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Foiling covert channels and malicious classical post-processing
units in quantum key distribution
Marcos Curty1 and Hoi-Kwong Lo2

The existing paradigm for the security of quantum key distribution (QKD) suffers from two fundamental weaknesses. First, covert
channels have emerged as an important threat and have attracted a lot of attention in security research in conventional
information and communication systems. Covert channels (e.g. memory attacks) can fatally break the security of even device-
independent quantum key distribution (DI-QKD), whenever QKD devices are re-used. Second, it is often implicitly assumed that the
classical post-processing units of a QKD system are trusted. This is a rather strong assumption and is very hard to justify in practice.
Here, we propose a new paradigm for the security of QKD that addresses these two fundamental problems. Specifically, we show
that by using verifiable secret sharing and multiple optical devices and classical post-processing units, one could re-establish the
security of QKD. Our techniques are rather general and they apply to both DI-QKD and non-DI-QKD.
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INTRODUCTION
There has been much interest in the subject of quantum key
distribution (QKD) in recent years because it holds the promise of
providing information-theoretically secure communications based
on the laws of quantum physics.1,2 There is, however, a big gap
between the theory3,4 and the practice5–8 of QKD, and the security
of QKD implementations is seriously threatened by quantum
hacking.9–13 To solve this problem, the ultimate solution is device-
independent (DI)-QKD,14–17 which allows the legitimate users of
the system (typically called Alice and Bob) to treat their quantum
devices as “black boxes”. The security of DI-QKD is based on a
loophole-free Bell test.18,19 Although no experimental implemen-
tation of DI-QKD has been realised yet, the recent demonstrations
of loophole-free Bell tests20–24 might bring DI-QKD closer to
experimental realisation.
Despite its conceptual beauty, DI-QKD is however not foolproof.

Indeed, one cannot expect that all QKD users will have expertise in
experimental quantum optics and electronics. So, unless Alice and
Bob manufacture their own QKD devices themselves, it could be
very hard for them to guarantee that the QKD “black boxes”
bought from a vendor are indeed honest, as it is assumed in the
security proofs. For instance, it was shown in ref. 25 that DI-QKD is
highly vulnerable to the so-called memory attacks, where a hidden
memory device (planted by the eavesdropper, Eve, in say Alice’s
setup) stores up the key material generated in each QKD session
and then leaks this information to Eve in subsequent QKD runs.
This situation is illustrated in Fig. 1. Obviously, this is a fatal loss of
security for DI-QKD. Whenever a QKD system is reused for
subsequent QKD sessions, the security of the keys generated in
previous QKD runs might be compromised. Note that this is
particularly problematic in a network setting with multiple users
(who may not all be trustworthy) due to the impostor attack.25

Moreover, we remark that, in principle, memory attacks also
work against non-DI-QKD. This is so because, in practice, it could

be quite challenging to check whether or not a purchased QKD
setup contains such memory. In the following, whenever we refer
to a QKD system, it will be implicitly understood that it could be
either DI-QKD or non-DI-QKD; our results apply to both
frameworks.
The existence of memory attacks in DI-QKD shows that

quantum mechanics alone is not enough to guarantee security.
Indeed, in the presence of malicious devices, the resulting secret
key is fundamentally insecure due to causality. The only reliable
way to assure that covert communication is not happening is for
the legitimate QKD users and Eve to be space-like separated. Once
a key is generated in a QKD session, it is a classical object and thus
is subject to copying. Once copied, QKD modules and classical
post-processing units have plenty of time and opportunities to
covertly leak the key to Eve.
More generally, covert channels26 have attracted massive

attention in conventional security of computing and communica-
tion systems.27–29 With covert channels, seemingly innocent
communications in a protocol could leak crucial information that
is fatal to its security. Indeed, there are plenty of covert ways of
leaking information to Eve in QKD. Even if Alice and Bob’s devices
are shielded in a Faraday’s cage, it could be hard for them to find a
perfect Faraday’s cage in practice. In fact, industrial-grade
electromagnetic shielding can provide only about say 100 dB
shielding for a certain wavelength range of electromagnetic
emissions.30 Also, these shields are ineffective against covert
channels that exploit for example low-frequency magnetic fields,
low-energy acoustic or ultrasonic emissions, gamma rays,
neutrons, not to mention multiplexing a covert signal onto the
device’s unavoidable electricity consumption and heat generation.
Note that memory attacks are simply one example of covert
channels. One main motivation of our work is indeed to find a new
and general paradigm of security that can reduce the risk due to
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not only memory attacks, but also due to any type of covert
channels in QKD.
Another key weakness in standard QKD security proofs is that

they all implicitly assume that the classical post-processing units
are trusted. These units are supposed to distil a secure secret key
from the raw data generated by the QKD modules by applying
techniques, such as post-selection of data (or so-called sifting),
parameter estimation, error correction, error verification and privacy
amplification. However, in view of the many hardware31–34 and
software35 Trojan Horse attacks that have been performed
recently in conventional cryptographic systems, such trust is a
very strong and unjustified assumption. This scenario is illustrated
in Fig. 2. Hardware and software Trojans constitute today a key
threat to the security of conventional cryptographic devices34,36

and this threat is expected to only rise with time, so it cannot be
neglected when analysing the security of a QKD implementation.
In summary, the current paradigm for the security of QKD

essentially relies on Alice and Bob trusting all their devices
including both their quantum communication components and
classical post-processing units and all ancillary components, such
as, for example, power regulators. Since even trusted vendors
often do not build their chips and power regulators themselves,
but rely on secondary and tertiary supplies, it is a fact of life that
no one could possibly check and verify the security of all
components in QKD. Even the US military does not have the time
or capability to check the security of every component used in its
hardware.31,37 How could one expect any vendor to have such a
capability? This seems like an impossible situation for the security
of practical QKD systems. So, here comes the key question: How
do we address covert channels and prove security in QKD with
untrusted classical post-processing units?

In this paper, we address the above key question directly. We
propose a simple, but important paradigm shift in the field of
QKD. Instead of the standard approach of buying a QKD “black-
box” from vendors (which is purged by many aforementioned
real-life security pitfalls due to covert channels and untrusted
classical post-processing units), we propose that it is important for
Alice and Bob to employ redundancies.
For this, we draw inspiration from classical error correction via

redundancy, where one can correct up to a certain amount of
errors by adding enough redundant information to the messages.
In so doing, it is possible to achieve reliable data transmission
through noisy channels given that the noise is not too high.
Analogously, due to the difficulty of verifying whether or not a
device can be trusted, we might assume that, for Eve, it might be
more difficult to tamper with several devices from different
vendors than corrupting just one QKD device from a single
vendor. While this is an assumption, it is probably the best Alice
and Bob can hope for, as it is clear that if they cannot trust any of
their devices, no security is possible, while to simply trust all the
devices is very risky. Then, assuming that the number of corrupted
devices is limited, and given that Alice and Bob have enough
redundant devices, it might be possible for them to achieve
secure secret key distribution.
More formally, we use the idea of secure multiparty computa-

tion.38–41 In conventional cryptography, an important question is
how to achieve unconditional security in the presence of cheaters.
Clearly, if everyone is a cheater, security is impossible to achieve.
However, it is still good to achieve security when the number of
cheaters is bounded. Verificable secret sharing (VSS)42,43 is an
important primitive in multiparty secure computation. It allows a
dealer to split a message between several parties such that only
authorised groups of parties can collaborate and reconstruct the
message. Importantly, VSS ensures that even if the dealer is
malicious there is a well-defined message that the parties can later
reconstruct (see Methods section). We remark that secret sharing
(SS) is commonly deployed in most modern hardware secure

