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Abstract. In this paper we study the Mori fan of the Dolgachev–Nikulin–Voisin family in degree
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dimensional cones of the two fans.
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1. Introduction

To construct modular compactifications of the moduli space F2d of polarized K3 surfaces of degree
2d is a notoriously difficult problem. This has been studied from various aspects, such as Hodge theory,
locally symmetric domains, GIT and log-geometry. For small degree d = 1,2,3 these K3 surfaces can be
studied via concrete geometric models, namely 2 : 1 covers of the projective plane P

2 branched along a
sextic curve, degree 4 surfaces in P

3 and complete (2,3) intersections in P
4 respectively. Various authors

have used this approach to construct compactifications of F2d in these degrees and to relate the various
models to each other. Here we would like to mention in particular the works of Shah [Sha80], Friedman
[Fri83], Looijenga [Loo86], Laza [Laz08, Laz16], Laza-O’Grady [LO18, LO16, LO21], Thompson [Tho14] and
Alexeev–Engel–Thompson [AET19].

Some years ago Gross, Hacking, Keel and Siebert [GHKS] introduced a new approach. This is based on
two main concepts: mirror symmetry and the minimal model program (MMP). They start by considering
the mirror family of F2d . This is a 1-dimensional family of lattice polarized K3 surfaces which in the
literature is called the Dolgachev–Nikulin–Voisin family of degree 2d. The base of this family is a modular
curve which, if d is squarefree, has exactly one cusp. The lattice polarization is given by the lattice
M̌2d =U ⊕ 2E8(−1)⊕ 〈−2d〉 where U is the hyperbolic plane and E8(−1) is the negative definite E8 lattice.
The first step in their programme is to extend the Dolgachev–Nikulin–Voisin family over the cusp and to
consider the various models by which this can be done. This allows them to define the Mori fan of the
Dolgachev–Nikulin–Voisin family, which is a fan in N1(Y /S)

R
, where Y → S is a model of the Dolgachev–

Nikulin–Voisin family, a scheme of dimension 19 + d, with base S = SpecC[[t]]. The second step is to use a
piecewise linear section of the restriction map r : Pic(Y )→ Pic(Yη), where Yη the Dolgachev–Nikulin–Voisin
family over a punctured neighbourhood of the cusp, to obtain a fan in the hyperbolic space (M̌2d)

R
. An

important aspect of their work is the construction of a universal family (at least over a neighbourhood of
the 0-dimensional cusps). A detailed description of the GHKS programme for K3 surfaces is contained in
[GHKS]. Zhu [Zhu18] has carried this out in the case of polarized abelian varieties and has shown that this
approach can be used to recover the second Voronoi compactifiation of Ag , which is known to be a modular
compactification by the work of Alexeev [Ale02] and Olsson [Ols12].
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Our aim is to start a concrete investigation of the GHKS approach for small degree. To be precise, we
want to understand the first step in the GHKS programme in degree 2. As it turns out this is a nontrivial
problem in its own right. The main result of our paper is a concrete description of the Mori fan of the
Dolgachev–Nikulin–Voisin family in degree 2. Concretely, we enumerate the maximal dimensional cones
and prove the following:

Theorem 1.1. Let Y → S be a model of the Dolgachev–Nikulin–Voisin family of degree 2. Then MF(Y /S) has
3460 maximal cones. Of these 753 are associated to a model of class T and 2707 are associated to a model of
class P . The number of orbits of maximal cones of MF(Y /S) under the natural action of the birational group
Bir(Y /S) is 588. The orbits decompose into 457 orbits of models of class P and 131 orbits of models of class T .

This is a consequence of Theorems 7.7, 7.13, and 7.15. Here class P and class T refer to the combinatorial
structure of the central fibre, which in turn correspond to the two possible triangulations of the sphere S2

into two triangles.
As we explained earlier, the GHKS programme aims at constructing (semi-)toroidal compactifications of

moduli spaces of polarized K3 surfaces. This means constructing (semi-)fans covering the rational closure of
the real positive cone C+(M̌2d). Such fans consist of infinitely many cones, decomposing into finitely many
orbits under the action of the orthogonal group O+(M̌2d). This construction (see [GHS16, Sections 6–8]
and [HLL20, Section 5] for more details) is based on the Mori fan MF(Y /S). In our paper we work with a
fixed model Y /S for degree 2d = 2 (but our results are independent of the choice of such a model). This
eventually leads to finitely many cones contained in a fixed Weyl chamber in the positive cone C+(M̌2d).
The action of the Weyl group of O(M̌2) then gives rise to infinitely many cones. We would also like to
point out that the lattice M̌2d is a reflexive lattice if and only if 2d = 2. Equivalenty, Bir(Y /S) � Aut(Yη) is
finite if and only if 2d = 2 (in which case it is isomorphic to S3). In this case the Weyl chamber is rational
polyhedral.

We also investigate the so called secondary fan which was used by Hacking, Keel and Yue [HKY20] and is
a generalisation of the secondary fan for toric varieties due to Gelfand–Kapranov–Zelevinskij [GKZ94]. This
is a coarsening of the Mori fan. Its relevance is that in the del Pezzo case the toric variety defined by the
secondary fan admits a finite morphism to the moduli space of stable pairs. Note that for toric varieties, the
secondary fan and the Mori fan coincide.

As there is no published proof available that the secondary fan is indeed a fan in the K3 setting, we will
include a proof of this fact using the techniques of our paper and we will also compute its maximal cones:

Theorem 1.2. Let Y → S be a model of the Dolgachev–Nikulin–Voisin family of degree 2. The secondary fan
contains precisely 4 maximal cones. There are 2 orbits of maximal cones under the natural action of Bir(Y /S).

This is Theorem 8.10 and Remark 8.12.

We shall now briefly describe the structure of this paper. We start in Section 2 by recalling the theory of
mirror symmetry for lattice polarized K3 surfaces, which is due to Dolgachev, Nikulin and Pinkham.

We then recapitulate the basics of the degeneration theory of K3 surfaces as developed by Carlson,
Friedman, Kulikov, Persson, Pinkham, Scattone and others. This allows us to define the notion of the
Dolgachev–Nikulin–Voisin family of degree 2d > 0 and their models in Definitions 2.20 and 2.22, following
[GHKS]. We further recall the relation between triangulations of the sphere S2 and d-semistable models in
(−1)-form of the Dolgachev–Nikulin–Voisin family of degree 2d with maximal Picard rank for which we
describe the geometry of the special fibres in detail (Construction 2.25). We also prove that these surfaces
and their maximal smoothings are projective (Propositions 2.27 and 2.28). Finally we discuss the (−1)-models
in degree 2 in detail. In Section 3 we start by recalling some basic facts of the minimal model program and
introduce the main object of this paper, the Mori fan of the Dolgachev–Nikulin–Voisin family (Definition 3.2).
We describe its main properties in (Proposition 3.4), due to the work of Gross, Hacking, Keel and Siebert.
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Next we explain the relationship between interior facets and flops (Proposition 3.9) and finally discuss the
action of the group of birational automorphisms on the Mori fan (Proposition 3.10).

In Section 4 we mostly specialise to degree 2. Corresponding to the two triangulations of the sphere S2

with two triangles we have two possible d-semistable K3 surfaces in (−1)-form, which we denote YP and
YT respectively. We shall consider all models whose central fibres can be transformed by a series of type
I flops into YP or YT , and call these models of type P and type T respectively. As we shall see later,
see Corollary 6.33, these are all models in degree 2. The main object of this section is a detailed analysis
of the configuration of certain curves forming an anticanonical divisor on components of the central fibre
of a given model of the Dolgachev–Nikulin–Voisin family. This leads to the notion of curve structure, see
Definition 4.10 and will also provide us with a natural Q-basis of the Picard group of the normalisations of
the central fibre (Proposition 4.17). The main application will be existence theorems of ample line bundles
of prescribed degree on the components of the anticanonical divisor (Propositions 4.30, 4.31 and 4.31 ).
This discussion will become vital in Section 5 where we prove projectivity criteria for models of type T

(Proposition 5.1) and type P (Propositions 5.2, 5.3, 5.4 and 5.5 ).

Section 6 is in many ways the technical heart of the paper. Here we analyse flops between models of
the Dolgachev–Nikulin–Voisin family in some detail and study the action of the birational automorphism
group on the Mori fan. For this we introduce various concepts describing (augmented) curve structures (see
Definitions 6.17, 6.18 and Construction 6.23). This allows us to establish two crucial facts about models of
the Dolgachev–Nikulin–Voisin family in degree 2. The first we have already mentioned above, namely that
any such model can be related by type I flops to a model of type P (or equivalently T ) (see Corollary 6.33).
The second is that any two models of the Dolgachev–Nikulin–Voisin family can be transformed into each
other using only type I and type II flops (Corollary 6.34). We note that these results are specific to degree
2. Finally, this enables us to study the action of the birational automorphism group of a model of the
Dolgachev–Nikulin–Voisin family on the Mori fan. In Proposition 6.43 we determine the possible orbit
lengths of maximal cones of this fan under the birational automorphism group, which can be 1, 3 or 6.

In Section 7 we finally enumerate all models of the Dolgachev–Nikulin–Voisin family in degree 2 and
determine the maximal cones in the Mori fan (Theorem 7.15). This section is rather combinatorial in
nature. To obtain our result we use the tools which we have developed before, in particular we use curve
structures: these allow us to characterise the isomorphism classes of the central fibres of projective models of
the Dolgachev–Nikulin–Voisin family. This allows us an explicit enumeration of the models. The second
ingredient is the action of the birational automorphism group and its action on the set of maximal cones
in the Mori fan which we analysed in the previous section. The main result then follows from a careful
enumeration of all models, which we do for types P (Theorem 7.8) and T (Theorem 7.7) separately. In
Section 8 we finally describe the secondary Mori fan. In this section we give a fairly elementary proof that
the secondary fan is indeed a fan and compute its maximal cones (Theorem 8.10).

Throughout the paper we will work over the complex numbers C.
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2. The Dolgachev–Nikulin–Voisin mirror of degree 2d: definition and
construction

2.1. The Dolgachev–Nikulin–Voisin mirror of degree 2d

We first recall the mirror construction due to Dolgachev [Dol96] and Pinkham [Pin77] for polarized K3
surfaces, using Nikulin’s theory of lattice polarized K3 surfaces [Nik79]. This was motivated by the papers
by Lian and Yau [LY96a, LY96b]. A further contribution using K3 surfaces is due to Voisin [Voi93]. For
the basic facts about K3 surfaces and their moduli which we will need, we refer the reader to e.g. [Huy16],
[BHPV04, Section VIII] and [GHS15]. The second cohomology group of a K3 surface, together with the cup
product (intersection pairing), define a lattice which is isomorphic to the K3-lattice

LK3 = 2E8(−1)⊕ 3U

where U is the hyperbolic plane and E8(−1) is the even negative definite unimodular lattice of rank 8. A
polarization on X is an ample line bundle L and, since K3 surfaces are regular, we can identify a polarization
with its first Chern class h = c1(L) ∈H2(X,Z). We assume h to be primitive and of degree h2 = 2d > 0. We
note that the group of isometries of the K3 lattice operates transitively on the set of primitive vectors of
given positive degree. Instead of working with the degree of a polarization we will often also use its genus,
by which we mean the genus of a general element in the linear system defined by L. The genus g and the
degree 2d are related by the adjunction formula 2g − 2 = 2d. Note that degree 2 coincides with genus 2.

The moduli theory of K3 surfaces builds on the Torelli theorem. To describe this, we first notice that the
orthogonal complement of h in LK3 defines a lattice

L2d � 2E8(−1)⊕ 2U ⊕ 〈−2d〉.

We obtain the period domain Ω2d by

Ω2d = {x ∈ P(L2d ⊗C) | x2 = 0,〈xx̄〉 > 0}.

This is a 19-dimensional manifold which has two connected components of which we fix one, say D2d . A
quasi-polarized K3 surface is a pair (X,L) where L is big and nef. Recall that a multiple of L will embed X
as a K3 surface with ADE-singularities. It is a classical application of the Torelli theorem that the moduli
space of degree 2d polarized K3 surfaces with ADE-singularities is isomorphic to the quotient

F2d = Γ2d\Ω2d = Γ +
2d\D2d

where

Γ2d = {g ∈O(LK3) | g(h) = h}

is the group of all isometries of LK3 which fix the polarization h and Γ +
2d is the subgroup of elements of

real spinor norm 1 (which is equivalent to the property that these elements fix the components of Ω2d .) To
obtain the moduli space of all polarized K3 surfaces one has to remove finitely many hyperplanes from F2d ,
see e.g. [BHPV04, p. 355].

To simplify the following discussion we will now assume that d is square free. Then we have a well defined
mirror moduli space which was described in [Dol96, §6]. This parameterizes lattice polarized K3 surfaces of
Picard rank 19 whose Picard lattice is isomorphic to

M̌2d =U ⊕ 2E8(−1)⊕ 〈−2d〉

and we note that

(2.1) L2d = h⊥LK3
= M̌2d ⊕U.
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By Nikulin’s theory the lattice M̌2d has a unique primitive embedding into the K3 lattice LK3 (up to
isometries), and here we fix once and for all the obvious embedding, which maps a generator of the summand
〈−2d〉 to e − df in a summand U , where e, f are a basis of U with e2 = f 2 = 0 and e · f = 1. Similar to
above, this leads to the moduli space

F̌2d = Γ̌2d\Ω(M̌2d )⊥LK3

where
Γ̌2d = {g ∈O(LK3) | g |M̌2d

= id}

is now the group of all isometries of LK3 which restrict to the identity on M̌2d . In our case

(2.2) (M̌2d)⊥LK3
=U ⊕ 〈2d〉

and this is dual to relation (2.1). The period domain Ω(M̌2d )⊥LK3
is 1-dimensional, more precisely it is two

copies of the upper half plane H1 (which are interchanged by the group Γ̌2d ). Hence F̌2d is a connected
(non-compact) modular curve. Mirror symmetry interchanges the roles of complex moduli and Kähler
moduli. This corresponds to the fact that the mirror moduli space F̌2d is one dimensional and that the very
general K3 surface in F̌2d has Picard group M̌2d .

Since we assumed that d is square-free it follows from Scattone’s calculations in [Sca87, §4], that there
is a unique 0-dimensional boundary component in the Baily-Borel compactification of F2d . By [Dol96,
Proposition 7.3] the same is true for F̌2d . The mirror family which we are interested in is the universal family
over F̌2d near the cusp. This requires an explanation. The moduli spaces F2d and F̌2d do not carry universal
families in the category of schemes (due to the existence of non-trivial automorphisms). Nevertheless, this
concept can be made precise in the neighbourhood of the cusp and we will do this below where we define
the Dolgachev–Nikulin–Voisin mirror family in a rigorous way, see Definition 2.20. In what follows, we will
typically work in the following situation. Let (R,m) be a local complete DVR with residue field k = R/m.
We will always assume here that k = C. Let K = Q(R) be the field of fractions of R. We set S = Spec(R).
Typically we will work with the completion R = ÔC,p of the local ring of an affine curve. We denote by
0 = Spec(k) the closed point of S and by η = Spec(K) the generic point of S . It will essentially be enough
to consider the case R = C[[t]] of formal power series whose field of fractions is the field K = C((t)) of
Laurent series. Indeed, if (C,p) is a curve germ, then we can choose a local parameter π, and this defines
an isomorphism of k-algebras R→ ÔC,p. If Y → S is a scheme over S, then we denote the generic fibre
by Yη and the special (central) fibre by Yc. Alternatively, we can also work in the analytic category and
consider families Y →D over the disc and their restriction to the origin 0 ∈D and the punctured disc D∗

respectively. We will sometimes use the analytic category in proofs.
In this paper we will use the term normal crossing to denote a scheme which is locally (not necessarily

globally) normal crossing with reduced components. We say that a normal crossing scheme Y is smoothable
if there exists a regular scheme Y , a proper flat map Y → S and an isomorphism Yc � Y . In this case the
restriction of the normal bundle of Yc in Y to the singular locus D of Yc is trivial:

ND :=NYc/Y |D = OY (Yc)|D � OD .

The line bundle ND is called the infinitesimal normal bundle and can also be defined purely in terms of the
singular scheme Y by using the normal bundle of the components of D in the respective components of
Y , see [Fri83, §1]. We say that Y is d-semistable if ND is trivial which is a non-trivial condition if we just
consider an abstract surface Y . The triviality of ND is a necessary condition for smoothability of Y . It was
shown by Friedman that it is also sufficient [Fri83, Theorem 5.10].

We will now recall the basic facts about degenerations of K3 surfaces in so far as they are relevant for us.
This goes back to the fundamental results in this area as it was developed in the seminal work of Kulikov
[Kul77] and Persson and Pinkham [PP81] in the late 1970’s and early 1980’s. We will denote by Y a proper
normal crossing surface and by Yi the components of Y . If Y is a simple normal crossing (snc) surface, then
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the components Yi are smooth. We will, however, also allow self-intersections of the components and we will
denote the normalisation of a component Yi by Y

ν
i . As before, we will denote the singular locus of Y by D .

We set Dij = Yi ∩Yj and consider this as a curve on Yi . We also allow i = j and in this case Dii denotes the
self-intersection of the component Yi . In our case the curves Dij will always be irreducible. Intersection
numbers D2

ij will always be calculated on the normalisations Y νi . Note that this may depend on the ordering
of {i, j}.

There are three types of semi-stable degenerations of K3 surfaces, classically called type I, II and III.
The type of a degeneration is a measure of how far the Hodge structure degenerates. Type I are smooth
K3 surfaces. The building blocks of type II degenerations are rational and elliptically ruled surfaces and
the curves Dij consist of elliptic curves (which still carry some Hodge structure). The components of type
III degenerations are rational surfaces, intersecting in curves whose components are also rational. Another
characterization of the type can be given in terms of the nilpotency of the monodromy, see e.g. [Sca87, §1.2].

Our interest will be in type III degenerations. The following definitions are fundamental:

Definition 2.1 (cf. [Fri83, Definition 5.5]). A d-semistable K3 surface of type III is a normal crossing surface Y
such that

(i) Y is d-semistable
(ii) ωY = OY
(iii) Y = ∪Yi where each Yi is rational and the preimage of the double curves

∑
jDij form anticanonical

cycles of rational curves on the normalisation Y νi
(iv) The dual intersection complex of Y is a triangulation of the 2-sphere S2.

In the projective situation we make the following

Definition 2.2. A type III degeneration of K3 surfaces is a flat, projective scheme Y → S over the spectrum
S of a complete DVR, where Y is a regular 3-fold whose generic fibre Yη is a K3 surface and whose central
fibre Yc is a type III d-semistable K3 surface. We will also refer to such a family Y → S as a Kulikov model.

Remark 2.3. Note that the total space Y is Calabi-Yau, i.e. ωY = OY .

Remark 2.4. By definition the central fibre of a Kulikov model is always projective. We note, however, that
a priori Definition 2.1 does not require Y to be projective. We further remark that classically Kulikov models
were defined in the analytic category. Contrary to this, our default convention will be that we work in the
algebraic category. We will, however, occasionally also use the analytic category, in which case we say so
explicitly.

Remark 2.5. One can also consider (not necessarly projective) analytic smoothings. In the analytic category,
a type III degeneration of K3 surfaces is a morphism X →D, with D a small disc, such that the general
fibres are smooth K3 surfaces and the central fibre is a type III d-semistable K3 surface as above. In
particular, such an X is smooth. Every d-semistable surface admits an analytic smoothing by [Fri83,
Theorem 5.10].

Next, we discuss certain modifications of d-semistable K3 surfaces, the elementary modifications. Recall
that an F-flopping contraction of a threefold Y → S with trivial canonicial class, where F is a Q-Cartier
divisor, is a proper birational contraction f : Y →Z to a normal scheme (or complex analytic space) Z → S
such that the exceptional locus is of codimension at least 2 and the divisor −F is f -ample. An F-flop
of Y → S is a scheme Y+ → S together with a proper birational morphism f + : Y+ → Z such that the
birational transform F+ of F is Q-Cartier on Y+ and F+ is f +-ample and the exceptional locus of f + has
codimension at least 2. The induced birational map φ : Y d Y+ is, by abuse of language, also called a flop
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Dij

C C′

Figure 1. An elementary modification of type I

of Y . The situation can be summarized by the following diagram

Y
φ

//

f ��

Y+

f +~~
Z.

If Y → Z is the contraction of an extremal ray, then the F-flop is independent of the choice of F, see
[KM98, §6.1]. In this paper, we will always assume that a flop is given by a contraction of an extremal ray.

One can also consider flops in the analytic category. Here we will recall certain types of analytic flops, the
elementary modifications. There are three types of these, classically known as type 0, I and II [FM83]. Here
we will only be concerned with elementary modifications of type I and II. For the convenience of the reader
we will recall these here. Let Y be a d-semistable K3 surface as above. Let X →D be an analytic smoothing
over a small disc. Let C ⊂ Y be a smooth rational curve which intersects the double locus D in exactly one
point, more precisely, transversally in a point of some Dij which is a smooth point of D . The curve C lies
on a unique component Yi and we assume that C2 = −1 on the normalisation Y νi . Then one can blow up
X in C and the exceptional divisor will be isomorpic to P

1 ×P1 with normal bundle O
P

1×P1(−1,−1). The
blow-down map contracts one ruling of the exceptional divisor to C. Contracting the other ruling gives
another model X ′ →D. The exceptional divisor contracts to a curve C′ on Yj and we have flopped the
curve C to Yj . The curve C′ is again a (−1) curve on Y νj . Here we allow Yj and Yi to coincide. This defines
an elementary modification of type I, see Figure 1. This construction induces a modification ψ : Y d Y ′ of the
central fibre Y . Following standard terminology we will also refer to this induced map on the central fibre as
an elementary modification of type I .

Alternatively, let C be a smooth rational component of the double curve
∑
jDij with C

2 = −1 on both
Y νi and Y νj , where we again allow the components to coincide. Blow up X in C; the resulting exceptional

divisor will again be P1 ×P1. As before, we can contract the other ruling to obtain a degeneration X ′→D,
yielding an elementary modification of type II, see Figure 2. Again, one obtains a modification Y ′ of the
surface Y to which we will also refer to as an elementary modification of type II.

By the nature of birational geometry for threefolds, for each Kulikov model, there are in general many
birational Kulikov models. One can, however, pick out a special class of such models, namely the Kulikov
models in (−1)-form.

Definition 2.6. Let Y be a type III d-semistable K3 surface. Then we say that Y is in (−1)-form if for
each smooth double curve Dij = Yi ∩Yj , we have D2

ij =D2
ji = −1 and if Dij is singular (and hence a nodal

rational curve), then D2
ij = 1 and D2

ji = −1.

We will call a Kulikov model Y → S with central fibre Y in (−1)-form a Kulikov model in (−1)-form. Note
that by a theorem of Miranda and Morrison [MM83, Main Theorem 1.2] any analytic type III Kulikov model
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Yj

Yi

Yj

Yi

C C′

Figure 2. An elementary modification of type II

Figure 3. The refinement of a triangle of Γ ′ .

can, by a series of elementary modifications of type I and II, be brought into (−1)-form, but that (−1)-forms
are still not unique. As discussed above, one can also think of this sequence of modifications as a sequence
of modifications on the central fibre. Thus one may interpret the theorem of Miranda and Morrison as a
result on type III d-semistable K3 surfaces.

Theorem 2.7 (cf. [MM83, Main Theorem 1.2]). Let Y be a d-semistable K3 surface of type III. Then there
is a sequence Y d Z of elementary modifications of type I and II such that Z is a d-semistable K3 surface in
(−1)-form.

For future use we also want to recall the index of the monodromy. Let Y denote a d-semistable K3
surface in (−1)-form, let Γ be its dual graph, a triangulation of the sphere S2. We say Y has special n-bands of
hexagons if Γ is a refinement of another triangulation Γ ′ of S2, and is in fact obtained from Γ ′ by subdividing
each triangle of Γ ′ into n2 triangles, see Figure 3 for n = 4.

Now let Y be any d-semistable K3 surface of type III. Let Y ′ denote a d-semistable K3 surface in
(−1)-form that is obtained from Y by a sequence of elementary modifications. Let k be the largest integer
such that Y ′ has special k-bands of hexagons. Note that this number is independent of the choice of Y ′ by
[FS86, Theorem 0.5].

Definition 2.8. The integer k is called the index of Y . If k = 1, Y is called primitive.

Remark 2.9. The index is an invariant of Y that may also be defined in terms of monodromy in the analytic
setting. For details see [FS86, p. 4].

We finally have to recall some facts about the Picard group of d-semistable K3 surfaces and their
smoothings. We first start with a normal crossing surface Y = ∪Yi fulfilling the conditions of Definition 2.1
with possibly the exception that Y is d-semistable. Then there is an exact sequence

(2.3) 0→ L→
⊕
i

H2(Y νi ,Z)→
⊕
C

H2(C,Z)
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where C runs through all components of preimages of D under the normalisation Y ν → Y and L is defined
as the kernel of the right hand map given by the differences of the restrictions, see e.g. [KK98, p. 151]. By
[Laz08, Section 3.1], rankL = 18 +n, with n the number of components of Y . Obviously, Pic(Y ) ⊂ L. Recall
also from [Car80, §4] the Carlson homomorphism

cY : L→C
∗.

One way to define it is as follows, see [FS86, §3]: let W0 = W1 ⊂ W2 be the weight filtration of the
natural mixed Hodge structure on H2(Y ). We have L = (W2/W0)

Z
. Choose a section s of the projection

W2 → W2/W0 preserving the Hodge filtration and a retraction r : W2 → W0 of the inclusion W0 ⊂ W2.
Then cY = r ◦ s mod (W0)

Z
: L→ (W0)

C
/(W0)

Z
.

Its significance is that

(2.4) Pic(Y ) = ker(cY ).

We note that for each component Yi , there is an element ξi =
∑
jDij −Dji ∈ L. By results of Friedman and

Scattone [FS86, p. 25], Y is smoothable if and only if ξi ∈ ker(cY ) for all i.
We can then consider locally trivial deformations of Y , i.e. deformations X→ B, with B an analytic

set, such that each point of X has a neighbourhood U such that X|U is a product. By [FS86, §4] these are
parameterized by the Carlson map cY . The dimension of the family of locally trivial deformations is 18 +n,
where n is the number of components of Y . The condition d-stability imposes n− 1 conditions, giving a
19-dimensional family. From the relation (2.4) we obtain in particular the following result.

Lemma 2.10. Let Y = ∪Yi be a d-semistable K3 surface of type III with cY = 1. Then

Pic(Y ) �

(Li)i ∈
⊕
i

Pic(Y νi ) | degLi|C = degLj|C ,C ⊂D
ν


where Dν denotes the preimage of D under the normalisation map ν : Y ν → Y and C runs through all components
of D .

The following lemma is an application of [FS86, Lemma 5.5].

Lemma 2.11. Let Y be a d-semistable K3 surface with n components. There is a unique locally trivial d-semistable
deformation Yc of Y such that the inclusion Pic(Yc)→ L defines an isomorphism Pic(Yc) � L. This is equivalent
to the property that the Carlson homomorphism cYc is trivial, i.e. cYc = 1.

Proof. A detailed proof is in [GHKS, Section 10.4], see also [GHKS, Remark 10]. The authors use the
terminology optimal glueing in this context. The proof given there takes the work of [FS86] as a starting
point, but a more detailed analysis of the period map is required. The uniqueness result also follows
from [AE21, Proposition 5.12]. We also note that the uniqueness of Y is implicitly contained in [Laz08,
Remark 5.5]. �

Remark 2.12. We will now consider deformations Y → S of d-semistable K3 surfaces. The relevant
relative notions of divisors and cones are recalled in Section 3. Here we simply remark that under our
assumptions on S , linear equivalence over the base coincides with the usual linear equivalence, in particular
Pic(Y /S) = Pic(Y ).

The following will play an important role for us.

Proposition 2.13. Let Y be a projective type III d-semistable K3 surface with cY = 1. Then there is a unique (up
to automorphism of the base S) Kulikov model Y → S of Y such that

(2.5) rc : Pic(Y /S) � Pic(Y )
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with rc being the restriction map. Also, if k is the index and t is the number of triple points of Y then

Pic(Yη) � 2E8(−1)⊕U ⊕ 〈−t
k2 〉.

Proof. This goes back to [FS86]. If cY = 1, then Pic(Y ) � L. The surface Y also determines the invariants
t and k. Let n be the number of components of Y . Consider the divisors ξi =

∑
jDij −Dji , i = 1, . . . ,n

defined above. Note that
∑
i ξi = 0. The lattice 〈ξ1, . . .ξn|

∑
i ξi = 0〉 is a primitive sublattice of L by [FS86,

(4.13)]. Hence we can pick linearly independent divisors L1, . . . ,L19 that generate Pic(Y ) mod K . If Y → S
is a deformation with Pic(Y /S) � Pic(Y ) via restriction, then by definition Y → S is a deformation of the
tuple (Y ;L1, . . . ,L19). We shall show that there is a unique such 1-parameter deformation.

