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Abstract: With its outstanding performance characteristics, the SOFC represents a promising technol-
ogy for integration into the current energy supply system. For cell development and optimization, a
reliable quantitative description of the transport mechanisms and the resulting losses are relevant.
The local transport processes are calculated by a 1D model based on the non-equilibrium thermody-
namics (NET). The focus of this study is the mass transport in the gas diffusion layers (GDL), which
was described as simplified by Fick’s law in a previously developed model. This is first replaced by
the Dusty-Gas model (DGM) and then by the thermal diffusion (Soret effect) approach. The validation
of the model was performed by measuring U, j-characteristics resulting in a maximum deviation
of experimental to simulated cell voltage to up to 0.93%. It is shown that, under the prevailing
temperature, gradients the Soret effect can be neglected, but the extension to the DGM has to be
considered. The temperature and heat flow curves illustrate the relevance of the Peltier effects. At
T = 1123.15 K and j = 8000 A/m2, 64.44% of the total losses occur in the electrolyte. The exergetic
efficiency for this operating point is 0.42. Since lower entropy production rates can be assumed in the
GDL, the primary need is to investigate alternative electrolyte materials.

Keywords: solid oxide fuel cell (SOFC); non-equilibrium thermodynamics (NET); Dusty-Gas model
(DGM); thermal diffusion; Soret effect; entropy production; exergy efficiency

1. Introduction

The demand for electrical energy has been steadily increasing in recent years, and,
along with it, the importance of environmentally friendly energy converters. Electrochemi-
cal systems, such as fuel cells, are such alternative technologies for directly converting the
chemical internal energy of a fuel into electrical energy. Hydrogen as an energy carrier
becomes inexhaustible due to its simple production using solar-based carbon free energy
sources and enables its use without direct CO2 emissions, making it environmentally
friendly, also with regard to the Paris Climate Agreement.

The solid oxide fuel cell (SOFC) is a promising technology due to its superior perfor-
mance indicators. These include the integration into the current energy supply system
through the use of carbon-containing fuels, such as natural gas, the variability of the purity
of the hydrogen required, and high efficiency due to the high operating temperatures.
According to the current state of development, the electrical efficiency of SOFCs reaches
values of up to 60–65% [1]. For the development of improved SOFCs, it is of great impor-
tance to be able to simulate the processes and the operating behavior taking place inside of
the cells with the help of models. This is especially true as an experimental assessment of
the ongoing processes inside the cell is prohibitive because of the temperature level around
1000 K. Many models already exist in the literature. These range from modeling individual
layers within one cell to modeling the SOFC as a stack system. Three-dimensional models
were set up in the work of Anderson et al. [2], Mauro et al. [3], Yakabe et al. [4], and Peksen
et al. [5], in which the SOFCs are modeled based on the 3D finite element method. The mo-
mentum transport is described in these works with the help of the Navier–Stokes equations.
In the work of Peksen et al., the SOFC is modeled, including peripheral components, such
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as the heat exchangers and the recirculation loops. Individual layers were investigated, for
example, by Xu and Dang [6], Niu et al. [7], and Joos [8]. They model the porous electrodes
of the SOFC in terms of their exact microstructure and investigate the relationship between
the microstructure and the electrochemical reactions at the three-phase boundaries. In all
these models, the transport processes are described using the classical empirical equations
for the transport of heat, charges, molecules, and momentum. Why these empirical equa-
tions may not be sufficient for an exact description of the transport mechanisms in an SOFC
is addressed in this work.

The performance and lifetime in an SOFC are determined by large temporal and
spatial temperature gradients. Zeng et al. [9] shows an extensive literature review on heat
transfer in SOFC stacks and derived thermal management methods. The study shows
that excessive temperature gradients in SOFCs can lead to delamination and cracks in the
electrolyte and electrodes. Depending on the operating point, temperature gradients in a
planar co-flow SOFC along the electrolyte in the main flow stream of up to 30 K/cm can be
reached. To avoid damage in the SOFC, a temperature gradient of 10 K/cm should not be
exceeded [10]. Such temperature gradients can be reduced in the system by means of an
effective heat management.

Temperature gradients are also caused by local heat generation and by flow field
arrangement. Two types of heat generation are relevant in an SOFC. Reversible heat
describes the reaction entropy of the system as a function of temperature, while irreversible
heat is caused by dissipated energy. Dissipated energy arises due to ohmic resistance
and overvoltages at the electrodes. The heat generation due to an electric current is
described by means of the first Joule’s law, which is why the irreversible heat is also called
Joule’s heat. In contrast, the electrochemical reaction at the three-phase interface leads to a
thermoelectric effect in which reversible heat is released or absorbed at each electrode, also
called Peltier heat.

In addition to a temperature gradient or a gradient in the electric potential, a gradient
in the chemical potential of a species can also lead to a heat flow, called the Dufour heat.
The influence of this coupling of multiple transport mechanisms caused by gradients of
different intensive variables on the heat flux in a PEMFC is investigated in Reference [11],
where individual effects on heat generation (Fourier, Peltier, and Dufour) are examined. As
expected, at typical current densities, there is a net heat flux pointing out of the anode and
cathode. An increasing current density leads to a higher potential difference and a higher
electro-osmotic effect, which increases the Peltier and the Dufour effect. However, above a
current density of 9700 A/m2, Fourier heat dominates due to the temperature rise of the
cathode surface caused by the irreversible activation overvoltage. Valadez Huerta [12]
investigates, among other things, the contribution of the Peltier effect to the heat fluxes
in an SOFC. A significant contribution is shown to come from the electrolyte, where the
heat flux can flow from a lower to a higher temperature within the electrolyte due to the
coupling effects mentioned above.

At the same time, the temperature gradients which develop affect the charge flow
(Seebeck effect) and the material flow (Soret effect). The Seebeck effect describes a charge
transport caused by a temperature gradient. Thus, due to this thermoelectric effect, a
voltage can be measured between two different conductors when a temperature gradient is
imposed on them. The magnitude of this voltage is described by the Seebeck coefficient,
which depends on the material and the temperature. In the works of Kjelstrup et al. [13,14],
a temperature gradient is applied to an electrochemical cell in order to measure the Seebeck
coefficient. From this, the entropy of the oxygen ions transported in the electrolyte can be
determined, which can also be used to calculate the Peltier coefficient.

Fick’s law, the Stefan–Maxwell diffusion, or the Dusty-Gas model (DGM) are widely
used to describe mass transport within a cell. In Reference [12], the coupling of the
mass flow with other flows is neglected. Using Fick’s law, the concentrations of the
individual components are calculated using multi-component diffusion coefficients from
the work of Costamagna et al. [15]. In the work of Suwanwarangkul et al., the approaches
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for describing the mass transport by means of Fick’s law, Stefan–Maxwell diffusion, and
the DGM for determining the concentration overvoltage at the anode are examined. The
modeling with the DGM achieves the best results, whereas the approaches using Fick’s
law and Stefan–Maxwell diffusion are good approximations, especially for small electrical
current densities and large pore diameters [16].

In Reference [11], the modeling of a PEMFC using non-equilibrium thermodynamics
(NET) takes into account the Soret effect, whereby a material flow is driven by a temperature
gradient. In operating ranges of high electric current densities, a significant influence of
the Soret effect is observed in the membrane of the PEMFC. This is due to the strongly
increasing temperature gradients in the membrane with increasing electric current density.

Considering these results, the coupling effects for a reliable description of the transport
mechanisms in fuel cells cannot be neglected. It is not sufficient to address these coupling
effects individually and simply add them up. It is very important to take an integrated
approach as will be shown below. An integrated coupling of several transport processes
can be based on theory of non-equilibrium thermodynamics (NET), which has only been
considered in a few models so far. The first known model based on NET is the 1D model
by Kjelstrup and Bedeaux [17], which can be used to calculate the potential field and the
temperature curve of the cell. Within the NET theory, a generalized flux Ji results from the
linear combination of all occurring forces Xj [18]:

Ji =
N

∑
j=1

LijXj, (1)

where the phenomenological coefficients Lij, also called conductances, are the connection
between forces and fluxes. Forces are gradients of intensive variables. From the phe-
nomenological equations, a matrix with the N2 conductances Lij necessary for modeling
is obtained. By Onsager’s reciprocity relation Lij = Lji, the problem reduces to the upper
and lower triangular matrices of this Lij matrix, including the coefficients Lii of the main
diagonal [19].