Fig. 1 Schematic representation of a memory attack. In the ith QKD
run, Alice and Bob’s QKD modules, QKDA and QKDB, use a quantum
channel to produce a raw key, k0Ai and k0Bi , as well as certain protocol
information, pAi,info and pBi,info, respectively. The content of pAi,info
and pBi,info depends on the particular QKD protocol implemented.
For instance, in the standard decoy-state BB84 scheme,81–83 pA,info
contains the basis and the decoy setting information per emitted
signal, while pB,info contains Bob’s measurement basis and it also
indicates which signals produced a click in his measurement
apparatus. The raw key and the protocol information is sent to
Alice and Bob’s classical post-processing units, CPA and CPB, which
are connected via an authenticated classical channel. These units
generate a secret key, kAi and kBi, by applying various post-
processing techniques. In a memory attack, Eve hides a memory
in say Alice’s module QKDA to first store up the key material
generated in each QKD run and then leak this information to her by
hiding it in say the decision of abort or not abort of a subsequent
QKD session. For example, if a particular bit value, say the jth bit, of
the key generated in the first QKD run is 0, then this memory makes
that a permuted σ(j)th QKD run aborts. (Here, σ is a permutation and
σ(j) is the permuted value of j.) This could be achieved, for instance,
by outputting a raw key with a high quantum bit error rate (QBER).
And, if the jth bit value of the key is 1, then the σ(j)th QKD run does
not abort. That is, by simply learning whether or not the σ(j)th QKD
round has aborted, Eve could obtain the jth bit value of the first QKD
session key. Alternatively, Eve might also leak the key material
produced in a certain QKD round by simply hiding it in the public
discussion of subsequent QKD runs. We refer the reader to ref. 25 for
more details. Memory attacks are a fundamental threat to the
security of DI-QKD

p p’

Fig. 2 Schematic representation of a hardware/software Trojan
Horse attack. In QKD, it is commonly and implicitly assumed that the
classical post-processing units CPA and CPB are trusted. However,
due to the many hardware31–34 and software35 Trojan Horse attacks
that have been performed against conventional cryptographic
systems, this trust is a very strong and unjustified assumption. For
instance, Eve could modify a chip, or infect the software with
malware, to make it fail at a crucial time, or to hide a backdoor in say
Alice’s unit CPA that leaks the final key, kAi, generated in say the ith
QKD run to her.69,70 Due to the complexity and fabrication costs of
current chips, these devices are typically designed by different
parties, manufactured by an external foundry, and packaged and
distributed by separate companies. This gives Eve multiple
opportunities to meddle with the hardware. More importantly,
hardware Trojans can be very hard to detect in practice. This is so
because even slight adjustments to the electrical properties of a few
transistors (from the billions of them contained in today’s chips)
could already compromise the security. Also, Eve could easily bypass
post-fabrication tests by crafting attack triggers that require a
sequence of unlikely events, or by altering only a subset of the chips
in question.32,33 Similar arguments apply as well to software
malware. This shows the weaknesses of the classical post-
processing units. We refer the reader to the caption of Fig. 1 for
the meaning of the different elements in this figure
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modules,44–46 and is the current strategy employed to stop
hardware Trojans in conventional hardware design.31 Since the
QKD application is supposed to provide the strongest link of
security, our view is that it is very natural for QKD to employ ideas
in SS. Also, we note that the use of SS schemes to split the secret
information in shares seems to be unavoidable to prevent the
malicious devices to have full information about the key to begin
with.
The price that we pay is that now Alice and Bob have to use a

redundant number of QKD modules and classical post-processing
units. Fortunately, however, with the recent development of
measurement-device-independent QKD (MDI-QKD),47–51 and chip-
based QKD,52–54 as well as low-cost laptops, it is reasonable to
expect that the cost of QKD modules and classical post-processing
units might decrease dramatically over time (see Fig. 3). So, it is
not unrealistic to consider that each of Alice and Bob could
possess a few QKD modules and classical post-processing units,
each of them purchased from a different vendor.
Moreover, as the interest in building a Quantum Internet55,56

grows exponentially over time, more quantum networks are
currently built in the world.57–62 In a quantum network, it may be
natural that two users are connected by multiple QKD paths. In
this case, it is rather natural to employ SS schemes to enhance
communication security in quantum networks.
Now, provided that the majority of the vendors (or QKD paths)

are honest and careful in the manufacturing of their devices, it
might not be entirely unreasonable to assume that at least one
pair of QKD modules (or QKD paths) is honest/reliable and the
number of malicious classical post-processing units is strictly less

than one-third of the total number of them. Like in the classical
error correction scenario, in standard conventional cryptography it
is up to Alice and Bob to determine their security policy and to
decide in advance how many corrupt parties they want to be
secure against.
With these assumptions in place, we can then prove security in

different QKD scenarios with malicious devices by applying
privacy amplification techniques63 in combination with VSS42,43

from secure multiparty computation38 in conventional cryptogra-
phy.39–41 Importantly, if we disregard the cost of authenticating
the classical communications, our protocols are optimal with
respect to the resulting secret key rate. Moreover, the operations
involved are based on simple functions in linear algebra, such as
bit-wise XOR and multiplication of matrices. So, they are
conceptually simple and easy to implement.
We remark that naive solutions based on directly taking the

XOR between various keys suffer from two main drawbacks, as we
show later. First, they cannot guarantee the correctness of the
resulting key. And, second, if the classical post-processing unit
that performs this operation is malicious, the secrecy of the key is
not guaranteed either. In contrast to this naive approach, our
solution can guarantee both the correctness and the secrecy of
the final key.

RESULTS
Let us start by describing in more detail the general scenario that
we consider. It is illustrated in Fig. 4a. Alice and Bob have n pairs of
QKD modules, and say Alice (Bob) has s (r) classical post-

Fig. 3 Schematic representation of a MDI-QKD network with multiple QKD transmitter modules and classical post-processing units. Note that
the measurement devices are often the most expensive components of an entire QKD system because single photon detection is highly non-
trivial. MDI-QKD47 allows measurement modules to be totally untrusted, which means that there is no need for redundant measurement
modules if our proposal is employed with MDI-QKD. The users just need to have multiple transmitters and classical post-processing units,
which thanks to the development of cheap chip-based QKD systems52–54 and low-cost laptops, we believe, could render our proposal cost
effective in the future. We remark that our approach is also fully compatible with quantum relays and quantum repeaters
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processing units at their disposal. Alice’s modules QKDAi, with i=
1,…,n, are connected to the classical post-processing units CPAi′,
with i′= 1,…,s, via secure channels (i.e., channels that provide
both secrecy and authentication). Also, all the units CPAi′ are
connected to each other via secure channels. The same applies to
Bob. Importantly, since all these secure channels are located only
within Alice and Bob’s labs, in practice they could be implemen-
ted, for instance, by using physically protected paths (e.g., physical
wires that are mechanically and electrically protected against
damage and intrusion) which connect only the prescribed devices.
Furthermore, each QKDAi is connected to its partner QKDBi via
a quantum channel, and each CPAi′ is connected to all CPBi′′, with
i′′= 1,…,r, via authenticated classical channels.64,65