Let X→ V be the semiuniversal analytic deformation of Y as defined in the proof of [Fri83, Theorem 5.10].
By the arguments in the proof of [FS86, Lemma 5.5], the locus V ′ in the smoothing component of V where
the Li deform is 1-dimensional and smooth. Let X′ → V ′ be the restriction of the semiuniversal family.
By [Fri83, Theorem 5.10], this is a smoothing of Y . Let W ′ be the analytic algebra defining the germ V ′ ,
and let W be the completion of W ′ with respect to the maximal ideal. Then W � C[[t]]. This defines a
formal scheme Ŷ → SpfC[[t]], and by the condition that all Li deform, there is an L ∈ Pic(Ŷ ) restricting
to an ample line bundle on Y and thus by Grothendieck’s existence theorem a deformation Y → S with
S = SpecC[[t]] such that Ŷ is the completion of Y → S along Y . By construction, Pic(Y /S) � Pic(Y ) via
restriction.

We show that Y → S is a smoothing of Y . The total space of the deformation X′ → V ′ is smooth, as
follows from [Fri83, Theorem 5.10]. In particular, its local rings in closed points are regular, and thus by
[Mat89, Theorem 23.7] the local rings OŶ ,y for y ∈ Y of the formal smoothing are also regular. By the same
theorem, this implies that the stalks of OY ,y at closed points of the central fibre of Y → S are regular local
rings. This implies that Y is regular by [GW10, Remark 6.25]. In particular, the generic fibre is a smooth K3
surface. Also, by adjunction, Y has trivial canonical bundle. So Y → S is indeed a semistable model.

Also, for the degeneration Y → S, it follows from [Kaw97, Lemma 4.2], using the fact that S is a DVR,
that we have an exact sequence

(2.6) 0→Z
Y → Pic(Y /S)→ Pic(Yη)→ 0

with Z
Y the abelian group generated by the components Yi of the central fibre modulo the relation

∑
i Yi = 0.

The statement about the Picard group of the generic fibre then follows from [Laz08, Prop. 4.3] and [Laz08,
Corollary 4.6] together with Sequence 2.6. So Y → S is a model as claimed.

Now, suppose Y ′→ S is a second model. By formal semiuniversality, Y ′→ S is pulled back from Y → S
via a homomorphism C[[t]]→C[[t]]. Because Y ′→ S is regular, the uniformizing parameter t maps to at
with a a unit. Hence Y ′→ S is canonically isomorphic to Y → S . This proves the result. �

Remark 2.14. In this section we allow automorphisms which lie over an automorphism of the base S given
by sending the uniformizing parameter t to at, with a a unit. From Section 3 onwards we will choose a fixed
reference model and then work over a fixed base S . The final result will be independent of the choice of this
reference model.

Definition 2.15. We shall call a d-semistable K3 surface Y with cY = 1 maximal and a degeneration Y → S
of a maximal K3 surface with rc : Pic(Y /S) � Pic(Y ) a maximal degeneration.

The next proposition says that maximal degenerations behave well under flops.

Proposition 2.16. Let Y → S be a maximal degeneration with central fibre Y = Yc and let Y+→ S be a flop of
Y → S . Then Y+→ S is again a maximal degeneration and the dual graph of the central fibre Y + = Y+

c is a
triangulation of S2 with the same number of triangles as the dual graph of Y .



12 K. Hulek and C. Liese12 K. Hulek and C. Liese

Proof. We shall prove this result using the analytic theory. For this we first note that any flop factors into
flops given by contractions of extremal rays, see [KM98, §6.4]. Thus we can assume the flop is given by a
small contraction contrR with R an extremal ray of Y → S . Let π : Y → Ȳ be the flopping contraction
over S , F be a divisor that is anti-ample on the fibres of π. The morphism π is given by a divisor G on Y
with restriction Gc to Y . This defines a divisor G′ on the maximal analytic smoothing X →D of Y and a
contraction X → X̄ of the extremal ray R. Hence X → X̄ is a small contraction. Restricting the divisor F to
the central fibre and extending by maximality to X we obtain the induced divisor F′ on X . This is anti-ample
on the fibres of X → X̄ . Hence there is a flop X +→ X̄ . By a result of Kulikov, X +→D is semistable, see
e.g. [Cor95, Corollary 3.7]. Completion along the central fibre gives morphisms of the corresponding formal
schemes, and by Grothendieck’s existence theorem, we get proper morphisms f : Y →Z and f + : Y+→Z.
We claim that the morphism f : Y →Z is given by the contraction of R. Indeed, we have f∗OY � OZ : the
restriction to the central fibres fc : Yc→Zc is a proper surjective birational morphism with connected fibres.
It is is straightforward to check that (fc)∗OY � OZ , using that every regular section of OY is constant on the
fibres. By the global version of [Wah76, Lemma 1.2], we have (fn)∗OYn � OZn for the truncations of order

n and thus f̂∗ÔY � ÔZ , by [Ill05, Theorem 8.2.2]. By the same theorem, f̂∗ÔY � ̂f∗OY , so ÔZ � ̂f∗OY and
from [Ill05, Theorem 8.4.2], it follows that f∗OY � OZ . As Z is a Nagata scheme, its normalisation is finite
over Z. Because of the universal property of normalisation and connectedness of the fibres of f , it follows
from finiteness that Z is normal. By uniqueness of contractions, f = π and, in particular Ȳ = Z.

Hence f : Y+ → Z is the flop of π. It has central fibre Y+
c = Y + � (X +)c, which is a d-semistable

K3 surface of type III. As Y + is the central fibre of a degeneration, it follows that the ξi classes from
above are in fact Cartier. Since we have a type III degeneration, the dual graph is a triangulation of the
sphere S2 by Kulikov’s theorem [Kul77, Theorem II]. This has the same number n of triangles as the dual
graph of Y , because the number of components is the same, and hence also the same number of triple
points t, since t = 2n − 4, see e.g. [Laz08, 3.2]. Also, Y → S and Y+ → S have the same primitivity
k, as can be seen from the monodromy. Hence the lattices given by L and L+ modulo the saturation
of the sublattice spanned by the ξi are both isomorphic to 2E8(−1) ⊕U ⊕ 〈−2t/k2〉. Since moreover
Pic(Yη) � Pic(Y+

η ) � 2E8(−1)⊕U ⊕ 〈−2t/k2〉 it follows that the inclusion given by restriction to the central
fibre Yc defines in fact isomorphisms Pic(Y+) � Pic(Y+

c ) � L+ and hence Y+→ S is also maximal. �

We shall now consider the special case arising from the mirror families of 2d-polarized K3 surfaces. We
will also construct explicit models. Here we first state the more general

Proposition 2.17. Let d > 0 and M̌2d =U ⊕ 2E8(−1)⊕ 〈−2d〉. Then there exists a primitive maximal Kulikov
model Y → S such that Pic(Yη) � M̌2d . Any two such Kulikov models are related by a sequence of flops.

Proof. The existence follows from Proposition 2.13, all we require is the existence of a primitive type III
d-semistable K3 surface with t = 2d triple points and primitivity k = 1, which exists by [FS86, Theorem 0.6].
We now show that two such models are related by flops. For this let Y → S and Y ′ → S be two distinct
deformations with the properties stated and central fibres Y and Y ′ respectively. It follows from Sequence
(2.6) and e.g. [Laz08, Proposition 4.3] that both central fibres have exactly 2d triple points. Also, both
degenerations are primitive. As above, we have the maximal analytic family X →D over a small disc with
central fibre Y , Pic(X ) � Pic(Y ) = L and smooth fibres K3 surfaces with Picard rank 19. Similarly we have
X ′→D with central fibre Y ′ .

By [FS86, Theorem 0.6] there is a sequence of type I and type II modifications X d X ′ . As both models
are projective, this sequence factors into a sequence of projective flops given by contractions of extremal
rays, by [KM98, Remark 6.37]. Let F be an effective divisor defining the first flop, say X d X + in this
sequence. Restriction to the central fibre and then lifting to Y → S via maximality yields an effective divisor
F′ inducing a contraction of an extremal ray. As the exceptional locus on Y does not deform to Y (because
it does not deform on X , so it does not fullfill the numerical conditions for lifting to the family), we obtain a
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flop Y+ of Y with Y+
c = X +

c . Proceeding in this way, one obtains a sequence of flops

Y d · · ·d Y
′′

such that the central fibre of Y ′′ is Y ′ . By uniqueness of maximal smoothings, see Proposition 2.13,
Y ′ � Y ′′ . �

Remark 2.18. For the sake of completeness we would like to point out that there are no type 0 flops between
maximal Kulikov models. The reason is the following. Such a flop requires a rigid (−2)-curve on the central
fibre, i.e. a curve with normal bundle O(−1)⊕O(−1). Since, however, every smooth curve in the interior of
a component of the central fibre, can, by maximality, be extended to the general fibre, such a curve does not
exist.

Remark 2.19. Proposition 2.17 shows that the generic fibre Yη of a maximal primitive degeneration Y → S

with Pic(Yη) = M̌2d is independent of Y → S .

This allows us to make the following definition, where we follow the established terminology in the existing
literature:

Definition 2.20. Fix 2d > 0 with d square free. The (unique) K3 surface Yη → Spec(C((t))) with
Pic(Yη) = M̌2d which is the generic fibre of some maximal primitive smoothing Y → S is called the
Dolgachev–Nikulin–Voisin family of degree 2d.

Remark 2.21. Here, we require d to be square free to obtain the Dolgachev–Nikulin–Voisin family as in
[GHKS]. For d not square free, there are several distinct local models.

Definition 2.22. We fix 2d > 0 with d square free. Then any primitive projective type III degeneration
Y → S that is maximal and whose generic fibre has Picard group M̌2d is called a model of the Dolgachev–
Nikulin–Voisin family of degree 2d.

We will abbreviate Dolgachev–Nikulin–Voisin family by DNV family. We note the following result.

Proposition 2.23. Let Y be a maximal projective d-semistable K3 surface. Then there exists a sequence of
elementary modifications of type I and II

Y d Y1 d · · ·d Yi d · · ·d Yn

such that all Yi are maximal d-semistable K3 surfaces and Yn is in (−1)-form.

Proof. Let X →D be the maximal analytic smoothing of Y . By the (−1)-Theorem, see Theorem 2.7, there is
a sequence of type I and type II modifications

(2.7) X = X0 d X1 d · · ·d Xi d · · ·d Xn
such that the central fibre of Xn is in (−1)-form. In this sequence the lattices L(Xi) and L(Xi+1) are
canonically identified, and the Carlson map pulls back to the Carlson map, cf. [AE21, Proposition 5.18].
This shows that maximality is preserved (as all of L is the kernel of the Carlson map). Thus, restricting the
sequence (2.7) to the central fibre gives the result. �

2.2. Construction of Models

There is a bijection between triangulations G of the sphere such that no vertex has valency greater than 6
and locally trivial deformation classes [Y ]G of d-semistable K3 surfaces of type III in (−1)-form, see [Laz08,
§5.1]. By Lemma 2.11, there is a unique element YG ∈ [Y ]G with trivial Carlson extension. Here we describe
the components of these surfaces and their gluing. Each vertex v of G corresponds to a component whose
normalisation is a very special (weak) del Pezzo surface of degree the valency of v for which we give an
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p1

p2

p3

p4

Figure 4. The (1,1,1,1)- blow-up of P1 ×P1 in (p1,p2,p3,p4).

explicit geometric construction below. The edges of G then determine which components are glued. We
emphasize that this construction is at least implicit in [GHKS].

We first make the following definition.

Definition 2.24. Let (Y ,D) be an anticanonical pair. Let D =
∑
Di and p be a smooth point of D lying on

the component Di . If n = 1, the n-fold blow-up of Y in p is the usual blow-up, if n > 1, the n-fold blow-up of
Y in p is the blow-up of the n− 1-fold blow-up π : Y ′→ Y in the point ex(π)∩D ′i , where D

′
i is the strict

transform of Di on Y
′ . More generally, if (p1, . . . ,pk) is an ordered set of points pj ∈ Y , which lie on the

smooth locus of D such that each Di contains at most one point pj , we define by the obvious generalisation
the (n1, . . . ,nk)-blow-up of Y in (p1, . . . ,pk).

Construction 2.25. Here we describe and construct the possible components of the unique elements
YG ∈ [Y ]G in (−1)-form with trivial Carlson extension. The normalisations of these components are (weak)
del Pezzo surfaces of degree d = 1, . . . ,6 and the double locus of the central fibre gives rise to an anticanonical
cycle D on the normalisation Y of such a component. The geometry of the pairs (Y ,D) is discussed in detail
in [Laz08, §5.1], see in particular [Laz08, Proposition 5.2] and [Laz08, Lemma 5.14]. The first property is that
D is a cycle of (−1)-curves if d > 1 or D2 = 1 if d = 1 respectively. In degree d = 5,6 this leads to a unique
pair (Y ,D). For d = 1,2,3 and 4 it follows from [Laz08, Proposition 5.2] that the orthogonal complement of
the sublattice spanned by the components of the effective anti-canonical cycle D in the Picard group is a
root lattice of type E8, E6, D4 or A2 respectively. The (weak) del Pezzo surfaces which we need here are
the ones which Laza calls maximally algebraic, see [Laz08, Remark 5.5]. The relevant condition is that the
root lattices E8, E6, D4 or A2 respectively, are generated by effective (−2) curves. This condition will be
needed to obtain that the Carlson map cYG

= 1. Contracting these (−2)-curves gives rigid singular del Pezzo
surfaces which are uniquely determined, see [Laz08, Lemma 5.14]. Below we will construct these surfaces
explicitly. We will further specify special points on each component of the anticanonical cycle D . We will
call a special point interior if it is not a node of D . The special points are used to define the gluing of the
components to finally obtain the unique element YG in the trivial deformation class [Y ]G .

d = 1 : Let Q = P
1 × P1 with toric boundary D̃ = D̃1 + D̃2 + D̃3 + D̃4, ordered cyclically. Let pi ∈ D̃i ,

i = 1, . . . ,4, be points in the smooth part of D̃ such that pi ,pi+2 are in the same fibre of one of the two
rulings, see the right hand side of Figure 4. Let Q̃ be the (1,5,1,3)-blow-up of Q in (p1,p2,p3,p4).
The strict transforms of D̃1, D̃3 have self-intersection −1 on Q̃. Blowing down these yields a surface
such that the strict transform of D̃4 has self intersection (−1). Then, blowing this down gives a surface
Y1 with an anticanonical cycle D of self intersection 1 and an E8 root system of effective (−2)-curves.
This is a weak del Pezzo of degree 1, see Figure 5. There is a unique (−1)-curve E meeting D . The
special points are the node of D and the point E ∩D (which is an interior special point).

d = 2 : For degree 2, we take P2 together with its toric boundary (xyz = 0). We can fix three collinear points,
one on each boundary divisor, say p,q, r . Let Y ′ be the (3,3,2)-blow-up of P2 in (p,q, r). This yields
a weak del Pezzo surface of degree 1, as we have blown up 8 points that are not on (−2) curves.
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Figure 5. The surface Y1.
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Figure 6. The E6 root system and the exceptional curves E1,E2.
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Figure 7. The D4 root system and the exceptional curves E1,E2, E3.

Now, blow down the strict transform of the toric divisor that is a (−1)-curve. The resulting surface
Y2 is a weak del Pezzo surface of degree 2 with anticanonical cycle D = D1 +D2. It carries an E6
configuration of effective (−2)-curves by construction. There are also 2 exceptional curves E1,E2
of the first kind each meeting a long end of the root system and a component of the anticanonical
divisor, see Figure 6. The special points of Di are the points Di ∩ Ei and the two points of the
intersection D1 ∩D2.

d = 3 : For degree 3, we take again P
2 together with its toric boundary (xyz = 0). As above, we fix three

collinear points, one on each boundary divisor, say p,q, r . Let Y be the (2,2,2)-blow-up of P2 in
(p,q, r), a weak del Pezzo surface of degree 3. It carries a D4 root system of effective (−2)-curves,
given by the strict transform of the line through the points p,q, r together with the strict transforms
of the first blow-ups in each point. The anticanonical cycle D =D1 +D2 +D3 is given by the strict
transform of the toric boundary. There are also three irreducible (−1)-curves Ei in the exceptional
locus of the blow-up, each meeting a unique component Di . The special points are again the nodes
of the anticanonical cycle and the points Ei ∩Di , see Figure 7.

d = 4 : Again, let Q = P
1 ×P1 with toric boundary D̃ = D̃1 + D̃2 + D̃3 + D̃4. Let pi , i = 1, . . . ,4, be points

on the intersection of the fibres of the two ruling with the toric boundary components. Blow up Q
once in each pi , the resulting surface Y4 is a weak del Pezzo of degree 4, with an A2 root system of
effective (−2)-curves and an anticanonical cycle D =D1 +D2 +D3 +D4 where the Di are the strict
transforms of the D̃i . There are 4 (−1)-curves Ei , i = 1, . . . ,4 on Y4 that are not components of D,
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each meeting exactly one of the Di transversally. The special points of D are the points Di ∩Ei and
Di ∩Di+1, where the indices are considered cyclically, see Figure 4.

d = 5 : Pick 4 points {p,q, r, s} in P
2, no three on a line. Then Bl{p,q,r,s}(P2) is the del Pezzo surface of

degree 5. The anticanonical divisor D = D1 +D2 +D3 +D4 +D5 is a cycle of (−1)-curves forming
a pentagon, which we obtain as follows: we choose the strict transforms of the lines spanned by
(p,q), (p,r) and (q,s), together with the exceptional lines which arise form blowing up p and q. Note
that permutations of the points p,q, r, s gives rise to isomorphic pairs (Y ,D). There are 5 more
(−1)-curves Ei , i = 1, . . . ,5. Each Ei meets exactly one of the Di transversally. The special points of
Di are the points Di ∩Ei and Di ∩Di+1.

d = 6 : Pick the three coordinate points {p,q, r} in P
2 which are torus orbits. Then Y6 = Bl{p,q,r}(P2) is the

del Pezzo surface of degree 6. Let D = D1 +D2 +D3 +D4 +D5 +D6 be the anticanonical divisor
which consists of the strict transforms of the coordinate lines and the exceptional lines. This is a cycle
of (−1)-curves forming a hexagon. The toric structure of Y6 indentifies a copy of Gm ⊂Di for each i.
The special points of Di are the points −1 ∈Gm, and Di ∩Di+1.

Definition 2.26. We will denote the (weak) del Pezzo surfaces of degree d constructed here by Yd .

Now, the triangulation G defines a locally trivial deformation class [Y ]G of d-semistable K3 surfaces and
we can take the member YG of [Y ]G such that the (normalisation) of each component is isomorphic (as an
anticanonical pair) to a surface from the above list, by [Laz08, Lemma 5.14], where we recall that the valency
of a vertex is equal to the degree of the corresponding (weak) del Pezzo surface. The gluing is such that the
special points are identified pairwise where, in particular, interior special points are identified with interior
special points.

We learned the next result from [GHKS]:

Proposition 2.27. Let G be a triangulation with valency at most 6 and no k-bands of hexagons. Then the
surfaces YG are maximal, i.e. have trivial Carlson map cYG

= 1.

Proof. A proof can be found in [GHS16, Construction 10.14]. Here we sketch a proof in the case of simple
normal crossing. Each of the surfaces Yi , for i = 1 . . .5, has a Q-basis Bi of Pic(Yi) given by the (−2)-curves
and the interior (−1)-curves, i.e. those that are not components of the anticanonical divisor. Let YG = ∪j∈JYj .
We shall choose an order on J . The Picard group of YG is given by the kernel of the Carlson map. Let Ysimp
be a semi-simplicial resolution of YG , see [Car80], [KK98, §4.2.2]. Then one defines Yp to be

Yp =
∐

Yj0 ∩ · · · ∩Yjp (j0 < · · · < jp)

for p = 0,1,2. Face maps are given by maps δp : Yp→ Yp−1 such that δp is the inclusion on the components
of Yp, see [KK98, §4.2.2]. We start with a collection of line bundles Lj , j ∈ J on the components Yj such that
the degrees on the double curves Dij coincide. We want to show that these glue to a line bundle L on YG .
For i(j) ≤ 5 we write Lj in the basis Bi(j). Also, given a line bundle Lj on a hexagonal component Y6, we
can find a linearly equivalent divisor on Yj whose restriction to a component Dk of the anticanonical divisor
of Y6 is (degLj |Dk )pk where pk denotes the interior special point on Dk . This follows from (the proof of)
[GHK15, Lemma 2.8]. The line bundles Lj can therefore be represented by divisors whose restrictions to the
double curves coincide. It follows that the collection L = {Lj , j ∈ J} is in the kernel of the Carlson map as
follows from [Car80, p. 277 ff] applied to Ysimp. This implies the result. �

We also obtain that maximal d-semistable K3 surfaces in (−1)-form are always projective.

Proposition 2.28. Let Y = ∪Yi be a d-semistable K3 surface of type III with cY = 1. If Y is in (−1)-form, then
Y is projective.
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Proof. Let Y be a surface as in the proposition. As we have discussed above it follows from the work of Laza
[Laz08, §5.1] that the normalisations Y νi of the components Yi of Y are weak del Pezzo surfaces of degree
di ≤ 6 and that the orthogonal complement of the lattice spanned by the components of the anitcanonical
cycle D =

∑
Di on Y

ν
i in Pic(Yi) is a root lattice E8, E6, D4 or A2 for di = 1,2,3 and 4, respectively and

empty for di = 5,6. Moreover we know that these root lattices are generated by effective (−2)-curves. We
show that Y is projective by giving an ample bundle Ai on each Y νi such that Ai ·Dij = Ai ·Dik for all j,k,
i.e. such that the Ai have the same degree on all components of the anticanonical cycle on Y νi . By Lemma
2.10, after taking suitable multiples, one can then glue these line bundles to obtain a bundle A on Y . The
bundle A is ample as its restriction to each irreducible component is ample, by [Laz04, Proposition 1.2.16].
As the structure morphism is proper, Y is projective. To simplify notation, we taciturnly assume Y νi = Yi .
For di = 1 there is nothing to show. For di = 5,6 the claim is obvious, we can take the anticanonical divisor.
We consider the cases di = 2,3. For the root lattices Ri described above we have a natural root basis given
by the set B(Yi) of (−2)-curves constructed in the blow-up procedure. Note also that for all such Yi by
construction we have (−1)-curves as in Figures 6 and 7 connecting the root system to the boundary. We
denote the set of these curves by E(Yi).

Suppose there is an integer e > 0 and a divisor

Ai =
∑

Bj∈B(Yi )

bjBj +
∑

Ek∈E(Yi )

eEk

in Pic(Yi) such that Ai ·C > 0 for all C ∈ B(Yi)∪E(Yi). Then Ai defines an ample bundle on Yi : being a
(weak) del Pezzo surface, Yi is a Mori Dream space by [TVV11, Theorem 2.9], so in particular, the cone of
curves of Yi is rational polyhedral. The Picard rank is greater than 3 and thus, by [AL11, Proposition 1],
Pic(Yi) generated by curves C with C2 < 0, i.e. by (−2) and (−1)-curves. Let C be such a curve. If
C ∈ B(Yi)∪ E(Yi), then Ai ·C > 0 by assumption. If C is not in B(Yi)∪ E(Yi), C is a component of D,
as follows from Proposition 4.5 below (which is independent of this result). Then C ·D = e. Hence Ai is
strictly positive on the (polyhedral) cone of curves, and hence ample by Kleiman’s criterion. We define such
Ai ’s as follows: for E6, take the numbers (7,11,13,16,13,11) for the roots, where the number in the i-th
position is the coefficient of the i-th root, with indexing as in the figures, and set e = 10. For D4 we can take
(11,11,13,11) and e = 10.

It remains to consider the case di = 4. In this case Y4 = Y4 with the A2 root system and the same
construction as before with numbers (3,3) on the root system and e = 2 defines an ample bundle Ai . �

We have the following proposition.

Proposition 2.29. Let G be a triangulation of S2 with 2d triangles with valency at most 6 and without k-bands
of hexagons for any k > 1.
The surface YG is a maximal primitive d-semistable K3 surface. The associated maximal smoothing YG → S

is a model in (−1)-form of the Dolgachev–Nikulin–Voisin family of degree 2d, i.e. Pic(YG η) = M̌2d and
Pic(YG /S) � Pic(YG ) by restriction. The threefold YG is Calabi-Yau with H1(YG ,OYG

) = 0 and projective over
the base S .

Proof. YG is a d-semistable K3 surface in (−1)-form by construction. It is primitive because the dual graph
does not have k-bands of hexagons. It is maximal, i.e. cYG

= 1, due to our choice of the gluing. It is also
projective by Proposition 2.28. Hence there is a deformation with the claimed properties by Proposition 2.13.
Letting f : YG → S denote the structure morphism, we prove the vanishing of H1(YG ,OYG

) = 0 as follows:
We have H1(YG ,OYG

) = 0 by [Fri83, Lemma 5.7] so by semi-continuity it follows from a result of Grauert
[Har77, Cor 12.9] that R1f∗OYG

= 0. As we work over an affine base, H1(YG ,OYG
) = 0 follows from [Har77,

Proposition 8.5]. �

We give examples for low degree.
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Figure 9. The triangulations with 4 triangles.

Example 2.30 (cf. [Lie17]). Specialising to genus 2, there are precisely two different triangulations of S2 with
two triangles, corresponding to dual intersection complexes of degenerations with central fibres having three
components. By e.g. [ES17], these are given by two triangles glued along the boundary and two triangles
glued along one side to each other, with the remaining sides identified. We shall denote the first of these
triangulations by P and the latter by T , see Figure 8. Let YP be the surface obtained by gluing three
copies of Y2 by identifying components of the boundary cycle such that interior special points are identified.
For the triangulation T , the associated maximal surface is a copy of Y4, with two opposite components, say
D1 and D3, of the anticanonical curve D identified, and two copies of Y1 glued to the (images) of D2 and
D4, such that the images of the special points match.

Example 2.31. There are 4 combinatorially distinct triangulations of S2 with 4 triangles, see [ES17,
Example 2.5] and Figure 9. We collect the valencies of the vertices in a tuple. The tuples are
(3,3,3,3), (3,2,1,6), (5,5,1,1) and (4,4,2,2). None of these triangulations have k-bands of hexagons for
k > 1, because the least number of triangles in such a triangulation is 8. To take an example let G1 denote
the triangulation such that every vertex has valency 3. The resulting surface YG1

are three copies of Y3
glued according to the triangulation. Here, this means that each component meets each of the remaining
components in a curve C � P

1 in such a way that the special points are identified.
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3. Relative Notions and the Mori fan

Here we introduce the Mori fan which is the central object of our paper. We will now work in a relative
setting over a fixed base.

3.1. Relative Notions

As we will make extensive use of various concepts of the minimal model program we will recall the
relevant basic concepts here, following [Kaw97]. Let π : X →U be a projective morphism of normal schemes.
An R-Cartier divisor L on X is an R-linear combination of Cartier divisors. A Q-Cartier divisor L on X
is a Q-linear combination of Cartier divisors. Similarly, an R-Weil divisor is an R-linear combination of
prime divisors. Two R-Cartier divisors L,L′ are linearly equivalent over U if their difference is an R-linear
combination of principal divisors and an R-Cartier divisor pulled back from U . Two R-Cartier diviors
L,L′ are numerically equivalent over U , denoted by L ≡U L′ , if L ·C = L′ ·C for all curves — integral
1-dimensional closed subschemes — C in fibres of π.

We define
Pic(X /U )

R
= {R-Cartier divisors on X}/ linear equivalence over U

and

N1(X /U ) = {R-Cartier divisors on X}/numerical equivalence over U.

The latter is a finite dimensional vector space [Kle66, Proposition IV.4.3].
In this context, we call an element of N1(X /U ) a Z-divisor if we want to emphasise that it is the class of

a Cartier divisor.

Remark 3.1. For a type III degeneration Y → S of K3 surfaces, we have Pic(Y /S)
R
�N1(Y /S): indeed, by

maximality, it is enough to show this on the central fibre Y , where it follows from the fact that any divisor
on the central fibre is given by an element of the lattice L defined in Sequence 2.3 and all (normalised)
components are smooth rational surfaces.

We say that a Cartier divisor L is nef over U , or π-nef, if L ·C ≥ 0 for all curves C in X mapping to a
point. A Cartier divisor L is ample over U , or π-ample, if the restriction Lu is ample on the fibre Xu for all
u ∈U . A Cartier divisor L is semi-ample over U , or semi-ample, if there is a projective morphism g : Z →U ,
a U -morphism X →Z and a g-ample divisor A on Z such that L⊗n = g∗A for some integer n > 0. A Cartier
divisor L is π-movable (or π-moving ) if dimSuppCoker(π∗π∗OX (L)→OX (L)) ≥ 2.

3.1.1. Cones. The π-nef cone Nef(X /U ) is the closure of the π-ample cone in N1(X /U ), the closed
π-movable cone M̄(X /U ) is the closure of the convex cone generated by π-movable divisors. A Cartier
divisor L is π-effective if π∗O(L) , 0. Let Be(X /U ) be the convex cone generated by all π-effective divisors,
and let Be(X /U ) denote its closure, the cone of pseudo-effective divisors. Set

Mov(X /U ) = M̄(X /U )∩Be(X /U ).

We will refer to Mov(X /U ) as the moving cone.

3.2. The Mori fan

The Mori fan was first introduced in [HK00]. Here we shall recall the definition in the situation which we
consider, namely for models of the DNV family.