For the optimization of a technical system, it is of great importance to understand
these local transport mechanisms and their driving forces, as they all dissipate energy,
i.e., create entropy. With the help of the local entropy production rate, loss mechanisms
can be identified and quantified as exergy losses. In terms of NET, the local volume
specific entropy production rate σ̇i due to the transport process is generally calculated by
multiplying a flux Ji by the respective corresponding force Xi [20]:

σ̇i = Ji · Xi, (2)

thus allowing the second law of thermodynamics to be integrated into the model approach.
However, if several fluxes are present simultaneously in a process, the total local entropy
production is calculated by summing all products of occurring fluxes Ji with the respective
corresponding force Xi [20]:

σ̇ = ∑
i

JiXi ≥ 0. (3)

Sauermoser et al. concluded that, in a PEMFC, the total local entropy production rate is
highest at the cathode, which is explained by the potential profile. In contrast, Valadez
et al. break down the total local entropy production rate of an SOFC into its individual
contributions. In the gas diffusion layers (GDL), the diffusion process provides the largest
contribution to the local entropy production rate, with losses at the cathode GDL being
higher than losses at the anode GDL. In the electrolyte, the local entropy production rate is
dominated by ionic conduction. If the Peltier effect is neglected, the GDLs show reduced
values for the heat flux and potential contribution. As a result, a change of direction of the
heat flux in the electrolyte happens. In both cases, the highest local entropy production rate
results in the electrolyte, with up to 73%.
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Our work aims at providing a consistent model approach for a single solid oxide fuel
cell based on the NET theory. The 1D NET model by Valadez Huerta [12] provides the
starting model for our approach. However, the mass transport described by Fick’s law is
extended by transport equations that consider the coupling of several transport mechanisms.
In addition, the phenomenological equations of the electrolyte are transformed to model
the electrolyte with measurable coefficients. With the localization of the individual loss
mechanisms, the system is then evaluated exegetically.

2. Materials and Methods
2.1. The Thermodynamic System—Solid Oxide Fuel Cell (SOFC)

For modeling purposes, the SOFC is divided into five different layers; see Figure 1. The
membrane electrode assembly comprises a homogeneous bulk phase, which is separated by
two surfaces. The boundaries to these two surfaces are two GDLs. Via the flow field plates,
which are not considered in this model, the reactants are homogeneously distributed to the
anode and cathode GDL. The surfaces also form interfaces between the three homogeneous
bulk phases. The three homogeneous bulk phases, i.e., electrolyte membrane (e), anode
GDL (a), and cathode GDL (c), each have a thickness of ∆yi.

Δ Δ Δ

Figure 1. Model of the solid oxide fuel cell (SOFC), including the electric current density j, all heat
fluxes Jq, and molar fluxes Ji.

The oxygen reduction reaction (ORR) takes place on the surface of the cathode catalyst
layer, and, at the surface of the anode catalyst layer, the negative oxygen ions react, together,
with hydrogen in the hydrogen oxidation reaction (HOR):

1/2 O2 (g) + 2 e− � O2−, (4)

H2 (g) + O2− � 2 e− + H2O (g). (5)

Atomic vacancies in the electrolyte allow diffusion of the negative oxygen ions. In this
study, 8 mol% yttria-stabilized zirconia (8YSZ) is investigated as the electrolyte material.
The electron transport is ensured via wires that are connected to the catalytic layers. Nickel
(Ni) is used at the anode, and platinum (Pt) at the cathode. The cell can be described with
the following standard electrochemical notation:

(Ni)
∣∣H2 (pa, Ta), H2O (pa, Ta)

∣∣∣∣O2−∣∣∣∣O2 (pc, Tc)
∣∣(Pt).

The upper script describes the anode (a) or the cathode (c). We define y as the spatial
coordinate perpendicular to the active surface of the SOFC. The relevant molar fluxes Ji are
defined according to their flow direction, and the heat fluxes Jq are defined as positive in the
direction of the y axis. The flux Ja

q(y) describes the heat through the homogeneous anode

side GDL, while the heat flux occurring at the reaction layer is defined as Ja
q(∆ya) = Jd,a

q .
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The heat flux Je
q(∆ya) = Je,a

q , which has been embossed by the half-cell reaction, flows
from the anode reaction layer into the electrolyte. The definition for the cathode side is
analogous. The direction of the electric current density j is assumed to be the technical
direction of the current against the electron flow. Throughout the entire simulations, an
equimolar mixture of hydrogen and water on the anode side and air on the cathode side is
supplied. Ideal gas mixtures are assumed. The thermodynamic reference state point is set
to be at T = 1123.15 K and p = 1 bar.

2.2. Theory
2.2.1. Mass and Energy Balance Equations for the Gas Diffusion Layers (GDL)

In the steady state, some component flow densities and the electric current density are
in a fixed relationship to each other. The following relationships result from a steady-state
component and charge balance:

2 · Ja
H2

= −2 · Ja
H2O = 4 · Jc

O2
= j/F. (6)

Ji
k describes the flux of each component, j is the electric current density, and F is the Faraday

constant. The steady-state energy balance for the GDL of the anode and cathode side of an
in y-direction infinitesimal volume element reads for the positive y direction:

Anode: 0 =
dJa

q

dy
+ j

dφ

dy
+ Ja

H2

dHm,H2

dy
− Ja

H2O
dHm,H2O

dy

Cathode: 0 =
dJc

q

dy
+ j

dφ

dy
− Jc

O2

dHm,O2

dy
.

Heat Ji
q, electric power j · dφ, and the gaseous components i with a molar enthalpy Hm,i are

supplied to or removed from the GDL. As ideal gas behavior is assumed in our approach,
and no enthalpy of mixing has to be considered. If the relationship from the component
balance is used, the energy balances result in:

Anode: 0 =
dJa

q

dy
+ j
[dφ

dy
+

1
2F
[
CiG

m,p,H2
(T) + CiG

m,p,H2O(T)
]dT

dy

]
, (7)

Cathode: 0 =
dJc

q

dy
+ j
[dφ

dy
+

1
4F

CiG
m,p,O2

(T)
dT
dy

]
. (8)

The molar isobaric heat capacities CiG
m,p,i(T) are calculated using a power series approach

according to Kabelac et al. [21].

2.2.2. Transport Equations for the Homogeneous Phase

Based on Equation (1), the general transport equations for the homogeneous phases
are [20]:

Ji
q = −Lqq

1
T2

dT
dy
−

N

∑
k=1

Lqµk

1
T

dµk,T

dy
− Lqφ

1
T

dφ

dy
, (9)

Jk = −Lµkq
1

T2
dT
dy
−

N

∑
j=1

Lµkµj

1
T

dµj,T

dy
− Lµkφ

1
T

dφ

dy
, (10)

j = −Lφq
1

T2
dT
dy
−

N

∑
k=1

Lφµk

1
T

dµk,T

dy
− Lφφ

1
T

dφ

dy
, (11)

with the local thermodynamic temperature T = T(y), the chemical potential µk of compo-
nent k, and the chemical potential µj of component j 6= k.