Moreover, for simplicity, we shall consider a so-called threshold
active adversary structure. That is, we will assume that up to t < n
pairs of QKD modules, up to t′ < s/3 units CPAi′ and up to t′′ < r/3
units CPBi′′ could be corrupted. We say that a pair of QKD modules
is corrupted when at least one of them is corrupted. Also, we
conservatively assume that corrupted devices do not necessarily
follow the prescriptions of the protocol but their behaviour is fully
controlled by Eve, who could access all their internal information.
We refer the reader to the Supplementary Notes 3 and 4 for the
definition of general mixed adversary structure66 and the security
analysis of QKD against this type of general adversary. Also, we
note that less conservative adversarial models like e.g., those
studied in ref. 25 might be also valid in certain scenarios.

The final goal is to generate a composable ε-secure key, kA and
kB. That is, kA and kB should be identical except for a minuscule
probability εcor, and say kA should be completely random and
decoupled from Eve except for a minuscule probability εsec, with
εcor+ εsec≤ε .

67,68 Importantly, since now some QKD modules and
classical post-processing units could be corrupted, the secrecy
condition also implies that kA and kB must be independent of any
information held by the corrupted devices after the execution of
the protocol. Otherwise, such corrupted devices could directly leak
that information to Eve. Obviously, at the end of the day, some
parties might need to have access to the final key, and thus one
necessarily must assume that such parties are trusted and located
in secure labs. In this regard, our work suggests that when the
classical post-processing units at the key distillation layer are
untrusted, they should not output the final key kA and kB but they
should output shares of it to the key management layer.58,59

There, kA and kB could be either reconstructed by say Alice and
Bob in secure labs, or their shares could be stored in distributed
memories for later use, or they could be employed for instance for
encryption purposes via say the one-time pad. Importantly,
however, all the key generation process at the key distillation
layer can be performed with corrupted devices. Also, we note that,
if necessary, operations like storage or encryption at the key
management layer could also be performed in the presence of
corrupted devices by using techniques from secure multiparty
computation.38 The actual management and storage of the shares
of kA and kB generated by the key distillation layer is responsibility

Fig. 4 Schematic representation of the general scenario considered. a A QKD setup with multiple QKD modules and classical post-processing
units. We assume that up to t < n pairs of QKD modules, up to t′ < s/3 units CPAi′ and t′′ < r/3 units CPBi′′ could be corrupted. The goal is to distil
shares of an ε-secure key, kA and kB. In the figure, the thin red solid lines represent secure classical channels, the thin red dashed lines denote
authenticated classical channels, and the blue thick dashed lines are quantum channels. b General strategy to distil shares of kA and kB. First,
each pair QKDAi and QKDBi outputs a raw key, k0Ai and k0Bi , together with the protocol information, and sends them to the CP units at Alice and
Bob’s side, respectively. From k0Ai and k0Bi , these units distil a supposedly (εcor/n)-correct and (εsec/n)-secret key, k00Ai and k00Bi , and then concatenate
these keys to form k0A ¼ ½k00A1; k00A2; ¼ ; k00An� and k0B ¼ ½k00B1; k00B2; ¼ ; k00Bn�. Finally, the CP units apply privacy amplification to k0A and k0B to remove the
information held by the corrupted QKD modules and obtain kA and kB. In the presence of corrupted CP units, all these steps are realised in a
distributed setting by acting on data shares generated with a VSS scheme
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of the key management layer and depends on the particular
application. We remark, however, that such layer structure is
introduced here mainly for illustrative purposes, as in this paper
we consider the key distillation problem, which is the task of the
key distillation layer. Our results are rather general and similar
techniques could be applied as well to other applications without
the need of any particular layer structure.
Before we go to the specifics of our result. We remark that our

idea is general and does not depend on the specific verifiable SS
scheme used. This is an important strength of our idea. Let us start
by providing an overview of the general strategy that we follow to
achieve our goal, which uses as main ingredients VSS schemes41–43

and privacy amplification techniques63 (see Methods section). The
former is employed to defeat corrupted classical post-processing
units. Indeed, given that t′ < s/3 and t′′ < r/3, the use of VSS
schemes allows to post-process the raw keys generated by the
QKD modules in a distributed setting by acting only on raw key
shares. Obviously, if a pair of QKD modules is corrupted, the
generated raw key shares could be known to Eve. Importantly,
however, we can prove security also in this scenario mainly
because VSS does not require the dealer to be honest, and the use
of privacy amplification techniques can remove any information
about the final key which could be known to the corrupted pairs
of QKD modules (as it is explained in more detail below). In
addition, we remark that the post-processing of raw key shares
can be performed such that no set of corrupted classical post-
processing units can reconstruct kA and kB. Also, VSS guarantees
that kA and kB is a correct key independently of the misbehaviour
of the corrupted QKD modules and classical post-processing units
which might wish to purposely introduce errors. Another key
insight of our paper is to show that, since all the classical post-
processing techniques that are typically applied in QKD are
“linear” in nature (i.e., they involve simple functions in linear
algebra, such as bit-wise XOR and multiplications of matrices),
they are easily implementable in a distributed setting.
Let us illustrate this last point with a simple example. In

particular, let us consider, for instance, the error correction step in
QKD. Here, say Bob wants to correct a certain bit string, kB,key, to
match that of Alice, which we shall denote by kA,key. In general,
this process requires that both Alice and Bob first apply certain
error correction matrices, MEC, to kA,key and kB,key to obtain the
syndrome information sA=MECkA,key and sB=MECkB,key, respec-
tively. Afterward, if sA ≠ sB Bob modifies kB,key accordingly. This
process might be repeated a few times until it is guaranteed that
kB,key= kA,key with high probability. Let us now consider again the
same procedure but now acting on shares, kAj,key and kBj,key, of kA,
key and kB,key, respectively. That is, say kA;key ¼ �q

j kAj;key and
kB;key ¼ �q

j kBj;key, with q being the total number of shares. For this,
Alice and Bob first apply MEC to kAj,key and kBj,key to obtain sAj=
MECkAj,key and sBj=MECkBj,key, respectively, for all j. Next, Alice
sends sAj to Bob who obtains sA ¼ �q

j¼1sAj and sB ¼ �q
j¼1sBj . This

is so because �q
j¼1sAj ¼ �q

j¼1MECkAj;key ¼ MEC �q
j¼1 kAj;key ¼

MECkA;key ¼ sA, and a similar argument applies to sB. Finally, if
sA ≠ sB Bob corrects kB,key by acting on its shares kBj,key. Note that
to flip certain bits in kB,key is equivalent to flip the corresponding
bits in one of its shares kBj,key. That is, error correction in QKD can
be easily performed in a distributed setting by acting only on
shares of kA,key and kB,key. The same argument applies as well to
the other classical post-processing techniques in QKD, as all of
them involve only linear operations.
To defeat corrupted QKD modules, on the other hand, we use

privacy amplification techniques. Suppose, for instance, that each
pair QKDAi and QKDBi outputs a raw key, k0Ai and k0Bi . Moreover,
suppose for the moment that the classical post-processing units
are trusted and they distil a supposedly (εcor/n)-correct and (εsec/
n)-secret key, k00Ai and k00Bi , of length N bits from each pair k0Ai and k0Bi .
Then, the n × N bit strings k0A ¼ k00A1; ¼ ; k00An