First however, we recall the pullback under dominant rational maps in general. For this we fix a dominant
rational map f : X d Z of projective Q-factorial schemes over U . Let L be an effective Cartier divisor on
Z. We define f ∗(L) to be the unique Weil divisor that is equal to the pullback of L by f on the open set of



20 K. Hulek and C. Liese20 K. Hulek and C. Liese

codimension 2 where f is a morphism. The divisor f ∗(L) is Q-Cartier by Q-factorality of X . In this way we
obtain a linear map f ∗ : N1(Z/U )→N1(X /U ).

Now we specialize to the case where Y → S is a model of the DNV family, of degree 2d, see also [GHKS].
Let f : Y d Y ′ be a small modification over S , i.e. a birational map which is an isomorphism in codimension
1 such that Y ′ is projective over S . In this situation, we will also write (Y ′ , f ) for f : Y d Y ′ and call it a
marked minimal model of the DNV family (where we have fixed Y → S as a reference model).

Define the cone
C(f ) := f ∗Nefe(Y ′/S) ⊂N1(Y /S)

where
Nefe(Y ′/S) = Nef(Y ′/S)∩Eff(Y ′/S)

is the effective nef cone.

Definition 3.2. Let Y → S be a model of the DNV family of degree 2d. The set of all cones C(f ) and their
faces, with f a small modification, is the Mori fan of Y → S , denoted by MF(Y /S).

Remark 3.3. If (Y ′ , f ) and (Y ′′ , g) are two marked minimal models and C(f )∩C(g) has codimension 0,
then by [Kaw97, Lemma 1.5] there is an isomorphism β : Y ′′→Y ′ with f = β ◦ g , and hence C(f ) = C(g).

Note that if Y ′ → S is another model, MF(Y ′/S) is canonically identified with MF(Y /S) via the
isomorphism N1(Y /S) � N1(Y ′/S) induced by taking strict transforms. In particular, the Mori fan only
depends on the DNV family, not on a specific model.

We recall the following result of [GHKS], which implies that MF(Y /S) is indeed a fan, and, in particular,
is closed under intersection and taking faces. If Σ is a fan in a vector space V , then we denote its support
by |Σ|.

Theorem 3.4 (cf. [GHKS, Theorem 6.5]). The following holds:

(i) Let 4 ⊂Nef(Yη) be a rational polyhedral cone. Let rη be the restriction map Pic(Y /S)→ Pic(Yη). Then
r−1
η (4) and r−1

η (4)∩Mov(Y /S) are rational polyhedral cones and

{r−1
η (4)∩γ |γ ∈MF(Y /S)}

is a finite set of rational polyhedral cones, with support r−1
η (4)∩MF(Y /S).

(ii) The support of MF(Y /S) is Mov(Y /S).

Proof. We sketch the approach of [GHS16]. The crucial point is that one can construct models of the DNV
family not only over S , but over the spectrum of the local ring of a smooth algebraic curve, namely the local
ring of a cusp of the compactified Dolgachev mirror space which, in this case, is a modular curve. For these
models one can run MMP, see [KM98, §3.6]. Then, invoking [Sho96], one concludes by [Kaw11, Theorems 3
and 4]. �

Remark 3.5. The fact that one can run MMP for Y → S implies that a small modification f : Y d Y ′
factors into flops. Hence Y ′ → S is also a model of the DNV family, which justifies the use of the name
marked model.

Remark 3.6. The proof we have just sketched also shows that log-abundance holds for models Y → S of
the DNV family. In particular nef line bundles are semi-ample.

Remark 3.7. The nef cone of Yη is finitely polyhedral if and only if d = 1. To see this we argue by means of
the analytic category. Using the sequence (2.6) and its analytic analogue we can identify the nef cone of Yη
with the nef cone of a very general fibre of an analytic Kulikov model X →D. The claim then follows from
Nikulin’s classification in [Nik81], as the Picard lattice of Yη is U ⊕2E8(−1)⊕ 〈−2d〉. See [Nik14, Theorem 1]
for a more explicit statement of Nikulin’s classification. Hence the Mori fan of a model Y → S of degree 2 is
a finite collection of rational polyhedral cones. Note that this is special to the case d = 1.
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3.2.1. Interior facets. It is well known that the codimension 1 faces separating maximal (dimensional)
cones of the Mori fan correspond to flopping contractions. We recall the details here. Let Y ,Y ′ be models of
the DNV family of degree 2d. Let φ : Y −→• Y ′ be a flop. Then there exists a divisor F on Y and morphisms
ψ,ψ′ with ψ a contraction of an F-negative extremal ray such that the diagram

Y
φ

//

ψ ��

Y ′

ψ′~~
Z

commutes. Write φ∗F = F′ for the birational transform. By the contraction theorem, we have

N1(Y /S) = ψ∗N1(Z/S)⊕R[F]

and

N1(Y ′/S) = (ψ′)∗N1(Z/S)⊕R[F′].

Using the isomorphism N1(Y /S) � N1(Y ′/S) given by taking strict transforms under φ, we can identify
ψ∗N1(Z/S) = (ψ′)∗N1(Z/S). This cone spans a hyperplane in N1(Y /S) and R[F] = R[F′]. Hence the
cones Nef(Y /S), which we can think of as C(idY /S ), and C(φ) in the Mori fan meet in codimension 1,
compare [Mat02, Proposition 12.2.2].

Conversely, we now assume that σ,σ ′ are two maximal cones of MF(Y /S) with σ ∩σ ′ = τ a codimension
1 face. Without loss of generality we can assume σ = Nef(Y ). By the definition of the Mori fan there is a
small modification f : Y d Y ′ of projective minimal models with f ∗(Nef(Y ′/S)) = σ ′ . Let ψ : Y →Z be the
contraction defined by the linear system of a suitable multiple of a very general effective divisor L in τ . Note
that this is indeed a morphism as L is semi-ample by abundance, see Remark 3.6. Then τ = ψ∗(Nef(Z)).
The facet τ defines an extremal ray R in N1(Y /S) that is cut out by L, i.e. ψ = contrR. Also, any divisor in
the interior of σ ′ is negative on R. Let F ∈MF(Y /S) be such a divisor. Then ψ is an F-flopping contraction.
Thus the diagram

Y
f

//

ψ ��

Y ′

ψ′~~
Z

exhibits f as an F-flop.

Definition 3.8. We say that a codimension 1 cone τ of MF(Y /S) is an interior facet if there are two marked
models (Y ′ , f ), (Y ′′ , g) of the DNV family such that C(f )∩C(g) = τ .

The above discussion can now be summarized as follows:

Proposition 3.9. Every facet of Nef(Y /S) ∈ MF(Y /S) that is an interior facet of MF(Y /S) defines a flop
Y d Y ′ and conversely any such flop is defined by an interior facet.

3.2.2. Action of Bir(Y /S). The birational S-automorphisms Bir(Y /S) do not contract divisors, as
Y → S is a minimal model. Hence we can define a representation

σ : Bir(Y /S)→GL(N1(Y /S))

by σ (θ)(D) = θ∗(D) for θ ∈ Bir(Y /S). Since θ is a small modification, this defines a permutation action on
the set of maximal cones of MF(Y /S). The following result, which will be crucial for us, follows directly as
in [Kaw97, Lemma 1.5].
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Proposition 3.10. Let fi : Y d Yi , i = 1,2 be small modifications of Y over S, with Y1 and Y2 models of the
DNV family (of a given degree). Suppose that the associated Mori cones are in the same orbit under the action of
Bir(Y /S), i.e. that there is a birational automorphism θ ∈ Bir(Y /S) such that

C(f2) = θ∗C(f1).

Then there is an isomorphism β : Y1→Y2 such that β ◦ f1 = f2.

4. (−1)-Curves and Curve Structures

In this section we will analyse the (−1)-curves in the components of a central fibre of a Kulikov model.
This will lead to the definition of the concept of a curve structure for which we introduce several notions.
Curve structures and their properties will be an essential tool in our analysis of the Mori fan.

From this section on, Yc will denote a d-semistable K3 surface of type III while Y will denote a component
of Yc. For any degree 2d, let DNV2d be the set of d-semistable K3 surfaces of type III in (−1)-form with
t = 2d triple points. For d = 1, these are the surfaces YP and YT described in Example 2.30. Let Mod2d
denote the set of surfaces Yc such that there is Y0 ∈DNV2d and a sequence of elementary modifications of
type I

Y0 d Y1 d · · ·d Yi d · · ·d Yn = Yc.

This also defines an anticanonical divisor on each component of Yc. We denote by PMod2d the subset
of projective surfaces in Mod2d . Each of these surfaces determines a model of the Dolgachev family of
degree 2d. In general, one does not obtain the full set of models in this way as, usually, a central fibre
of a model of the DNV family of degree 2d cannot be obtained by type I modifications alone. However,
we will later see that for d = 1 the set PMod2 parametrizes the isomorphism classes of models of the
Dolgachev–Nikulin–Voisin family of degree 2, see Corollary 6.33. We shall also see in Section 7 that Mod2
is finite, but we do not expect Mod2d to be finite for higher degree, see also Remark 3.7.

Definition 4.1. Let Yc ∈Mod2. We say Yc is of class T (resp. P ) if the dual intersection graph of Yc is
given by T (resp. P ).

We denote the set of Yc ∈Mod2 of class T (resp. P ) by Mod2(T ) (resp. Mod2(P)), and similarly we
define PMod2(T ) and PMod2(P). Note that this defines decompositions into disjoint unions

Mod2 = Mod2(T )tMod2(P) and PMod2 = PMod2(T )tPMod2(P) respectively.

We recall the following elementary facts about anticanonical pairs, i.e. pairs (Y ,D) with Y a smooth
rational surface and D an effective anticanonical cycle. We will use these without further mention.

Proposition 4.2. Let (Y ,D) be an anticanonical pair. Let C be an irreducible curve that is not a component of
D .

(i) If C2 = −1, then C ·D = 1 and C is smooth rational.
(ii) If C2 = 0, then C ·D = 2 or C ·D = 0. In the first case, C is smooth rational, in the second case pa(C) = 1.
(iii) If C2 = −2, then C is smooth rational and C ·D = 0.

4.1. (−1)-Curves

In order to control flops, we need to control exceptional curves of the first kind on the components of the
central fibres. We show that the set of possible elementary modifications of a surface in Mod2 is quite small.
Recall the following terminology. A cycle is a graph whose vertices and edges can be ordered C1, . . . ,Cn
and e1, . . . , en such that ei connects Ci and Ci+1 (where the indices have to be read cyclically). A tree is a
connected graph not containing a subgraph that is a cycle. A vertex v of a graph is called a fork if there are
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Figure 10. The intersection graph Γ n1 . All vertices with label not displayed are labelled with −2.

−1 −1

Figure 11. The intersection graph Γ n2 . All vertices with label not displayed are labelled with −2.

−1

−1

−1

−1

Figure 12. The intersection graph Γ n4 . All vertices with label not displayed are labelled with −2.

at least three edges from v. If G is a tree with a unique fork v ∈ G, the connected components of G\{v} are
the branches of v.

Construction 4.3. Let Γ 01 be the graph underlying the extended Dynkin diagram Ẽ8, i.e. a tree with a
unique fork v and 3 branches Bi , i = 1,2,3, consisting of 1, 2 and 5 vertices. Let n = n1 ≥ 0. Let Γ n1 be
the tree where we replace the leg B3 with 5 vertices by a leg with 5 +n1 vertices. We label the end of this
branch with −1, all other vertices are labelled with −2, see Figure 10. (We shall later interpret these labels as
intersection numbers.)

Let Γ 02 be the graph underlying the extended Dynkin diagram Ẽ7 diagram, i.e. the graph with a unique
fork f and 3 branches Bi , i = 1,2,3, consisting of 1, 3 and 3 vertices. Let n = (n1,n2). We define Γ n2 to
be the tree where we replace the two branches B2,B3 of length 3 by branches of length 3 +n1 and 3 +n2
respectively. We label the vertices at the end of these branches with −1 and all other vertices with −2, see
Figure 11.

Finally, let Γ 04 be the graph underlying the extended Dynkin diagram D̃5, i.e. the unique tree with 2 forks
and 6 vertices. Label the vertices that are not forks from 1 to 4 such that one fork is connected to the
vertices labelled 1 and 2. Let n = (n1,n2,n3,n4) and define Γ n4 to be the graph where we replace the vertex
labelled i ∈ {1,2,3,4} by a leg of length ni + 1. Again, we label the ends of the branches with −1 and all
other vertices with −2, see Figure 12.

The following lemma is a helpful technical tool, which we will employ repeatedly. Note that we make no
assumption on C2

n in this lemma.

Lemma 4.4. Let n ∈N, n ≥ 2. Let Ci , i = 1, . . . ,n be a collection of curves on a smooth surface Y . Suppose the
dual graph is An, with labelling of the vertices vi as in Figure 13. Assume the labelling is such that vi corresponds
to the curve Ci . Moreover, assume C

2
i = −1 if i = 1 and −2 if 1 < i < n. Let H be a set of curves on Y such for all

h ∈ H, h ·Ci = 0 for i = 1, . . . ,n− 1. Set A =
∑n
i=1 aiCi +

∑
h∈Hγhh for ai ,γh ∈Q and assume A ·Ci ≥ 0 for

i = 1, . . . ,n− 1 and a1 ≥ 0. Then ai+1 ≥ ai . If A ·Ci > 0 for i = 1, . . . ,n− 1 and a1 ≥ 0, it follows ai+1 > ai .

Proof. We have 0 ≤ A · C1 = −a1 + a2, so a2 ≥ a1. Suppose ai ≥ ai−1 for some 1 < i < n − 1. Then
0 ≤ A · Ci = ai+1 − 2ai + ai−1, so ai+1 ≥ 2ai − ai−1 ≥ ai . The claim follows. Replacing weak by strict
inequalites shows the second claim. �
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Figure 13. The numbering of the vertices of the An graph in Lemma 4.4.

Let Yi be as in Construction 2.25, with anticanonical cycle D , and let p be a special point. We recall that
p is an interior special point if p is a smooth point of D .

Proposition 4.5. Consider Yi for i = 1,2 or 4, with anticanonical divisor D . Let (p1, . . . ,pi) denote the tuple of
interior special points. Let Y denote the n = (n1, . . . ,ni) blow-up of Yi in (p1, . . . ,pi).
Then there are exactly i exceptional curves of the first kind Ck ⊂ Y (for k = 1, . . . , i) such that Ck is not a

component of D . More precisely, the intersection graph of the negative curves that are not components of D is given
by the graph Γ ni .

Proof. Let ψ : Y → Yi be the (n1, . . . ,ni) blow-up of Yi in the interior special points (p1, . . . ,pi).
Let C(Y ) be the set consisting of strict transforms of the (−1) curves Ei from the construction of the Yi

in Construction 2.25 and the (−2)-curves of Yi together with the irreducible components of the exceptional
locus of ψ, see also Figures 6 and 7. By the results of [Loo81, Section 2], the set C(Y ) defines a Q-basis
of Pic(Y ), with intersection graph Γ ni and n = (n1, . . . ,ni). We can assume i = 4 as it is straightforward to
check, using the construction of the Yi , that the result for i = 4 implies the result for i = 1,2.

Let Ck , k = 1, . . . ,4 denote the integral (−1)-curves in Ex(ψ), corresponding to the vertices labelled
with (−1) in the diagrams. Let D1, . . . ,D4 denote the components of the anticanonical divisor D given as
birational transforms of the anticanonical cycle from the construction of Y4. Suppose there is an integral
curve C with C2 < 0 not in B := {D1, . . . ,D4} ∪C(Y ). We have C ·B ≥ 0 for all curves B in B. Write

(4.1) mC =
∑

B∈C(Y )

βBB.

with m,βB ∈Z and m > 0. We can use Lemma 4.4 to show that all coefficients βB are non-negative. To see
that we are in a position to use Lemma 4.4 we intersect with the curves Di . Indeed, given a curve Di there is
a unique (−1)-curve E among the Ck with E ·Di , 0, in fact E ·Di = 1. Also Di ·H = 0 for all (−2)-curves.
Hence βE = βEE ·Di =

∑
β βBB ·Di =mC ·Di ≥ 0.

It now follows that

(4.2) 0 > mC2 =
∑

B∈C(Y )

βB(C ·B) ≥ 0,

where the last inquality follows since βB ≥ 0 and C ·B ≥ 0. Hence a curve such as C cannot exist. �

Remark 4.6. The same proof works for i = 3, the case i = 5 also holds. We restrict to i = 1,2,4 as these
are the relevant surfaces in the d = 1 case.

We have the following result.

Corollary 4.7. Let Yc = Y1 ∪Y2 ∪Y3 be in Mod2. Then the cones of curves NE(Y νi ) on the normalisations of
the components are finitely generated. If the Picard rank of Yi is at least 3, a generating set is given by the curves C
with C2 < 0. For smaller Picard rank, either Yi is a Hirzebruch surface or Yi � P

2.

Proof. The only thing that remains to show is the statement on the generators of cones of curves. By
Proposition 4.5, there are finitely many curves C on Yi with C

2 < 0, so, if the Picard rank is at least 3, the
corollary follows from [AL11]. �
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4.2. Curve Structures

Let Y be a component of a surface Yc ∈Mod2. By definition, there is a sequence of type I flops YG d Yc
whose inverse connects Y to a component of a model YG ∈DNV2 in (−1)-form. Using this sequence, we
will recursively define a set of curves C(Y ) on the normalisation Y ν . Note that there is an induced sequence
of blow-ups and blow-downs ψ : Y ν d Yi for some i ∈ {1,2,4}.

Construction 4.8. Let D denote the anticanonical divisor of Yi as discussed in Construction 2.25. Set

C(Yi) := {C ⊂ Yi | C is an integral curve with C2 < 0,C 1D}.

To start the induction, we factor ψ as Y ν d W d Yi with Y
ν d W ν corresponding to an elementary

modification of type I. Suppose we have defined C(W ). If Y ν = Blp(W ν) for some p, we take C(Y ) to be the
strict transforms of curves in C(W ) together with the exceptional curve of Y ν →W ν . If Y ν dW ν is the
inverse of π : W ν = Blp(Y ν)→ Y ν , we set

C(Y ) := {C ⊂ Y ν | C = π(C′) for C′ ∈ C(W )}.

Because the normalisation morphism Y ν → Y identifies components of the singular locus of Yc, which are
part of the anticanonical cycle, and thus never curves in C(Y ), we can also interpret C(Y ) as a collection of
curves on Y . We then proceed by induction.

The sequence YG d Yc is not uniquely defined, but the set C(Y ) and its intersection graph is independent
of the choice of such a sequence, as the following lemma shows.

Lemma 4.9. Let Y be a component of Yc ∈Mod2. The collection C(Y ) and the intersection graph are independent
of the sequence YG d Yc.

Proof. First, the surface Yi is uniquely determined by the number of components of the double locus D of Y .
Let D =D1 + · · ·+Di and p1, . . . ,pi be the interior special points. Let D̄ = D̄1 + · · ·+ D̄i be the anticanonical
cycle on Yi .

It follows by induction on the number of elementary modifications that we can write the induced sequence
Y ν d Yi as

Ỹ
ψ

��

π

��
Y ν Yi

with π the blow-up in the interior special points on components D̄i of D̄ such that their strict transform
Di under Y d Yi has D

2
i < −1. Up to trivial modifications, i.e. blowing up a special point and then

blowing down the resulting exceptional curve, this morphism is uniquely defined by the self-intersection
numbers of Y ν . Let J = {j1, . . . , jk} be the set of indices of components Dj of D with D2

j > −1, where we

calculate intersection numbers on the normalisation. Then ψ : Ỹ → Y ν is the (nj1 , . . . ,njk )-blow-up of Y ν in
(pj1 , . . . ,pjk ). This uniquely defines the curves that are contracted. �

Definition 4.10. Let Y be as above. We define ΓY to be the dual graph of C(Y ) and label its vertices with
the self-intersection numbers. We call ΓY the curve structure of Y . We say that a curve structure has type di if
Y maps to Yi under a sequence of type I flops. This is well defined as the number of components of D is
fixed under type I flops. Note that the chosen anticanonical divisor of Yi has i components.

Remark 4.11. We will usually consider C(Y ) as a set of curves on Y ν . In particular, intersection numbers
will always be calculated on Y ν .

Remark 4.12. Note that for surfaces Y which are (n,m)-blow-ups of some Yi this coincides with the set
C(Y ) which we have used in the proof of Proposition 4.5.
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−1 −1

Figure 14. The augmented curve structure of a component Y of YP . The black vertices correspond
to the components of the anticanonical divisor.

We will often interpret ΓY as the underlying set of vertices. Also, for any vertex v ∈ ΓY , we will denote the
underlying curve in C(Y ) by Cv , but abusing notation, we will often just write v. Note that if v,w are two
distinct vertices of ΓY , the number of edges between v and w is either 1 or 0 and this is the same as the
intersection number Cw ·Cv . Two vertices v,w with v ·w = 1 for the underlying curves are called adjacent.

Given Y with normalisation Y ν and with curve structure ΓY , let D =
∑
Di be the anticanonical divisor of

Y ν . For each Di , append a vertex vDi to ΓY and for each v ∈ ΓY such that Cv is not a component of D , add
an edge joining vDi and v if Di ·Cv , 0. This defines the augmented curve structure Γ aY . See Figure 14 for an
example.

Note that the existence of an edge between a vertex v ∈ ΓY and a vertex corresponding to some Di does
not necessarily imply that the intersection number of the corresponding curves is exactly 1, it simply means
that the intersection is non-empty.

If ΓY and ΓY ′ are two curve structures, we then have an obvious notion of an isomorphism ΓY → ΓY ′ :
a bijection of graphs ΓY → ΓY ′ preserving the intersection numbers that extends to a bijection of graphs
Γ aY → Γ aY ′ .

Definition 4.13. Let ve ∈ ΓY be a vertex with v2
e = −1. Let D0 be the unique component of the anticanonical

cycle met by ve. The vertex ve is called exceptional if

{v ∈ ΓY | v ·D0 , 0} = {ve} and |{v ∈ ΓY | v · ve = 1}| = 1.

Let Y be a component of a surface Yc ∈Mod2 with curve structure ΓY . We will also denote the preimage of
the double locus of Yc on Y under the normalisation map Y ν → Y by D . Let ve ∈ ΓY be an exceptional vertex.
Starting with this exceptional vertex we now define a subgraph of ΓY inductively. Since ve is exceptional,
there is a unique vertex v1 with v1 · ve = 1. Set L1(ve) := (ve,v1). Now suppose that we have already defined
the ordered tuple of vertices Ln(ve) = (ve,v1, . . . , vn). If there is a unique vertex v ∈ ΓY \{ve, . . .vn} adjacent to
vn and vn ·D = 0, set vn+1 := v and Ln+1(ve) = Ln(ve)∪ {vn+1}. Else set L(ve) := Ln(ve). There is a unique
connected subgraph of ΓY whose vertices are given by the vertices in L(ve). By abuse of notation we consider
L(ve) as this subgraph.

Definition 4.14. Let ve be an exceptional vertex. The graph L(ve) is the leg defined by ve. The unique
vertex v of L(ve) not equal to ve meeting precisely one vertex of L(ve) is the end of the leg. In this situation
we also say that L(ve) ends in v.

Definition 4.15. A curve structure ΓY is called degenerate if there is no exceptional vertex, or if for some
exceptional vertex ve the leg L(ve) ends in a vertex v with v ·Di ≥ 1 for some component Di ⊂ D such
that Di is in the preimage of a smooth component of the restriction of the double locus of Yc to Y . Curve
structures that are not degenerate will be called non-degenerate.

The degenerate curve structures of type d2 without exceptional vertices are displayed in Figure 15.

Example 4.16. A non-degenerate curve structure ΓY has at least one exceptional vertex. If ΓY is of type
d2, then Y is obtained from Y2 by a sequence of blow-ups and blow-downs. It follows from the definitions
that ΓY has two exceptional vertices. More precisely, ΓY has two legs that both end on the same vertex v.
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−2

0

m

0 1

Figure 15. The possible (augmented) degenerate curve structures of type d2 without exceptional
vertex. The numbers give the self intersection of the underlying curve, with m ≥ −1.

Moreover, there is a unique vertex v′ that is on none of the legs and also meets v. In particular, we have
D2

1 ≤ 1 and D2
2 ≤ 1 for the two components D1 and D2 of the anti-canonical divisor.

Proposition 4.17. Let ΓY be a curve structure of type di with i ∈ {1,2,4}. Then

{Cv | v ∈ ΓY }

is a Q-basis of Pic(Y ν).

Proof. The statement is true for Yi : as mentioned earlier, by the results in [Loo81, Section 2], one obtains
a Q-basis of Pic(Yi). In the general case, the curve structures in question are obtained via blow-ups and
blow-downs from the Yi , i ∈ {1,2,4}. Arguing inductively, we need to show that given a curve structure
C(Y0), the structure C(Y ) obtained on Y under one of these operations is also a Q-basis. Obviously, a
blow-up Y ν → Y ν0 induces a curve structure on Y ν that is also a Q-basis, as it adds the exceptional curve.
So let g : Y ν0 → Y ν be the blow-down in an exceptional curve corresponding to a type I flop, i.e. the
contraction of an extremal ray spanned by a curve E. We have the exact sequence

0→ Pic(Y ν)→ Pic(Y ν0 )→Z→ 0

with first map pullback via g and second map evaluation on E. Let A = {Hi} denote the collection of
elements of C(Y0) disjoint from E. They induce a collection {Li} with Hi = g∗Li . If Cj is in C(Y0) but not in
A and not equal to E, then Cj ·E = 1. Hence Cj +E = g∗(Fj ) for some Fj . The collection {Li ,Fj} is linearly
independent as C(Y0) = {Hi ,Ci +E,E} is a spanning set of Pic(Y ν0 )

Q
with rankPic(Y ν0 ) elements, and thus

linearly independent. Also, note that g∗Hi = g∗g∗Li = Li and g∗(Cj ) = g∗(Cj +E) = g∗g∗(Fj ) = Fj . �

We now specialise the discussion to curve structures of type d2. These are the ones appearing on
components Y of surfaces Yc in Mod2(P). Note that in this case all components of Yc are smooth. Our
goal in the remainder of this section is to express properties of the ample cone of such Y in terms of curve
structures. In the next section, we will see how these properties give criteria for the projectivity of Yc. Note
that all such Y are smooth rational surfaces and the anticanonical divisor D is the restriction of the double
locus of Yc to Y .

Definition 4.18. Let ΓY be a curve structure of type d2. We say ΓY is regular if |ΓY | > 1 and no leg L(e) of
an exceptional vertex e ends in a vertex v with v2 = 0. A curve structure which is not regular is called very
degenerate and a curve structure which is regular and degenerate is called tamely degenerate.

In particular a non-degenerate curve structure is regular and a very degenerate curve structure is
degenerate.

We have the following result.

Proposition 4.19. Let Y be a component of Yc ∈Mod2. Suppose ΓY is of type d2 and write D =D1 +D2.

(i) The intersection numbers D2
1 and D

2
2 , together with the type of the curve structure (regular or very degenerate),

determine Y .
(ii) ΓY is degenerate if and only if D

2
i ≥ 2 for some i ∈ {1,2}.

(iii) If ΓY is very degenerate, then after possibly relabelling the Di we have D
2
1 = 4 and D2

2 ≤ 1.
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v1 v2 v3 v4 w1 w2

Figure 16. The intersection graph Γ
(0,2)
2 . Self-intersection numbers are −1 for v1 and w2 and −2 for

all remaining vertices. The wi are the exceptional locus of π and the vi are the exceptional locus
of ψ.

(iv) ΓY is non-degenerate if and only if D
2
i ≤ 1 for i ∈ {1,2}.

Proof. There is a sequence of elementary modifications YP d Y . Let p1,p2 be the interior special points.
As in Lemma 4.9, there is a diagram

Ỹ
ψ

��

π

��
Y Y2

with π the (n,m)-blow-up in interior special points of Y2. Write D̄1 + D̄2 for the anticanonical cycle on
Y2 constructed in 2.25. Let q1,q2 be the interior special points on Ỹ , i.e. the points where the birational
transform of D ′i of D̄i are met by an interior (−1)-curve. We can assume that there is no qi in Ex(ψ)∩Ex(π),
as such points correspond to trivial modifications, i.e. blowing up and then blowing down the resulting curve.
Let I ⊂ {1,2} be the set of indices such that qi is not in Ex(π). Then ψ is the blow down of disjoint trees of
square negative curves E1 +E2 + · · ·+Ek such that E2

1 = −1, E2
i = −2, i ≥ 2 and E1 ∩D ′i = {qi} for an i ∈ I .

This implies the proposition. �

Remark 4.20. Note that (iii) in Proposition 4.19, if D2
1 = 4 and D2

2 = 1 then Y
∼−→ P

2. The anti-canonical
divisor then consists of a conic and a line.

For later use we record the following corollary.

Corollary 4.21. Let Yc = Y1 ∪ Y2 ∪ Y3 ∈Mod2 be such that ΓYi is of type d2 and non-degenerate for i = 1,2.
Then D2

12,D
2
21 ∈ [−3,1].

We illustrate Proposition 4.19 in the following example.