Unfortunately, the phenomenological coefficients Lij are not well known at this point,
and only some measurements of these special coefficients have been performed. They differ
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from the well-known coefficients from the empirical transport equations, but some helpful
relations can be established using the following definition for an SOFC [20]:

Thermal conductivity : λ = −
[

Ji
q

(dT/dy)

]
Jk=0,j=0

, (12)

Diffusion coefficient : Dk = −
[

Jk
(dck/dy)

]
dT=0,j=0

, (13)

Electrical resistance : r = −
[
(dφ/dy)

j

]
dT=0,dµ=0

g, (14)

Peltier coefficient : π = F

[
Ji
q

j

]
dT=0,dµ=0

, (15)

Thermal diffusion coefficient : DT = −
[

Jk
ck(dT/dy)

]
dck=0,j=0

. (16)

Very much attention has to be paid to the state variables which have to be constant for
these relations. For an SOFC, simplified transport equations result if ideal gas mixture
assumptions are made:

Ji
q = −λi dT

dy
+

πi

F
· j, (17)

Jk = −DT · ck
dT
dy
− Dk

dck
dy

, (18)

j = − πi

F · ri · T
dT
dy
− 1

ri
dφ

dy
. (19)

The electrical resistance ri is calculated via an Arrhenius approach according to Hajimolana
et al. using the pre-exponential factor ri,0 [22]:

ri/T = ri,0 · e
Ei

A,r
RmT . (20)

To calculate the Peltier coefficient, the entropy flow within the homogeneous phase i is
derived according to NET, as follows, which, of course, also includes the local entropy
production [20,23]:

Js =
Ji
q

T
+

n−1

∑
k=1

Jk · Sm,k. (21)

With the correlation from Equation (15), obeying the conditions dT = 0, dµi,T = 0 and the
assumption that no electroosmosis takes place, the following equation holds true for the
Peltier coefficient:

π = T

[
Js

j/F
−

n−1

∑
k=1

tk · Sm,k

]
dT=0,dµi,T=0

= T ·
n−1

∑
k=1

Jk · Sm,k, (22)

with Sm,k as the transported molar entropy of all n− 1 components. The n-th component
is chosen as the reference of frame. In this case, this is the positive ion lattice of the
electrolyte as an unmoved reference wall, so that, for the anode and cathode reaction layer,
the following equations result:
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Anode: πa = T ·
[

1
2

Sm,H2 −
1
2

Sm,H2O + Sm,e− ,Ni

]
, (23)

Cathode: πc = T ·
[
−1

4
Sm,O2 + Sm,e− ,Pt

]
. (24)

The molar entropy Sm,k of component k at temperature T is calculated by the entropic
equation of state of ideal gases with the approach according to Kabelac et al. [21] for the
molar isobaric heat capacities. The entropies of electrons in platinum and nickel are taken
from Reference [24,25]. Approaches for determining the diffusion coefficient Dk and the
thermal diffusion coefficient DT are presented in the following sections.

The local entropy production rate of a homogeneous phase can now be estimated from
Equation (2) as follows:

σ̇i = −Ji
q

1
T2

dT
dy
− j

1
T

dφ

dy
− Rm ∑

k
Jk

1
ck

dck
dy

. (25)

2.2.3. Modeling of the Gas Diffusion Layers (GDL)

Fick’s law can be derived by simplifying assumptions from the more general Stefan–
Maxwell diffusion and, thus, represents the simplest of the diffusion modeling. For the
description and rating of a more complete and real mass transport modeling in the GDLs,
Stefan–Maxwell diffusion (1) is described first and then overlaid with Knudsen diffusion (2),
convection (3), and thermal diffusion (4). For a comparison of all these approaches, the
mass transport is additionally modeled with Fick’s law. The Fick’s diffusion coefficients are
calculated from the Knudsen diffusion coefficients, and the binary diffusion coefficients
using the Bosanquet formula [16,26]:

Deff
k =

(
1

Ðeff
kj

+
1

DKn,eff
k

)−1

. (26)

Krishna et al. [26] state that, for molecules, such as H2, the Bosanquet formula is applicable
to a wide range of pore diameters with reasonable accuracy. Since porous structures are
assumed, some parameters, such as the permeability Bi

0 and the diffusion coefficients D,
must be corrected by the porosity εi, the tortuosity τi, and the mean pore diameter di

p.
The NET approach according to Equation (10), respectively, Equation (18), represents

another possibility for modeling the GDLs, and it is subsequently compared directly with
the Dusty-Gas model (DGM) (1)–(4) described previously.

2.2.4. Mass Transport by Stefan–Maxwell Diffusion (1)

If a mixture is considered, a diffusive movement relative of the individual components
can occur. This relative movement leads to collisions between the different molecules.
The driving force, caused by a gradient in the partial pressure of a component k, is in
equilibrium with the frictional force, which is caused by the intermolecular collisions [27].
The equilibrium between the driving force and the frictional force in an ideal gas mixture
of N components in a porous structure can be described by the following equation:

− 1
RmT

dpk
dy

=
N

∑
j=1

xj Jdiff
k − xk Jdiff

j

Ðeff
kj

. (27)
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For the binary diffusion coefficients, we have Ðeff
kj = Ðeff

jk . For the calculation of the effective
binary diffusion coefficients, the approach of Fuller et al. is used [28]:

Ðeff
kj

cm2/s
=

εi

τi ·
0.00143

( T
K
)1.75

[( Mk
g/mol

)−1
+
( Mj

g/mol

)−1
]1/2

p
bar

√
2
[
v1/3

k + v1/3
j
]2 . (28)

Here, v are the dimensionless diffusion volumes of the two components in a binary mixture,
which are tabulated, e.g., in the VDI Heat Atlas [29].

2.2.5. Extension by Knudsen Diffusion (2)

In narrow pores, in which the mean free path length of the molecules is considerably
greater than the pore diameter, there are increased collisions of the molecules with the pore
wall [30]. Because of these collisions, the following gradient in partial pressure result for
the individual component k according to Reference [27]:

dpk
dy

= −RmT
Jk

DKn,eff
k

. (29)

For the mass flow density of nitrogen, JN2 = 0 applies in a steady state operation, as
this inert gas does not react at the reaction layers. The effective Knudsen diffusion co-
efficients DKn,eff

k of the individual components are calculated according to Krishna and
Wesselingh [27] via the kinetic gas theory:

DKn,eff
k =

εi

τi ·
di

p

3

√
8RmT
πMk

. (30)

To superimpose the Stefan–Maxwell diffusion and the Knudsen diffusion, the partial
pressure gradients of the two transport mechanisms may be added [27,30,31]. The idea
follows exclusively from the additivity of the momentum transfer, without any theoretical
proof [31]. The following transport equation results in a steady state operation:

dpk
dy

= −RmT
( N

∑
j=1

xj Jdiff
k − xk Jdiff

j

Ðeff
kj

+
Jk

DKn,eff
k

)
. (31)

2.2.6. Extension by Convection (3)

In convection, the gas mixture moves as a continuum and is driven by a gradient in
the total pressure. Typically the adhesion condition applies to the walls of the flow channel
from a macroscopic view, which means that the velocity of the viscous flow is zero directly
at the wall interface. The convective mass flow density of the respective component can
be calculated by Darcy’s law, with the permeability Bi

0 and the dynamic viscosity of the
mixture η [27]:

Jkonv
k = −xk

Bi
0 p

ηRmT
dp
dy

. (32)

The permeability Bi
0 depends on the geometry of the pores and must also be corrected

due to the porous structure. For the effective permeability within circular open pores,
Equation (33) applies [30]:

Bi,eff
0 =

εi

τi

(di
p)

2

32
. (33)
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The total mass flow density, which occurs in a steady state operation, results from the
summation of the diffusive and convective component [27,30,31]:

Jk = Jdiff
k + Jkonv

k . (34)

This results in the following transport equation, which, in addition to Knudsen and Stefan–
Maxwell diffusion, also takes convection into account:

dpk
dy

+
Bi,eff

0 pk

ηDKn,eff
k

dp
dy

= −RmT
( N

∑
j=1

xj Jk − xk Jj

Ðeff
kj

+
Jk

DKn,eff
k

)
. (35)

The dynamic viscosities of the individual gases ηiG
k are calculated using Lucas et al.’s

correlation equation recommended in the VDI Heat Atlas, which is permissible due to the
low operating pressure in the SOFC [29]. All quantities required for the calculation of the
dynamic viscosities of the pure substances can be taken from Reference [29]. Subsequently,
the dynamic viscosities of the gas mixtures η are calculated for both the anode and the
cathode on the basis of the mass fractions and the dynamic viscosities of the pure substances
via the mixing rule according to Wilke [32]:

η = ∑
k

xkηiG
k

∑j xjFkj
, (36)

with

Fkj =

[
1 +

(
ηiG

k /ηiG
j
)1/2(Mj/Mk

)1/4
]2

√
8(1 + Mk/Mj)

.

