and lipid metabolism, oxidative stress [153], cell polarity and 

stress response [154], mitochondrial activity [153, 155], blood–brain barrier dysfunction 

[156], endocytosis [157], energy metabolism [158], lipid metabolism [159], ion transport 

and metal ion metabolism [160, 161], calcium regulation [162], hormomne regulation 

[163], protein homeostasis [164], cell cycle [165, 166], cell death [167], growth factor 

[166], glia, and neural plasticity and synaptic functions [168]. These pathway categories 

are selected based on the criterion that 1) they were reported to be related to AD in a broad 

sense; 2) the number of pathways in the category exceeds a certain number. For each 

pathway category, we then investigated how the cell type, sex, and disease status might 

affect the member pathways’ connectivity.  
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(B) 

 

Figure 4.3. (A) AD specific pathways; (B) heatmap of pathway connectivity score 

compared across conditions. 
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The pathway connectivity pattern is summarized in Figure 4.3. As shown in Figure 

4.3A, each column panel represents one pathway category, and each dot represents one 

pathway in the category, with different colors for different cell types; and the y-axis shows 

the negative (FDR adjusted) log p-value of the covariance regression for comparing: AD 

vs control in females (top row); AD vs control in males (middle row); female vs male in 

AD patients (bottom row). Larger values on the y-axis mean more significant pathway-

level difference in the contrast group, and the dot horizontal line corresponds to adjusted 

p-value of 10E-2. Among the three contrast groups, the female AD and female control 

groups are shown to have the largest difference in different pathway categories, as the 

number of significant DCPs are the largest in this contrast group. In comparing female AD 

and female controls, astrocyte and neuron cells have the largest number of DCPs, and this 

is especially true for categories metal ion transport (column #3), lipid metabolism (column 

#8), cell polarity (column #9), neuronal activity (column #12), and protein metabolism 

(column #16). Interestingly, the neuron cells seem to have a relatively large number of 

DCPs in the calcium/ion/metal ion homeostasis, blood circulation, cell cycle response, 

hormone regulation, immune response category in female AD vs control contrast, and 

astrocyte showed relatively large number of DCPs in categories including metal ion 

homeostasis, cell cycle, hormone regulation, growth factor and mitochondria dysfunction. 

In comparing the male AD and male controls, the significant DCPs is mainly reflected by 

oligodendrocyte cells, and then neuron cells in cell polarity (column #9), neuronal activity 

(column #12). In comparing female AD and male AD, the significant DCPs is mainly 

reflected by OPC cells in cell polarity (column #9), neuronal activity (column #12). For 
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microglia cells, probably due to the low number of cell count, very few significant DCPs 

were detected throughout all contrasts. 

While it is believed that programmed cell death occurs to neuron cells because of 

the abnormalities in amyloid‑β (Aβ) production and clearance [169], we indeed see that a 

small number of DCPs appear in both astrocyte and neuron cells.  

In Figure 4.3B, we further had a more detailed and visual examination of the 

detailed pathways in each individual patient sample, and the samples (rows) are ordered by 

their disease stage. It seems that genes are less connected at late stage of AD in most 

pathways. 

These analyses clearly demonstrated the capability of using covariance regression 

to tease out the pathway-level abnormality in a sex, disease, and cell type specific manner. 

In summary, AD and sex specific variations in pathway connectivity were observed in 

certain cell types and biological systems. We also presented the total number of significant 

pathways in each cell type for each pathway category in Table 4.2. Considering the false 

discovery rate with multiple tests, we used a p-value cutoff of 10E-5. We also summarized 

the number of significant pathways in Table 4.2. 
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Total 

Pathway

s 

Astrocyte Microgli

a 

Neuron Oligodendrocyt

e 

OPC 

Calcium 70 9/20 (45.0%) 0/3 

(0.0%) 

26/30 

(86.7%) 

0/13 (0.0%) 0/32 

(0.0%) 

Ion 76 13/21 (61.9%) 0/11 

(0.0%) 