Example 4.22. Let Y be a component of Yc ∈Mod2. Suppose ΓY is of type d2. Write D =D1 +D2 and let
p1,p2 be the corresponding interior special points. Suppose D2

1 = 3 and D2
2 = −3. Write

Ỹ
ψ

��

π

��
Y Y2

as above. Here, π is the (n,m)-blow up of Y2 in (p̄1, p̄2). Choose indices such that D̄i has birational
transform Di . Let p̄i be the corresponding interior special points. Then, by construction, the intersection

graph of the interior square negative curves is Γ
(n,m)
2 . As D2

2 = 3, m ≥ 2. If m > 2, ψ factors through the
blow down of a tree of (m− 2) curves in Ex(π) with center p2, as D

2
2 = 3. This tree is uniquely given by

definition of Γ
(n,m)
2 . So we can assume m = 2. Similarly, n = 0. Thus, the graph given by interiror square

negative curves on Ỹ is given by Γ
(0,2)
2 , see Figure 16. Similarly ψ is the (4,0) blow-up of Y in (p1,p2). The

augmented curve structure ΓY is given in Figure 17. Note that ΓY is tamely degenerate.
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3 −1

−1

−1 −3

Figure 17. The augmented curve structure Γ aY of Example 4.22. All unlabelled vertices in ΓY have
self-intersection −2.

Lemma 4.23. Let Y be a component of Yc ∈ Mod2. Suppose ΓY is of type d2 and very degenerate. Write
D =D1 +D2. Then for each component Di of D there is a unique vertex vDi of ΓY with Di · vDi > 0.

Proof. The claim is trivial if |ΓY | = 1. If |ΓY | > 1, we find morphisms π : Ỹ → Y2 and ψ : Ỹ → Y as in the
proof of Proposition 4.19. By construction of Ỹ , the intersection graph Γ n2 of Ỹ has precisely one branch
consisting of a single vertex w. It follows easily from the definition of regularity that π contracts w. The
claim follows. �

Let ΓY be a curve structure. Consider a map

f : ΓY →Z.

By abuse of notation we mean here that the map is defined on the underlying set of ΓY , i.e. its vertices.
This defines a divisor

Γf =
∑
v∈ΓY

f (v)Cv .

Rephrasing Lemma 4.4, we obtain the following lemma.

Lemma 4.24. Let Γf · v > 0 for all v ∈ ΓY . Suppose there is an exceptional vertex v0 ∈ ΓY and suppose
f (v0) > 0. Assume the leg L(v0) defined by v0 is given by the graph (v0,v1,v2, . . . , vn). Then f (vi+1) > f (vi) for
i = 0, . . . ,n− 1.

Lemma 4.25. Let ΓY be of type d2. Let Γf be a divisor defined by a map f : ΓY →Z. Suppose Γf · v > 0 for all
v ∈ ΓY and assume that f (ve) > 0 for all exceptional vertices ve of ΓY or, if there is no exceptional vertex, f (c) > 0
for the unique vertex meeting both components of D . Then Γf is an ample divisor.

Proof. If ΓY does not have an exceptional vertex, it is degenerate. It follows from the description of possible
degenerate curve structures without exceptional vertices, compare Figure 15, that all f (v) are strictly positive.
The same statement holds if Y has an exceptional vertex. This follows from Lemma 4.24. We next claim
that for any curve C not in C(Y ) there exists some Cv ,v ∈ ΓY such that C ·Cv > 0. To see this, let A be an
ample divisor on Y . Then A ·C > 0. As C(Y ) is a basis of Pic(Y )

Q
, we can, replacing A by a multiple if

necessary, write A =
∑
Cv∈C(Y )βvCv with βv ∈Z. Then C ·Cv > 0 for some v ∈ C(Y ), as else A ·C = 0. It

follows that Γf ·C > 0 for all integral curves, so Γf is positive on NE(Y ), as the latter is finitely polyhedral by
Corollary 4.7. By Kleiman’s criterion, Γf is ample. �

Proposition 4.26. Let Y be a component of a surface Yc ∈Mod2(P). Suppose ΓY is non-degenerate. Let f0, g0
be the exceptional vertices and let k1, k2 be non-negative integers. Then, there is a positive integer 4 such that for
any e > 4, there is a map f : ΓY →Z such that Γf is an ample divisor with f (f0) = e+ k1 and f (g0) = e+ k2.

Proof. It follows from the discussion of Example 4.16 that ΓY has a unique fork c. Let (f0, . . . , fn, c) and
(g0, . . . , gm, c) denote the legs associated to the exceptional vertices. Let y denote the unique vertex not
appearing on any of the legs. We can assume

k1 +
1
2
n(n+ 1) ≥ k2 +

1
2
m(m+ 1).

Set 4′ := k1 + 1
2n(n+ 1)− k2 − 1

2m(m+ 1) + 2max{n,m}+ 2. Let e be any integer such that e > 4 := 24′ + 2.
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Define a map f : ΓY →Z by

f (fi) = e+ k1 +
1
2
i(i + 1)

f (gi) = e+ k2 +
1
2
i(i + 1)

f (c) = max{f (fn), f (gm)}+ max{n,m}+ 1

f (y) =
⌈1

2
e
⌉
− 1.

Note that by assumption f (fn) ≥ f (gm). Also, we have f (f1)− f (f0) = 1 and

f (fi−1)− 2f (fi) + f (fi+1) = 1

for 1 ≤ 1 ≤ n− 1. Also, f (fi)− f (fi−1) = i, so

−2f (fn) + f (c) + f (fn−1) = max{n,m}+ 1−n > 0.

Analoguously, we find f (g1)− f (g0) = 1, f (gi−1)− 2f (gi) + f (gi+1) = 1 for 1 ≤ 1 ≤m− 1 and

−2f (gm) + f (c) + f (gm−1) ≥max{n,m}+ 1−m > 0.

We also have

−2f (c) + f (fn) + f (gm) + f (y) = −2max{fn, gm} − 2max{n,m} − 2 + f (fn) + f (gm) + f (y)

= −f (fn) + f (gm) + f (y)− 2max{n,m} − 2

= f (y)−4′ > 0.

Finally, max{f (fn), g(gm)} ≥ e, so −2f (y) + f (c) = −e+ 2 + max{fn, gm}+ max{n,m}+ 1 > 0. By Lemma 4.25,
Γf is an ample divisor with properties as desired. �

Proposition 4.27. Let Y be a component of a surface Yc ∈ Mod2(P). Suppose ΓY is non-degenerate. Write
D =D1 +D2 for the anticanonical cycle. Assume D

2
1 ≤ 0. Let k1, k2 and γ be integers with k1, k2 ≥ 0 and γ > 1.

Then there are positive integers 4 and α such that for any e > 4 divisible by α, there is an ample divisor A with
A ·D1 = e+ k1 and A ·D2 = γe+ k2.

Proof. Assume first that D2
1 < 0. Take an ample divisor L on Y and set M = −D2

1L + (L ·D1)D1. Let C
be an integral curve on Y . If C is distinct form D1 then M ·C = (−D2

1 )L ·C + (L ·D1)D1 ·C > 0. Also,
M ·D1 = −D2

1L ·D1 + (L ·D1)D2
1 = 0. If D2

1 = 0, then set M =D1. In any case there is a nef divisor M with
M ·D2 = α > 0. and M ·D1 = 0. Now, by Proposition 4.26, there is an integer 4 and such that for any
integer e > 4 there is an ample divisor Γf such that Γf ·D1 = e+ k1 and Γf ·D2 = e+ k2. Fix e = αr for some
integer r > 0 such that e > 4. Then A := Γf + (γ −1)rM is ample. Also, A ·D1 = e+ k1 and A ·D2 = k2 +γe,
as desired. �

Example 4.28. Proposition 4.27 fails if D2
1 > 0, as the legs of the curve structure are then too short: let

D ′ =D ′1 +D ′2 be the anticanonical divisor of Y2, pi ∈D ′i , i = 1,2 be the interior special points of Y2. Assume
that C is the (−1)-curve meeting D ′1 and F the (−2)-curve with C ·F = 1. For n ∈N let Y (n) be the surface
obtained from Y2 by blowing up n times in p2 and contracting C +F. Note that ΓY (n) is non-degenerate of
type d2. Let k and e be positive integers. Suppose A is an ample divisor with A ·D1 = e and A ·D2 = γe+ k
with some integer γ > 1, and define f : ΓY (n)→ Z to be the map with A = Γf . Let vei be the exceptional
vertex meeting Di . We have L(ve1

) = (e1, c) with c the fork of ΓY (n). Also, write L(ve2
) = (ve2

, . . . ,w,c) and let
y be the unique vertex not on any leg. We have f (c) = γe+α+β and f (w) = γe+β with α,β > 0 by Lemma
4.24. By ampleness A · c > 0, so f (e1) + f (w) + f (y) > 2f (c) and using that A ·D1 = f (e1) = e we obtain

f (y) > (γ − 1)e+ 2α + β.
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Intersecting A with y gives −2f (y) + f (c) > 0. So 0 > 2f (y)− f (c) > 2(γ − 1)e + 4α + 2β − f (c), implying
0 > (γ − 2)e+ 3α + β > 0, a contradiction. Hence a divisor such as A cannot exist.

We note the following variant of Proposition 4.26.

Proposition 4.29. Let Y be a component of a surface Yc in Mod2(P), with ΓY non-degenerate. Let D =D1 +D2
be the anticanonical divisor. Assume D2

1 = 1. Let k ≥ 0 be an integer. Then there is an integer 4 > 0 such that for
any even integer e > 4 an ample divisor A on Y exists with A ·D1 = e and A ·D2 = 3

2e+ k.

Proof. Let c be the fork of ΓY and let vei denote the exceptional vertex with Di · vei = 1. Let us consider
L(ve2

) = (f0, . . . , fn, c). Set 4 = n(n+ 1) + 6n+ 2k + 10 and denote by y the unique vertex not appearing on
any of the legs.

Let e be any even integer such that e > 4. Define a map f : ΓY →Z by

f (ve1
) = e

f (fi) =
3
2
e+ k +

1
2
i(i + 1)

f (c) = f (fn) +n+ 1

f (y) =
1
2
e+

1
2
n(n+ 1) + 2n+ 3 + k.

Then −f (ve1
) + f (c) = f (fn) +n+ 1− e > 0. As above, we have f (f1)− f (f0) = 1 and

f (fi−1)− 2f (fi) + f (fi+1) = 1

for 1 ≤ i ≤ n− 1. Moreover, f (fi)− f (fi−1) = i for 1 ≤ i ≤ n− 1, so

−2f (fn) + f (c) + f (fn−1) = 1.

We also have

−2f (c) + f (fn) + f (ve1
) + f (y) = −2f (fn)− 2n− 2 + f (fn) + f (ve1

) + f (y)

= −f (fn) + f (ve1
) + f (y)− 2n− 2

= −3
2
e − k − 1

2
n(n+ 1)− 2n− 2 + e+ f (y)

= 1.

Finally

−2f (y) + f (c) = −e −n(n+ 1)− 4n− 6− 2k +
3
2
e+ k +

1
2
n(n+ 1) +n+ 1

=
1
2
e − 1

2
n(n+ 1)− 3n− 5− k

=
1
2

(e −4) > 0.

Hence Γf is an ample divisor with properties as desired. �

We will also need to construct ample divisors on surfaces with degenerate curve structures. For better
readability, we will treat the different cases separately.

Proposition 4.30. Let Y be a component of a surface Yc ∈ Mod2(P). Suppose ΓY is of type d2 and tamely
degenerate. Suppose there is an exceptional vertex v0 and that e is an integer, e > 3. Write D = D1 +D2 with
D1 denoting the component of D with D1 · v0 = 1. Then there is a map f : ΓY → Z such that Γf is an ample
divisor with degree e +m on D2 and degree e on D1 for some integer m ≥ 0 independent of e. If ΓY does not
have an exceptional vertex, then there is a map f : ΓY →Z such that Γf is an ample divisor with degree e on all
components of D that are met by a unique element of ΓY and e+m on the remaining components for some m ≥ 0
independent of e.
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Proof. Write L(v0) = (v0, . . . , vn). Let w be the unique element in ΓY \L(v0) which exists by regularity.
Let e ≥ 2. Define f : ΓY → Z by setting f (vi) = e + 1

2 i(i + 1) and f (w) = n + 1. Then Γf · vi = 1 for
all i and also Γf · w > 0. It follows from Lemma 4.25 that Γf is an ample divisor with degree e on
D1 and degree e + (D2 ·w)(n + 1) + 1

2n(n + 1) on D2. Since D2 ·w > 0 we obtain the claim by setting
m = (D2 ·w)(n+ 1) + 1

2n(n+ 1). In the case without exceptional vertex, ΓY is given by {v0,v1} with v2
0 = 0,

v2
1 ≥ −2. The divisor 3v0 + v1 has the required properties. �

Let ΓY be of type d2, very degenerate and with no exceptional vertex. Then ΓY is a singleton given by a
vertex v. Conversely, if Y is a component of a surface Yc ∈Mod2(P) with ΓY a singleton, then ΓY is of type
d2, very degenerate and with no exceptional vertex. For later use we note the following obvious statement.

Proposition 4.31. Let Y be a component of a surface Yc ∈Mod2(P). Suppose ΓY is a singleton given by a vertex
v. Then, after relabelling D, we have D1 · v = 1 and D2 · v = 2. Then, for any e > 0, v 7→ e defines an ample
divisor with degree e on D1 and 2e on D2 and any ample divisor is of this form.

Proposition 4.32. Let Y be a component of a surface Yc ∈Mod2(P). Suppose ΓY is very degenerate. Suppose
there is an exceptional vertex v0 and let e > 2 be an integer. Write D =D1 +D2 with D1 denoting the component
of D with D1 · v0 = 1. Then there is a map f : ΓY →Z such that Γf is an ample divisor with degree 2e+m on
D2 and degree e on D1 for some integer m > 0 independent of e.

Proof. As ΓY is very degenerate and hence degenerate, L(v0) = ΓY . Write L(v0) = (v0,v1, . . . , vn) and setting
f (vi) = e+ 1

2 i(i + 1) defines an ample divisor (note that v2
n = 0) with degree 2(e+ 1

2n(n+ 1)) on D2 and e on
D1. �

5. Projective Models

In this section we analyse the elements in the set PMod2 in terms of curve structures. This analysis
will be divided into two cases, namely models of type P and of type T . We shall, in particular, prove
projectivity criteria.

5.1. Models of class T

Recall from Example 2.30 that YT has a component with normalisation Y4. Denote this component by
(YT )ω. Let Yc ∈Mod2(T ). There is a sequence of type I flops to YT . Let Yω be the image of (YT )ω under
the induced birational map. It is independent of the chosen sequence. We call Yω the special component
of Yc.

Proposition 5.1. Let Yc ∈Mod2(T ), Yω the special component. Let Dω be the smooth component of the boundary
curve of Yω. Let D1 and D2 be the disjoint curves in the preimage of Dω under the normalisation π : Y νω → Yω.
Then Yc is projective if and only if D

2
1 =D2

2 = −1.

Proof. Let Yc = Y1∪Y2∪Y3 and suppose Yω = Y2. We begin by showing that Yc ∈ PMod2(T ) if and only if
Yω is projective. Projectivity of Yc clearly implies projectivity of Yw, so we only need to show the opposite
implication. So suppose Yω is projective. Because Yc is in Mod2 and has dual intersection complex T , the
remaining two components of Yc are obtained by blow-ups and blow-downs of Y1 in the interior special
point, and thus are projective. Hence there are ample line bundle Ai on Yi for i = 1,2,3. The components
Y1 and Y2 are glued by identifying a curve D12 ⊂ Y1 with a curve D21 ⊂ Y2. Similarly, Y3 and Y2 are glued
by identifying a curve D32 ⊂ Y3 with a curve D23 ⊂ Y2. Replacing the Ai by suitable multiples, we can
assume that A1 ·D12 = A2 ·D21 and A2 ·D23 = A3 ·D32. Because Yc has trivial Carlson extension, one
obtains an ample bundle on Yc by Lemma 2.10 and [Laz04, Proposition 1.2.16], implying that Yc is projective.

We now show that projectivity of Yw is equivalent to the numerical condition stated in the proposition.
Suppose first that D2

1 =D2
2 = −1. One can, similar as in the proof of Proposition 2.28, find an ample divisor
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on Yω. Indeed, take an ample divisor L′ = L′ω on the normalisation Y νω . Suppose without loss of generality
L′ ·D1 ≥ L′ ·D2. Set L

′′ = (L′ ·D2)L′ . Set M = L′ + (L′ ·D1)D1. Then M ·C ≥ 0 for all curves C on Y νω with
equality if and only if C = D1. Write n = L′ ·D1 − L′ ·D2. Note that D1 ·D2 = 0. Then Lω = L′′ + nM is
ample by the Nakai-Moishezon criterion and

Lω ·D2 = L′′ ·D2 +nM ·D2

= (L′ ·D2)(L′ ·D2) + (L′ ·D1)(L′ ·D2)− (L′ ·D2)(L′ ·D2)

= L′′ ·D1 +nM ·D1

= Lω ·D1.

Hence Lω induces an ample divisor on Yw.
We now show that the condition on the intersection numbers is also necessary. So suppose that D2

1 < −1.
Note that D2

2 = −2 −D2
1 . Suppose L

′ is an ample line bundle on Yω. The normalisation ν : Y νω → Yω is
finite, so L = ν∗L′ is ample.

By Proposition 4.17, replacing L by a suitable multiple we can write

L =
∑

v∈C(Y )

avCv

with av ∈Z.
As L is ample, the coefficients of vertices meeting the anticanonical divisor are strictly positive. This

implies av > 0 for all v by Lemma 4.24, as either v is contained in the leg defined by some exceptional
vertex or meets a component of the boundary. By the condition on the self-intersection of D1 the curve
structure ΓY is degenerate: there is an exceptional vertex e with e1 ·D1 = 1 and L(e) ends in a vertex w with
w ·D2 = 1. By Lemma 4.24,

L ·D2 > aw > ae = L ·D1,

so Yω cannot be projective. �

In particular, the proposition says that Yc ∈Mod2 is in PMod2(T ) if and only if there is a sequence of
type I flops

Ycd · · ·d Yi d · · ·d YT ,

such that any flopping curve meets the nodal components of the double locus on the special component of
Yi .

5.2. Models of class P

Proposition 5.2. Let Yc ∈Mod2(P) and write Yc = Y1 ∪Y2 ∪Y3.

(i) If ΓYi is degenerate for all i = 1,2,3, then Yc is not projective.
(ii) Suppose ΓYi is regular for all i. If there is a component Yi such that ΓYi is non-degenerate, then Yc is

projective.

Proof. Suppose first that the curve structures ΓYi are all degenerate. We show that this cannot happen if Yc is
projective. So let A be an ample divisor on Yc. Denote the restriction to Yi by Ai . The set of underlying
curves of ΓYi is a basis of Pic(Yi)Q and thus after replacing A by a suitable multiple, we write Ai = Γfi for
a suitable function fi : ΓYi →Z. Note that at least one of the Yi , say Y1, has an exceptional vertex ve. Let
the leg of ve be given by L(ve) = (ve, . . . , vn). Suppose the component of the anticanonical divisor met by
ve is D13 while vn meets D12. Necessarily f (ve) > 0, and thus we have f (vn) > f (ve) by Lemma 4.24. In
particular, A1 ·D12 > A1 ·D13. Now consider Y2. If ΓY2

has an exceptional vertex, we find A2 ·D23 > A2 ·D21
by the same reasoning. If ΓY2

has no exceptional vertex and |ΓY2
| > 1, then ΓY2

has two elements, say v1 and
v2 with indices chosen such that v2

1 = 0, v1 · v2 = 1, D21 · v2 = 0 and D21 · v1 = 1. Write A2 = a1v1 + a2v2.
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Then 0 < A2 ·v1 = a2 and 0 < A2 ·D21 = a1. So A2 ·D23 ≥ A2 ·D21. If |ΓY2
| = 1, we have A2 ·D23 = 2A2 ·D21

by virtue of Proposition 4.31.
The same reasoning applied to Y3 yields the chain of inequalites

A2 ·D23 ≥ A2 ·D21 = A1 ·D12 > A1 ·D13 = A3 ·D31 ≥ A3 ·D32 = A2 ·D23,

where the equalities come from the gluing condition. Hence Yc is not projective.
Conversely, suppose the curve structure ΓY1

is non-degenerate. For large enough e, there is an ample
divisor A2 on Y2 with degA2|D21

= e and degA2|D23
= e + k1, with k1 ≥ 0 and independent of e, by

Proposition 4.26 if ΓY2
is non-degenerate or Proposition 4.30 in the degenerate case. Similarly, maybe

increasing e, one finds an ample divisor A3 on Y3 with A3 ·D32 = e+ k1 and A3 ·D31 = e+ k2, k2 ≥ 0. Then,
maybe again increasing e, there is an ample divisor A1 on Y1 with A1 ·D13 = e + k2 and A1 ·D12 = e, as
ΓY1

is non-degenerate and hence Proposition 4.26 applies. Hence Y carries an ample bundle and thus is
projective. �

Recall that if ΓYi is a curve structure of type d2 that is very degenerate and Dij is a component of the
anticanonical cycle, then there is a unique vertex vDij ∈ ΓYi such that vDij ·Dij , 0, by Lemma 4.23. Note
that if Y = Y1 ∪Y2 ∪Y3 is of class P such that ΓY1

is non-degenerate and ΓYi is very degenerate for i = 2,3,
then there exists an i such that vDi1 ·Di1 = 2.

Proposition 5.3. Let Yc ∈Mod2(P) and write Yc = Y1 ∪ Y2 ∪ Y3. Suppose ΓY1
is non-degenerate and ΓYi is

very degenerate for i = 2,3.

(i) If vDi1 ·Di1 = 2 for i = 2,3, then Yc is projective.
(ii) If vDi1 ·Di1 = 1 for exactly one i ∈ {2,3}, then Yc is projective if and only if D2

1i ≤ 0.

Proof. We begin by proving the first claim. By Propositions 4.31 and 4.32, given any sufficiently large e, there
are ample divisors A2 and A3 on Y2 and Y3 with A2 ·D23 = A3 ·D32 = e and Ai ·Di1 = 2e+ni , i = 2,3, with
ni ≥ 0 and ni independent of e. As Y1 is non-degenerate, after maybe increasing e, by Proposition 4.26,
there is an ample divisor A1 on Y1 with A ·D1i = 2e+ni , hence the Ai ’s glue to an ample divisor on Yc.

In the second case, we can assume vD21
·D21 = 1. If D2

12 > 0, then in fact D2
12 = 1, as Y1 is non-degenerate.

We want to show that there is no ample bundle on Yc. To get a contradiction, suppose A is ample on
Yc. Write Ai for the restriction to Yi . Write A2 ·D21 = e > 0. Note that |ΓY2

| > 1. So by Proposition 4.32
A2 ·D23 = 2e+n1 for some number n1 > 0.

As vD31
· D31 = 2, by the same results and the gluing condition, we have A3 · D32 = 2e + n1 and

A3 ·D31 = 4e+n2 for some n2 > 0. It follows that A1 ·D12 = e and A1 ·D13 = 4e+n2 by the gluing condition.
But then A1 cannot be ample by Example 4.28.

If D2
12 ≤ 0, we can, by Lemma 4.24 and Proposition 4.31, find an ample divisor on A2 on Y2 with

A2 ·D21 = e and A2 ·D23 = 2e+n1 with n1 independent of e for any e sufficiently large. Similarly, we find
an ample A3 on Y3 with A3 ·D32 = 2e + n1 and A3 ·D31 = 4e + n2, n2 independent of e. By Proposition
4.27, there is a ample A1 on Y1 with A1 ·D12 = e and A1 ·D13 = 4e+n2. By construction, the Ai glue to an
ample bundle A on Yc, so Yc is projective. �

The following proposition is proven by the same reasoning as Proposition 5.3.

Proposition 5.4. Let Yc ∈Mod2(P) and write Yc = Y1 ∪ Y2 ∪ Y3. Suppose ΓY1
is non-degenerate, ΓY2

is very
degenerate and ΓY3

is tamely degenerate.

(i) If vD21
·D21 = 1 then Yc is projective if and only if D

2
12 ≤ 0.

(ii) If vD21
·D21 = 2 then Yc is projective if and only if D

2
13 ≤ 0.

Proposition 5.5. Let Yc ∈Mod2(P) and write Yc = Y1 ∪ Y2 ∪ Y3. Suppose ΓY1
is very degenerate and ΓYi is

non-degenerate for i = 2,3. Also, assume vD12
·D12 = 2. Then Yc is projective.
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Proof. Note that by non-degeneracy, D2
31 ≤ 1 and D2

23 ≤ 1. If D2
31 ≤ 0 or D2

23 ≤ 0 then Yc is projective: this
follows as in the proof above. If D2

31 = 1 and D2
23 = 1, the intersection numbers and the conditions on

degeneracy and regularity fix the components, so there is only one such surface. It follows from Propositon
4.29 that for sufficiently large e there is an ample divisor A3 on Y3 with A3 ·D31 = e and A3 ·D32 = 3

2e.
We can take e to be divisible by 4. Since D2

31 = 1, ΓY1
has an exceptional vertex v0. Let us consider

L(v0) = (v0,v1, . . . , vn) the associated leg. Then v2
n = 0 as ΓY3

is very degenerate. So Cvn is a nef divisor on
Y1. By Proposition 4.32, there is an ample divisor A′1 on Y1 with A′1 ·D13 = e and A′1 ·D12 = 2e+ k, with k
independent of e. Set A1 = A′1 + 1

4eCvn . This is an ample divisor with A1 ·D13 = e and A1 ·D12 = 9
4e+ k. By

Proposition 4.29, there is an ample divisor A2 on Y2 with A2 ·D23 = 3
2e and A2 ·D21 = 9

4e+ k. Hence the
Ai glue to an ample divisor on Y . �

6. Flops, Birational Automorphisms and Orbits

In this section we analyze possible flops of models of the DNV family of degree 2. For this we use
augmented curve structures. Finally, we study the action of the birational automorphism group on the Mori
fan where we determine the possible orbit lengths of maximal cones in this fan.

6.1. Flops

We first recapitulate Lemma 1.29 from [GHKS], whose proof is an elementary but lengthy computation.

Lemma 6.1 (cf. [GHKS]). Let Y → S be a model of the Dolgachev–Nikulin–Voisin family of degree 2d, and let
π : Y →Z be a birational contraction (over S) whose exceptional locus Ex(π) intersects Yc in a one dimensional
scheme. Let ν : Yνc → Yc be the normalisation. Then each connected component C of Ex(π)∩Yc is one of the
following:

(i) A non-singular irreducible component of the double curve of Yc. Necessarily ν−1(C) consists of two copies of
P

1, each with self intersection −1 in Yνc .
(ii) A tree of rational curves contained in an irreducible component of Yc. This tree is of the form ν(C′),

where C′ is a connected tree of rational curves contained in one connected component of Yνc , intersecting its
boundary transversally in one point.

(iii) A tree of rational curves in an irreducible component of Yc, disjoint from the double curve.
(iv) ν−1(C) consists of two connected components, each intersecting the boundary of the connected component of
Yνc containing it transversally in one point. These two intersection points are identified under ν.

Remark 6.2. In (iv), the two connected components can lie in one or two components of Yc.

The lemma implies the following description of flopping contractions.

Proposition 6.3. Let Y → S be a model of the Dolgachev–Nikulin–Voisin family of degree 2d, and let π : Y →Z
be a birational contraction (over S) with codimEx(π) = 2, i.e. a flopping contraction. Let C be a connected
component of Ex(π). Let ν : Yνc →Yc be the normalisation. Then ν−1(C) is an integral (−1)-curve if C is not
contained in the singular locus of Yc and a disjoint union of two integral (−1)-curves if C is contained in the
singular locus.

Proof. First, note that Ex(π) ⊂ Yc and hence the connected components of Ex(π) are as in Lemma 6.1. In
particular, one of the cases applies to C. In case (i) of Lemma 6.1 there is nothing to show. Suppose we
are in case (ii) of the Lemma. Let Yi be the component of the central fibre containing C. Then there is an
induced contraction Y νi → Zνi with Zνi the normalisation of a component of the central fibre of Z. The
intersection matrix of the curves contracted by Y νi → Zνi is negative definite, see e.g. [KM98, Lemma 3.40].
In particular, if C is reducible there is an irreducible component C0 ⊂ C with C2

0 = −2. As C0 does not
meet the boundary, we can extend it trivially to a divisor Lc on Yc and then find, by maximality of the DNV
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family, a divisor L on Y restricting to Lc. Let F be a nef divisor inducing the flopping contraction π, with
restriction Fc to Yc. As C is contracted, Fc ·Lc = 0. Also, L2

c = −2. Let Lη , Fη denote the restrictions to the
generic fibre. We note that the intersection numbers on Yc can be calculated on the normalisation Yνc , see
e.g. [Bad01, Corollary 1.11]. Because Y → S is flat, we have L2

η = L2
c and Fη · Lη = Fc · Lc, by constancy of

the Euler characteristic, see [Kol95, Proposition VI.2.9]. By a standard argument for K3 surfaces, either Lη
or −Lη is effective, see [Huy16, Chapter 2, § 1.4]. In any case, there is an integral curve on Yη contracted
by Fη . But π is a flopping contraction, so this is a contradiction. Hence C is irreducible. As C meets the
double locus and and C2 < 0, it is necessarily a (−1)-curve. In the situation of (iii) of the lemma, there is
again a (−2)-curve on some component. In case (iv) one can lift the bundle given by the two irreducible
(−1)-curves and conclude as above, as the self intersection is again −2. �

Remark 6.4. In our case d = 1 the following holds: If φ : Y d Y+ is a flop defined by a flopping contraction
π : Y →Z, then the dual intersection complexes of Y and Y+ are the same if and only if no component of
Ex(φ) is contained in the singular locus of Yc. This follows from the fact that any component of the singular
locus meets any other such component in a triple point.