2.2.7. Extension through Thermal Diffusion (4)

Thermal diffusion, also called the Soret effect, is a coupled process, in which a flow of
substances is caused by a temperature gradient. If the mixture is subject to a temperature
gradient, gradients are established in the concentration of the individual components [33].
Heavy molecules arrange themselves more in the colder regions, and light molecules in
the warmer regions. Thermal diffusion belongs to multi-component diffusion. Therefore, a
version of the Stefan–Maxwell diffusion according to Krishna and Wesselingh, extended by
the thermal diffusion rate, is used to consider thermal diffusion [27]:

− 1
RmTc

dpk
dy

=
N

∑
j=1

xkxj(wT
k − wT

j )

Ðkj
, (37)

with

wT
k = wdiff

k + DT
kj

dT
dy

. (38)

The extended velocity wT
k is obtained by the summation of the diffusion velocity wdiff

k with
the velocity due to thermal diffusion, which can be calculated by the thermal diffusion
coefficient DT

kj. A positive thermal diffusion coefficient means that the component moves
toward colder regions, and a negative coefficient means that the component moves toward
warmer regions [27]. For the thermodiffusion coefficient, we have [31]:

DT
kj = −DT

jk. (39)
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The thermal diffusion coefficients are often expressed by the thermal diffusion rate kT
kj or

the thermal diffusion factor αT
kj [34]:

kT
12 =

TDT
12

Ð12
= αT

12x1x2. (40)

Taking thermal diffusion into account, the general transport equation within the GDL results:

dpk
dy

+
Bi,eff

0 pk

ηDKn,eff
k

dp
dy

= −RmT

(
N

∑
j=1

( xj Jk − xk Jj

Ðeff
kj

+ 2c(xkxj)
2

αT
kj

T
dT
dy

)
+

Jk

DKn,eff
k

)
. (41)

From the equation, it can be seen that thermodiffusion can both improve or dampen mass
transfer. This depends on the signs of the thermal diffusion factor and the temperature
gradient. If a component moves against the expected transport direction as a result of the
thermal diffusion, the thermal diffusion acts as an additional transport resistance that must
be overcome by a higher partial pressure gradient.

The thermal diffusion factor αT
kj can be calculated by means of the kinetic theory of

gases, which relates the macroscopic transport coefficients to the intermolecular interactions
of gases [35]. A model that describes the intermolecular potential as a function of the
distance between the molecular centers r∗ is the Lennard–Jones (12-6) potential φLJ. Data
for the maximum attraction between molecules εk and for the characteristic Lennard-
Jones length σk are taken from Reference [36]. Widely used calculation approaches for the
thermal diffusion factor αT

kj, which are based on the kinetic gas theory, are the first two
approximations according to Chapman and Cowling and the first approximation according
to Kihara. The first approximation according to Kihara provides better results than the
approaches of Chapman and Cowling [37], which is why it is used in this work [38]:

αT
12 =

(
S1x1 − S2x2

Q1x2
1 + Q2x2

2 + Q12x1x2

)
(6C∗12 − 5). (42)

Here, Sk and Qk are functions of the molecular masses, the Lennard-Jones parameters, and
the collision integrals which account for the different interactions between the individual
molecules in a binary mixture. Additional collision integrals are summarized in C∗12. These
multi-dimensional collision integrals were calculated and tabulated in Reference [35] for
different potential functions, depending on the temperature. By convention, the index 1
stands for the molecule with the greater mass.

2.2.8. Mass Transfer Approach According to NET

Through comparison of the coefficients of Equations (10) and (18), it follows that, for
the phenomenological coefficients:

Lµkq = DT · ck · T2 (43)

and
Lµkµk =

Dk · ck
R

. (44)

The diffusion coefficient Dk can be determined using Equation (26). The thermal diffusion
coefficient DT is calculated via the approach of Equation (40).

2.2.9. Modeling of the Reaction Layers

In this model, reactions are assumed to take place on the surfaces of the electrodes
only. A homogeneous temperature profile is additionally assumed at the electrode surfaces.
However, jumps in the y-direction occur in the course of the electrical potential and the
heat flux density. The heat flux density is calculated via an entropy balance, including
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the reaction entropy. The material current densities are expressed by the electric current
density. For the oxygen ion flux, JO2− = − j

2·F results.

Anode: Je,a
q = Jd,a

q − T · j
2F
· ∆RSa

m(T) + T · ṡa
irr, (45)

Cathode: Jd,c
q = Je,c

q − T · j
2F
· ∆RSc

m(T) + T · ṡc
irr, (46)

with
∆RSa

m(T) = Sm,H2O(T)− Sm,H2(T)− Sm,O2−(T) + 2 · Sm,e− ,Ni(T),

∆RSc
m(T) = Sm,O2−(T)−

1
2

Sm,O2(T)− 2 · Sm,e− ,Pt(T).

The entropy of the oxygen ion SO2− is calculated using the approach of Kjelstrup and
Tomii [14].

The entropy production rates ṡi
irr result from the activation overvoltages at the respec-

tive electrode. Butler–Volmer kinetics is used to calculate the activation overvoltages:

ξ̇i
r =

ji0
2 · F

(
e−

αi·2·F
Rm·T ·η

i,act
− e

(1−αi)·2·F
Rm·T ·ηi,act

)
. (47)

A steady-state charge balance yields j = 2 · F · ξa
HOR for the anode and j = −2 · F · ξc

ORR
for the cathode. The exchange current densities are determined by an Arrhenius approach
according to Yonekura et al. [39]:

ja0 =
[
(xR

H2
)0.41(xR

H2O)
0.4]γa · e−

Ea
A,j0

RmT , (48)

jc0 = (xR
O2
)0.3γc · e−

Ec
A,j0

RmT , (49)

where the pre-exponential factors γa and γc. The activation energies Ei
A,j0

have been
determined empirically by electrochemical impedance spectroscopy in Reference [12].
Using the activation overvoltages, the entropy production rates are finally calculated as:

ṡa
irr =ηa,act · j/T, (50)

ṡc
irr =− ηc,act · j/T. (51)

The potential curve at the reaction boundary layer is calculated as:

φe,a =φd,a − ∆φa
0(pR

k )− ηa,act, (52)

φd,c =φe,c + ∆φc
0(pR

k ) + ηc,act. (53)

Thus, the potential immediately behind the reaction boundary layer is calculated from
the potential immediately before the reaction boundary layer, the electrode potentials in
no-load operation, and the activation overvoltages. As the equilibrium electrode potentials
are calculated with the reactant concentrations in the reaction zones, a determination of the
concentration overvoltage ηi,con is not necessary. The electrode potentials in an open circuit
situation at the individual electrodes are obtained by applying the equilibrium condition
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of an electrochemical reaction and correspond to ∆φi
0 = (µ̃O2− − 2µ̃e−)/2 · F [12]. The

electrode potentials are given by the following equations:

∆φa
0(xR

k ) =
1

2F

[
Gθm,H2O(T)− Gθm,H2

(T) + RmT · ln
( xR

H2O

xR
H2

)]
, (54)

∆φc
0(xR

k ) =
1

2F

[
0, 5 · Gθm,O2

(T) +
RmT

2
ln
(
xR

O2

)]
. (55)

2.2.10. Modeling of the Electrolyte

In an SOFC electrolyte, the diffusion of the oxygen ions leads not only to a mass
transport but also to a proportional charge transport. This relationship is explained by
the definition of the electrochemical potential µ̃O2− = µO2− − z∗O2− · F · ψ according to
Guggenheim [40], where µO2− is the chemical potential of the anion, z∗O2− = 2 is the charge
number of the anion, and ψ is the electrostatic potential. Taking into account the charge
conservation law and the assumptions that no cation diffusion occurs in YSZ at 1300 K and
polarization effects can become negligible, we obtain [12]:

j
z∗O2− · F

= Je
O2− . (56)

with Equation (56) and the relation

φ =
µO2−

z∗O2− · F
− ψ, (57)

according to Equations (12)–(15), the following transport equations apply to the elec-
trolyte [12,41]:

Je
q = −Lqq

1
T2

dT
dy
− LqO

1
T

d
dy

[
µO2− − z∗O2− · F · ψ

]
(58)

= −Lqq
1

T2
dT
dy
− LqO

z∗O2− · F
T

dφ

dy
, (59)

Je
O2− = −LOq

1
T2

dT
dy
− LOO

1
T

d
dy

[
µO2− − z∗O2− · F · ψ

]
(60)