18/22 

(81.8%) 

2/18 (11.1%) 0/26 

(0.0%) 

Metalion 150 26/48 (54.2%) 0/16 

(0.0%) 

44/51 

(86.3%) 

3/32 (9.4%) 2/57 

(3.5%) 

Blood 42 8/16 (50.0%) 0/3 

(0.0%) 

14/14 

(100.0%

) 

0/5 (0.0%) 0/16 

(0.0%) 

Cellcycle 180 33/50 (66.0%) 2/28 

(7.1%) 

34/39 

(87.2%) 

6/31 (19.4%) 1/74 

(1.4%) 

Hormone 165 22/31 (71.0%) 0/21 

(0.0%) 

24/28 

(85.7%) 

2/11 (18.2%) 3/39 

(7.7%) 

Immunerespos

e 

451 26/69 (37.7%) 0/84 

(0.0%) 

49/51 

(96.1%) 

0/23 (0.0%) 2/86 

(2.3%) 

Lipid 314 38/56 (67.9%) 0/16 

(0.0%) 

27/32 

(84.4%) 

18/30 (60.0%) 0/53 

(0.0%) 

Polarity 290 86/109 

(78.9%) 

0/45 

(0.0%) 

88/97 

(90.7%) 

17/76 (22.4%) 6/136 

(4.4%) 

Ros 75 8/23 (34.8%) 0/8 

(0.0%) 

19/23 

(82.6%) 

2/11 (18.2%) 1/23 

(4.3%) 

Endocytosis 50 11/14 (78.6%) 0/10 

(0.0%) 

12/14 

(85.7%) 

0/12 (0.0%) 0/18 

(0.0%) 

Neuronal 216 53/78 (67.9%) 0/35 

(0.0%) 

69/75 

(92.0%) 

16/50 (32.0%) 3/94 

(3.2%) 

Growthfactor 41 12/17 (70.6%) 0/7 

(0.0%) 

6/12 

(50.0%) 

0/2 (0.0%) 0/19 

(0.0%) 

Mitochondria 85 16/17 (94.1%) 0/0 (NA 11/14 

(78.6%) 

0/2 (0.0%) 0/22 

(0.0%) 

Synap 151 28/38 (73.7%) 0/8 

(0.0%) 

63/82 

(76.8%) 

1/25 (4.0%) 1/70 

(1.4%) 

Death 144 15/29 (51.7%) 0/18 

(0.0%) 

14/17 

(82.4%) 

0/11 (0.0%) 2/26 

(7.7%) 

Protein 249 64/79 (81.0%) 0/44 

(0.0%) 

37/45 

(82.2%) 

6/45 (13.3%) 3/89 

(3.4%) 

 

Table 4.2. Significant/number of pathways with results in AD-Healthy Female contrast 
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Figure 4.4. Cell subtype heterogeneity analysis 
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4.3.4 Within cell type heterogeneity of pathway connectivity 

To dissect cell-type heterogeneity, we next investigated the variations of pathways 

with the same cell types, and on a sub-cluster level. The sub-clusters are directly retrieved 

from the ROSMAP paper [147], which includes 13 excitatory-neuron (Ex), 12 inhibitory-

neuron (In), 4 astrocytes (Ast), 5 oligodendrocytes (Oli), 3 oligodendrocyte progenitor cell 

(Opc), and 4 microglia (Mic) sub-clusters. According to [147],the identified 

subpopulations were not exclusively enriched with cells from any single individual. We 

define a “purity” score that is calculated as the of the intra-cluster correlation (ICC) of the 

averaged connectivity score of different cell subtypes (methods). For one cell type, the 

“purity” score measures the variations of the connectivity scores for each pathway among 

different sub-clusters of a cell type. 

From Figure 4.4A, we could see that in general, the different subtypes of neuron 

cells are more homogeneous in female AD than in female control cells, as neuron subtypes 

in female AD patients (red) usually have consistently higher purity scores than neuron 

subtypes in female healthy patients (sky blue). However, this is not the case for male 

subjects. As shown in Figure 4B, the purity scores in male AD and male healthy subjects 

are not always separable in different pathway categories.  