Remark 6.5. We include some remarks on terminology and on factorisation of maps into flops. We also fix
some notation which we will use throughout the paper. Let φ : Y d Y ′ be a birational map between two
models of the DNV family that is not an isomorphism. Then it is an isomorphism in codimension 1. Let F′

be an effective ample divisor on Y ′ and let F be its birational transform on Y . Then there is a sequence of
F-flops factoring φ, i.e. there is a sequence

Y d Y1 d · · ·d Yi d · · ·d Yn � Y ′ .

such that each Yi d Yi+1 is the flop defined by an F̃-flopping contraction where F̃ is the birational transform
of F under φ, by Remark 3.5. We shall write Fk for this birational transform of F under Y d Yk and
φk : Yk → Zk for the flopping contraction defining ψk : Yk d Yk+1. We also write Ck for the birational
transform of C under

∏k
i=0φi if C is not contracted under this map, and similar for components Yi . We

further employ a similar notation for the double curves Dij ⊂ Yi , so (Dij )k is the birational transform of
Yi ∩Yj considered as a curve on (Yi)k . If we consider several maps at once, we will decorate the notation

accordingly, i.e. here we would write C
φ
k , (Djj )

φ
k etc. Also, note that if C is a curve in Yk with Fk ·C > 0 and

C is disjoint from Exφk , then Fk+1 · (ψk)∗C > 0. Finally, given an F-flop

Y //

π ��

Y+

π+
~~

Z
a curve in Ex(π) will be called a flopping curve and a curve in Ex(π+) will be called a flopped curve .

We want to classify the flopping contractions of a Kulikov model Y → S of the Dolgachev–Nikulin–Voisin
family of degree 2 by their exceptional loci. The next proposition shows that an elementary modification
connecting central fibers of projective models lifts to a flop of the models.

Proposition 6.6. Let Y and Y ′ be models of the DNV family of degree 2, with central fibres Yc and Y ′c respectively.
Suppose that there exists a type I or type II elementary modification Ycd Y ′c contracting a curve C. Then there is a
flopping contraction π contracting precisely C, inducing a flop Y d Y ′ .

Proof. Let X and X ′ be the maximal analytic smoothings of Yc and Y ′c . Both are projective because the
central fibres are and every line bundle of Yc extends to X by maximality, and similarly for Y ′c . It follows
from [KM98, Theorem 6.38] that there is a flop ψ′ : X d X ′ given by some divisor F, with restriction Fc
on Yc. The curve C generates an extremal ray of X . Then C also generates an extremal ray of Y → S
and Fc lifts to a divisor F ∈ Pic(Y /S). Hence, as in the proof of Proposition 2.16, F defines a contraction
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π : Y → Z, such that the restriction of the exceptional locus to Yc is C. It is either divisorial or small.
Suppose it is divisorial. Then the exceptional divisor E restricts to a multiple of C with multiplicity a > 0.
We shall show that the curve C then leads to a contradiction of the conditions of Lemma 2.10. To see this,
write Yc = Y1 ∪Y2 ∪Y3. Assume first Yc ∈ PMod(P). Suppose C is the exceptional locus of an elementary
modification of type I. Assume the notation is such that C ⊂ Y1 and C ·D12 = 1. Write ri for the inclusion
Yi →Y . Then

r∗1E ·D12 = aC ·D12 = a > 0 and r∗2E ·D21 = 0.

If C is the exceptional locus of an elementary modification of type II, assume the normalisation of C is
D12 ∪D21. Then

r∗1E ·D13 = aC ·D13 = 2a > 0 and r∗3E ·D31 = 0.

Next assume that Yc ∈ PMod(T ), and assume further that Y1 is the special component. The proof is the
same if C is the exceptional locus of an elementary modification of type I. If C is the exceptional locus of a
type II modification, necessarily C is the smooth component of the double locus on the special component
Y1. To see this, suppose this is not the case. Then we can write D1j ∪Dj1 for the preimage of C under
the normalisation ν : Yνc →Y , with j ∈ {2,3}. By Proposition 6.3, D2

1j =D2
j1 = −1. But D2

12 +D2
21 = 0 and

D2
13 +D2

31 = 0 by Definition 2.6 and the definition of PMod(T ). Hence C is indeed the smooth component
of the double locus on Y1. Write C1 ∪C2 for the preimage of C under ν. We have

r∗1E ·D12 = aC1 ·D12 + aC2 ·D12 = 2a > 0 and r∗2E ·D21 = 0.

So r∗cE does not fullfill the degree conditions of Lemma 2.10. It follows that the extremal ray generated by C
defines a small contraction. �

For the statement of the next corollary, recall that a surface Yc ∈Mod2(T ) has one component Yω that is
not smooth, the special component.

Corollary 6.7. Let Y be a model of the DNV family of degree 2 with Yc ∈ PMod2(T ). Let φ : Yc d Y +
c be

an elementary modification of type I, contracting a curve C, such that C does not meet the singular locus of the
special component (Yc)ω. Then there is a flopping contraction Y →Z, such that for the induced flop Y+, we have
Y+
c = Y +

c .

Proof. Let Yω be the surface obtained by applying φ to (Yc)ω. Let D1 ∪D3 be the preimage of SingYω
under the normalisation Y νω → Yω. As C does not meet the singular locus of the special component,
D2

1 =D2
3 = −1. Hence Y +

c ∈ PMod2(T ) by Proposition 5.1. �

Corollary 6.8. Let Y be a model of the DNV family of degree 2, with Yc ∈ PMod2. Let φ : Yc d Y +
c be an

elementary modification of type II, contracting a curve C. Then there is a flopping contraction Y →Z, such that
for the flop Y+ we have Y+

c = Y +
c .

Proof. If Y is of class P and we apply a type II modification, then Y +
c has dual intersection graph T , as

follows from the description of elementary modifications in Section 1.1. By the definition of elementary
modifications of type II, Y +

c fullfills the condition of Proposition 5.1 and hence Y +
c is projective. The result

then follows from Proposition 6.6.
If Y is of class T , then Y +

c has dual intersection graph P . By the definiton of elementary modifications
of type II, C is the smooth component of the restriction of the double locus of Yc to (Yc)ω. Let A be an
ample line bundle on (Yc)νω and let C1, C2 be the components of the preimage of C under (Yc)νω→ (Yc)ω.
Here, we choose A such that A ·C1 = A ·C2 which can be done as (Yc)ω is projective. Note that C2

i = −1.
So L′ = A+ (A ·Ci)Ci has degree 0 on the Ci and strictly positive degree on all other curves. By the usual
arguments, there is a divisor L on Yc that restricts to a positive multiple of L′ on (Yc)ω and to an ample
divisor on the remaining components. It follows that there is a nef divisor L on Y that has degree zero
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precisely on C. The birational morphism induced by L is a flopping contraction with flopping curve C.
Hence there is a model Y+ with properties as required. �

Remark 6.9. We emphasize that in Corollaries 6.7 and 6.8, the exceptional locus is precisely the curve C.

If C is a curve on an component Y of the central fibre of a model Y → S , we say that C — considered as
a curve on Y — is a (−1)-curve if the components of the preimage Cν under the normalisation Y ν → Y are
(−1)-curves.

Definition 6.10. Let f : Y →Z be a flopping contraction with flopping curve C an irreducible (−1)-curve.
The flop Y d Y+ defined by f is a type I flop if C is not contained in the double locus D of the central
fibre Yc and a type II flop if C ⊂D .

Note that type I and type II flops are simply global versions of type I and type II elementary modifications.
In the degree 2 case, we can give a refined version of Lemma 6.1 in case of flopping contractions on

models with central fibre in PMod2 .

Proposition 6.11. Let Y → S be a model of the DNV family of degree 2 such that Yc ∈ PMod2. Let π : Y →Z
be a flopping contraction, given be the contraction of an extremal ray R. Then the exceptional locus Ex(π) is an
irreducible (−1)-curve.

Proof. The idea of the proof is the following: assume that π : Y →Z has reducible exceptional locus Ex(π).
Then we shall show that one can find a contraction that contracts a proper subset of Ex(π). Hence the
classes of the components of Ex(π) are not contained in an extremal ray R, giving a contradiction.

By Proposition 6.3 all connected components of the exceptional locus of a flopping contraction are
(−1)-curves. If a component C of Ex(π) is a (−1)-curve in the double locus, then there is a flopping
contraction with exceptional locus C, by Corollary 6.8.

So we can assume that all connected components Ci of Ex(π) are given by interior (−1)-curves. As
each component of the double locus SingYc meets at most one Ci , there are at most 3 such components,
C1,C2,C3. Also, if Yc ∈ PMod2(T ), by Proposition 5.1, none of the Ci meets the smooth component of
the restriction of SingYc to (Yc)ω. Hence, by Corollary 6.7, we only need to show the Proposition for
Yc ∈ PMod2(P).

We show that in this case, Ex(π) is irreducible. Suppose there are two components C1,C2 in Ex(π). Write
Yc = Y1 ∪ Y2 ∪ Y3 and assume C1 ⊂ Y1. Let ξi =

∑3
j=1Dij −Dji . This defines a divisor in Pic(Y /S), by

Lemma 2.10 and maximality of the model Y → S . Then ξ1 ·C1 = 1 and ξ1 ·C2 = −1 if C2 is not contained
in Y1. If C2 is contained in Y1, then C2 ·D1k = 1 for some k ∈ {2,3}. Then ξk ·C1 = 0 and ξk ·C2 = −1.
Hence C1 is not numerically equivalent to a positive multiple of C2. This is a contradiction to π = contrR
and we can conclude that Ex(π) = C1. �

For later reference, we record the following immediate corollary.

Corollary 6.12. Let Y → S be a model of the DNV family of degree 2. Let π : Y →Z be a flopping contraction.
Then the flop Y d Y+ defined by π is a type I flop or a type II flop.

Remark 6.13. We can make Remark 6.4 more precise: if φ : Y d Y+ is a flop, then the dual intersection
complexes of Y and Y ′ are the same if φ is of type I and they are distinct if φ is of type II.

Lemma 6.14. Let Y be a model of the DNV family of degree 2 with Yc ∈ PMod2(P). Assume that we have a
birational map φ : Y d Y ′ to another model Y ′ . Let F′ be an ample divisor on Y ′ with birational transform F
on Y . Consider a factorization of φ into F-flops:

Y d Y1 d · · ·d Yi
φi
d Yi+1 d · · ·d Yn

∼−→ Y ′ .

Then at most one φi is of type II. In particular, if both Y and Y ′ are of class P , all φi are type I flops.
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Proof. Write Yc = Y1 ∪Y2 ∪Y3. Without loss of generality we can assume the first flop in the factorisation
to be of type II with exceptional locus Y1 ∩ Y2. Let Y = Y3. Let Y

′ be the component of Y ′c which is the
transform of Y . Then Y ′ is a surface such that the preimage of the restriction of SingY ′c to Y ′ under the
normalisation morphism has 4 components, 2 of which, say D1,D2, are (−1)-curves that are identified under
the normalisation map, giving a smooth component Ds. The images of the curves in ΓY together with the
interior (−1)-curves meeting D1 and D2 define a system of curves that is a basis of Pic((Y ′)ν), and as in
Proposition 5.1, one shows that for all φi , i ≥ 2, Ex(φi) cannot meet Ds, where we use the notation as in
Remark 6.5. Hence Fk · (Ds)k > 0 for all k ≥ 2. Thus any flopping curve in the sequence is an interior
(−1)-curve, so all other flops are of type I. �

6.2. Birational Automorphisms

We first fix some language. See Remark 6.5 for notation.

Definition 6.15. Let Y be model of the DNV family of degree 2 with Yc ∈ PMod2(P). Let F ∈Mov(Y /S).
Let C be a curve with F ·C < 0 that generates an extremal ray and let φ1 : Y d Y1 be the flop given by
contracting C. Further, let φ′ =

∏n
i=2φi : Y1 d Y ′ be a sequence of (φ1)∗F-flops and assume all flops φi in

the sequence φ′ are of type I. Set φ = φ′ ◦φ1.

(i) Let C+ be the flopped curve of φ1. Any curve C′ that is the birational transform of C+ under a
subsequence of flops from φ′ is called a φ-flop of C.

(ii) Let C′ be a φ-flop of C that is itself a flopping curve. Any curve birational to the flopped curve (C′)+

under a map
∏m
i=kφi , k,m ≤ n, is also called a φ-flop of C.

Remark 6.16. If φ is the sequence

Y d Y1 d · · ·d Yi
φi
d Yi+1 d · · ·d Yn

∼−→ Y ′

and E is a curve on some Yk in the factorisation, we have a sequence φ′ of flops defined by the tail

Yk d Yk+1 d · · ·d Yi
φi
d Yi+1 d · · ·d Yn

∼−→ Y ′ .

In this situation, if E′ is a φ′-flop of E we will also call E′ a φ-flop of E.

Definition 6.17. Let Y → S be a model of the DNV family in degree 2 with Yc ∈ PMod2(P). Let Y ⊂ Yc
be a component of the central fibre and let D1 be a component of the anticanonical cycle D =D1 +D2 of Y .
Let C be an interior (−1)-curve on Y meeting D1

(i) C is called alone if there is no H in ΓY with H ·D1 =H ·D2 = 1 and also

{E ∈ ΓY | E ·D1 = 1 and E2 = −1} = {C}.

(ii) C is called an annex if C is not alone and either meets a unique v ∈ ΓY or is the unique interior
(−1)-curve of Y meeting D1.

(iii) If C is not alone, the curve C′ ∈ ΓY \C meeting D1 is the companion of C.

Some illustrations of this definition can be found in Figure 18.

Definition 6.18. Let φ be a sequence of F-flops

Y d Y1 d · · ·d Yi
φi
d Yi+1 d · · ·d Yn

∼−→ Y ′

and F be a divisor on Y . Assume all flops φi are of type I. Let I = {0, . . . ,n} be the index set, where we
assign the index 0 to Y . Let E be a curve on some Yk that is the flopped curve of φk .

(i) An E-sequence is a collection of indices K
φ
E ⊂ I such that for all k ∈ KφE , the flopping curve of

φk : Yk d Yk+1 is either E or a φ-flop of E.
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−1

−1 −1 D1

−1

−1 −2 −1 D1

−1

0

Figure 18. Some examples of (augmented) curve structures where none of the (−1)-curves meeting
D1 is alone. In all examples, the (−1) curve v meeting D1 and exactly one curve in ΓY \{v} is an
annex. Also, both curves meeting D1 are companions (of each other).

D12

vw

vn −2 v0 D13

Figure 19. The curve structure in Example 6.20

(ii) Set m1(KφE ) = min
K
φ
E
k and m2(KφE ) = max

K
φ
E
k. An E-sequence K

φ
E is complete if for any i such that

the flopping curve of φi is E or a φ-flop of E, i < K
φ
E implies i < [m1(KφE ),m2(KφE )].

(iii) For any k ∈ KφE , let E(k) denote the flopped curve of φk . A complete E-sequence K
φ
E is directed if

either (Dij )k ·E(k) = 1 implies i < j for all k ∈ KφE or (Dij )k ·E(k) = 1 implies i > j for all k ∈ KφE .
(iv) A directed E-sequence K

φ
E is called initial if for any i such that the flopping curve of φi is E or a

φ-flop of E, i < K
φ
E implies i > m2(KφE ).

(v) An initial E-sequence K
φ
E is called exhaustive if for any i such that the flopping curve of φi is E or a

φ-flop of E, i ∈ KφE .

Definition 6.19. Let Y be a model of the DNV family of degree 2 with Yc ∈ PMod2(P). Let us denote
Yc = Y1∪Y2∪Y3 the central fibre. Let F ∈Mov(Y ). Let C be an interior (−1)-curve on Y1 with F ·C < 0 that
generates an extremal ray and let φ1 : Y d Y1 be the flop given by contracting C. Assume the numbering is
such that D =D12 is the component of the anticanonical divisor met by C. Let C+ be the flopped curve of
φ1. C is good for D or D-good if for any sequence of F-flops φ = φ′ ◦φ1 as in Definition 6.15, the following
holds:

(i) if C′ is the flopped curve of Yk d Yk+1 and if there is an initial C-sequence K
φ
C with k ∈ KφC , then

C′ is alone.
(ii) Let E be the curve in Γ(Y2)1

with E2 < 0 and E ·C+ = 1. Suppose there is a birational transform Er of
E that is the flopping curve of some Yr d Yr+1. If E

′ is the flopped curve of Yk d Yk+1 and there is

an initial Er-sequence K
φ
E , with k ∈ K

φ
Er
, then E′ is alone.

The following example is a model for our future considerations.

Example 6.20. We give an example of D-good curves and an exhaustive sequence. Let Y be a model with
central fibre Yc ∈ PMod2(P). Write Yc = Y1∪Y2∪Y3 and suppose that ΓY1

is tamely degenerate and has an
exceptional vertex v0. In particular, v2

0 = −1. Assume moreover that for the unique vertex vw ∈ ΓY1
\{L(v0)},

v2
w = −1. Let vn be the vertex on which L(v0) ends. We have v2

n = −1. Let D12 be the component of the
anticanonical divisor met by vw, see Figure 19.

We show that Cvw is D12-good. Note that D
2
12 = 3. Let φ be a sequence of F-flops, such that Y d Y1 has

flopping curve C := Cvw and assume all flops φi in φ to be of type I. Let E be the unique curve of Γ(Y2)1
met

by C+. We have (Cvn)
2
1 = 0. Assume no birational transform Er of E is a flopping curve of φr . Then no

birational transform of (Cvw ) meets a birational transform of D23. We first assume that there exists some
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p ≥ 2 such that Ex(φp) meets (D12)p or (D21)p. Choose the minimal such p. It then follows by minimality
that Ex(φp) · (D12)p = 1. But then Ex(φp) = (Cvn)p, which is impossible as (Cvn)

2
1 ≥ 0. Therefore Cvw is

D12-good.
Now, assume Et is the flopping curve of φt , where t is chosen minimal. Necessarily, Ex(φt) · (D23)t = 1.

Let E+ be the flopped curve of φt . It is straightforward to calculate (D32)2
t+1 = −12: (Y2)t is obtained from

YP by blowing up one interior special point 4 times and blowing down 10 times in the other interior special
point. Flopping Et corresponds to a further blow down, giving (D32)2

t+1 = −12. So E+ is the only curve
in Γ(Y3)t+1

meeting (D32)t+1. In particular, E+ is alone. No birational transform of E+ can be a flopping
curve: such a curve E+

s would be Fs-negative, implying that there is a minimal index k such that E+
k meets

(D23)k . But this implies that all curve structures of the components of the central fibre of Yk are degenerate,
a contradiction to Proposition 5.2. Hence C is D12-good and there is an exhaustive C-sequence.

Similar arguments show that Cvn is D12-good.

In order to make the statements of the following lemmas lighter, we introduce the following setup.

Setting 6.21. Let Y and Y ′ be models of the DNV family of degree 2, with Yc,Y ′c ∈ PMod2(P). Write
Yc = Y1∪Y2∪Y3. Let φ : Y d Y ′ be a birational map and let C be an interior (−1)-curve on the component
Y1 meeting Y1 ∩Y2. Let F

′ be ample on Y ′ and denote its pullback under φ by F. Let

Y d Y1 d · · ·d Yi
φi
d Yi+1 d · · ·d Yn

∼−→ Y ′

be a factorisation into F-flops.

We will assume this setting in Lemmas 6.22, 6.25, 6.26, 6.28, 6.30, 6.31, 6.35 and in Corollary 6.27.

Lemma 6.22. Assume Setting 6.21. Suppose that the curve C is not an annex and F ·C ≥ 0. If there is a p such
that Ex(φp) = Cp and Cp · (D12)p = 1, then there exists q < p with Cq · (D13)q = 1.

Proof. Suppose there is a p such that Exφp = Cp but Cq · (D13)q = 0 for all q ≤ p. We have Fp ·Cp < 0, hence
there must be some minimal k < p such that Ck meets the flopping curve H or the flopped curve H+ of φk .
As Cq · (D13)q = 0 for all q < p, in the first case, H · (D12)k = 1 and in the second case, H+ · (D12)k+1 = 1.
The first case can only occur if C is not alone and H = C′k , C

′ the annex meeting C. So in this case,
C2
k+1 = 0. The curve H is D12-good by the argument in Example 6.20. There, it is also shown that there is an

exhaustive H-sequence, so it follows that C2
s ≥ 0 for s ≥ k + 1. Thus, Cs is not contracted for any s ≥ k + 1,

a contradiction to Exφp = Cp. Consider the second case. We have F ·H+ > 0 and by our assumptions,
there is an h such that Ex(φh) = H+

h and then arguing as before, there is j < h such that H+
k meets the

flopping curve G or the flopped curve (G)+ of φj . As H
+ is not an annex, as above, we conclude then that

either (H+
i )2 = 0 for i > k or G+ ·H+

k = 1 and H+
k is disjoint from the boundary. As there are only finitely

many flops in the sequence, this procedure stops with a curve H ′ such that either there is an l < p such that
Fi ·H ′i > 0 and H ′i · (D12)i = 1 for i > l or (H ′i )

2 = 0 and H ′i · (D12)i = 1 for i > l, a contradiction. �

Definition 6.23. Assume Setting 6.21.

(i) Assume Y d Y1 has flopping curve C. Let C+ ⊂ (Y2)1 be the flopped curve and assume C+ is
not alone. Let E be the (−1)-curve meeting (D21)1 = (Y2)1 ∩ (Y1)1 with E ·C+ = 1. Set DR := D21.
Assume there is an index q such that Eq meets (DR)q and is the flopping curve of Yqd Yq+1. This q
is unique as Eq is (DR)q-good. In this case we say that C is replaced by E and say E is the replacement
of C.

(ii) Suppose F ·C ≥ 0. Assume V := {i ∈N | Ci · (D13)i = 1} , ∅ and let p be its minimal element. Let E
be the flopping curve of φp−1. Also, suppose that if s is the minimal integer s > p such that Cs is
the flopped curve of φs, then s < V . If there is such an s, we say that C is reflected. If C is reflected,
there is a minimal q, s > q > p such that q < V . We set DR := D23. The flopped curve CR of φq is
the reflection of C.
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The curve DR is the R-locus of the replacement or the reflection. The index q such that the flopped curve of
φq is the replacement or the reflection of C is called the index of the replacement resp. the reflection.

Remark 6.24. If a φ-flop C′ of C is replaced or reflected we will also call the replacement E of C′ a
replacement or a reflection of C.

Lemma 6.25. Assume Setting 6.21. Further assume that C is alone and F ·C ≥ 0. Suppose C is reflected, with
reflection CR. Suppose p is the minimal element of {i ∈N | Ci · (D13)i = 1}, which exists by definition. Let E+ be
the flopped curve of φp−1. Let q be the index of the reflection. If E

+ is not an annex, then E+ is not alone and
Exφq is a birational transform of the annex Ea meeting E+.

Proof. By definition of reflection, there is a b with Cb · (D12)b = 1 and Cb the flopping curve of φb. There is
a p, p < b with Cp · (D13)p = 1. Assume p minimal with this property. As in the statement, let E+ ⊂ (Y3)p be
the flopped curve of φp−1. By assumption, E+ is not an annex. Note that if Cp is not alone, it is necessarily
not an annex. Also, the annex Cap is D13-good and hence is not a flopped curve for i ≥ p, as C is reflected.

If E+ is not alone, let Ea be the annex and suppose CR is not a φ-flop of Ea. In any event (E+ alone or
not) as C is reflected, there is a b′ , b′ < b with E+

b′ the flopping curve of φb′ and E
+
b′ · (D31)b′ = 1. By Lemma

6.22, there is p′ , p′ < b′ , such that E+
p′ · (D32)p′ = 1, which we again assume minimal.

Let G+ ⊂ (Y2)p′ be the flopped curve of φp′−1. Suppose G
+ is alone. Again, it follows that there is b′′

with p′ < b′′ < b′ such that for the flopping curve G+
b′′ of φb′′ one has G+

b′′ · (D23)b′′ = 1. By Lemma 6.22,
there is p′′ , p′ < p′′ < b′′ such that G+

p′′ · (D21)p′′ = 1, which we again assume minimal. So Γ(Y2)p′′ and Γ(Y3)p′′

are degenerate. If G+ is not alone, it follows that Γ(Y2)p′ and Γ(Y3)p′ are degenerate.
In both cases, by projectivity, it follows from Proposition 5.2 that Γ(Y1)j for j ∈ {p

′ ,p′′} is non-degenerate.
By the assumption that C is reflected, we have Cs · (D12)s = 1 for the minimal s > p such that Cs is the
flopped curve of φs. Hence it follows from Lemma 6.22 (applied to the exceptional vertex of Γ(Y1)j distinct
from C) that (G+)i · (D21)i = 1 for all i ≥ j . But then C is not reflected, a contradiction. Hence we conclude
that E+ is not alone and CR is a φ-flop of Ea. Now, it follows by the argument in Example 6.20 that Ex(φq)
is indeed a birational transform of Ea. �

Lemma 6.26. Assume Setting 6.21. Suppose C is the flopping curve of φ0. If C is D-good, then there is an

exhaustive C-sequence K
φ
C .

Proof. Let K
φ
C be a maximal initial C-sequence. To get a contradiction, suppose K

φ
C is not exhaustive. We

can assume that K
φ
C = {0}. Let C+ be the flopped curve of φ0. Being a φ-flop of C, C+ is alone and

F1 ·C+ > 0. As KφC is not exhaustive, by definition, C+ is reflected.
So by assumption, there is some b with C+

b · (D12)b = 1 and Cb the flopping curve of φb. There is a p,
p < b with Cp · (D13)p = 1. Assume p minimal with this property. Let E+ ⊂ (Y3)p be the flopped curve of
φp−1. As C is D12-good, E

+ is alone. In particular, E+ is not an annex. Being alone, E+ does not have a

companion. From Lemma 6.25 we conclude that C+ is not reflected and hence K
φ
C is exhaustive. �

Corollary 6.27. Suppose F ·C ≥ 0 and assume that there is an integer p such that Exφp = Cp and Cp ·(D12)p = 1.
Then C is alone.

Proof. Suppose C is not alone. As F ·C ≥ 0, there must be some minimal k, k < p, such that Ck meets the
flopping curve H or the flopped curve H+ of φk . Suppose first that C is an annex. Let C′ be the companion
of C. Suppose we are in the first case, i.e. Ck meets the flopping curve H . Then H = C′k as Ck ·D12 = 1.
By the argument in Example 6.20, C′ is D12-good, and hence from Lemma 6.26, there is an exhaustive
C′-sequence, and hence C2

i ≥ 0 for all i > k contradicting our assumptions, as in particular C2
p < 0.

Hence we are in the second case, i.e. Ck meets the flopped curve H+ of φk . Then Fk+1 ·H+ > 0, H+

is not an annex and there is an h such that Ex(φh) =H+
h , with H

+
h · (D12)h = 1. By Lemma 6.22, we have
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a minimal l, l < h with H+
l · (D13)l = 1. Note that the flopping curve of φl−1 is C′l−1 which is necessarily

D13-good and there is an exhaustive C′l−1-sequence {l−1, . . . , v}, by Lemma 6.26, implying that Ci is disjoint
from (D12)i for i > l, a contradiction. Now suppose C is not alone and not the annex. Let E be the curve in
ΓY1

with E ·C = 1 and E ·D12 = 0. By a straightforward extension of the argument in the proof of Example
6.20, one checks that E and C are D13-good. By Lemma 6.22, Cq · (D13)q = 1. Hence for some r < q,

Er = Ex(φr ) and Er · (D13)r = 1. By Lemma 6.26, there is an exhaustive E-sequence K
φ
E . As C is D13-good,

our assumptions imply K
φ
E = {r}. Then Ci · (D13)i = 1 for all i > r, a contradiction. �

Lemma 6.28. Assume Setting 6.21. Suppose F ·C ≥ 0 and assume C is reflected, with reflection CR. Let E+

be the flopped curve of φp−1, with p the minimal element of {i ∈N | Ci · (D13)i = 1}. Let q be the index of the
reflection.

(i) If E+ is not an annex, then E+ is not alone and Exφq is a birational transform of the annex Ea meeting E+.
(ii) If E+ is an annex, then Exφq is a birational transform of the companion of E+.

Proof. It follows from Corollary 6.27 that C is alone. Hence item (i) is nothing but Lemma 6.25. If E+ is
an annex, it follows from Corollary 6.27 that Exφq cannot be a birational transform of E+. Hence it is
necessarily a birational transform of the companion of E+. �

Remark 6.29. In particular, it follows that for the index q of a replacement or reflection exactly one of
Γ(YR)q or Γ(YR)q+1

is a regular curve structure, where YR is the component containing DR.