= −LOq
1

T2
dT
dy
− LOO

z∗O2− · F
T

dφ

dy
, (61)

j = −Lψq
F

T2
dT
dy
− Lψψ

F
T · z∗O2−

d
dy

[
µO2− − z∗O2− · F · ψ

]
(62)

= −Lψq
F

T2
dT
dy
− Lψψ

F2

T
dφ

dy
, (63)

with φ = φ(y) as the electric potential. By the relation from Equation (56), two of three
transport equations are independent of each other, which completely describe the coupled
transport of heat and oxygen ions. The transport equations for the electrolyte finally result
as a function of the empirical coefficients:

Je
q =− λe dT

dy
+

πe

F
· j, (64)

j =− πe · σe

F
1
T

dT
dy
− σe dφ

dy
. (65)
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For the Peltier coefficient in the electrolyte, Equation (22) applies:

πe = −1
2

SO2−T. (66)

The gradient of the heat flux density is determined from an energy balance in a time
independent state:

0 =
dJe

q

dy
+ Je

O2− · z∗O2− · F
dφ

dy
. (67)

2.2.11. Exergy Analysis

For a full evaluation of the efficiency of the system, the exergetic efficiency ζ is used.
Exergy Ėx is a thermodynamic state variable, and it describes the part of energy that can
be converted into any other form of energy. An energy conversion dissipates energy; so,
some exergy Ėx is converted to anergy Ḃ. This fraction is called exergy loss ĖxL. In this
dissipative process, anergy cannot be converted into any other form of energy. For the
exergetic efficiency of a fuel cell, the fraction of the useful outgoing exergy to the incoming
exergy is:

ζ =
U · j

ṅa · (Ėxa
ph + Ėxa

ch) + ṅc · (Ėxc
ph + Ėxc

ch)
, (68)

with Ėxi
ph as physical exergy of a material flow [42]:

Ėxi
ph = ṅi · [Hm(T, p, xi)− Hm(T0, pθ , xi)− T0 · (Sm(T, p, xi)− Sm(T0, pθ , xi)], (69)

and Ėxi
ch as chemical exergy of a material flow [42]:

Ėxi
ch = ṅi · [

N

∑
k=1

xk · Exθ
m,k(T0) + R · T0 ·

N

∑
k=1

xk · ln xk]. (70)

The equations are valid for ideal gas mixtures. The chemical exergy of a substance Exθ
m,k(T0)

at T0 = 298.15 K can be taken from Reference [43].

2.3. Simulation

The model equations derived in the previous section are used to calculate one-
dimensional profiles of partial pressures, temperature, heat flux, electric potential, and
local entropy productions rate. MATLAB®version R2020a software is used to perform these
calculations. The operating conditions of the cell are fixed, which include the operating
temperature T, the operating pressure p, the composition of the inlet gases, and the electric
current density j. These operating conditions also determine the boundary conditions of
the cell. The cell temperature agrees with the operating temperature, both when y = 0 and
when y = ∆ya + ∆ye + ∆yc. At the anode side of the cell, the electric potential φ (y = 0)
is set to zero. The other boundary conditions are determined by the partial pressures of
the inlet gases. As start values for the iteration, the heat flux density Jq (y = 0) and the
partial pressures pR

O2
and pR

N2
of the cathode gases in the reaction zone are estimated first.

The differential equation systems for the anode GDL, the electrolyte, and the cathode GDL,
which result from the transport and balance equations, are solved step by step using the
Runge–Kutta method. The profiles at the reaction layers are calculated using the Equations
from Section 2.2.9. If the boundary conditions are not met after the first calculation round,
the starting values are varied, and the cell is calculated again. The starting values are then
adjusted using Newton’s method to start the next iteration step.
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2.3.1. General Parameters

The parameters for a specific example case are summarized in Table 1. The dimensions
of the modeled SOFC single cell correspond to a type KeraCell III from the company Kerafol
GmbH (Eschenbach i. d. Opf., Germany) [44]. The validation is carried out using the
known U, j characteristic curve of the cell under consideration. The U, j-characteristic curve
determined experimentally by the manufacturer can be taken from the data sheet. Further-
more, a U, j-characteristic curve was recorded at the Institute with an existing SOFC/SOEC
test bench (Evaluator C1000-HT) from HORIBA FuelCon (Magdeburg-Barleben, Germany)
under the same conditions.

For an electrolyte of YSZ08, many references exist in which the thermal conduc-
tivity or the ionic conductivity were determined experimentally. In the publications by
Schlichting et al. [45], Sasaki et al. [46], and Radovic et al. [47], measured thermal con-
ductivities are presented as a function of temperature. Here, the thermal diffusivity a is
measured using laser flash analysis. The density of the test specimen is determined by
Schlichting et al. using Archimedes’ principle. In the work of Sasaki et al., the mass and
volume of the test specimen are measured in order to subsequently calculate the density.
Radovic et al. do not make any statements about the measurement of the density. The
specific heat capacity C of the ceramic is measured in all three papers using dynamic differ-
ential calorimetry. Sasaki et al. determine the thermal diffusivity of a non-porous ceramic
by linear extrapolation of the values of a porous ceramic. The ionic conductivity of YSZ08
was measured experimentally in the work of Gibson and Irvine [48], Antunes et al. [49], and
Artemov et al. [50]. In these papers, the impedance spectrum of the ceramic is measured at
different temperatures using impedance spectroscopy to subsequently determine the ionic
conductivity. Similar results are obtained in all three papers. Due to the larger data range,
the data of Gibson and Irvine are chosen for our modeling.

Table 1. General model parameters at T = 1123.15.

Parameter Value Reference

Dimensions ∆ya = 40µm [44]
∆yc = 50µm [44]

∆ye = 150µm [44]
Thermal conductivity λa = 2 W/m·K [17]

λc = 2 W/m·K [17]
λe = 1.98 W/m·K [45]

Entropy of the electrons Sm,e− ,Pt = −1.81 J/K·mol [24]
Sm,e− ,Ni = −3.24 J/K·mol [25]

Entropy of the ions SO2− calculated [14]
Peltier coefficient πa calculated with Equation (23)

πc calculated with Equation (24)
πe calculated with Equation (66)

Ionic conductivity σe = 2 Wm·K [17]
Pre-exponential factors ra,0 = 1

95·106 Ω·mK [22]
for electrical resistances rc,0 = 1

42·106 Ω·mK [22]
Activation energy Ea

A,r = 1150 · Rm· K [22]
Ec

A,r = 1200 · Rm· K [22]
Ea

A,j0 = 72, 364 J/mol [12]
Ec

A,j0 = 156, 306 J/mol [12]
Pre-exponential factors γa = 2, 4 · 107 A/m2 [12]

for exchange current densities γc = 1.82 · 1011 A/m2 [12]
Penetration coefficients αa = 0.5 [15]

αc = 0.3 [15]

2.3.2. Parameters for Mass Transport

For a detailed investigation of the influence of different mass transfer equations, the
mass flow of all individual components are plotted as a function of the current density in
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the anode and cathode GDL. The required parameters and their origin can be found in
Table 2.

Table 2. Mass transport parameters at T = 1123.15 K.

Parameter Value Reference

Diffusion volume vH2 = 6.12 [29]
vH2O = 13.1
vO2 = 16.3
vN2 = 18.5

Lennard-Jones σH2 = 2.827 Å, εH2 /kB = 59.7 K [36]
parameter σH2O = 2.641 Å, εH2 /kB = 809.1 K

σO2 = 3.467 Å, εH2 /kB = 106.7 K
σN2 = 3.798 Å, εH2 /kB = 71.4 K

Pore diameter for GDL di
p = 5µm [1]

Porosity for GDL εi = 0.3 [1]
τa = 3.15 [51]

Tortuosity for GDL τc = 2.9 [52]

3. Results and Discussion
3.1. Validation

Figure 2 shows our own experimentally determined (exp) and the simulated (sim)
U, j-characteristic curves for T = 1123.15 K, as well as values from Kerafol GmbH (Kerafol).
The simulated open circuit voltage (OCV) is 0.08% lower compared to the value of Kerafol.
With increasing current density, the deviation grows until it reaches a value of 0.78% at
j = 4000 A/m2. Reasons for this are the calculation of the losses in the reaction layers
and/or in the electrolyte. The dominance of the ohmic losses is due to the limited ionic
conductivity of solid oxide ceramics and the strong dependence of the ohmic losses on
the electric current density. From the calculation of the overvoltages at the electrodes due
to the reaction kinetics, high exchange current densities occur due to the high operating
temperature. However, in contrast to the ohmic losses, there is no linear relationship to
the increasing electric current density. For this reason, it is assumed that slightly increased
ohmic losses are assumed in the model.