� �
and k0B ¼

½k00B1; ¼ ; k00Bn� are for certain εcor-correct. The secrecy condition,
however, only holds if all the QKD modules are trusted. If say the
pair QKDAi′ and QKDBi′ is corrupted then the key strings k00Ai0 and
k00Bi0 are compromised. So, given that t < n the classical post-
processing units can apply privacy amplification to k0A and k0B to
extract two shorter (n− t) × N bit strings, kA and kB, which are εsec-
secret and thus ε-secure. In the presence of untrusted classical
post-processing units, this process can be performed in a
distributed manner by acting on data shares.
In short, the general strategy can be decomposed in three main

steps, which are illustrated in Fig. 4b. First, each pair of QKD
modules generates a raw key and the protocol information and
sends them to the CP units. Second, the CP units distil a
supposedly (εcor/n)-correct and (εsec/n)-secret key from each raw
key received and concatenate the resulting keys to form a longer
key bit string, which, in the absence of malicious QKD modules,
would be then ε-secure. Finally, in the third step, the CP units
apply privacy amplification to this longer bit string to remove any
information that could be known to Eve due to the presence of
malicious QKD modules. If the CP units are untrusted, these steps
are performed in a distributed setting by acting on data shares
produced by a VSS scheme.
Next we evaluate three different scenarios of practical interest

in this context. For concreteness, in these examples we use the
VSS scheme introduced in ref. 41 and which is described in the
Methods section.

QKD with malicious QKD modules
We begin by analysing the situation where Alice and Bob have n
pairs of QKD modules and up to t < n of them could be corrupted,
and each of Alice and Bob has one honest classical post-
processing unit. This scenario is illustrated in Fig. 5 and
corresponds to the case s= r= 1 and t′= t′′= 0 in Fig. 4a.
A possible solution to this scenario is rather simple; see Protocol

1 below. This protocol follows the spirit of “countermeasure 3” in
ref. 25 However, in contrast to ref.,25 which is restricted to
measurement devices in a DI-QKD setting, Protocol 1 applies to
both DI-QKD and non-DI-QKD, and considers the whole QKD key
generation devices, which include the sources.
Protocol 1:

1. Generation of raw keys and protocol information: Each pair
QKDAi and QKDBi outputs, respectively, the bit strings k0Ai
and pAi,info, and k0Bi and pBi,info, or the abort symbol ⊥i, ∀i= 1,
…,n.

Fig. 5 QKD with malicious QKD modules. Alice and Bob have n pairs
of QKD modules, and up to t < n of them could be corrupted. Alice’s
(Bob’s) ith QKD module is supposed to generate a raw key k0Ai k0Bi

� �
and the protocol information pAi,info (pBi,info), with i= 1,…,n. Also,
they have one classical post-processing unit each, which is assumed
to be honest. The goal is to distil an ε-secure key, kA and kB. This can
be achieved by using Protocol 1. See the main text for further details
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2. Generation of an εcor-correct key: The units CPA and CPB use
the key distillation procedure prescribed by the QKD
protocol to generate an (εcor/n)-correct and (εsec/n)-secret
key, k00Ai and k00Bi , from each pair k0Ai and k0Bi , or they generate
the abort symbol ⊥i, ∀i= 1,…,n. Afterward, CPA (CPB)
concatenates the M ≤ n keys k00Ai k00Bi

� �
which are different

from ⊥i to form the bit string k0A ¼ ½k00A1; ¼ ; k00AM�
k0B ¼ ½k00B1; ¼ ; k00BM�
� �

. Since by assumption CPA and CPB are
trusted, k0A and k0B are for certain εcor-correct. The secrecy
condition only holds if all k00Ai and k00Bi originate from raw keys
output by honest QKD modules. For simplicity, let the length
of k00Ai and k00Bi be N bits ∀i.

3. Generation of an ε-secure key: CPA and CPB apply a randomly
selected universal2 hash function to k0A and k0B to extract two
bit strings, kA and kB, of length (M− t) × N bits. kA and kB are
by definition εsec-secret, and thus, from step 2, they are ε-
secure.

Note that in step 3 of Protocol 1 we consider the worst-case
scenario where all k00Ai and k00Bi generated by corrupted QKD
modules contribute to k0A and k0B, respectively, as Alice and Bob
cannot discard this case. Most importantly, Protocol 1 allows Alice
and Bob to defeat any covert channel (including, e.g., memory
attacks) from the QKD modules, as this protocol guarantees that
none of the malicious QKD modules can access kA or kB. Our
results are summarised in the following Claim, whose proof is
directly from the definition of Protocol 1.

Claim 1.
Suppose that Alice and Bob have n pairs of QKD modules and up to
t < n of them could be corrupted. Also, suppose that they have one
trusted classical post-processing unit each. Let M ≤ n denote the
number of pairs of QKD modules that do not abort and whose raw
key could in principle be transformed into an (ε/n)-secure key, and
let N bits be the length of such supposedly secure key. Protocol 1
allows Alice and Bob to distil an ε-secure key of length (M− t) × N
bits. Moreover, the re-use of the devices does not compromise the
security of the keys distilled in previous QKD runs.
Importantly, we remark that Protocol 1 is basically optimal with

respect to the resulting secret key rate, in the sense that there is

no protocol which can deliver a higher key rate in the scenario
considered. This is so because of the following. If no pair of QKD
modules aborts and its raw data could in principle be transformed
into a secure key we have, by definition, that the maximum total
final key length is at most n × N bits. Also, we know that up to t × N
bits of such key could be compromised by the t pairs of corrupted
QKD modules. That is, the maximum secure key length is at most
(n− t) × N bits. Moreover, as discussed above, if some pairs of QKD
modules abort we must necessarily assume the worst-case
scenario where they are honest. This is so because through her
interaction with the quantum signals in the channel, Eve could
always force honest QKD modules to abort by simply increasing
the resulting QBER or phase error rate. That is, in this scenario it is
not possible to distil a key length greater than (M− t) × N bits.