Lemma 6.30. Assume Setting 6.21. Assume that C is not alone, and let W be the companion of C.

(i) Assume Y d Y1 has flopping curve C. Suppose C and none of its φ-flops is replaced or reflected. Then

there is an exhaustive C-sequence K
φ
C .

(ii) Suppose C is not an annex. Suppose there is no index i sucht that Ex(φi) · (D12)i = 1 and Ex(φi) a φ-flop
of C or W or of a replacement of C. Then D2

12 ≥ (D12)2
i for all i > 0.

Proof. The first part is immediate: take a maximal initial C-sequence K
φ
C = {1, . . . ,p}. We can assume

K
φ
C = {1}. If the flopped curve C+ of φp is an annex, we are done by Corollary 6.27, as in particular an

annex is not alone. Else, we conclude from Lemma 6.22 and the assumption that there is no reflection.
For the second part, to obtain a contradiction, suppose the statement on intersection numbers is not

true. Let F (D12) be the collection of indices in {1, . . . ,n} such that i ∈ F (D12) implies Ex(φi) · (D12)i = 1
or Ex(φi) · (D21)i = 1. The assumption that the statement on intersection numbers is not true implies
that there is a p ∈ F (D12) with Ex(φp) · (D12)p = 1. Assume that p is minimal with this property. Then
there is q ∈ F (D12) with q < p such that Ex(φq) · (D21)q = 1, as else Ex(φp) = Cp (or Wp), contrary to our
assumptions. Suppose q is chosen maximal. Let H ⊂ (Y1)q+1 be the flopped curve of φq. In particular,
Fq+1 ·H > 0. Also, H is not an annex.

We have Ex(φp) =Hp, as the remaining possibility is that H is not alone and Ex(φp) =Ha
p with Ha the

annex meeting H . In that case, by the argument in Example 6.20, Ha
p is D12-good, so (Hi)2 ≥ 0 for all i > p

and D2
12 ≥ (D12)2

i for all i > p. By definition of p we get D2
12 ≥ (D12)2

i for all i > 0.
Hence, by item (i), H is reflected. Thus, there is r with r < p such that Hr · (D13)r = 1. Also, by

constrution, Hr · (D12)r = 1. Hence Γ(Y3)r and Γ(Y1)r are degenerate. So, by projectivity, it follows from
Proposition 5.2 that Γ(Y2)r is non-degenerate. This implies that Ex(φq) is D21-good, so there is an exhaustive
Ex(φq)-sequence by Lemma 6.26, contradicting Ex(φp) =Hp. �

Lemma 6.31. Assume Setting 6.21. Further assume that Y d Y1 has flopping curve C.

(i) If C is D12-good, then C and none of its φ-flops is replaced or reflected.
(ii) If C is an annex, then Γ(Y1)i is very degenerate for any i > 0.
(iii) If C is not alone and not an annex, then Γ(Y1)i is regular for any i > 0.
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Proof. Item (i) is immediate: by definition of D-goodness, it follows that C or its φ-flops are not replaced.
They are not reflected as there is an exhaustive C-sequence. For the remaining items, note that in both cases
C is D12-good, implying the claim. �

We are now able to prove a statement which is crucial for us (and which is specific to the degree 2 case).

Corollary 6.32. Let Y → S be a model of the DNV family of degree 2, of class G for G ∈ {P ,T }. Then there is
a sequence of type I flops

YG d · · ·d Y .

Proof. We start with a birational map φ : YP d Y be a birational map. Let

YP d Y1 d Y2 d · · ·d Yi
φi
d Yi+1 d · · ·d Yn

∼−→ Y

be a factorisation of φ into flops. By Proposition 6.3, each flop φi is either a type II flop or has exceptional
locus given by disjoint interior (−1)-curves. Hence, if the set {i ∈N | φi is of type II } is empty, we are done.
Otherwise it follows from Lemma 6.14 that this set consists of a single element {p}. Let Dij = Yi ∩ Yj be
a double curve with (Dij )p contained in the exceptional locus of φp. Let F be the divisor defining the
factorisation φ, see Remark 6.5. If C is an interior (−1)-curve on Yi meeting Dij , then C is Dij-good by
definition. It thus follows from Lemma 6.26 that Dij is disjoint from the flopped curve of φi for i < p. The
same reasoning applies to Dji . Hence F ·Dij = F ·Dji < 0. So we can assume p = 0. Then, all that remains
to show is that the model Y1 obtained from YP by a flop defined by a flopping contraction with exceptional
locus a curve in the singular locus of YP can be obtained from YT via type I flops. This is immediate: Y1
has two components that are weak del Pezzo surfaces of degree 3. For each such component, there is a tree
of curves of length 2, i.e. a (−1)-curve and a (−2)-curve, meeting the interior special point. Flopping these
trees gives the desired result. �

We immediately obtain that the set of all models of the Dolgachev–Nikulin–Voisin family of degree 2 is
indeed bijective to PMod2:

Corollary 6.33. Let Y → S be a model of the DNV family of degree 2. Then Yc ∈ PMod2.

In particular, all models of the DNV family can be linked, using only type I flops, to one of the two
maximal Kulikov models in (−1)-form. To go from maximal Kulikov models of type P to those of type T ,
and vice versa, requires a type II flop.

Corollary 6.34. Let Y → S and Y ′ → S be models of the DNV family of degree 2. Any birational S-map
Y d Y ′ factors into a sequence of type I and type II flops (and possibly an isomorphism ).

Lemma 6.35. Assume Setting 6.21. Let K
φ
C be a maximal initial C-sequence that is not exhaustive. Let p < K

φ
C

be the minimal index such that C′ = Ex(φp) is a φ-flop of C. Let φ′ be the composition

Ypd Y1 d . . .Yi
φi
d Yi+1 d . . .Yn

and let K
φ′

C′ be a maximal initial C
′-sequence. If Ex(φi) · (D21)i = 1 for some i ∈ Kφ

′

C′ , then |K
φ
C | = 1.

Proof. By assumption, C is reflected. Let q be the index, DR the R-locus of the reflection. Suppose the
flopping curve of φq is not an annex. Then by the description in Lemma 6.28 there is a unique r , r < q, with
Ex(φr ) ·D23 = 1 and no i, i < q with with Ex(φi) ·D32 = 1. Hence the curve structure ΓY2

is either regular

with |ΓY2
| = 2 or very degenerate with |ΓY2

| = 1 and ΓY3
is very degenerate. Thus |KφC | = 1.

By Lemma 6.28, the remaining possibility is that the flopping curve of φq is an annex. Suppose DR ⊂ YR.
Then Γ(YR)q+1

is very degenerate. Let E ⊂ Y ′ be the reflection of C. Let D ′ be the component of the double

locus on Y ′ met by E. Then Ei ·D ′i = 1 for all i > q. Let c be the maximal element of K
φ
C and let C′ be the
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flopped curve of φc. By definition C′q+1 ·E = 1. Also, if C′t meets the boundary for some t ≥ c, it is alone. It

follows that K
φ′

C′ is a singleton set, and as Ex(φi) · (D21)i = 1 for some i ∈ Kφ
′

C′ , the same holds for K
φ
C . �

After these preliminaries, we can prove the main result of this section.

Proposition 6.36. Let Y → S and Y ′→ S be models of the DNV family of degree 2, with Yc,Y ′c ∈ PMod2(P).
Let ψ : Y d Y ′ and φ : Y d Y ′ be two birational maps. Write Yc = ∪Yi and Y ′c = ∪Y ′i . Suppose

(6.1) ψ(Yi) ⊂ Y ′j ⇔ φ(Yi) ⊂ Y ′j .

Let A′ be an ample divisor on Y ′ . Let Aφ and Aψ be the birational transforms of A′ under φ and ψ. Let C be a
(−1)-curve on Y that generates an extremal ray. Then

Aφ ·C < 0⇔ Aψ ·C < 0.

Proof. Assume Aφ ·C < 0. Let

Y d Yφ1 d · · ·d Yφi
φi
d Yφi+1 d · · ·d Y

φ
n
∼−→ Y ′

and

Y d Yψ1 d · · ·d Yψi
ψi
d Yψi+1 d · · ·d Y

ψ
m
∼−→ Y ′

be factorisations of φ and ψ, such that C is the flopping curve of Y d Yφ1 . We show Aψ · C < 0. By
Proposition 6.11, C is a (−1)-curve on a component, say Y1, meeting D12. Let C

+ be the flopped curve. By
Lemma 6.14, any flopping contraction in the factorisation of φ contracts an interior (−1)-curve, so C is not
contained in (SingYc)∩Y1.

Suppose Ck is not flopped by any Yψk d Y
ψ
k+1 for any index k, with (D12)k ·Ck = 1 and that the same is

true for any ψ-flop of C or any replacement. Suppose first that C is an annex. Then C is D12-good and
Γ(Y1)φ1

is very degenerate. By Lemma 6.31, Γ(Y1)φn
is very degenerate. By hypothesis, Γ(Y )ψm

is regular. But from

Condition (6.1), we obtain (Y1)ψm
∼−→ (Y1)φn , a contradiction. Hence, C is not an annex. Thus we can apply

Lemma 6.30 and the equality (φ∗D12)2 = (ψ∗D12)2, which follows from Condition (6.1), to conclude that
either

(i) C is not alone and a birational transform Cak of the annex Ca is the flopping curve of some

Yψk d Y
ψ
k+1, or

(ii) C is not alone and there is a flop Cf of C that is replaced or reflected under φ or
(iii) C is alone and there is a flop Cf of C that is replaced or reflected under φ.

In cases (i) and (ii), C is D12-good. So by Lemma 6.26, the case (ii) is impossible. In case (i), note that
Ca is D21-good, and by the arguments in the proof of Example 6.20, any birational transform of Ca meeting
(D2j )k will be D2j-good for j = 1,3. By the same argument as above, we obtain a contradiction to Condition
(6.1) using Lemma 6.31. Hence we are in case (iii), namely C is alone and there is a flop Cf of C that is
replaced or reflected under φ.

Let DR be the R-locus and let YR be the component containing it. Let q be the index of the replacement
or reflection. Let CR be the replacement (or reflection) of Cf . The curve CR is (DR)q-good. This implies
that exactly one of Γ(YR)φn

and Γ(YR)ψn
is regular, again a contradiction to (6.1). Indeed, by Lemma 6.35, the

R-locus is given by D32. The implied curve structures are depicted in Figure 20. It then follows that in order
to change the regularity of YR under a flop ψi , there must be some k such that ψk has flopped curve Ck or a
ψ-flop of Ck , which we assumed is not the case. So this case also leads to a contradiction.

We conclude that there is an integer p such that Ex(φp) is a ψ-flop of C with (D12)p ·Ex(φp) = 1. We
show that p = 0. To get a contradiction, suppose Aψ ·C ≥ 0. In particular, C is not an annex by Corollary
6.27. Suppose p is chosen minimal. Lemma 6.22 implies that C is replaced or reflected. It also follows that C
is D12-good. Suppose there is no i with Ex(ψi) = Ci , i < p. Then the R-locus is D31. Let q be the index of
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CDR

Figure 20. A subgraph of the augmented curve structures of Y1, Y2 and Y3. The black vertices
correspond to curves in the double locus of Yc. Here, the double lines between the black vertices
indicates that the underlying curves are identified under the normalisation map.

the reflection/replacement. As before, we find that Γ(Y3)ψq
and Γ(Y3)ψq+1

are not both regular or very degenerate.

By Lemma 6.31, Γ(Y3)ψm
has the same regularity as Γ(Y3)ψq+1

. Note that there is a curve E ∈ ΓY1
meeting C

and not meeting D12 such that El = Ex(ψl) where l + 1 is the minimal index such that Cl+1 · (D13) = 1. By
D12-goodness of C, there is no i such that Ei = Ex(φi) and Ei · (D13)i = 1. It follows that Γ(Y3)φn

has opposite

regularity to Γ(Y3)ψm
. As above, this gives a contradiction. If there is l < p with Ex(ψl) = Ci , i < p, by Lemma

6.35, the R-locus is D23 and the same reasoning as before applies. �

Corollary 6.37. Let Y → S be a model of the DNV family of degree 2, with Yc = ∪iYi . Suppose Yc ∈ PMod2(P).
Let φ and ψ be birational automorphisms of Y → S . Suppose

ψ(Yi) ⊂ Yj ⇔ φ(Yi) ⊂ Yj .

Then there is a regular automorphism γ of Y such that

ψ = γ ◦φ.

Proof. We use the same notation as in the previous propositon. Let Aφ be negative on a curve C1 generating
an extremal ray. Then there is an Aφ flop φ1 : Y d Y1 defined by contrC1

. This is also the Aψ-flop defined
by contrC1

, see e.g. [KM98, Definition 6.10]. Continuing this way, one obtains a sequence of flops factoring ψ
and φ up to isomorphism, i.e. a birational map ψn : Y d Yn and isomorphisms α : Yn→Y and β : Yn→Y
such that ψ = α ◦ψn and φ = β ◦ψn and thus setting γ = α ◦ β−1 we have ψ = γ ◦φ. �

Corollary 6.38. Let Y → S be a model of the DNV family of degree 2, with Yc = ∪iYi . Suppose Yc ∈ PMod(P).
Let φ ∈ Bir(Y /S). Suppose φ(Yi) ⊂ Yi for all i. Then φ ∈ Aut(Y /S). In particular, Bir(YP/S) = Aut(YP/S).

Proof. The first part follows by setting ψ to be identity. The second part follows as any interior (−1)-curve
C on a component of YP is D-good for the component Dij of the double locus met by C. Indeed, let∏n
i=1φi be a factorisation of φ into flops and suppose there is an index k such that Ck = Ex(φk) for the

birational transform of an interior (−1) curve C of a component of YP . Obviously, we can assume k = 1. By
D-goodness, it follows from Lemma 6.30 that (D2

ji)t ≤ −2 for all t ≥ 1. This contradicts (Dij )2
n = −1. �

Corollary 6.39. The automorphism group Aut(YP/S) of YP/S contains a subgroup S3(YP) that is isomorphic
to the symmetric group S3 and acts faithfully by permutations on the set of components of YP .

Proof. Let C be an interior (−1)-curve on a component YP ,1 of YP , meeting YP ,1 ∩YP ,2. It defines an
elementary modification of type I, YP d Y . All components of Y have non-degenerate curve structure, so
there is a smoothing Y of Y and a type I flop φ : YP d Y given by a flopping contraction contracting
precisely C, by Proposition 6.6. Note that all components Yi of Y have pairwise distinct curve structure.
Assume that YP ,1 is mapped to Y1. In particular, they are not isomorphic. Let C′ be an interior (−1)
curve different from C, on say YP ,k , meeting YP ,k ∩YP ,i with i ∈ {1,2,3}\{k}. Note that as C′ is different
from C, (k, i) , (1,2). By the same argument as before, we obtain a type I flop φ(k,i) : YP d Y ′ given by
a flopping contraction contracting precisely C′ . Let Y ′k be the the component which is the image of YP ,k .
Now, Y ′ = Y ′c and Y are isomorphic and hence by uniqueness of the DNV family and the fact that the
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generic fibres are isomorphic over S there is an isomorphism γ(k,i) : Y →Y ′ . Because the curve structures
are distinct, necessarily γ(Y1) = Y ′k . It follows that there is a map ψ(k,i) and a commutative diagram of
birational maps

YP

φ
//

ψ(k,i)

��

Y
γ(k,i)

��
YP φ(k,i)

// Y ′ .

By Corollary 6.38, ψ(k,i) is a morphism. By looking at curve structures, we find that ψ(k,i) maps YP ,1 to
YP ,k and YP ,2 to YP ,i . One finds that the possible combinations (k, i) are (1,3), (2,1), (2,3), (3,1), and
(3,2). Hence the permutations on the set of components of YP that are induced by automorphisms ψ(k,i)
are (1,3,2), (2,1,3), (2,3,1), (3,1,2) and (3,2,1). Hence there is indeed a subgroup as claimed. �

Definition 6.40. A model Y ∈ PMod2 is symmetric if there are distinct components Y1,Y3 ⊂ Y and an
automorphism ψ ∈ Aut(Y ) such that

ψ|Y1
: Y1

∼−→ Y3.

If there Y = Yc for a model Y of the DNV family, then Y is symmetric.

Note that this implies that D2
13 = −1, as ψ(D13) =D31. For models with symmetric central fibre, we have

the following statement.

Proposition 6.41. Let Y → S be a model of the DNV family of degree 2. Assume Yc ∈ PMod2(P) is symmetric,
but Y , YP . Suppose φ,ψ are two birational automorphisms of Y . Write Yc = Y1 ∪Y2 ∪Y3 with notation such
that D2

13 = −1. If φ(D13)2 = ψ(D13)2, then there is an automorphism γ ∈ Aut(Y /S) such that

ψ = γ ◦φ.

Proof. As Y , YP it follows from D2
13 = −1 and symmetry that Y1

∼−→ Y3. It is straightforward to see, using
D13-goodness of interior (−1) curves meeting D13 or D31, that φ(D13)2 = −1 implies that φ is regular, as
then no curves can be flopped. Hence we can assume φ(D13)2 , −1. Also, note that any interior (−1)-curve
C meeting D13 is D13-good. More generally, it is easy to see that if

Y d Y1 d · · ·d Yi
φi
d Yi+1 d · · ·d Yn

∼−→ Y

is a factorisation of a birational automorphism of Y and C is the flopping curve of Yk d Yk+1, with
C · (D13)k = 1, then C is (D13)k-good.

We first show the proposition assuming ΓY1
is regular. Note that then no flopping curve C ⊂ (Yi)k in

the factorisation can change the regularity of Γ(Yi )k , as such a change would be irreversible by Lemma 6.31.
This implies the proposition. Indeed, there is neither replacement nor reflection as there are no regularity
changing flops, so if C is the flopping curve of some φr , with C · (Dij )r = 1, we conclude from Lemma
6.30 and the condition on intersection numbers that for some p, Cp is the flopping curve of some ψp, with
Cp · (Dij )p = 1. As in the proof of Proposition 6.36, it follows that p = 0. Arguing as in Corollary 6.37, the
claim follows.

Now, suppose ΓY1
is very degenerate. Then Yc is uniquely defined up to isomomorphism: we have

D2
12 = D2

32 = 4, D2
13 = D2

31 = −1, D2
21 = D2

23 = −6 and also ΓY3
is very degenerate. Also, both ΓY1

and ΓY3

have three vertices while ΓY2
has 18 vertices. If φ is a birational automorphism such that φ(D13)2 , −1, then

either φ(D13)2 = 4,φ(D12)2 = −1 and φ(D23)2 = 4 or φ(D13)2 = −6,φ(D12)2 = −6 and φ(D23)2 = −1. We
first show that if

Y d Y1 d · · ·d Yi
φi
d Yi+1 d · · ·d Yn

∼−→ Y
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is a factorisation of φ, and C the flopping curve of some φk , then there is an exhaustive C-sequence K
φ
C . By

symmetry, it is enough to show this for the case φ(D13)2 = 4. So let C be the flopping curve of some φk .
Then (Dij )k ·C = 1 for some Dij . If Dij =D13 or Dij =D31, then, as remarked above, C is (Dij )k-good. If
Dij =D21, then it may be that the flopped curve C+ of φk is not alone. In that case however, both curves
C+ and C′ meeting (D12)k+1 are (D12)k+1-good by the same argument as in Example 6.20, so from the
condition on the intersection numbers, there is no φs with flopping curve a birational transform of C+ or C′ .
The same argument applies to D23, impliying that Dij =D21 and Dij =D23 cannot happen. One concludes

that there is an exhaustive C-sequence K
φ
C .

To prove the proposition, assume there are factorisations of φ and ψ that agree up to term l. As in
Proposition 6.36 we let Aφ,Aψ denote the bundles defining the sequences of flops. If C is the flopping

curve of φl , with C · (Dij )l = 1, because of the existence of an exhaustive C sequence K
φ
C , the condition on

intersection numbers implies that there is a flop ψs with flopping curve C
ψ
s : if C is alone, this is immediate.

If C is not alone, then flopping the companion of C implies that Γ(Yi )
ψ
m
and Γ(Yi )

φ
m
have distinct regularity, a

contradiction. Hence indeed there is a ψs with the claimed properties. We show s = l.
Suppose first that C is alone. Assume (Aψ)l ·Cl ≥ 0. We can deduce from Corollary 6.27 that C is alone

and from Lemma 6.22 we get a minimal q, s > q > l such that C
φ
s .(Dik)

φ
q = 1, k , {i, j}. Write E = Ex(φk) for

the flopping curve and E+ for the flopped curve. If E is not replaced with R-locus Dki we have Ci ·(Dik)
φ
s = 1

for all i ≥ q, contradicting C = Ex(ψs). Hence E+ is not alone and, letting Ec be the companion of E+, there
is a t, s > t > q such that (Ec)t = Ex(ψt) and E

c
t · (Dki)t = 1.

If E+ is an annex, it follows that the curve structure Γ(Yi )l consists of only two vertices and there is no

(−1)-curve meeting (Dki)
φ
m for any m ≥ s. This implies that Γ(Yi )m is a singleton for m ≥ l+1, a contradiction.

If E+ is not an annex, then Γ(Yk)
φ
m
is regular for all m ≥ l while Γ(Yk)ψm is very degenerate for m > t, a

contradiction. Hence (Aψ)s ·C < 0 and it follows inductively that φ and ψ agree up to automorphism. �

6.3. Orbits

Let Y → S a be model of the DNV family of degree 2. We recall the action of Bir(Y /S) on the Mori fan
MF(Y /S) in somewhat more detail. Let (Y ′ , f ) be a marked minimal model of the DNV family, i.e. a model
Y ′ of the DNV family together with a birational map f : Y d Y ′ . This determines a maximal cone C(f ) of
MF(Y /S), defined as the pullback under f of the Nef cone of Y ′ .

The group Bir(Y /S) acts on the cones of MF(Y /S). Suppose g : Y d Z is another marked minimal
model with Z isomorphic to Y ′ via h : Z → Y ′ . We can replace g by h ◦ g and assume Z = Y ′ , as the
corresponding cones are identical. Then γ = f −1 ◦ g is a birational S-automorphism of Y mapping C(f ) to
C(g). Hence the orbit of C(f ) under the action of Bir(Y /S) is parameterised by the set of marked minimal
models (Z, g) with Z � Y ′ . If f = idY /S is the identity on Y , this trivially defines a model (Y , idY /S ) and
the corresponding cone is simply Nef(Y /S).

Definition 6.42. Let Y → S be a model of the Dolgachev–Nikulin–Voisin family of degree 2d. If σ is a
maximal cone in the orbit of Nef(Y /S) under Bir(Y /S) we say that σ is a cone associated to Y → S .

Proposition 6.43. Let Y → S be a model of the DNV family of degree 2. Let σ ∈MF(Y /S) be an associated
maximal cone and Bir(Y /S) · σ be the orbit of σ under Bir(Y /S). Then

|Bir(Y /S) · σ | =


1 if Y = YP ,

3 if Yc is symmetric,Y , YP ,

6 else.

Proof. We first assume Yc ∈ PMod2(P). If Y = YP , the result follows from Corollary 6.38 together with
Corollary 6.39. In general, by Corollary 6.37, there are at most 5 birational automorphism that are not
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regular (up to composition with an automorphism). This follows from the fact that the fibre has 3 components
and hence there are only 5 permutations of the components which are not the identity. Let Y be a model
different from YP and let φ : Y d YP be a birational map. For each σ ∈ S3, let gσ ∈ Aut(YP) be an
automorphism permuting the components of the central fibre as in Corollary 6.39. One obtains 6 birational
maps ασ = φ−1 ◦ gσ ◦φ. We show that if Yc is not symmetric, 5 of the maps ασ are not regular and
distinct in the sense that for any pair ασ ,ασ ′ with σ , σ

′ , there does not exist an automorphism β of Y
with ασ = β ◦ασ ′ . Suppose there is an α := ασ that is regular and does not map each component of Yc
into itself. Regularity implies α is an isomorphism. We obtain that Yc is symmetric. Indeed, α induces an
automorphism of Yc and by assumption, there is a component (Yc)1 mapped to a component (Yc)2, so Yc is
symmetric. Hence none of the ασ is a regular map. Also, all the ασ are distinct: as Yc is not symmetric, all
automorphisms fix the components of Yc, so by construction, no two ασ can be related by an automorphism.

Now assume Yc = Y1∪Y2∪Y3 is symmetric. By symmetry, there are two components, say Y1 and Y3, such
that Y1

∼−→ Y3 and D2
13 =D2

31 = −1. By Proposition 6.41, up to automorphism, there are at most 2 birational
automorphisms of Y . Arguing as in the preceeding case, there are precisely 2 birational automorphisms up
to automorphism, say φ and ψ, where we define φ as the map such that φ(D13)2 =D2

21 and ψ by requiring
ψ(D13)2 =D2

12. These do not agree up to automorphism as the existence of a γ ∈ Aut(Y ) with γ ◦ψ = φ
implies D2

12 =D2
21 = −1 and thus Y = YP .

Now suppose Yc ∈ PMod2(T ). Suppose first that the model is obtained by a single type II flop from
YP . Then Y is symmetric and the orbit of the associated cone has length 3. Second, if the type II flop of
Y yields a model Y+ not isomorphic to YP , still Y+

c ∈ PMod(P). Note that models obtained from Y+ by
applying different single type II flops to Y+ are non-isomorphic. Hence, if σ is an associated cone of Y ,
there is a unique cone σ+ associated to Y+ meeting σ in codimension 1 and vice versa. It follows that if σ
and σ+ are associated cones of Y and Y+, the orbits have the same length, i.e. we have

|Bir(Y /S) · σ | = |Bir(Y /S) · σ+|.

Also, Y is symmetric if and only if Y+ is symmetric, as is easily checked by a direct calculation. �

Remark 6.44. Suppose γ ∈ Bir(Y /S) fixes the cone C(f ) (as a cone), i.e. γ(C(f )) = C(f ). Then (Y ′ , f ◦γ)
is a marked minimal model that is isomorphic to (Y ′ , f ). In particular, there is β in Aut(Y ′/S) with
f ◦γ = β ◦ f , see e.g. [Kaw97, Lemma 1.5]. Conversely, setting γ = f −1 ◦ β ◦ f for any β ∈ Aut(Y ′) defines
an element of the stabilizer Bir(Y /S)C(f ) of C(f ).

Hence

γ 7→ f ◦γ ◦ f −1

defines an isomomorphism

Aut(Y ′/S)→ Bir(Y /S)C(f ).

We next construct automorphisms of symmetric models of the DNV family that permute the smooth
components of the central fibre.

Proposition 6.45. Let Y be a symmetric model of the DNV family of degree 2. Suppose Yc = Y1∪Y2∪Y3 and let
φ ∈ Aut(Yc) be an automorphism with φ(Y2) = Y3. Then there is an automorphism ψ ∈ Aut(Y /S) of the total
space such that ψ(Y2) = Y3 and ψ(Y3) = Y2.

Proof. If Y ∼−→ YP the proposition follows from Corollary 6.39. Hence suppose that Y is not isomorphic to
YP . We will first construct birational isomorphisms γi , i = 1,2,3 of Y such that the orbit of Nef(Y /S) in
MF(Y /S) is {C(γ1),C(γ2),C(γ3)}. For this we fix a birational map φ : Y d YP . Write YP = Y ′1 ∪Y

′
2 ∪Y

′
3

with indices chosen such that φ(Yi) ⊂ Y ′i . Let g1 be the identity on YP and choose elements gi ∈
Aut(YP/S), i = 2,3 with gi(Y ′1) = Y ′i . These exist by Corollary 6.39. We then define the maps γi via the
commutative diagrams
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Y
φ
//

γi
��

YP

gi
��

Y
φ
// YP

as γi = φ−1 ◦ gi ◦φ. In particular, γ1 is the identity on Y . Now, note that if Yc ∈ PMod(T ) then any
automorphism of Y maps the special component to itself as it permutes the smooth components. With our
assumptions, the special component is Y1. Similarly, if Yc ∈ PMod(P), any automorphism of Y maps Y1 to
itself, as D2

23 = −1 and D2
12 =D2

21 , −1 by symmetry. So in any event, since γi maps Y1 to Yi the maps g2
and g3 cannot be automorphisms of Y .

We claim that the cones C(γi) are pairwise distinct. Indeed, if C(γi) = C(γj ), there exists, by the above
Remark 6.44 an automorphism h ∈ Aut(Y /S) with γi = h ◦γj . We get

h ◦γj(Y1) ⊂ Yj and γi(Y1) ⊂ Yi

and hence i = j . By Proposition 6.43, the orbit of Nef(Y /S) in MF(Y /S) consists of three cones and is thus
the set {C(γ1),C(γ2),C(γ3)}. We now construct the desired automorphism ψ. Again by Corollary 6.39
there is an automorphism g0 ∈ Aut(YP/S) such that

g0(Y ′1) = Y ′1, g0(Y ′2) = Y ′3 and g0(Y ′3) = Y ′2.