0 500 1000 1500 2000 2500 3000 3500 4000

0.7

0.75

0.8

0.85

0.9

0.95

Figure 2. U, j-characteristics of an SOFC of the type KeraCell III with an electrolyte of 8YSZ at
T = 1123.15 K.

The deviation of the simulated OCV is 0.84% compared to the experimentally deter-
mined value. This can be explained by the leakages occurring in the experiments and
slightly varying gas concentrations. With increasing current density, the deviations also in-
crease. At a current density of j = 4000 A/m2, there is a deviation of 0.93%. The deviations
can be explained by several factors. These include activation and concentration overvolt-
ages at the electrodes, charge transport losses across the electrolyte, and ohmic resistances
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in the electrical contacts. The deviations of the model given are within a reasonable range,
such that further investigations will be continued with the parameters present.

3.2. Partial Pressures

In Figure 3, the partial pressures of all components in the reaction layers are shown as
a function of the electric current density at T = 1123.15 K. The calculated various diffusion
coefficients are summarized in Table 3. The Stefan–Maxwell diffusion and Fick’s law graphs
are described as pure mass transport for better comparability. All further graphs include
the previously implemented mechanism.
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Figure 3. Partial pressure of (a) hydrogen and (b) water in the anode reaction layer, (c) oxygen and
(d) nitrogen in the cathode reaction layer, as a function of the electric current density j.

With increasing electric current density, the chemical reaction rates also increase,
resulting in a decrease in the partial pressure of the hydrogen on the anode side and
an increase in the partial pressure of water. Due to the same effective binary diffusion
coefficient, the curves of the pure Stefan–Maxwell diffusion show the same slopes in
terms of magnitude. Furthermore, the graphs for the Knudsen diffusion—Fick’s law and
convection—thermal diffusion overlap. Since Knudsen diffusion additionally takes into
account the collisions of the molecules with the pore wall, there is a significant difference
to pure Stefan–Maxwell diffusion. The overlaid Knudsen diffusion shows hardly any
noticeable differences in the partial pressures compared to Fick’s law, although Fick’s law
does not take into account the force of friction caused by the intermolecular collisions.
The mass flow densities of the hydrogen and the water are the same due to the equimolar
composition, which means that no differences are apparent in the superimposed Knudsen
diffusion and Fick’s law. However, the different components are affected differently
by Knudsen diffusion. On the one hand, this is due to the different molecular sizes of
the components, which results in the largest effective Knudsen diffusion coefficient for
hydrogen. Thus, the effect of Knudsen diffusion on the mass transport of hydrogen is the
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smallest. As the partial pressure gradients of the individual components are not equal on
both the anode and cathode sides due to the different effect of Knudsen diffusion, a gradient
is established in the total pressure, which leads to some additional convection of the gas
mixtures. However, it can be seen that the effect of convection is small in comparison to the
other transport mechanisms, although all gases have low dynamic viscosities. The reason
for this lies in the low gradients in the total pressure. In the anode reaction layer, there is a
higher total pressure than in the gas channel, which is why the gas mixture moves in the
direction of the gas channel as a result of the convection, thus impeding the mass transport
of the hydrogen and improves the mass transport of the water. Thermal diffusion shows no
influence on mass transfer under the operating conditions considered. The reason for this
is that the possible prevailing temperature gradients are too small to give thermal diffusion
a significant influence. The temperature gradients in the anode, electrolyte, and cathode
are explained in more detail in the following sections.

Table 3. Binary diffusion coefficients Ðeff
kj , effective Knudsen diffusion coefficients DKn,eff

k , Fick’s

diffusion coefficients Deff
k , and thermal diffusion coefficients DT

k at T = 1123.15 K.

Diffusion coefficients Value

Ðeff
H2−H2O 0.004 m2/s

Ðeff
O2−N2

9.78 · 10−4 m2/s
DKn,eff

H2
5.45 · 10−4 m2/s

DKn,eff
H2O 1.82 · 10−4 m2/s

DKn,eff
O2

1.49 · 10−4 m2/s

DKn,eff
N2

1.59 · 10−4 m2/s
Deff

H2
4.79 · 10−4 m2/s

Deff
H2O 1.74 · 10−4 m2/s

Deff
O2

1.29 · 10−4 m2/s
Deff

N2
1.36 · 10−4 m2/s

DT
H2

−2.74 · 10−7 m2/Ks
DT

H2O 2.74 · 10−7 m2/Ks
DT

O2
6.48 · 10−9 m2/Ks

DT
N2

−6.48 · 10−9 m2/Ks

The partial pressure of the nitrogen remains unchanged in the steady state due to
JN2 = 0. For this reason, the partial pressure curves of the Stefan–Maxwell and Knudsen
diffusion also overlap. Since the total pressure in the gas channel is higher in the cathode
than in the reaction layer, convection improves the oxygen transport. This leads to a larger
gradient in the partial pressure of nitrogen. These partial pressure gradients of nitrogen are
necessary to counteract the drag force due to the molecular collisions with the oxygen and
the convection, thus ensuring JN2 = 0. The influence of Stefan–Maxwell diffusion on the
cathode gases is greater, since a clearly smaller effective binary diffusion coefficient results
for the cathode-side gas mixture. As oxygen is the largest of the molecules present, it has
the lowest effective Knudsen diffusion coefficient. However, the effect of the superimposed
Knudsen diffusion is smaller than for water due to the lower mass flow density of oxygen.
The improved mass transfer of oxygen due to convection is very small, as the gas mixture
consists mostly of nitrogen on the cathode side. The mass transport via Fick’s law shows
the greatest changes in the gradient of the partial pressure for oxygen. By taking into
account the mole fraction of oxygen in the Stefan–Maxwell diffusion, the mass transport
is improved by a significant amount. On the cathode side, thermal diffusion also has no
influence on mass transport under the operating conditions considered here.

Figure 4 shows the partial pressure profiles of the gas components, determined via
the thermal diffusion approach according to Section 2.2.7, and the TiP approach according
to Section 2.2.8. In the anode, the partial pressures of hydrogen and water determined by
the TiP approach behave as the superimposed Knudsen diffusion, as the thermal diffusion
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approach includes the extension to convection. Due to the prevailing low temperature
gradients, the thermodiffusion in the TiP approach according to Equation (10) does not take
influence on the partial pressure curves. Even imposing a temperature gradient of ∆T = 5 K
over the electrolyte thickness ∆ye shows a change in the range of 10−3 kPa only. Only by
imposing ∆T = 50 K over ∆ye can two essential facts be clarified. First, the mass transfer
for both components is worsened by imposing of a temperature gradient, i.e., the effect of
thermal diffusion. Secondly, the consideration of convection is highlighted, which worsens
the mass transfer of hydrogen and improves that of water. The differences between the two
approaches can be explained using Equations (18) and (40). In Equation (40), the thermal
diffusion coefficient is divided by the binary diffusion coefficient, whereas, in Equation (18),
the thermal diffusion coefficient is divided by the binary and Knudsen diffusion coefficients
after rearranging the equation. As the Knudsen diffusion coefficient of hydrogen is higher
than that of water, the term has a smaller effect on hydrogen, so that smaller differences are
seen in the partial pressure of hydrogen between the two approaches. Due to the very small
thermal diffusion coefficients of oxygen and nitrogen, thermal diffusion does not affect
mass transfer despite the imposition of a temperature gradient (cf. Figure 4). The similar
molar masses of oxygen and nitrogen result in small thermodiffusion factors, which means
that mass transfer of a mixture of these two components due to a temperature gradient has
no effect.