4.3.5 Compare findings with ROSMAP paper 

Original paper finds that in comparison of AD late-pathology and no-pathology 

patients, upregulated genes are involved in protein folding, including molecular chaperones, 

and are also associated with autophagy, apoptosis, and the generalized stress response 

[147]. To test the consistency of scCovReg results compared to the original paper, we 

tested applied our scCovReg method to pathways associated with upregulated genes. 
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Autophagy and Apoptotic signaling related pathways tend to be less connected in astrocyte 

and neuron cells. 

4.3.6 Validation on independent datasets 

In order to validate our covariance regression based analytical pipeline, we applied 

this pipeline to a similar but smaller independent dataset (GSE157827, see Data access and 

processing in Methods). After similar preprocessing step as for ROSMAP dataset, we 

applied scCovReg on three cell types, including astrocyte, neuron and oligodendrocyte. 

The microglia cell was not included in the analysis because the less sufficient of cell 

numbers. As shown in Figure 4.5, the x-axis shows pathway level connectivity (covariance 

regression coefficients) estimated in ROSMAP data, and the y-axix shows coefficients in 

GSE157827. The solid blue line shows the regression line of pathway level connectivity 

from two datasets, and the dotted red line shows the y=x line. For all three cell types, the 

estimations given by ROSMAP and GSE157827 are highly consistent, as their linear 

regression coefficients are all highly significant (<10E-5). In particular, the R squared for 

neuron cell is as high as 0.521. For astrocyte and oligodendrocyte, the R square values are 

not as high. We suspect this is because some patients in GSE157827 don’t have sufficient 

cell numbers for these two cell types. These demonstrate the high robustness of scCovReg.    
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Figure 4.5. Validation of scCovReg on independent dataset. x-axis shows pathway level 

connectivity (covariance regression coefficients) estimated in ROSMAP data, and y-axis 

shows coefficients in GSE157827. A linear regression was conducted by regressing the 

GSE157827 estimate on the ROSMAP estimate, and the regression coefficient, R square 

and p-value are shown in the plot for each cell type, and the regression line (blue solid line), 

as well as the y=x line (red dotted line) are also shown. 
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4.4 Discussion 

Many currently untreatable diseases, including AD, arise due to variations in, and 

through a combination of, multiple modulators of genetic, epigenetic, and environmental 

nature. Unfortunately, how such modulators lead to a specific disease phenotype or inflict 

a vulnerability to some cells and tissues but not others remain largely unknown and 

unsatisfactorily addressed. The analysis of cell-specific gene-gene interaction networks 

may shed light on organization of biological systems and subsequently to disease 

vulnerabilities. The emergence of single cell technology is promising to detect cell-type 

specific changes, however, deriving the variabilities of gene interaction networks across 

different cell, phenotypes and disease contexts remains a challenge. Currently, a two-step 

approach is usually adopted to identify disease pathways using single-cell RNA-Seq 

(scRNA-Seq) data in a cell type-specific manner: (1) unsupervised clustering of single cells 

to delineate the cell type identities or states [170-173] followed by differential gene 

expression analysis [174-178] to identify cell type and disease-specific genes, and (2) 

pathway enrichment and co-expression module detection methods using either the 

differentially expressed genes or genes' importance ranking [36, 37]. Apparently, it fails to 

detect the second-order changes of the pathways.  

The challenges of systematically investigating the variations in gene “interactome” 

lies in the following aspects: 1) the scale of interactions of genes. 2) The variations of 

biological processes are associated with AD pathology in a cell type and sex specific 

manner. De novo construction of biological networks will need to take the combination of 

the conditions into consideration, namely, disease status, sex, and cell type. This fine 

segmentation of the samples may lead to low statistical power. 3) There may exist many 
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biological processes or pathways that underlie the AD progression, hence studying the 

whole transcriptome-level interactome variations may not pinpoint the specific biological 

processes or pathways. 4) There is a large number of curated pathways in databases, such 

as Gene Ontology, that serve as prior information on the structure of the genes’ interactome. 