QKD with malicious classical post-processing units
We now consider the situation where Alice and Bob have one
trusted QKD module each, and Alice (Bob) has s (r) classical post-
processing units CPAi (CPBi′), with i= 1,…,s (i′= 1,…,r), and up to t′
< s/3 (t′′ < r/3) of them could be corrupted. This is illustrated in
Fig. 6 and corresponds to the case n= 1 and t= 0 in Fig. 4a.
Since now the units CPAi and CPBi′ could be malicious, we aim to

generate shares of an ε-secure key, kA and kB. A possible solution
to this scenario is given by Protocol 2, which is described in detail
in the Methods section. The main result is summarised in the
following Claim, whose proof is directly from the description of
Protocol 2:

Claim 2.
Suppose that Alice and Bob have one trusted QKD module each, and
each of them has, respectively, s and r classical post-processing units.
Also, suppose that up to t′ < s/3 of Alice’s units and up to t′′ < r/3 of
Bob’s units could be corrupted. Then, if we disregard the cost of
authenticating the classical channels between Alice and Bob’s
classical post-processing units, Protocol 2 allows them to distil an
ε-secure key of the same length as would be possible in a completely
trusted scenario. Moreover, the re-use of the devices does not
compromise the security of the keys distilled in previous QKD runs.
That is, if we ignore the cost of authenticating the classical

channels between the units CPAi and CPBi′, Claim 2 implies that
Protocol 2 is optimal with respect to the resulting secret key
length, in the sense that there is no protocol which can deliver a
higher key rate in the scenario considered. This is so because this
protocol allows Alice and Bob to obtain a secret key of the same
length as it would be possible if all devices are trusted. We refer
the reader to the Supplementary Note 2 for a simpler but less
efficient protocol to achieve the same task.
Also, we remark that in Protocol 2 the cost due to authenticating

the classical channels is relatively small even when s and r are
reasonable large. Indeed, if we assume for simplicity the
symmetric scenario where s= r and t′= t′′ (i.e., each of Alice
and Bob has s CP units and up to t′ < s/3 of them are malicious), it
can be shown that this authentication cost is basically s(2t′+ 1)kau
bits, where kau denotes the authentication cost in the trusted
scenario (i.e., when s= 1 and t′= 0). That is, the overall cost of
authentication is only s(2t′+ 1) times that of a standard QKD
scheme with honest devices. This is so because in the untrusted
scenario, for any message that has to be authenticated (say for
instance from Alice), it is enough that 2t′+ 1 units CPAi send that
message authenticated to all the s CPBi′ units at Bob’s side. In so
doing, it is guaranteed that Bob’s units can reconstruct the
message correctly by using say majority voting. Importantly, the
parameter kau is logarithmic in the size of the messages sent,
which assures that the cost of authentication in Protocol 2 is small.

Fig. 6 QKD with malicious classical post-processing units. Alice and
Bob have one trusted QKD module each, QKDA and QKDB, which
generate, respectively, the raw key k0A and k0B and the protocol
information pA,info and pB,info. Also, Alice (Bob) has s (r) classical post-
processing units CPAi (CPBi′) with i= 1,…,s (i′= 1,…,r), and up to t′ <
s/3 (t′′ < r/3) of these units could be corrupted. The goal is to
produce shares of an ε-secure key, kA and kB, from which the final
key could be reconstructed. This can be achieved by using Protocol
2. See the Methods section for a detailed description of this
protocol. In the figure, k0Aij ðk0Bi0 jÞ denotes the jth share of k0A ðk0BÞ
which QKDA (QKDB) sends to CPAi (CPBi′), and kAij (kBi'j) identifies the
jth share of kA (kB) that is produced by CPAi (CPBi′). Since QKDA
(QKDB) is honest, note that the shares k0Aij ðk0Bi0 jÞ are equal for all i (i')
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QKD with malicious QKD modules and classical post-processing
units
Finally, here we consider the situation where Alice and Bob have n
pairs of QKD modules, QKDAi and QKDBi with i= 1,…,n, and Alice
(Bob) has s (r) classical post-processing units CPAi′ (CPBi′′), with i′=
1,…,s (i′′= 1,…,r), and up to t < n pairs of QKD modules, up to t′ <
s/3 units CPAi′ and up to t′′ < r/3 units CPBi′′ could be corrupted.
This scenario is illustrated in Fig. 7 and corresponds to the most
general case considered in Fig. 4a.
For illustrative purposes, let us discuss first a naive protocol that

fails to achieve the goal. In particular, suppose for simplicity that s
= r= n, and, moreover, we have that up to t < n groups of devices
Gi≡ {QKDAi, QKDBi, CPAi, CPBi} could be corrupted, where we say
that a group Gi is corrupted if at least one of its elements is
corrupted. Then, if one disregards efficiency issues, a straightfor-
ward solution to this scenario might appear to be as follows. Each
Gi generates a supposedly ε-secure key, kAi and kBi, and then this
key is simply considered as the ith share of the final key, kA and kB.
That is, kA ¼ �n

i¼1kAi and kB ¼ �n
i¼1kBi . Indeed, given that t < n, kA

and kB is for certain εsec-secret. However, the main problem of this
naive approach is that kA and kB might not be correct because a
corrupted Gi could output kAi ≠ kBi and thus kA ≠ kB.
Below we provide a simple solution (Protocol 3) to the general

scenario. It builds on Protocols 1 and 2, and it consists of three
main steps.
Protocol 3:

1. Generation and distribution of shares of (ε/n)-secure keys: Each
pair QKDAi and QKDBi uses say Protocol 2 to distribute shares
of an (ε/n)-secure key, kAi and kBi, or the abort symbol ⊥i,
between CPAi′ and CPBi′′, respectively. Let ~kAi0 ij ð~kBi00 ij0 Þ be the
jth (j′th) share of kAi (kBi) obtained by CPAi′ (CPBi′′). For
simplicity, we will suppose that the length of kAi and kBi is N
bits ∀i.

2. Generation of shares of an εcor-correct key: Let~0 be the N-bit
zero vector, and M be the number of kAi and kBi which are
different from ⊥i. Each CPAi′ defines

k00Ai0 ij ¼ ~01; ¼ ;~0i�1; ~kAi0 ij;~0iþ1; ¼ ;~0M
h i

. Likewise, the CPBi′′

form k00Bi00 ij0 from ~kBi00 ij0 . k00Ai0 ij and k00Bi00 ij0 are by definition shares
of an εcor-correct key. The secrecy condition only holds if all
kAi and kBi originate from honest QKD modules.

3. Generation of shares of an ε-secure key: The CPAi′ use the RBS
scheme (see Methods section) to randomly select a
universal2 hash function, hP. Next, they obtain shares, kAi0 ij ¼
hPðk00Ai0 ijÞ of length (M− t) × N bits of a final key kA, and say
the first 2t′+ 1 CPAi' send hP to all CPBi′′, which use majority
voting to determine hP from the information received, and
then obtain shares kBi00 ij0 ¼ hPðk00Bi00 ij0 Þ of the final key kB.