4000 6000 8000

49.8

49.9

50  

4000 6000 8000

50  

50.1

50.2

50.3

4000 6000 8000

20.5

20.6

20.7

20.8

20.9

21  

4000 6000 8000

79  

79.1

79.2

79.3

79.4

Figure 4. Partial pressure of (a) hydrogen and (b) water in the anode reaction layer, (c) oxygen and
(d) nitrogen in the cathode reaction layer, as a function of the electric current density j for different
imposed temperature gradients ∆T between cathode and anode.
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3.3. Heat Transport, Temperature Gradient, and Potential Field
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Figure 5. Simulated profile of (a) heat flux density and (b) temperature along spatial coordinate y.

Figure 5 shows the simulated heat flux density curves and the temperature fields
at T = 1123.15 K for different electric current densities as a function of the spatial co-
ordinate y. It can be seen that the heat flow Jq always has a negative sign, i.e., heat
flows from the cathode toward the anode. The jumps in the course of the heat flow
at the reaction layers follow, on the one hand, from the irreversible activation overvolt-
ages. In addition, at the cathode, heat is released due to the negative reaction entropy
(∆RSc

m(1123.15 K) = −80.47 J/mol K), whereas the anode consumes heat due to the pos-
itive reaction entropy (∆RSa

m(1123.15 K) = 21.65 J/mol K). This leads to a big amount of
heat being released at the cathode due to these two effects. Net heat is absorbed at the anode
because, here, the heat consumption due to the reaction entropy exceeds the heat released
due to the irreversibilities. Thus, in the steady state, there is an increased temperature at
the cathode and a decreased temperature at the anode. Within the electrolyte, the heat
generated due to irreversible ion transport can be recognized by heat flux densities increas-
ing in magnitude in the direction of the charge transport. Considering the temperature
curve along the spatial coordinate, the relevance of the Peltier effects in the cell becomes
clear. At the GDL of the cathode, the heat flow flows from a lower to a higher temperature
accordingly. At the GDL of the anode, the Peltier effect shows a smaller impact due to the
smaller coefficient (πa(1123.15 K) = −0.433 J/C, πc(1123.15 K) = −0.742 J/C). Further-
more, it can be observed that both the heat flux density and the temperature gradients
become larger with increasing electric current density. This can be explained by increasing
irreversibilities at higher electric current densities. The case of equal temperatures at the
anode and cathode sides of the cell is motivated by the cooling gas within the bipolar plates.
Here, the heat transfer on the anode side is much more intense than on the cathode side.
If the same heat transfer coefficient is assumed, the temperature at the anode side will be
higher. Thus, a new case is studied.

In Figure 6, the resulting temperature and heat flux density curves are shown for an
imposed temperature difference of 5 K between the anode and cathode. An almost linear
temperature profile is obtained, wh ich is due to the small temperature differences during
normal operation. The heat flux flows continuously from the anode toward the cathode,
as the impact of the Peltier effects on the total heat flux decreases, and the heat flux is
primarily transported by the temperature gradient. However, the imposed temperature
difference of 5 K only manifests itself in the course of the temperature and the heat flux
density and has no significant influence on the overall operating behavior of the cell.
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Figure 6. Simulated profile of (a) heat flux density and (b) temperature along spatial coordinate y for
a imposed temperature gradient ∆T = 5 K between cathode and anode for j = 8000 A/m2.

Figure 7 shows the simulated electric potential along the spatial coordinate as a
function of the electric current density for T(y = 0) = T(y = ∆ya + ∆ye + ∆yc). In the
course of the electrical potential, jumps can be observed at the reaction layers. These
result from the equilibrium electrode potentials of the electrodes and the overvoltages that
reduce the potential differences at the reaction layers. The electrical potential is greatest in
the electrolyte due to the oxygen ion transport that occurs there. With increasing electric
current density, greater losses in the electric potential can be observed there, which follow
from the irreversible ion transport. The voltage losses due to the charge transport in the
GDLs can hardly be observed due to the low electrical resistance. For j = 8000 A/m2

overvoltages at the electrodes and the ohmic losses across the electrolyte of ηa = 0.063 V,
|ηc| = 0.050 V and ∆φe = 0.2069 V are obtained. It can be seen that the ohmic losses in the
electrolyte are dominant. The fraction of the total voltage losses accounted for by the ohmic
losses increases with increasing electric current density, as the activation overvoltages
do not increase linearly with increasing electric current density. This dominance of the
ohmic losses is due to the limited ionic conductivity of solid oxide ceramics and the strong
dependence of the ohmic losses on the electric current density. The overvoltages at the
anode, as well as at the cathode, are in the same order of magnitude, but the overvoltage
at the anode is slightly greater. This can be explained by the larger exchange current
density of the cathode reaction (jc0 = 6061.6 A/m2) as compared to the anode reaction
(ja0 = 5711.2 A/m2) at the operating temperature considered here.
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Figure 7. Simulated course of the electric potential field along the spatial coordinate y.

3.4. Entropy Production Rate

The local entropy production rates for the anode GDL, the cathode GDL, and the
electrolyte are shown in Figure 8 along the spatial coordinate at an operating temperature
of 1123.15 K. In order to present the curves of the local entropy production rates for different
electric current densities in one diagram, the local entropy production rates are each related



Entropy 2022, 24, 224 21 of 27

to their value at the left edge of the respective layer. These absolute values are listed for the
electric current densities j = 2000 A/m2 and j = 8000 A/m2 in Table 4.
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Figure 8. Simulated curves of the local entropy production rate in the anode GDL, the cathode GDL,
and the electrolyte along the spatial coordinate y.

Table 4. Reference values of the local entropy production rate at y = 0 (anode GDL), y = 0.4 · 10−4 m
(electrolyte), and y = 1.9 · 10−4 m (cathode GDL).

Anode GDL Electrolyte Cathode GDL

σ̇a
q,0 | σ̇a

φ,0 | σ̇a
k,0 σ̇e

q,0 | σ̇e
φ,0 σ̇c

q,0 | σ̇c
φ,0 | σ̇c

k,0
j in A/m2 in W/m3K in W/m3K in W/m3K

2000 −0.04 | 0.17 | 4.84 0.18 | 613.95 −0.15 | 0.95 | 4.18
8000 0.64 | 1.31 | 77.40 4.40 | 9822.7 −0.98 | 17.33 | 68.15

The absolute values of the local entropy production rates of all sections increase in
amount with increasing electric current density. The individual contribution of the heat
flux density to the entropy production in the cathode GDL are negative and assume larger
values in magnitude as the electric current density increases. This is due to the large
influence of the Peltier effect, whereby heat is transported toward higher temperatures as a
result of charge transport in the GDLs, which leads to negative entropy production rates.
The overall entropy production is, of course, always positive. As can already be seen in
Figure 5, the Peltier effect has a smaller influence at the anode. With increasing electric
current density and, thus, increasing temperature gradient, there is a stronger influence of
the Fourier effect. The reduced partial pressure of the oxygen compared to the reactants in
the anode GDL leads to a similar magnitude. From Figure 8, it can be seen that, in the anode
GDL, the local entropy production rate decreases toward the reaction zone. This fact can
be attributed to the increasing partial pressure of the of the water, which causes the local
entropy production rate to decrease. Due to the higher total pressure existing in the reaction
zone, thus, the local entropy production rate as a result of the water transport predominates.
In the cathode GDL, the decreasing partial pressure of oxygen toward the reaction layer
leads to increasing local entropy production rates. Despite a constant electrical potential in
the GDLs, a change in the local entropy productions due to the electrical current density
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becomes apparent. The decrease of the absolute temperature leads to an increase of
the corresponding force and, thus, to an increase of the local entropy productions. The
local entropy productions in the GDLs due to the heat flow can be explained by the
different influences of the corresponding forces. In the anode GDL, there is an increase
in local entropy production at an electric current density of j = 2000 A/m2. Here, the
increasing corresponding force prevails due to the negatively increasing temperature
gradient. In contrast, for j = 8000 A/m2, the local entropy production decreases due to the
predominant decreasing corresponding force due to the increasing absolute temperature.
For the electric current densities of j = 4000 A/m2 and j = 6000 A/m2, larger changes are
seen. For these two operating points, very small temperature gradients and, thus, very
small absolute local entropy productions are obtained. In the cathode GDL, the decreasing
local entropy production is due to the decreasing magnitude of the heat flux density along
the spatial coordinate.