Consider the map ψ = φ−1 ◦ g0 ◦φ. Because g0 fixes Y ′1 it follows that also ψ fixes Y1. So we cannot have
C(ψ) = C(γi) for i = 2,3 by the same reasoning as before. So necessarily C(ψ) = C(γ1). It follows now
from Remark 6.44 that ψ ∈ Aut(Y /S) and by construction ψ permutes the components of Y as claimed. �

7. Counting models

In this section we will count the elements of PMod2. We will first show that this can be done by counting
triples of curve structures. The idea is to then start with the distinguished modes YT and YP and analyse
in each case which type I flops are allowed under the condition that projectivity is preserved. This is a finite
process and analysing it will finally lead us to our main result.

7.1. Automorphisms

We will need certain automorphisms of components of surfaces in PMod2. We first calculate the
automorphism group of the central fibre YP of the model YP .

Write Y = Y2, where Y2 is the weak del Pezzo surface of degree 2 defined in Construction 2.25. Observe
that any automorphism γ of Y fixes the set of interior special points {p1,p2} as it fixes the set of (−1)-curves.
Hence γ lifts to an automorphism of the (2,2)-blow-up Y(2,2) of Y in (p1,p2). Also, any automorphism of
Y(2,2) fixes the set of exceptional curves of the blow-up Y(2,2)→ Y , as these contain all (−1)-curves, and
thus descends to Y . Applying [Loo81, Chapter I, Corollary 5.4] and [GHK15, Remark 5.2] to Y(2,2), it follows
that Aut(Y ) is a subgroup of the dihedral group Z2 ×Z2. Indeed, we will show that Aut(Y ) = Z2 ×Z2.

First, we give an alternative construction of Y . Let Q = P
1 ×P1. Let D̄ = D̄1 + D̄2 + D̄3 + D̄4 be its toric

boundary, ordered cyclically. Let F1 be a fibre of the ruling with fibre D̄1 that meets D̄ in smooth points of
D̄ . Let p2 be the point in F1 ∩ D̄2 and p4 be the point in F1 ∩ D̄4. Similarly, let F2 be a fibre of the ruling
with fibre D̄2 that meets D̄ in smooth points of D̄ with p1 the point in F2 ∩ D̄1 and p3 the point in F2 ∩ D̄3,
see Figure 21.

Let π̃ : Ỹ →Q be the (1,3,1,3)-blow-up of Q in (p1,p2,p3,p4). The birational transforms D̃1 and D̃3 of
D̄1 and D̄3 respectively under π̃−1 are (−1)-curves. Let Ỹ → Y be the induced contraction. The surface Y
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p1 D̄1

p2

D̄2

p3D̄3

p4

D̄4

y

x z

Figure 21. P1 ×P1 with the points q1,q2,p1,p2.

is a weak del Pezzo surface of degree 2 with an E6 root system of effective curves and thus isomorphic to Y2,
see e.g. the global Torelli theorem in [GHK15].

Using this construction, it is straightforward to produce automorphisms on Y . First, being a product of
two copies of P1, every pair (ψ1,ψ2) of automorphisms of P1 induces an automorphism of P1 ×P1. Let
y = D̄1 ∩ D̄4 and x = D̄3 ∩ D̄4. Let φ̄ = (φ1, idP

1) be the automorphism of Q that is given on D̄4 by the
automorphism φ1 of P1 defined by

x 7→ y

y 7→ x

p4 7→ p4,

and by the identity on the second ruling. By the universal property of blow-ups, φ̄ lifts to an automorphism
φ̃ of Ỹ . By construction, φ̃ maps D̃1 to D̃3 and vice versa. Thus φ̃ descends to an automorphism φ of Y .
Note that φ acts as an involution on each of the components of the anticanonical divisor D =D2 +D4 of Y .

We can do the same construction for an automorphism ψ̄ = (id
P

1 ,ψ2) of Q with ψ2 the automorphism of
D̄3 with

x 7→ z

z 7→ x

p3 7→ p3,

where z is the point in D̄2 ∩ D̄3. This yields an automorphism ψ of Y interchanging the components D2
and D4. As we have seen that Aut(Y ) is a subgroup of Z2 ×Z2, it follows that in fact φ and ψ generate
Aut(Y ) = Z2 ×Z2.

As a consequence, we have the following straightforward lemma.

Lemma 7.1. Let Y be a contraction of an (n,m)- blow-up of Y2 in the interior special points. Let D be the strict
transform of the anticanonical divisor of Y2.

(i) Let D0 be a component of D . Then there is an involution φ
Y : Y → Y which restricts to an involution on

D0 fixing the interior special point.
(ii) Suppose D =D2 +D4 and D

2
2 =D2

4 . Then there is an involution ψ
Y : Y → Y interchanging D2 and D4

while fixing the points in D2 ∩D4.

Proof. The morphism φ lifts to any (n,m)- blow-up of Y2 in the interior special points and maps any interior
(−1) curve to itself, so it descends to an automorphism of Y . Similarly, ψ induces an automorphism ψY if D
has two components D2,D4 with D2

2 =D2
4 . �

Lemma 7.2. Let Y ,Y ′ be components of surfaces in PMod2(P). Let D = D1 +D2 and D
′ = D ′1 +D ′2 be the

double loci. Let α : Y
∼−→ Y ′ be an isomorphism, mapping D to D ′ . Then ΓY

∼−→ ΓY ′ .
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Proof. Let p1 and p2 be the interior special points of Y and q1,q2 be those of Y ′ , assuming qi ∈ α(Di). The
assumptions imply that ΓY is regular (degenerate) if and only if ΓY ′ is regular (degenerate). Then the result
follows as D2

i = α(Di)2. �

Proposition 7.3. Let Y , Y ′ be components of surfaces in PMod2. Suppose the curve structures ΓY ,ΓY ′ are
isomorphic and of the same type (see Definition 4.10 ). Let D, D ′ be the double curves of Y and Y ′ respectively.
Then there is an isomorphism Y

∼−→ Y ′ which identifies D and D ′ .

Proof. It is enough to proof the proposition in the type d2 case, as the proof also implies the d1 and
the d4 cases, these being blow-ups or contractions in nodes of the double curves. Let D = D1 +D2 and
D ′ =D ′1 +D ′2. Write D2

i = ni and (D ′i )
2 = n′i . As ΓY � ΓY ′ , we can choose indices such that ni = n′i . Let pi

and p′i be the interior special points. If ni ≥ 0, blow up Y in pi until ni = −1, and the same for Y ′ . Write Ỹ
and Ỹ ′ for the blow-ups. These are (n,m)-blow-ups of Y2 and thus we obtain a diagram

Ỹ
π

�� ��

α̃ // Ỹ ′

��

π′

  
Y Y2

∼ // Y2 Y ′

with α̃ an isomorphism lifting the isomorphism Y2
∼−→ Y2, where we can assume that D̃i is mapped to D̃ ′i .

Let Γ and Γ ′ be the intersection graph of integral curves C of Y and Y ′ with C2 < 0, and C not a component
of the double curve.

Then α̃ identifies Γ and Γ ′ . Write π′′ = π′ ◦ α̃. Then the extremal cones of π and π′′ agree and hence
there is an isomorphism α : Y → Y ′ mapping Di to D

′
i and inducing an isomorphism ΓY → ΓY ′ , see e.g.

[Deb01, Proposition 1.14]. �

For the following, recall our convention that for components Yi ,Yj of a semistable K3 surface, the
self-intersection number of Yi ∩Yj is calculated on Yi .

Lemma 7.4. Let Yc,Y ′c be in PMod2(P). Write Yc = Y1∪Y2∪Y3 and Y ′c = Y ′1∪Y
′
2∪Y

′
3. Assume D

2
21 ,D

2
13.

Suppose that there exist a permutation σ ∈ S3 and isomorphisms of curve structures α
Γ
i : ΓYi

∼−→ ΓY ′σ (i)
such that

(Y ′σ (1) ∩Y
′
σ (2))

2 =D2
12. Then there is an isomorphism α : Yc

∼−→ Y ′c .

Proof. By Proposition 7.3, for each αΓi there is an induced isomorphism αi : Yi → Y ′σ (i) . We write t1, t2 for
the triple points of Y . The interior special point contained in a component Dij ⊂ Yi is denoted by pij . We
use t′1, t

′
2 and p′ij for the triple points and interior special points on Y ′ , where we assume α1(ti) = t′i . We have

α1(p12) = p′12 and as (Y ′σ (1) ∩Y
′
σ (2))

2 =D2
12, using Lemma 7.1, we can find an isomorphism α2 : Y2→ Y ′σ (2)

with α2(p21) = p′21, α2(p23) = p′23, α2(t1) = t′1 and α2(t2) = t′2, by the (proof of) Proposition 7.3. Similarly,
there is an isomorphism α3 : Y3→ Y ′σ (3) with α3(p31) = p′31, α3(p32) = p′32, α3(t1) = t′1, and α3(t2) = t′2. By

construction, the αi glue to an isomorphism α : Y
∼−→ Y ′ . �

The following proposition says that in order to count models, it will be enough to count curve structures.
We will first formulate this for models of class P and then extend it to models of class T .

Proposition 7.5. Let Y , Y ′ be two models of the DNV family of degree 2 with Yc,Y ′c in PMod2(P) and
components Yi and Y

′
i respectively. Then Y and Y

′ are isomorphic if and only if there are isomorphisms of curve
structures ΓYi → ΓY ′σ (i)

for some permutation σ ∈ S3.

Proof. It is enough to show that the central fibres are isomorphic, as then the models are isomorphic by
uniqueness of the DNV family.
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Either both Y and Y ′ are isomorphic to YP , or there is a component Y1 ⊂ Yc such that for the components
of the double curve D =D12 +D13 of Y1, D

2
12 ,D

2
13. There is a component Y ′σ (1) with ΓY1

∼−→ ΓY ′σ (1)
and by

Proposition 7.3 an isomorphism α1 : Y1
∼−→ Y ′σ (1).

Let Y2 be the component with Y1 ∩Y2 =D12. We also have a component Y ′σ (2) with ΓY2

∼−→ ΓY ′σ (2)
and an

isomophism α2 : Y2
∼−→ Y ′σ (2).

Consider first the case (Y ′σ (1) ∩Y
′
σ (2))

2 = D2
13. Then, as D

2
12 , D

2
13 and we have isomorphisms of curve

structures ΓYi → ΓY ′σ (i)
, we have D2

31 =D2
23 and also D2

23 =D2
13. Also, there is an isomorphism α3 : Y3

∼−→ Y ′σ (3)

and (Y ′σ (1) ∩Y
′
σ (3))

2 =D2
12. By the same token, we obtain D2

32 =D2
21 and D2

23 =D2
12. We deduce that Yc is

given by three components Y1,Y2 and Y3 with D2
21 =D2

13 =D2
32 = a and D2

12 =D2
31 =D2

23 = −a−2 for some
integer a. As ΓY1

is non-degenerate, a ≤ 1 and −a− 2 ≤ 1. Thus, by Proposition 4.19, all Yi are isomorphic
and have indeed isomorphic curve structures. It is then immediate to choose an isomorphism Yi → Y ′i that

induces an isomorphism Yc
∼−→ Y ′c . Hence Y � Y ′ by uniqueness of the DNV family.

In the remaining case, (Y ′σ (1)∩Y
′
σ (2))

2 =D2
12. Then the result follows from Lemma 7.4. The other direction

follows from Lemma 7.2. �

We now consider models of class T .

Proposition 7.6. Let Y , Y ′ ∈ PMod2(T ) be two models of the DNV family of degree 2 with components Yi and
Y ′i respectively. Then Y and Y

′ are isomorphic if and only if there are isomorphisms of curve structures ΓYi → ΓY ′σ (i)

for some permutation σ ∈ S3.

Proof. We first assume that there are isomorphisms of curve structures ΓYi → ΓY ′σ (i)
for some permutation

σ ∈ S3. We first note that there are models Ŷ , Ŷ ′ of class P and type II flops Ŷ d Y and Ŷ ′d Y ′ . Write
Ŷc = Ŷ1∪ Ŷ2∪ Ŷ3 and Ŷ ′c = Ŷ ′1∪ Ŷ

′
2∪ Ŷ

′
3 for the components of the central fibres. The curve structures of the

surfaces Ŷi and Ŷ
′
i are determined by the curve structures of Yi and Y

′
i . This follows as any sequence of type

I flops YT d Y induces a sequence YP d Ŷ and similar for Y ′ and Ŷ ′ . Hence there exist a permutation
τ ∈ S3 and isomorphisms of curve structures ΓŶi → ΓŶ ′τ(i)

. Then, Proposition 7.5 implies that Ŷ � Ŷ ′ . So Y
and Y ′ are both flops of the extremal contraction Ŷ → Z defining the type II flop, and hence isomorphic.

We now prove the remaining direction. So assume Y ∼−→ Y ′ via some isomorphism h. Any isomorphism
preservers the number of (−1)-curves meeting a component of the double locus Dij and also the self-
intersection numbers of the Dij . But this datum uniquely determines curve structures of type d4 and d2.
Hence we can find a permutation σ ∈ S3 and isomorphisms of curve structures ΓYi → ΓY ′σ (i)

. �

7.2. Counting models of class T

We now count the number of models of class T . Our approach is as follows: we can count the number of
models of class T by starting with YT and applying all possible elementary modifications of type I such
that the flopped curve does not meet the singular locus of the special component. By Proposition 5.1, any
surface obtained in this way is the central fibre of a model of the DNV family of degree 2. By Corollary 6.33,
all models can be obtained in this way, up to isomorphism. By Proposition 7.6, the isomorphism classes
are uniquely determined by curve structures. Hence, to count models we will count the distinct curve
structures that one can obtain from YT by type I elementary modifications. Note that by Remark 3.7, this is
a finite problem. This counting of flops is then essentially reduced to counting possible combinations of
self-intersection numbers of the nodal components of the double locus.

So let Y ∈ PMod2(T ). Let (n1,n2) be the self intersection numbers of the preimages of the nodal
components of the double curve — now written as D1,D2 — of the special component Yω of Y on its
normalisation. Let Yi be the smooth component glued to Di . We will break up the analysis into several
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−1

Figure 22. The augmented curve structure of a smooth component Y of YT . The black vertices
correspond to the anticanonical divisor. All unlabelled curves of ΓY have self intersection −2.

cases, namely (i) n1 ≥ −1,n2 ≤ −1, (ii) n1,n2 ≥ 0 and (iii) n1,n2 ≤ −2. By the symmetry of YT , these are
all cases.

Consider first the case n1 ≥ −1 and n2 ≤ −1. The possible numerical combinations are as follows.

• n1 ∈ {−1,0,1} and n2 ∈ {−1, . . . ,−9}. Note that there are two models with with n2 = −8 for any n1.
This is because after flopping 7 curves from a smooth component Yi of YT , there are 2 interior
(−1)-curves that can be flopped, cf. Figure 22. This gives 30 models.
• There are two different ways to obtain n1 = 2, as after contracting 2 curves to obtain n1 = 1, one can
either contract the transform of a fork or a transform of a (−1)-curve on Yω meeting D2. In the first
case one can flop r1 ∈ {0, . . . ,9} curves from Y2, with 2 choices for flopping 7 curves as above. In the
second case one has to flop one curve from the smooth component Y1 in order to obtain n1 = 2. So
one can flop r2 ∈ {0, . . . ,8} curves, with 2 possibilities for r2 = 6. This gives 21 = 11 + 10 models.
• n1 ∈ {3, . . . ,9} . To obtain n1, one needs to flop n1−1 curves from Y2 to Yω and then flop n1+1 curves
to Y1. One can also flop more curves from Y2 to Yω: for given n1, one can flop r ∈ {0, . . . ,9− n1}
additional curves. If n1 < 9, one value of n2 can be obtained in two different ways, as above. This
yields 34 models.

Hence we find 30 + 21 + 34 = 85 models. Now, if both n1 and n2 are ≥ 0, there is only the possibility
(n1,n2) = (0,0).

If both n1 and n2 are ≤ −2, all models are obtained by flopping curves from the smooth components
to the special component. These operations are independent on each Di , so the models are given by
intersection numbers

(n1,n2) ∈ {−2, . . . ,−9}2,
with two possibilities to obtain a −8 for each entry. This gives 81 models. More precisely, these models are
paremetrised by the set

(n1,n2) ∈ {−2, . . . ,−8,−8′ ,−9}2,
Among these 81 there are the 9 models (x,x) with x ∈ {−2, . . . ,−7,−8,−8′ ,−9}. Taking these out, the
remaining set is given by (n1,n2) with n1 , n2, giving 72 models. Taking out the ordering of the
components, we obtain 36 non-isomorphic models in this set. Adding up, we have 131 = 85 + 1 + 9 + 36
projective models of class T .

Theorem 7.7. There are 131 surfaces in PMod2(T ).

Note that the number of surfaces in the theorem is the number of orbits of maximal cones in the Mori fan
under the action of the birational goup.

7.3. Counting models of class P

We first count models such that at least one component of the central fibre has very degenerate curve
structure.

Theorem 7.8. There are 104 surfaces Yc = Y1 ∪Y2 ∪Y3 in PMod2(P) such that there is a component Yi with
very degenerate curve structure. Explicitly, these are given as follows:



Mori fan of the DNV family 55Mori fan of the DNV family 55

(i) Surfaces Yc such that ΓY1
is very degenerate, ΓY2

is non-degenerate and ΓY3
is tamely degenerate. There are

71 such models.
(ii) Surfaces Yc such that ΓY1

is very degenerate, ΓY2
is non-degenerate and ΓY3

is very degenerate. There are 8
such models.

(iii) Surfaces Yc such that ΓY1
is very degenerate, ΓY2

is non-degenerate and ΓY3
is non-degenerate. There are 25

such models.

Proof. Using Proposition 5.2, we see that at least one component of Yc has non-degenerate curve structure, so
the three cases in the theorem exhaust all possible configurations of curve structures with at least one of the
structures very degenerate: by assumption, one of the curve structures is very degenerate, so a second one
has to be non-degenerate and the third one is as in the statement of the theorem. Also, by Proposition 4.19,
after fixing regularity, it is enough to consider the self-intersection numbers of the double curves Dij . Now,
recall from Lemma 4.23 that there is a unique vertex vD12

meeting D12, by regularity. If Yc is a model as in
(i), then vD12

·D12 = 1 or vD12
·D12 = 2. In the first case, the conditions on the curve structures imply, using

Proposition 4.19, that D2
13 = 4 since ΓY1

is very degenerate, D2
21 ∈ [−3,1] since ΓY1

is very degenerate and
ΓY2

is non-degenerate, and D2
32 ∈ [2,10] by non-degeneracy of ΓY2

and the fact that Σi |ΓYi | = 24. Projectivity
of Yc further implies D2

21 < 1, by Proposition 5.4. Conversely, by the results in subsection 5.2, each triple
(D2

13,D
2
21,D

2
32) with D2

13 = 4, D2
21 ∈ [−3,0] and D2

32 ∈ [2,10] determines a projective model, and these are
pairwise non-isomorphic as the intersection numbers of the double curves are distinct. Hence there are 36
models with this specification of curve structures and vD12 ·D12 = 1.

If vD12 ·D12 = 2, we have D2
12 = 4. Assume first that D2

31 ≥ 2. From this condition, non-degeneracy of
Y2, and as ΓY3

is regular, we have D2
23 ∈ [−4,1] and counting possible flops, D2

31 ∈ [2,6 +D2
23]. Projectivity

requires D2
23 < 1 by Proposition 5.4, so one obtains 15 distinct models. Now suppose D2

31 < 2. Then
D2

13 ∈ [−3,1] and D2
32 ∈ [2,6 +D2

13], giving 20 models.
If Yc is a model as in (ii), we can assume vD12

·D12 = 2. Then either vD31
·D31 = 2 or vD31

·D31 = 1.
In the first case, D2

12 = D2
32 = 4. One finds that up to isomorphism, we have D2

13 ∈ [−3,0], so there are
4 models in this case. In the second case, D2

31 = 4, D2
12 = 4 and D2

23 ∈ [−3,0] by non-degeneracy and
projectivity. Hence there are again 4 such models.

If Yc is a model as in (iii), we can assume vD23
·D23 = 2. Then D13 = 4, D12 ∈ [−3,1] and D23 ∈ [−3,1].

These models are pairwise non-isomorphic as the curve structure of ΓY3
always has an exceptional vertex v

with |L(v)| = 9. This never occurs for ΓY2
. One finds 25 models. �

We now count models Y ∈ PMod2(P) such that ΓYi is regular for all components Yi ⊂ Y . We use
the following shorthand notation. Fix a numbering of the components of YP . There is a sequence of
type I modifications YP → Y . Write Y = ∪iYi , assuming that the i-th component of YP maps to Yi .
Let Di = Yi ∩ Yi+1, with i = 1,2,3, indices considered modulo 4, considered as curve on Yi . We have
D2
i = −1 +ni for some ni ∈Z.
Note that if ΓYi is regular for i = 1,2,3, the triple (n1,n2,n3) determines Y uniquely, by Proposition 7.5.

The meaning of (n1,n2,n3) is that ni curves are flopped from Yi to Yi+1 (or from Yi+1 to Yi , if ni < 0).
In order to simplify the arguments below, we now define certain operations on triples of integers.

Definition 7.9. Let (x,y,z) be a triple. We shall call the triples (z,x,y) and (y,z,x) the shifts of (x,y,z). The
triple (−y,−x,−z) will be called the involution of (x,y,z). We write (x,y,z) ∼ (u,v,w) if the triples (x,y,z)
and (u,v,w) are related by a sequence of shifts and involutions and call (x,y,z) and (u,v,w) equivalent.

Remark 7.10. We let s : (x,y,z) 7→ (z,y,x) be the shift operator and ı : (x,y,z) 7→ (−y,−x,−z) be the
involution operator. Then ı ◦ s ◦ ı(x,y,z) = s2(x,y,z) and ı ◦ s2 ◦ ı(x,y,z) = s(x,y,z). Also, s ◦ ı ◦ s = ı so any
sequence of shifts and involutions reduces to ıa ◦ sb or sb ◦ ıa with a ∈ {0,1} and b ∈ {0,1,2}. In particular,
the group generated by ı and s is isomorphic to S3.
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Lemma 7.11. Let Y , Y ′ be two models in PMod2(P) such that all curve structures ΓYi and ΓY ′i are regular, with
triples (n1,n2,n3) and (n′1,n

′
2,n
′
3) (relative to a chosen numbering of the components of YP). Then Y � Y ′ if

and only if (n1,n2,n3) ∼ (n′1,n
′
2,n
′
3).

Proof. Write Y = ∪Yi and Y ′ = ∪Y ′i for the central fibres. If Y and Y ′ are isomorphic, after possible
renumbering, we can assume Y1 � Y

′
1. Let D

′ =D ′1 +D ′2 be the anticanonical cycle on Y ′1 with numbering
chosen such that D1 �D

′
1, with D1 = Y1∩Y2 and write (D ′1)2 = −1 +x and (D ′2)2 = −1 + y. Then either the

tuple (−y,x) or the tuple (−x,y) is contained in a shift of (n′1,n
′
2,n
′
3). Let Y ′2 be the component of Y ′ meeting

Y ′1 in D ′2 and let D ′′ denote the component of the anticanonical cycle on Y ′2 that is not glued to Y ′1. Write
(D ′′)2 = −1 + z. It follows that after applying shifts, either (n′1,n

′
2,n
′
3) ∼ (−z,−y,x) or (n′1,n

′
2,n
′
3) ∼ (−x,y,z).

Because Y1 � Y
′
1, we have x = −n3, y = n1 and z = n2, thus we conclude that (n′1,n

′
2,n
′
3) ∼ (−n2,−n1,−n3)

or (n′1,n
′
2,n
′
3) ∼ (n3,n1,n2). So indeed (n1,n2,n3) ∼ (n′1,n

′
2,n
′
3).

If conversely the triples are equivalent, the corresponding models are isomorphic: let (x,y,z) be a triple
defining a model Y = Y1 ∪Y2 ∪Y3. By our convention, this is the model where x curves are flopped from
Y1 to Y2, y curves are flopped from Y2 to Y3 and z curves are flopped from Y3 to Y1. The shift (z,x,y)
also defines a model, say Y ′ = Y ′1 ∪ Y

′
2 ∪ Y

′
3. Then Y1 and Y ′2 are obtained from Y2 by the same type I

modifications and thus there is an isomorphism Y1→ Y ′2. Similarly there are isomorphisms Y2→ Y ′3 and

Y3→ Y ′1. Thus Y
∼−→ Y ′ by Proposition 7.5. The case of an involution is similar. �

Theorem 7.12. There are 27 + 103 + 225 = 353 surfaces Y = Y1 ∪Y2 ∪Y3 in PMod2(P) such that the curve
structures ΓYi are all regular. Explicitly, these are, up to equivalence, given as follows:

(i) Surfaces with all ΓYi non-degenerate. These are given by the triples

(0,1,−1), (0,1,2), (0,1,−2), (0,2,1), (0,2,−2), (0,−1,2),

(0,−1,1), (0,−2,2), (1,2,−1), (1,2,−2), (1,−1,2), (1,−2,2),

surfaces (x,y,y) with x ∈ {1,2} and y ∈ {−2,−1,0,1,2}\{x}, the surfaces (0,1,1) and (0,2,2) and
surfaces (x,x,x) with x ∈ {−2,−1,0,1,2}. These are 27 surfaces.

(ii) Surfaces with one ΓYi degenerate: triples (3, y,−3) with 0 ≤ y ≤ 2 and triples (x,y,z) with x,y ∈
{−2, . . . ,2}, z ∈ {y − 6, . . . ,−3}. These are 103 surfaces.

(iii) Surfaces with two ΓYi degenerate. These are given by the sets

K = {(x,−3,−3) | 3 ≤ x ≤ 9}
M(0) = {(x,0, z) | −3 ≥ x ≥ −6,6 ≥ z ≥ 3}
M(−1) = {(x,−1, z) | −3 ≥ x ≥ −7,5 ≥ z ≥ 3}
M(−2) = {(x,−2, z) | −3 ≥ x ≥ −8,4 ≥ z ≥ 3}
N (−2) = {(x,y,−2) | −3 ≥ y ≥ −8,−3 ≥ x ≥ y − 6}
N (−1) = {(x,y,−1) | −3 ≥ y ≥ −7,−3 ≥ x ≥ y − 6}
N (0) = {(x,y,0) |: −3 ≥ y ≥ −6,−3 ≥ x ≥ y − 6}
N (1) = {(x,y,1) | −3 ≥ y ≥ −5,−3 ≥ x ≥ y − 6}
N (2) = {(x,y,2) | −3 ≥ y ≥ −4,−3 ≥ x ≥ y − 6}.

Adding up, these are 7 + 16 + 15 + 12 + 57 + 45 + 34 + 24 + 15 = 225 surfaces.

Proof. Again, by Proposition 5.2, the theorem covers all cases, as at least one curve structure has to be
non-degenerate. We consider the competely non-degenerate case (i) first. Non-degeneracy of all curve
structures implies −2 ≤ ni ≤ 2 for all i, by Corollary 4.21.

This defines a set of 125 candidate triples (x1,x2,x3). There are 5 triples (x,x,x) that only appear once,
all other triples appear with multiplicity 3 via the shift relation above. Hence there are at most 45 distinct



Mori fan of the DNV family 57Mori fan of the DNV family 57

surfaces. These include the triples (x,x,x), and 20 triples of the form (x,y,y) with with x ∈ {−2,−1,0,1,2}
and y ∈ {−2,−1,0,1,2}\{x}. Here (x,y,y) is equivalent to (−x,−y,−y) modulo a shift and an involution, so
the distinct surfaces in this subset are given by the conditions x ∈ {1,2} and y ∈ {−2,−1,0,1,2}\{x} and
the surfaces (0,1,1) and (0,2,2). This gives 12 non-equivalent triples. Having enumerated these cases,
there remain 20 triples to discuss. These can be recovered by applying the involution to the list of triples
(x,y,z) in the statement of the proposition that have pairwise distinct entries. By Lemma 7.11, the triples with
pairwise distinct entries define non-isomorphic surfaces. This finishes the completely non-degenerate case.

We turn to the case (ii) of precisely one degenerate curve structure. Let the component of Y with tamely
degenerate curve structure be denoted by Y1. By the degeneracy assumption, after maybe applying an
involution, it follows from Proposition 4.19 that we can assume n3 ≤ −3 and n1 ≤ 3. Assume first that
both conditions hold sharp, i.e. n1 = 3,n3 = −3. From the non-degeneracy assumption on Y2 and Y3 it
follows from Corollary 4.21 that −2 ≤ n2 ≤ 2 and any such choice gives a projective surface Y . The surfaces
defined by (3,n2,−3) are equivalent to surfaces defined by (3,−n2,−3), so the subset 0 ≤ n2 ≤ 2 already
gives all equivalence classes. Now assume n3 ≤ −3 and n1 < 3. It follows from non-degeneracy of Y2 that
−2 ≤ n1 ≤ 2 and then one obtains n1 − 6 ≤ n3 ≤ −3 by counting the total number of curves in the curve
structures of the Yi . Together with the condition −2 ≤ n2 ≤ 2, we obtain the set M of triples (x,y,z) with
x,y ∈ {−2, . . . ,2}, z ∈ {y − 6, . . . ,−3}. None of the triples in M are equivalent: suppose (x,y,z) ∼ (x′ , y′ , z′),
say under a sequence T of shifts and involutions: assume we have T = ıa ◦ sb. Then |z| > |x|, |y| shows b = 0
and z < 0 then shows a = 0. The case T = sa ◦ ıb is done the same way.