Indeed, given that t′ <MAi/3 and t′′ <MBi/3 for all i= 1,…,M,
where MAi (MBi) denotes the number of CPAi′ (CPBi′′) that do not
produce ⊥i but output post-processed shares, kAi′ij (kBi′′ij′), from kAi
(kBi), then the final key, kA and kB, is ε-secure. Also, Alice (Bob)
could obtain kA (kB) by using the reconstruct protocol of a VSS (see
Methods section). That is, Alice (Bob) could use majority voting to
obtain the shares kAij and kBij′ of kA (kB) from kAi′ij (kBi′′ij′) for all i= 1,
…,M and j= 1,…,q (j′= 1,…,q′), and she (he) calculates kA ¼
�M

i¼1 �q
j¼1 kAij ðkB ¼ �M

i¼1 �q0
j0¼1 kBij0 Þ where q (q′) is the total

number of shares of kAi (kBi) for each i.
Our results are summarised in the following Claim, whose proof

is directly from the definition of Protocol 3:

Claim 3.
Suppose that Alice and Bob have n pairs of QKD modules and Alice
(Bob) has s (r) classical post-processing units. Suppose that up to t <
n pairs of QKD modules, up to t′ < s/3 classical post-processing units
of Alice, and up to t′′ < r/3 classical post-processing units of Bob
could be corrupted. Let M ≤ n denote the number of pairs of QKD
modules that do not abort and whose raw key can be transformed
into a supposedly (ε/n)-secure key, and let N bits be the length of
such key. Then Protocol 3 allows Alice and Bob to distil an ε-secure
key of length (M− t) × N bits. Moreover, the re-use of the devices
does not compromise the security of the keys distilled in previous
QKD runs.
We remark that if we disregard the cost of authenticating the

classical channels between Alice and Bob’s classical post-
processing units, Protocol 3 is optimal with respect to the resulting
secret key length, in the sense that no other protocol can deliver a
higher key rate for the scenario considered. The argument follows
directly from that used in the subsection above that evaluates
QKD with malicious QKD modules, where we showed that if the
classical post-processing units are trusted the secret key rate is
upper bounded by (M− t) × N bits. So, in the presence of
corrupted classical post-processing units this upper bound also
trivially holds.
Moreover, we note that, like in the case of Protocol 2, the cost of

authenticating the classical channels between the units CPAi′ and
CPBi′′ in Protocol 3 is also relatively small even when n, s and r are
fairly large. Indeed, if we assume again the symmetric scenario
where s= r and t′= t′′, it can be shown that this authentication
cost is now roughly � sð2t0 þ 1Þðnkau þ k0paÞ bits, where kau
denotes again the authentication cost in the trusted scenario
(i.e., when n= s= 1 and t= t′= 0). The term ns(2t′+ 1)kau comes
mainly because here we run n times Protocol 2, each time for a
different pair of modules QKDAi and QKDBi. The term s(2t′+ 1)k0pa,
on the other hand, considers the authentication cost of step 3 in
Protocol 3. This step requires that 2t′+ 1 units CPAi' send the
function hP to all the s CPBi'′′, being the term k0pa logarithmic in the
size of the message sent. That is, the overall cost of authentication
of Protocol 3 is only about ≈ns(2t′+ 1) times that of a standard

Fig. 7 QKD with malicious QKD modules and classical post-
processing units. Alice and Bob have n pairs of QKD modules,
QKDAi and QKDBi, and up to t < n of them could be corrupted. They
generate, respectively, the raw key k0Ai and k0Bi and the protocol
information pAi,info and pBi,info. Also, Alice (Bob) has s (r) classical post-
processing units CPAi′ (CPBi′′) with i′= 1,…,s (i′′= 1,…,r), and up to t′
< s/3 (t′′ < r/3) of these units could be corrupted. The goal is to
produce shares of an ε-secure key, kA and kB, from which the final
key could be reconstructed. This can be achieved by using Protocol
3. See the main text for further details. In the figure, k0Ai0 ij ðk0Bi00 ijÞ
denotes the jth share of k0Ai k0Bi

� �
which QKDAi (QKDBi) sends to CPAi′

(CPBi′′), and kAi′ij (kBi′′ij) identifies the shares of kA (kB) that are
produced by CPAi′ (CPBi′′)
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QKD scheme with honest devices, which demonstrates the
practical feasibility of our approach.

DISCUSSION
Security proofs of QKD typically assume that all devices are honest
and there are no covert channels that leak information to Eve.
Unfortunately, however, these assumptions are very hard, if not
impossible, to guarantee in practice. Indeed, our work highlights
the folly of bringing an untrusted device into a trusted lab, which
has been known since the time of the Trojans.
Memory attacks25 constitute an example of how covert

channels can severely jeopardise the security of both DI-QKD
and non-DI-QKD. These attacks demonstrate that quantum
mechanics alone is not enough to guarantee the security of
practical QKD realisations but, for this, one needs to resort to
additional assumptions. Also, recent results on Trojan Horse
attacks31–36,69,70 against conventional cryptography underline the
vulnerabilities of the classical post-processing units in QKD, and
this threat is expected to only rise with time.
In this paper, we have introduced a simple method to reduce

the risk due to this type of attacks; it is based on the idea of
classical error correction via redundancy. We use the assumption
that, for Eve, it might be more difficult to tamper with several
devices from different vendors than corrupting just one QKD
device from a single vendor, which indeed is probably the best
Alice and Bob can hope for. With this assumption in place, and
given that there is at least one pair of honest QKD modules and
that the number of corrupted classical post-processing units is less
than one-third of them, we have shown how VSS schemes,
together with privacy amplification techniques, could be used to
reliable distribute a secret key in the presence of malicious devices
and thus re-establish the security of QKD.
VSS and SS techniques have been used previously in quantum

information.71–73 For instance, the authors of refs. 71,72 proposed a
quantum version of VSS to achieve secure multiparty quantum
computation, while in ref. 73 classical SS schemes are combined
with QKD to achieve information-theoretically secure distributed
storage systems.
A key insight of our paper is very simple yet potentially very

useful: the typical classical post-processing in QKD involves only
operations which are “linear” in nature, and thus they could be
easily implemented in a distributed setting by acting on data
shares from say a linear VSS scheme. Also, our results suggest that
the way QKD is sometimes envisioned commercially (e.g., as a
single “box” which directly outputs the final keys),74 should
perhaps be replaced with a “modular design”, where one divides
up a QKD system into various modules (e.g., purely quantum
modules and classical post-processing units) and use them to
cross-check each other for security, which can be done in an
independent manner as we have shown above.
To illustrate our results, we have proposed specific protocols for

three scenarios of practical interest. They assume that either the
QKD modules, the classical post-processing units, or both of them
together could be corrupted. Remarkably, if we disregard the cost
of classical authentication, all these protocols are optimal with
respect to the secret key rate. They use the VSS scheme
introduced in ref. 41 which is very simple to implement. Its main
drawback is, however, that, for a given number of corrupted
parties, the number of shares grows exponentially with the total
number of parties. Nevertheless, for a small number of parties
(which is the scenario that we are interested in QKD), the protocol
is efficient in terms of computational complexity. Also, we remark
that there exist efficient three-round VSS protocols where the
computation and communication required is polynomial in the
total number of parties.75 Moreover, these schemes use a
minimum number of communication rounds,76 and they could
also be used here. It would be interesting to further investigate

the most resource efficient protocols to be used in the QKD
framework.
Finally, we would like to emphasise that our approach does not

jeopardise the potential practical advantages of QKD over classical
competitors in any way. Indeed, as we have already mentioned
previously, covert channels constitute a fundamental problem for
conventional cryptography as well. To foil covert channels
is therefore equally essential for both frameworks. This means
that redundancy will be needed in both scenarios and, thus, our
work does not shift the balance of power between them in any
sense.