From Table 4, it can be seen that the local entropy production due to the heat flux den-
sity is significantly lower than that due to the charge transport. However, with increasing
electric current density, a greater deviation from the reference value becomes apparent.
At the right edge of the electrolyte, a large part of the heat is transported by the Peltier
effect. In the direction of the ion flow, however, the heat to be transported increases due to
the irreversibilities, causing the temperature gradient to rise. Since both the flux and its
corresponding force increase in the direction of the charge transport, this leads to a strong
increase in the local entropy production rate. In the course of the local entropy production
rate due to ion transport, a minimum near the left edge of the electrolyte is created. As
the electric current density is constant, the cause lies in a variation of the corresponding
force. Along the spatial coordinate, the temperature increases monotonically. In contrast,
the gradient in the electric potential in the vicinity of the anode side reaction layer indicates
smaller potential differences than at the cathode side reaction layer, whereby the increase
in absolute temperature initially leads to a decrease in local entropy production, until the
corresponding force of the electric potential is predominated by the increase in the amount
of the gradient in the electric potential. However, it can be seen from the ordinate that these
deviations along the spatial coordinate are quite small.
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Figure 9. Simulated curve of the local entropy production rate in the electrolyte due to (a) heat flux
density and (b) electrical potential along the spatial coordinate y for different current densities j and
temperatures T.
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Table 5. Reference values of the local entropy production rate at y = 0.4 · 10−4 m (electrolyte) for
different operating temperatures at low and high current density.

j in A/m2 T in K σ̇e
q,0 in W/m3K σ̇e

φ,0 in W/m3K

2000 1073.15 0.19 933.10
2000 1273.15 0.16 233.78
8000 1073.15 5.70 14,928.61
8000 1273.15 3.06 3740.38

In Figure 9, the curves of entropy production rates in the electrolyte for different
operating temperatures at low and high electric current density are shown. The reference
values are summarized in Table 5. Increasing operating temperature has a positive effect on
the irreversibilities in the electrolyte. In particular, the dominant losses due to ion transport
decrease significantly with increasing temperature, which can be explained by the strong
temperature dependence of the ionic conductivity of the ceramic electrolyte.

3.5. Exergy Analysis

Figure 10 shows the exergetic efficiencies as a function of operating temperature for
a current density of j = 2000 A/m2 and j = 8000 A/m2. A low electric current density,
the exergetic efficiency is initially nearly constant. It decreases with increasing temperature,
whereas, at high electric current density, the exergetic efficiency increases monotonically
with temperature. This can be explained by two effects. As the operating temperature
increases, the ionic conductivity increases, while the dominant losses due to ion transport
decrease, resulting in an improvement of the exergetic efficiency. In addition, the physical
exergy of the supplied material currents increases with increasing temperature, resulting
in a decrease in exergetic efficiency. At low electrical current densities, the increase in the
supplied exergy predominates, since the losses due to charge transport are low. This causes
the exergetic efficiency to decrease as the operating temperature increases, whereas the
positive influence of ionic conductivity predominates at high electric current densities and
causes the monotonically increasing curve.
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Figure 10. Simulated exergetic efficiency as a function of temperature for j = 2000 A/m2 and
j = 8000 A/m2.

A direct comparison with values from the literature is difficult due to the different
assumptions, parameters and operating conditions. Zouhri et al. [53] investigate the
exergetic efficiency of a single SOFC cell by varying the parameters for the anode and
operating conditions, and they conclude that the porosity and tortuosity of the anode have
no effect. With a temperature of T = 1273 K, a tortuosity of τ = 5, and a porosity of ε = 0.3,
the exergetic efficiency as a function of current density results in ζ(j = 2000 A/m2) = 0.76
and ζ(j = 8000 A/m2) = 0.61. Since the same ionic conductivity was assumed in Zouhri
et al.’s study as in this study, one possible reason is the thickness of the electrolyte. At
40µm, the thickness of the electrolyte is only one third of the case considered here, which



Entropy 2022, 24, 224 24 of 27

leads to lower losses. This fact is also pointed out by Midilli et al. [54], where the exergetic
efficiency for an SOFC stack is investigated under variation of the electrolyte parameter.
With a temperature of T = 1273 K, an electrolyte thickness of 150µm, and feeding 97%
pure hydrogen, the exergetic efficiency is ζ(j = 2000 A/m2) = 0.48, which, again, is lower
than the values gained in this study.

4. Conclusions

The aim of this study is to theoretically determine the local entropy production rate
of an SOFC single cell at an operating temperature of T = 1123.15 K and an operating
pressure of p = 1 bar. Local entropy production rates can be identified as loss mechanisms,
so that this knowledge is of great importance for cell development and optimization of
operating strategies. For this purpose, the mass transport in the GDLs of a 1D SOFC model
from Reference [12] is described by improved transport equations. The modeling of the
GDLs and the electrolyte are based on the NET approach, whereas the reactivity layers
are described with the Butler–Volmer approach. The mass transport starting from pure
Stefan–Maxwell diffusion is gradually superimposed with further transport mechanisms
(Knudsen diffusion, convection, and thermal diffusion) in order to investigate the influences
of the individual transport mechanisms. For a comparison of all approaches, the mass
transport is additionally modeled with Fick’s law. Furthermore, the transport equations are
described as a function of the simulated phenomenological coefficients from Reference [12],
with the definitions from Reference [20] as a function of the empirical coefficients. The data
for thermal conductivities and ionic conductivity are taken from the literature. The Peltier
coefficient is calculated with the approach of Ratkje et al. [14]. For the validation, data for a
U, j-characteristic curve of the single cell KeraCell II from the manufacturer Kerafol GmbH
and, additionally, self-measured data for the same single cell are used. The calculated
curves of temperature, heat flow, electrical potential, and local entropy production rates are
discussed. An exergetic analysis is used to assess the efficiency of the cell.

Due to the equimolar composition of the hydrogen and water in the anode, the DGM
shows no advantages over the simplified Fick’s law in this particular case. The effect of
convection is small compared to the other transport mechanisms because there are low
gradients in the total pressure in the anode. There is a higher total pressure in the anode
reaction layer than in the gas channel, which is why the gas mixture moves in the direction
of the gas channel as a result of convection, thus hindering the mass transport of the
hydrogen and improving the mass transport of the water. The influence of Stefan–Maxwell
diffusion on the cathode gases is larger, as a significantly smaller effective binary diffusion
coefficient results for the cathode-side gas mixture. The improved mass transfer of oxygen
by convection is very small in its effect since the gas mixture on the cathode side consists
predominantly of nitrogen. On the anode and cathode sides, thermal diffusion has almost
no influence on mass transport under the operating conditions considered. The differences
between the DGM and the NET approach are negligible in this case.

The existing model is able to represent the U, j-characteristics with a minimum er-
ror of 0.08% and a maximum error of 0.93% in a range of the electric current density of
j = 0–4000 A/m2. Due to the negative reaction entropy of the cathode reaction and the
irreversibilities, a temperature maximum occurs at the cathode reaction layer. In the cath-
ode GDL, the heat flows toward higher temperatures, which illustrates the significance of
the Peltier effects. At the anode reaction layer, net heat is absorbed by the positive reac-
tion entropy. Under an electric current density of j = 4000 A/m2, Peltier heat absorption
outweighs Fourier heat absorption. The electric potential field is significantly influenced
by the ohmic losses in the electrolyte. These are always greater than the overvoltages at
the electrodes and cause more than half of the voltage losses. This is also shown in the
curves of the local entropy production rates. The entropy production rates as a result of
the charge transport in the electrolyte are significantly larger in amount than all other
losses. The irreversibilities cause 64.44% of the total losses in the cell in the electrolyte at an
electric current density of j = 8000 A/m2 and an operating temperature of T = 1123.15.
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The irreversibilities at the electrodes, together, cause one third of the losses. As the en-
tropy productions in the GDLs are very low, the primary need is to investigate alternative
electrolyte materials.

The exergetic efficiency is fundamentally influenced by the operating temperature and
the electrical current density. An increase in exergetic efficiency can be achieved through
low current densities and higher operating temperatures.
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