Now consider case (iii), i.e. assume that two of the curve structures are degenerate. Let Y1 be the
component with ΓY1

non-degenerate, and Y2,Y3 be the components with tamely degenerate curve structures.
As above, by Proposition 4.19, degeneracy on Y2 implies n1 ≤ −3 or n2 ≥ 3 and from Y3 we get n2 ≤ −3 or
n3 ≥ 3. Suppose first n1 ≤ −3 and n2 ≥ 3. Then n1 = −3 and n2 = 3 by counting curves on Y2. It follows
that 3 ≤ n3 ≤ 9, giving the set K of triples (x,−3,3) with 3 ≤ x ≤ 9. If n2 ≤ −3 and n3 ≥ 3 one obtains
equivalent tupels thus isomorphic surfaces.

Now assume n1 ≤ −3 and n2 ≤ 2. By counting curves, we have

−3 ≥ n1 ≥ n2 − 6

2 ≥ n2 ≥ n3 − 6

−2 ≤ n3 ≤ 6 +n2.

We shall first consider the case n3 ≥ 3. Then 2 ≥ n2 ≥ −3. This gives the following sets:

M(2) = {(x,2, z) | −3 ≥ x ≥ −4,8 ≥ z ≥ 3}
M(1) = {(x,1, z) | −3 ≥ x ≥ −5,7 ≥ z ≥ 3}
M(0) = {(x,0, z) | −3 ≥ x ≥ −6,6 ≥ z ≥ 3}
M(−1) = {(x,−1, z) | −3 ≥ x ≥ −7,5 ≥ z ≥ 3}
M(−2) = {(x,−2, z) | −3 ≥ x ≥ −8,4 ≥ z ≥ 3}
M(−3) = {(x,−3,3) | −3 ≥ x ≥ −9}.

Applying the involution and a shift we see that the sets M(i) and M(−i) describe equivalent triples and
hence the same isomorphism classes of surfaces for i = 1,2, as do M(−3) and M0.
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Now suppose again n1 ≤ −3 and n2 ≤ 2, but assume n3 ≤ 2, so necessarily n2 ≤ −3. Then by non-
degeneracy of Y1 we must have 2 ≥ n3 ≥ −2. We obtain the following sets:

N (−2) = {(x,y,−2) | −3 ≥ y ≥ −8,−3 ≥ x ≥ y − 6}
N (−1) = {(x,y,−1) | −3 ≥ y ≥ −7,−3 ≥ x ≥ y − 6}
N (0) = {(x,y,0) | −3 ≥ y ≥ −6,−3 ≥ x ≥ y − 6}
N (1) = {(x,y,1) | −3 ≥ y ≥ −5,−3 ≥ x ≥ y − 6}
N (2) = {(x,y,2) | −3 ≥ y ≥ −4,−3 ≥ x ≥ y − 6}.

We observe that the sets M(i) and the N (i) contain non-equivalent triples: this follows, as the number i
only appears as an entry in M(i) and then x,y have to have alternating signs, so (x,y, i) is not contained
in any of the N (i). This shows that models defined by the N (i) are not isomorphic to models defined by
triples in the sets M(i). The set N (i) also parameterises models not isomorphic to any model in any N (k) if
i , k: let (x,y, i) ∈N (i). Assume there is (x′ , y′ , i′) ∈N (i′) with (x,y, i) ∼ (x′ , y′ , i′), i′ , i, i.e. there exists a
composition T of shifts and involutions with T (x,y, i) = (x′ , y′ , i′). Since the absolute value of the middle
entry of these triples is smaller than the absolute value of the other entries, this is only possible if i′ = −i
and T = ı. But now the claim follows from the fact that the third entry is always negative. Thus, the N (i)
parameterize distinct surfaces. The remaining cases, n2 ≥ 3,n1 ≥ −2 and n3 ≥ 3 or n3 ≤ 2 desribe the same
models: (x,y,z) ∼ (z,x,y) ∼ (−x,−z,−y) =: (x′ , y′ , z′), and thus from x ≤ −3, y ≤ 2, it follows x′ ≥ 3, z′ ≤ −2.
Then z ≥ 3 gives y′ ≤ −3 and z ≤ 2 gives y′ ≥ −2. This concludes the proof. �

This concludes the count: if Y ∈ PMod(P), then either all curve structures of components of Y are
regular or at least one of the curve structures is very degenerate. In both cases, there are either one, two
or three components of Y with non-degenerate curve structure. The cases where all curve structures are
regular are covered in Theorem 7.12, while the cases with at least one very degenerate curve structure are
covered in Theorem 7.8. Summarizing these results we obtain:

Theorem 7.13. There are 457 = 104 + 353 surfaces in PMod2(P).

We point out that the number of these surfaces is the number of orbits of maximal cones of the Mori fan
under action of the birational group.

7.3.1. Mori fan. We can now count the number of maximal cones of the Mori fan of the DNV family of
degree 2. For this we will have to take the action of the birational automorphism group and its action on the
maximal cones of the Mori fan into account, which we discussed at the end of Section 6. We will first count
the number of symmetric models.

Proposition 7.14. There are 22 symmetric models of the DNV family of degree 2. More precisely, the symmetric
models Y of the DNV family of degree 2 of class P are

(i) the models {(0,n,−n) | n ∈ {−3, . . .6}}, with notation as in Section 7.3 and
(ii) the model such that

(a) ΓYi is very degenerate for i = 1,3 and
(b) the intersection numbers are D2

12 =D2
32 = 4, D2

13 =D2
31 = −1, D2

21 =D2
23 = −6.

The symmetric models of class T are given by (x,x) with x ∈ {0,−1,−2,−3, . . . ,−8,−8′ ,−9}, with notation as in
the proof of Theorem 7.7.

Proof. We first count symmetric models of class P . A model Y is symmetric if and only if there is an
automorphism of Yc that identifies two of the components, say Y1 and Y3. We have mentioned that this
implies D2

13 = D2
31 = −1. As Y1 � Y3, our model is thus completely specified by the curve sructure of Y1.

The curve structure ΓY1
is obtained from Y2. The condition D2

13 = −1 implies that in fact, Y1 is obtained
from blow-ups or blow-downs in the interior special point p ∈D12. If ΓY1

is regular, it follows that, in the
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teminology of Section 7.3, n1 ≤ 6. Because of the symmetry, D2
12 =D2

32 and hence n1 ≥ −3. Conversly, each
such choice of n1 implies a unique symmetric model. If ΓY1

is very degenerate, then the model is uniquely
determined, compare Proposition 6.41: we have D2

12 =D2
32 = 4, D2

13 =D2
31 = −1, D2

21 =D2
23 = −6 and also

ΓY3
is very degenerate. Also, both ΓY1

and ΓY3
have three vertices while ΓY2

has 18 vertices.
For Yc ∈ PMod2(T ), being symmetric is the same as having isomorphic smooth components: indeed,

suppose Y1,Y3 are the smooth components, Yω is the special component and suppose there is an isomorphism
γ : Y1→ Y3. By Proposition 7.3, we can assume γ maps Y1 ∩Yω to Y2 ∩Yω. Then one can show – using
the morphism ψ̄ defined in Section 7.1 – that there is an automorphism ψω on Yω that exchanges the nodal
components of the anticanonical cylce of Yω. Using ψω and γ (and maybe an involution on the smooth
components), from the universal property of pushouts, one gets an automorphism of Yc that maps Y1 to Y3.
A similar reasoning as above gives the set of symmetric models of class T . Alternatively, it is easy to see
that these are precisely the models that can be obtained by a type II flop from a symmetric model of class
P . �

We can now count all maximal cones of the Mori fan.

Theorem 7.15. Let Y → S be a model of the Dolgachev–Nikulin–Voisin family. Then MF(Y /S) has 3460
maximal cones. Of these 753 are associated to a model of class T and 2707 are associated to a model of class P .

Proof. By Proposition 7.14, there are 11 symmetric models in PMod(T ), out of 131 isomorphism classes of
models of class T in total (Theorem 7.7). It now follows from Proposition 6.43 that there are 120 models
having 6 associated cones and 11 models having 3 associated cones, giving us 120 × 6 + 11 × 3 = 753
maximal cones.

Again by Proposition 7.14, there are 11 symmetric models PMod(P). By Theorem 7.13, there are 457
projective models of class P in total, hence, by Proposition 6.43, there are 457− 11 = 446 models having 6
associated cones, 10 models having 3 associated cones and the model YP defining a unique cone in the
Mori fan. This defines 446×6+10×3+1 = 2707 maximal cones. Altogether, we obtain 753+2707 = 3460
maximal cones. �

8. The Secondary fan

In this section, as an application of our results, we give a description of the secondary fan of the DNV
family of degree 2, as introduced in [HKY20]. This fan is obtained by coarsening the Mori fan of Y . Roughly,
it is obtained by deleting all facets that correspond to flops that do not change the dual intersection graph.

8.1. Preliminaries

For a cone C in a vector space we denote by IntC its interior and by RelintC the relative interior of
C. Let Y → S be a model of the DNV family of degree 2. The set of maximal cones of MF(Y /S) will be
denoted by MFmax(Y /S). We recall that MF(Y /S) contains only finitely many cones and that these are all
rational polyhedral.

Recall that any interior facet τ of MF(Y /S) corresponds to a flop fτ : Y ′d Y ′′ for Y ′ ,Y ′′ models of the
DNV family, see Proposition 3.9. By Corollary 6.12, fτ is a type I or type II flop and we will correspondingly
call τ of type I or type II. We denote by F the set of all interior facets that correspond to type II flops and
setM = |MF(Y /S)|\ ∪τ∈F |τ |. Let C be a connected component ofM and let C(f ) be a cone of MF(Y /S)
such that IntC(f )∩C , ∅, defined by a marked model (Yf , f ), i.e. a map f : Y d Yf . Let I(f ) be the set
of all maximal cones of MF(Y /S) consisting of cones C(g) corresponding to models (Yg , g), such that there
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is a sequence of type I flops φ : Yf d Y ′ and an isomorphism γ : Y ′→Yg giving a commutative diagram

Y
f

~~

g

  
Yf

φ
// Y ′

γ
// Yg .

By the construction ofM and C we have C ⊂ ∪g∈I(f )C(g) and in fact

(8.1) C̄ = ∪g∈I(f )C(g).

It is immediate that this construction does not depend on the choice of Y → S in the sense that if Y ′→ S is
another model and φ : Y d Y ′ is a birational isomorphism, the identification φ∗MF(Y /S) �MF(Y ′/S) is
compatible with the construction ofM.

It is known that the closures of the connected components ofM define a fan, the secondary fan MF2nd(Y /S)
of Y , as can be shown by adapting the techniques in [HKY20]. However, as no published proof is available,
we offer an alternative proof of this fact via the results of this paper.

By Proposition 6.43, there is a unique cone σP associated to YP . Write CP for the connected component
ofM such that C ∩ IntσP , ∅.

Lemma 8.1. Let C be a connected component of M. Let C̄ = ∪g∈I(f )C(g), with maps g : Y d Yg . Then the
following holds:

(i) If C = CP , then (Yg )c ∈ PMod2(P) for all g .
(ii) If C , CP , then (Yg )c ∈ PMod2(T ) for all g .

Proof. This follows from the definition of M, Lemma 6.14 and Proposition 6.43 : there is only one cone
corresponding to YP and any model Y ′ of class P can be obtained from YP by a sequence of type I
flops. �

We will call the components ofM other than CP components of type T . We now calculate the number
of connected components ofM. We first prove some lemmas on sequences of flops. Recall that a model Y
is symmetric if there is an automorphism of the special fibre Yc that identifies two components of Yc, cf.
Definition 6.40.

Lemma 8.2. Let Y be a model with Yc ∈ PMod2(T ). Assume Y is symmetric. Let F ∈Mov(Y /S) be a divisor
and suppose

(8.2) Y d Y1 d · · ·d Ynd Y

is a sequence of F-flops. Then at least one flop in this sequence is of type II.

Proof. We show that the assumption that all flops are of type I leads to a contradiction. Consider the model
YP . By Proposition 6.8, any elementary modification of type II of YP lifts to a type II flop on YP . Let YI
be the model obtained by applying a single type II flop φ to YP . Then YI is symmetric. By Corollary 6.32,
there is a composition of type I flops YT d YI and YT d Y . Thus there is a composition of maps

YI d YT d Y d Y d YT d YI
that factors into a sequence of H-flops of type I for some H ∈Mov(YI /S). Hence it is enough to show the
Lemma for Y = YI . In this case, by applying a type II flop YI d YP , Sequence 8.2 induces a sequence

YP d Y ′1 d · · ·d Y
′
nd YP

of (φ−1)∗F-flops, as φ contracts a curve that is disjoint from all the exceptional loci. From Corollary 6.38 it
follows that n = 0. Hence a sequence as (8.2) does not exist. �
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Lemma 8.3. Let Y be a model of the DNV family of degree 2 with Yc ∈ PMod2(T ). Assume Y is not symmetric.
Then there is a sequence of type I flops

Y d Y1 d · · ·d Ynd Y

such that the composition γ of these flops is not an automorphism.

Proof. Write Yc = Y1 ∪Y2 ∪Y3 with Y1 the special component. As Y is not symmetric, Y2 and Y3 are not
isomorphic. Given Y , by Proposition 6.32, there exists a sequence φ : Y d YT of type I flops. Necessarily,
φ maps the special component to the special component. Let ψ be the automorphism from Proposition 6.45.
Consider the composition γ = φ−1 ◦ψ ◦φ : Y d Y . By construction, γ maps Y2 to Y3 and Y3 to Y2. As
these components are not isomorphic, it follows that γ is not an automorphism. Being a composition of
small modifications, γ has a factorisation

(8.3) Y d Y1 d · · ·d Ynd Y

into F-flops for a divisor F ∈ Mov(Y /S). Note that the smooth component Dω of the restriction of the
double curve of Y to Y1 is disjoint from Ex(γ). Hence, by Corollary 6.12, all flops in the factorisation (8.3)
are of type I and we thus obtain the desired sequence. �

Proposition 8.4. The topological spaceM has 4 connected components. These are given by CP and 3 components
of type T .

Proof. Here we chose YT as a reference model and hence consider MF(YT /S). By Proposition 6.43, there
are 3 cones in the orbit of Nef(YT /S). We can write these as C(f1), C(f2), C(f3) where f1 = idYT

and
f2, f3 ∈ Bir(YT /S) are birational automorphisms of YT → S . Let Ci denote the connected component of
M such that C(fi) ⊂ C̄i . By Lemma 8.2 applied to YT , the Ci are all distinct. Let σ be a cone associated to
a model Y ′ of class T . We will show that there is an i ∈ {1,2,3} such that σ ⊂ C̄i . This implies the result, as
all cones such that the associated model has class P are contained in the closure of CP . By Corollary 6.32,
there is a composition of type I flops f : YT d Y ′ . This defines cones C(f ◦ fi), i = 1, . . . ,3 with associated
model Y ′ . The cone C(f ◦ fi) is contained in C̄i by construction. So we are done if Y ′ is symmetric, as there
are then precisely 3 cones with associated model Y ′ , by Proposition 6.43.

Suppose Y ′ is not symmetric. By Proposition 6.43, there are 6 cones associated to Y ′ . We shall show that
each of these cones lies in some C̄i . Since Y ′ is not symmetric, it follows from Lemma 8.3 that there is a
non-trivial sequence of type I flops γ : Y ′ d Y ′ . Then C(γ ◦ f ◦ fi) is not equal to C(f ◦ fi), as γ is not
an automorphism and C(γ ◦ f ◦ fi) ⊂ C̄i by definition of Ci . This shows that all cones associated to Y ′ are
contained in some C̄i . �

8.2. Flopping along a line

Recall that we are, by Theorem 3.4, in a Mori Dream space situation (in degree 2). The following is then
a standard construction: let F be a Q-divisor in Mov(Y /S). Suppose F is not nef on Y and there is a cone
σF ∈MFmax(Y /S) with F ∈ IntσF . Let A be an ample divisor and define L = L(F,A) to be the line segment
connecting F and A. Since L is spanned by interior points of a convex cone it is itself contained in the
interior. Suppose that for any facet τ ∈MF(Y /S), L∩ τ , ∅ implies L∩ τ ⊂ Relint(τ). This means that the
line L intersects maximal cones and their facets as nicely as possible. Note that (by convexity), this implies
that if σ ∈MFmax(Y /S), at most two facets of a cone σ are met, and the only maximal cones σ such that
there is a unique facet τ ⊂ σ meeting L are σF and σA = Nef(Y /S). Let {γi}i be the collection of maximal
cones of MF(Y /S) such that L∩ Intγi , 0. Note that this collection is finite by Theorem 3.4(i). Denote the
unique facet of σA met by L by τ and let R be the extremal ray corresponding to τ . Then F is stricly negative
on R. Consider the contraction morphism contrR : Y → Z. It is a small contraction as τ is interior and
hence defines an F-flop φ : Y d Y+. This gives a canonical linear isomorphism φ∗ : N1(Y /S)→N1(Y+/S).
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Choose an ample divisor A+ ∈ Pic(Y+/S) on φ∗(L). Now we can consider the divisor φ∗F and the line
segment L(φ∗F,A+) and repeat the argument for this data. In this way we obtain a finite sequence of F-flops

Y d Y1 d · · ·d Yn.

We will call this sequence a sequence of F-flops induced by L. We note that this may depend on the choice of
A and hence L, but not on the choice of A+ and subsequent choices. The truncations φl : Y d Yl define
maximal cones of MF(Y /S) and by construction, for each γi there is an l such that γi = φ∗l (Nef(Yl/S)).
Note also that γn = σF by construction.

Definition 8.5. Let C be a connected component ofM with closure C̄. A C-test segment is a line segment
L(p,q) such that p,q are points in C, such that there are cones σp,σq ∈ MFmax(Y /S) with p ∈ Int(σp)
and q ∈ Int(σq). A test segment L is called nice if for any interior facet τ ∈MF(Y /S), L∩ τ , ∅ implies
L∩ τ ⊂ Relint(τ).

Given a test segment L(p,q), we assume for simplicity that σq = Nef(Y /S). By choosing a different model,
which does not change the geometry of the Mori fan, we can always assume that we are in this situation.

We now fix a connected component C ofM with closure C̄. Let L = L(p,q) be a line segment. We define

M(L) = {σ ∈MFmax(Y /S) | L∩ σ , ∅},

I(L) = {σ ∈M(L) | L∩ Int(σ ) , ∅}.

For a cone σ we write F(σ ) for the set of subcones of the Mori fan of codimension 1 that are contained in σ ,
i.e. the facets of σ . We set

N(L) = {σ ∈ I(L) | ∀τ ∈ F(σ ),L∩ τ ⊂ Relint(τ)}.

Note that the conditions to be in I(L) and N (L) are open conditions, so if L′ is a line segment contained
in a small cylinder containing L, then I(L) ⊂ I(L′) and N(L) ⊂ N(L′). Also note that if L is a nice test
segment, M(L) = I(L) = N(L).

Proposition 8.6. Let C̄ be the closure of the connected component C ofM. Let L = L(p,q) be a nice C-test segment
where both p and q are divisors (with integral coefficients ). Let

φL : Y d Y1 d · · ·d Yn

be the sequence of flops induced by L. Then γ ∈M(L) implies γ ⊂ C̄.

Proof. Let σp and σq be the cones containing p and q, respectively. We assume σq = Nef(Y /S). By
Lemma 8.1, there are two cases: either C = CP or the two models corresponding to σp and σq are of type T .

We first consider C = CP . Then, as L is a nice test segment, it follows from the definition of C that Y and
Yn have dual intersection complex P . Then, by Lemma 6.14, all flops in the sequence φL are of type I and
thus all Yi have dual intersection complex P . Hence all cones associated to Yi are in C̄, implying the claim.

Now consider the only other possible case, namely that the two models corresponding to σp and σq
are of type T . Then Yσp and Y have dual intersection complex T . By construction of C we have a map
ψ : Y d Yσp that is given by a series of type I flops. Note that these are not necessarily F-flops for a divisor
F ∈Mov(Y /S). However, the map ψ can also be written as a sequence

Y d Y ′1 d · · ·d Yσp
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of F-flops for some divisor F ∈Mov(Y /S). Any flop in this sequence is necessarily of type I. By definition of
the Mori fan, we have an isomorphism π : Yσp � Yn giving rise to a commutative diagram

Y
ψ
//

φL ��

Yσp
π
��
Yn.

As ψ is a composition of type I flops, it maps smooth components of Yc to smooth components and the
same is true for π. Hence φL also maps the special component (Yc)ω to the special component ((Yn)c)ω.
We claim that this implies that all flops in the factorisation of φ are of type I. To show the claim, we assume
there is a type II flop in the sequence and derive a contradiction. Let

(8.4) Yk d Yk+1 d · · ·d Yn
be the tail of the sequence where φk : Yk d Yk+1 is the first type II flop. Being type II, writing (Yk+1)c =
Y1 ∪Y2 ∪Y3, the flopped curve C is given by a component of the double curve, say by D12 = Y1 ∩Y2 on Y1
and D21 on Y2, with D

2
21 =D2

12 = −1. Also, the birational transform of (Yc)ω on Yk+1 is Y3. Because Yn has
dual intersection complex T , there is at least 1 more type II flop in Sequence 8.4, say φl . By Lemma 6.14
this is the only further type II flop. Because φ maps (Yc)ω to ((Yn)c)ω, the exceptional locus Ex(φl) is given
by the birational transform Cl of C on Yl . Also, the preimage of Cl under ν : (Yl)νc → (Yl)c consist of two
(−1)-curves. Hence all of the flops φs, l − 1 ≥ s ≥ k + 1 have exceptional loci disjoint from the birational
transform Cs of C on Ys. But this implies that for the birational transform Fl of F on Yl we have Fl ·Cl > 0,
as Fk+1 ·C > 0. But the contraction defining φl contracts Cl , a contradiction. Hence all flops in φ are of
type I. In particular, by Equation 8.1, all maximal cones met by L are in the closure of C and thus γ ⊂ C̄. �

8.3. Reduction

In this section we show that it is enough to check convexity on line segments defining sequences of F-flops
as in the previous section. The idea is as follows: if L is a line segment through two points in a connected
component C, by definition of the connected components, it is enough to check that any maximal cone σ
of the Mori fan met by L is contained in the closure C̄ of C. For this, one checks that there is a nice test
segment L′ from some cone in C that meets σ , which implies that all cones met by L′ are contained in C̄.
Such a test segment can be found by wiggling the line segment L, as for one it is enough to check convexity
on the interior of the connected components and moreover MF(Y /S) has only finitely many cones. We give
the details. The following lemma, which we include for completeness, is elementary.

Lemma 8.7. Let U be a convex set in a normed vector space V . Then the closure Ū and the interior U o are
convex.

Lemma 8.8. Let C̄ be the closure of a connected component ofM and let p0,q0 be points in the interior C̄o. Set
L0 = L(p0,q0) and assume γ ∈MFmax(Y /S). If L0 ∩ γ , ∅, then there is a C-test segment L with γ ∈ N(L),
I(L0) ⊂ I(L) and N(L0) ⊂N(L).

Proof. Given data as in the statement of the lemma, suppose L0 ∩γ , ∅. Then by translating both p0 and
q0 by a small amount we can find points p1,q1 ∈ Co such that L1 = (p1,q1) intersects γ in its interior. If the
translation is small enough we can assume that I(L0) ⊂ I(L1) and N(L0) ⊂N(L1), as the relevant conditions
are open and there are only finitely many cones in MF(Y /S).

Let τ1 ∈ F(γ) such that L1 ∩ τ1 = {x}, with x < Relint(τ1). Let τ2 be a facet of τ1 with x ∈ τ2. Let v
be a vector tangent to τ1 but not tangent to τ2 to such that x + v ∈ Relint(τ1). Then by translating both
p1 and q2 by some εv we can find points p2,q2 ∈ Co such that L2 = (p2,q2) intersects γ in its interior,
L2 ∩ τ1 ⊂ Relint(τ1), I(L1) ⊂ I(L2) and N(L1) ⊂N(L2). Repeating the last step if necessary produces a line
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segment L = (p′ ,q′) with γ ∈N(L), I(L0) ⊂ I(L) and N(L0) ⊂N(L). We can also assume that neither p′ nor
q′ is contained in a facet of MF(Y /S). So there are cones σp1

,σq1
∈MFmax(Y /S) with p1 ∈ Int(σp1

) and
q2 ∈ Int(σq1

), so L is indeed a test segment. �

Lemma 8.9. Consider a connected component C ofM and its closure C̄. Let p0,q0 be points in the interior C̄o of
the closure and set L0 = L(p0,q0). Let γ ∈MFmax(Y /S). If L0 ∩γ , ∅, then there exist Z-divisors p and q such
that L(p,q) is a nice test segment with L∩γ , ∅. Also, N(L0) ⊂N(L) and I(L0) ⊂ I(L).

Proof. We first show the existence of a test sequence L = L(p,q) as claimed without the requirement that
p,q are Z-divisors. Given data as in the statement of the lemma, by Lemma 8.8, there is a test segment
L1 with γ ∈ N(L1). Arguing inductively, let Li be a test segment with γ ∈ N(Li). Let σ be a cone in
M(Li)\N(Li). Again by Lemma 8.8, we find a test segment Li+1 with I(Li) ⊂ I(Li+1) and N(Li) ⊂N(Li+1)
and |N(Li)| < |N(Li+1)|. Hence we obtain a sequence {Li}i of test segments with |N(Li)| < |N(Li+1)|. As
|MFmax(Y /S)| <∞, this is a finite sequence {L1,L2, . . . ,Ln}, and thus M(Ln) = N(Ln). Setting L = Ln proves
the claim.

Now, given L = L(p,q), perturbing a little, we can assume that p,q are classes of Q-divisors. Then there
is an n such that L(np,nq) is a test segment with the desired properties. �

Theorem 8.10. Let Y → S be a model of the DNV family of degree 2. The closures C̄i , i = 1, . . . ,4 of the connected
components ofM are convex cones. The collection

ΣM = {σ ⊂M | σ is a face of some C̄i}

defines a finite fan of rational polyhedral cones.

Definition 8.11. The fan ΣM is the secondary fan of Y , denoted by MF2nd(Y /S).

Proof of Theorem 8.10. All that remains to be shown is that the connected components ofM have convex
closures and that C̄i ∩ C̄j ∈ ΣM. Let C be a connected component. It is enough to show that its interior Co is
convex. Let p0,q0 be points in Co. Let γ be a maximal cone meeting L = L(p0,q0). By Lemma 8.9, we find
a nice C̄-test segment L(p,q) with γ ∈N(L(p,q)), where p and q can be chosen to be classes of divisors. By
Proposition 8.6, γ ⊂ C̄. Let ∂Mov(Y /S) be the boundary of the moving cone. Now, we can decompose C̄ as

C̄ = C0 ∪B1 ∪B2

where B1 ⊂ ∂Mov(Y /S) and B2 ⊂ ∪τ∈F |τ |. where F is the set of all facets of type II of the Mori fan. By
convexity of Mov(Y /S) it follows that L ⊂Mov(Y /S)o. As we have just seen, all maximal cones γ meeting
L = L(p0,q0) are contained in C̄. It follows that all facets τ met by L are of type I, as else the maximal cones
containing τ would correspond to models of the DNV family that do not have the same class. So L∩B2 = ∅

and thus L ⊂ Co, implying that Co is convex. It follows from Lemma 8.7 that C̄ is convex. By Proposition 8.4,
we obtain 4 maximal cones C̄i , i = 1, . . . ,4. It remains to check that ΣM is indeed a fan. This will follow
from the following description of the C̄i . Assume C1 = CP . From the construction, we immediately have the
following description of the maximal cones. For each maximal cone C̄i the facets contained in ∂Mov(Y /S)
are unions of maximal cones in

∪{σ∈MFmax(Y /S)|σ⊂C̄i }∂Mov(Y /S)∩ σ.

It follows from the convexity of the cones C̄i , that each C̄i , i = 2,3,4 has a unique facet HCi meeting the
interior of Mov(Y /S). HCi is the union of type II facets that are contained in the C̄i , formally

HCi = ∪τ∈F :τ⊂C̄i |τ |.
For i = 1, one has again the boundary facets and also the facets HCi . Note that by definition ofM the

intersection of two cones of type T of ΣM is at least of codimension 2. It follows C̄i ∩ C̄j ∈ ΣM. So ΣM is
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Figure 23. A schematic picture of MF2nd(Y /S). The central cone is CP .

indeed a fan. Being a coarsening of a finite fan consisting of rational polyhedral cones, all cones of ΣM are
also rational polyhedral. �

Remark 8.12. The S3-action on YP induces an action on the maximal cones of MF2nd(Y /S). Write
C̄i , i = 1, . . . ,4 for the maximal cones. Assume C1 = CP . As YP has as unique associated cone, this
action leaves CP invariant. Combining the arguments in Proposition 8.6 and Proposition 6.43 shows that
the S3-action is indeed a permutation action on the cones C̄i , i = 2, . . . ,4. Figure 23 provides a symbolic
description of the structure of MF2nd(Y /S).
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