METHODS
Secure multiparty computation toolbox
Here we briefly introduce some definitions and cryptographic protocols
that are used in the main text; they are mainly taken from refs. 38,41

We consider a scenario with a dealer and n parties, and we suppose a
threshold active adversary structure where Eve can actively corrupt the
dealer and up to t of the parties. Active corruption means that Eve can fully
control the corrupted parties whose behaviour can deviate arbitrarily from
the protocol’s prescriptions. We refer the reader to the Supplementary
Note 3 for the modelling of more general adversary structures. For
simplicity, we assume that all messages are binary strings and the symbol
⊕ below denotes bit-wise XOR or bit-wise addition modulo 2. We remark,
however, that the the protocols below work as well over any finite field or
ring.
In this scenario, a n-out-of-q threshold SS scheme77,78 is a protocol that

allows the dealer to split a message m between n parties such that, if he is
honest, any group of q or more parties can collaborate to reconstruct m
but no group with less than q parties can obtain any information about m.
If n= q, this could be achieved by splitting m into a random sum of q
shares mi. That is, one selects the first q− 1 shares mi of m at random, and
then chooses mq=m ⊕ m1 ⊕…⊕ mq−1.

38

A drawback of SS schemes is that they do not guarantee the
consistency of the shares, which is essential to assure the correctness of
the keys delivered by the QKD protocols in the main text. That is, during
the reconstruct phase of a SS scheme, corrupted parties could send
different mi to the honest parties such that they obtain different values
for m. This problem can be solved with VSS schemes,42,43 which
distribute mi in a redundant manner such that the honest parties can use
error correction to obtain the correct values. Indeed, provided that the
necessary and sufficient conditon t < n/3 is satisfied, a VSS scheme
guarantees that there exists a well-defined m that all honest parties obtain
from their shares.39–41

The share and reconstruct protocols of a VSS scheme satisfy three
conditions. First, independently of whether or not the dealer is honest, if
the share protocol is successful then the reconstruct protocol delivers the
same m to all the honest parties. Second, if the dealer is honest, the value
of the reconstructed m coincides with that provided by the dealer. And
third, if the dealer is honest, the information obtained by any set of t or less
parties after the share (reconstruct) protocol is independent of any
previous information that they held before the protocol (is just the
reconstructed bit string m). Below we present a simple VSS scheme that
builds on the q-out-of-q threshold SS protocol above,41 and which we use
in Protocols 2 and 3. Importantly, given that t < n/3, this scheme provides
information-theoretic security.41 See the Supplementary Note 1 and the
Supplementary Figure 1 for a graphical representation of its share and
reconstruct protocols.
Share protocol:

1. The dealer uses a q-out-of-q SS scheme to split m into q ¼ n
n� t

� �
shares mi, with i= 1,…,q.

2. Let {σ1,…,σq} denote all (n− t)-combinations of the set of n parties.
Then, for each i= 1,…,q, the dealer sends mi over a secure channel
(i.e., a channel that provides secrecy and authentication) to each
party in σi. If a party does not receive his share, he takes as default
share say a zero bit string.

3. All pairs of parties in σi send each other their shares mi over a secure
channel to check if they are indeed equal. If an inconsistency is
found, they complain using a broadcast channel.

4. If a complaint is raised in σi, the dealer broadcasts mi to all parties
and they accept the share received. Otherwise, the protocol aborts.
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Reconstruct protocol:

1. All pairs of parties send each other their shares over an
authenticated channel.

2. Each party uses majority voting to reconstruct the shares mi ∀i, and
then obtains m ¼ �q

i¼1mi .

From the description above, it is guaranteed that when the share
protocol is successful (i.e., it does not abort), all the honest parties who
received the ith share of m obtain exactly the same bit string mi. Also, this
protocol assures that any share mi of m is distributed to at least 2t+ 1
different parties. This is so because this is the minimum size of any set σi.
This means, in particular, that, since the number of corrupted parties is at
most t, the use of a decision rule based on majority voting in the
reconstruct protocol permits all the honest parties to obtain the same fixed
mi for all i. Moreover, it is straightforward to show that when the dealer is
honest, the reconstructed message m is equal to his original message.
Furthermore, we have that m is only revealed to the parties once the
reconstruct phase ends. This is so because at least one bit string mi is only
shared by honest parties since there is at least one set σi which does not
contain any corrupted party. Also, note that if a complaint is raised in a
certain σi during the share protocol, the fact that the dealer broadcastmi to
all parties does not violate secrecy. This is so because a complaint can only
occur if either the dealer is corrupted or σi contains at least one corrupted
player, hence the adversary knew mi already.
We remark that the broadcast channel which is required in steps 3 and 4

of the share protocol can be a simulated channel. Indeed, given that t < n/
3, there exist efficient poly(n) protocols that can simulate a broadcast
channel with information-theoretic security in an optimal number of t+ 1
communication rounds.79,80 Furthermore, if a physical broadcast channel is
actually available, there exist efficient information-theoretically secure VSS
schemes that only require a majority of honest parties (i.e., t < n/2) and
which could also be used in this context.43

Next we present a simple scheme to generate a common perfectly
unbiased random l-bit string (RBS) r between n parties when up to t < n/3
of them could be corrupted. It follows directly from VSS.39–41 For
convenience, we call it the RBS protocol. We use it to randomly select
universal2 hash functions in Protocols 2 and 3 in the main text, where we
cannot assume the existence of an external honest dealer which provides
them to the QKD devices. The RBS scheme allows mutually untrusted
parties to generate and share random numbers through discussions.
RBS protocol:

1. Say each of the first t+ 1 parties produces locally a random l-bit
string ri and sends it to all the other parties using the share protocol
above.

2. Each party uses a broadcast channel to confirm that they have
received all their shares from the first t+ 1 parties. Otherwise, the
protocol aborts.

3. All parties use the reconstruct protocol above to obtain ri for all i= 1,
…,t+ 1. Afterward, each of them calculates locally r ¼ �tþ1

i¼1 ri .

It is straightforward to show that this protocol guarantees that all honest
parties share a perfectly unbiased random bit string r. The use of the share
and the reconstruct protocols of a VSS scheme assures that all honest
parties reconstruct the same ri ∀i and thus the same r. In addition, step 2 of
the protocol guarantees that the first t+ 1 parties generate and distribute
their strings ri before knowing the strings of the other parties. Moreover,
since the number of corrupted parties is at most t, we have that at least
one honest party generates a truly random bit string ri, and thus r is also
random.

Protocol 2
Here we present the different steps of Protocol 2 in detail. For
concreteness, whenever we refer to the share and reconstruct protocols
of a VSS scheme we mean those presented in the previous section, which
have been introduced in ref. 41 but in principle any VSS scheme could be
used.
Also, to simplify the discussion, in Protocol 2 we consider the case where

pA,info and pB,info determine the sifting procedure of the QKD scheme in a
deterministic way. That is, there is no random post-selection of data from
the raw key. In addition, we assume that Alice and Bob do not estimate the
actual QBER but they apply error correction for a pre-fixed QBER value
followed by an error verification step. However, we remark that Protocol 2
could be straightforwardly adapted to cover also these two scenarios.