To this end, we study variations of interactome at the level of existing pathway/biological 

process, and our scCovReg piepline links gene-gene interaction network variabilities to 

AD formation in a sex and cell type specific manner, revealing a viable and reproducible 

experimental solution to obtaining rigorous context-dependent gene-gene interactions.  

Our analytical pipeline, scCovReg tool represents the first-of-its-kind to capture the 

variations of the interactions among genes in a pathway, and the detected pathway-level 

disease abnormalities are more robust for knowledge transfer from one study or platform 

to another, as it allows for different activation forms of gene combinations. scCovReg 

harnesses the power of scRNA-Seq data to discover AD-associated molecules and 

pathways in a cell type, disease and sex specific manner, and to articulate the disease 

mechanisms on a cellular, molecular and physiological level, and laying the foundation to 

develop prevention/intervention strategies. Current single gene or enrichment-based 

pathway analysis tends to overlook pathways with abnormal gene-gene interactions, due 

to low statistical power and lack of a sufficient model to detect such interactions. In AD 

research, this is further challenged that the abnormalities in AD often occur in a cell type 

and sex specific manner. While single-cell technology dissects the cell type level variations, 

the sample size is still too low due to high sequencing costs. We addressed the challenges 

by directly modeling the pathway-level variations and make inference on key variables, 
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such as disease status and sex, using covariance regression model. Several challenges exist 

that warrants further research into this direction as discussed below. 

Some limitations of the work exist. In the study, a large number of pathways and 

several cell types are considered, and the large number of performed tests make the 

statistical power a big issue. In the future, we believe constructing a brain 

microenvironment specific pathway database will be helpful in boosting up the statistical 

power, and it will be highly beneficial to the scientific community. The original covariance 

regression approach was proposed based on the assumption that the data are normally 

distributed. Applying to scRNA-Seq data, with appropriate data transformation, the 

normality assumption is assumed to hold. Another issue in scRNA-Seq is the existence of 

missing data. The current strategy is to include a screening step to remove genes with 

missing data in over 25% of the subjects. After this step, a large number of genes are 

removed from the analysis. An alternative is to propose a distribution-free approach and at 

the same time to consider the fact of zero inflation. The covariance regression model was 

applied on single cells of each cell type separately. However, even for the same cell type, 

there might exist several sub-cell types. A solution is to examine the heterogeneity of the 

pathway connectivity score, and determine whether there is a need to break the cell type 

into various subtypes. 
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Chapter 5 Conclusions  

In this research, we aim to reveal the biological meaningful subspace structures in 

omics data. Specifically, we focus on three types of subspace structures, bi-cluster low-

rank subspace, sparse subspace and covariates explainable subspace.  

For bi-cluster low-rank subspace, we try to explain cell type specific expression, 

which bulk RNA-seq data is mixture signal of different cell types. Due to experimental 

limitation, we applied a semi-supervised model to detect cell type specific low-rank 

structures and predict their relative proportions across different samples. Our prediction 

can help biologist to better understand the cell component and further investigate the 

disease mechanism.  

Next, we shift our focus to identify disease-driven sparse subspace. We proposed a 

novel statistical model PLUS that could identify cancer metastasis related genes and under 

detected cases. In TCGA data, PLUS predicted metastasis cases have worse progression 

free survival. Besides, our method is with better performance compared with other methods 

in simulated data. Moreover, the identified metastasis related genes are robust in 

independence scRNA-seq datasets.  

Lastly, to discover the covariates explainable subspace in covariance matrix, we 

referenced a covariance regression approach, namely, scCovReg. We utilized scCovReg to 

model the pathway level second-order variations using scRNA-Seq data and to associate 

the second-order variations with important subject-level characteristics, such as disease 

status. Our finding provides a unique angle to study gene connection abnormalities in 

Alzheimer disease. 
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