1. Generation and distribution of shares of raw keys and protocol
information: QKDA and QKDB obtain, respectively, the raw keys k0A
and k0B and the protocol information pA,info and pB,info, or the abort
symbol ⊥. If the result is different from ⊥, QKDA uses the share

protocol of a VSS scheme to create q ¼
� s
s� t0

	
shares of k0A and

distributes them among the CPAi, with i= 1,…,s. Likewise, QKDB

creates q0 ¼
� r
r � t00

	
shares of k0B and distributes them among the

CPBi′, with i′= 1,…,r. Let k0Aij (k
0
Bi0 j0 ) be the jth (j′th) share of k0A k0B

� �
received by CPAi (CPBi′), with j= 1,…,q (j′= 1,…,q′). Also, QKDA

(QKDB) sends pA,info (pB,info) to all CPAi (CPBi′). Since by assumption
QKDA (QKDB) is honest, all CPAi (CPBi′) receive the same pA,info (pB,info)
and the shares k0Aij ðk0Bi0 j0 Þ are equal for all i (i′). Next, say the first 2t′′
+ 1 CPBi′ send pB,info to all CPAi. Likewise, say the first 2t′+ 1 CPAi
send pA,info (for the detected events) to all CPBi′. Each CPAi (CPBi′)
uses majority voting to determine pB,info (pA,info) from the informa-
tion received. Note that since by assumption the number of
corrupted units CPAi (CPBi′) is at most t′ (t′′), 2t′+ 1 (2t′′+ 1) copies
of pA,info (pB,info) is enough for the honest parties to be able to
reconstruct the correct value of these bit strings by using majority
voting.

2. Sifting Each CPAi uses pA,info and pB,info to obtain two bit strings, kAij,
key and kAij,est, from k0Aij . The former (latter) bit string is the part of k0Aij
that is used for key generation (parameter estimation). Likewise,
Bob’s CPBi′ do the same with k′Bi′j′ and obtain kBi′j′,key and kBi′j′,est.

3. Parameter estimation: All CPAi (CPBi′) use the reconstruct protocol of
a VSS scheme to obtain kA,est (kB,est), which is the part of k0A k0B

� �
that

is used for parameter estimation. For this, they send each other their
shares kAij,est (kBi′j′,est), and each of them uses majority voting to
obtain kAj,est (kBj′,est) for all j= 1,…,q (j′= 1,…,q′). Afterward, they
calculate kA;est ¼ �q

j¼1kAj;est (kB;est ¼ �q0
j0¼1kBj0 ;est). Next, say the first 2t′

′+ 1 CPBi′ send kB,est to all CPAi. Likewise, say the first 2t′+ 1 CPAi
send kA,est to all CPBi′. Finally, by using majority voting each CPAi
(CPBi′) determines kB,est (kA,est). With pA,info, pB,info, kA,est and kB,est,
each CPAi and CPBi′ performs locally the parameter estimation step
of the protocol (e.g., they estimate the phase error rate). If the
estimated values exceed certain tolerated values, they abort.

4. Error correction: The CPAi and CPBi′ perform error correction (for a
pre-fixed QBER value) on the parts of k0A and k0B that are used for key
distillation, which we denote by kA,key and kB,key, by acting on their
shares kAij,key and kBi′j′,key respectively. For this, each CPAi (CPBi′)
applies certain matrices MEC to kAij,key (kBi′j′,key) to obtain sAij=MECkAij,
key (sBi′j′=MECkBi′j′,key). Afterward, the CPAi (CPBi′) use the reconstruct
protocol of a VSS scheme to obtain sA=MECkA,key (sB=MECkB,key).
That is, all CPAi (CPBi′) first send to each other the bit strings sAij (sBi′j′),
and each of them uses majority voting to reconstruct locally sAj (sBj′)
∀j (j′) from sAij (sBi′j′). Then, each CPAi (CPBi′) obtains sA ¼ �q

j¼1sAj

sB ¼ �q0
j0¼1sBj0

� 	
. Next, say the first 2t′+ 1 CPAi send sA to all CPBi′,

and each CPBi′ uses majority voting to determine sA from the
information received. Finally, Bob corrects kB,key. For this, say all CPBi′
which have the j′th share kBi′j′,key for a pre-fixed index j′= 1,…,q′, flip
certain bits of this share depending on the actual values of sA and sB.
This whole process is repeated until the error correction procedure
ends. Let k̂Aij;key and k̂Bi0 j0 ;key denote the shares kAij,key and kBi′j′,key
after error correction, and let leakEC bits be the syndrome
information interchanged between Alice and Bob during this step.
That is, k̂Aij;key and k̂Bi0 j0 ;key are actually equal to kAij,key and kBi′j′,key
except for the bit strings kBi′j′,key whose bits have been flipped
during error correction.

5. Error verification: All CPAi and CPBi′ check that the error correction
step was indeed successful. For this, the CPAi use the RBS scheme
introduced in the previous section to randomly select a universal2
hash function, hV. Then, they compute a hash hAij ¼ hVðk̂Aij;keyÞ of
length [log2 (1/εcor)] bits, and each CPAi uses the reconstruct
protocol of a VSS scheme to obtain hA ¼ �q

j¼1hAj from hAij. That is,
they send each other hAij and they use majority voting to determine
hAj ∀j from hAij. Next, say the first 2t′+ 1 CPAi send hV and hA to all
CPBi′, which determine the correct values of these two quantities by
means of majority voting. Also, the units CPBi′ use the reconstruct
protocol of a VSS scheme to obtain hB ¼ �q0

j0¼1hBj0 . Finally, each unit
CPBi′ checks locally whether or not hA= hB. If they are not equal, the
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protocol aborts. If they are equal, it is guaranteed that the bit strings
k̂A;key ¼ �q

j¼1k̂Aj;key and k̂B;key ¼ �q0
j0¼1k̂Bj0 ;key are equal except for a

minuscule probability εcor, where k̂Aj;key ðk̂Bj0 ;keyÞ are obtained from
k̂Aij;key ðk̂Bi0 j0 ;keyÞ by using majority voting.

6. Generation of shares of an ε-secure key: All CPAi and CPBi′ extract from
k̂A;key and k̂B;key the shares of an εsec-secret key, kA and kB. For this,
the CPAi use the RBS scheme to randomly select a proper universal2
hash function, hP. Next, they obtain kAij ¼ hPðk̂Aij;keyÞ and say the first
2t′+ 1 CPAi send hP to all CPBi′. Bob’s CP units use majority voting to
determine hP from the information received and they calculate
kBi0 j0 ¼ hPðk̂Bi0 j0 ;keyÞ. The function hP removes Eve’s information from
k̂A;key, which includes the syndrome information leakEC disclosed
during error correction, the hash value of length [log2 (1/εcor)] bits
disclosed during error verification, and Eve’s information about the
key according to the estimated phase error rate.

From the description of Protocol 2 we have that when t′ <MA/3 and t′′ <
MB/3, where MA (MB) denotes the number of CPAi (CPBi′) that do not abort,
then the final key, kA and kB, is ε-secure. This is so because the condition t′
<MA/3 (or, equivalently, s− t′− (s−MA) > 2t′) guarantees that for all j= 1,
…,q, there are at least 2t′+ 1 units CPAi which send shares kAij to Alice. To
see this, note that each share kAj, for all j, is held by s− t′ units CPAi, and by
assumption we have that at most s−MA of them could have aborted. A
similar argument applies to the condition t′′ <MB/3.
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