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Abstract
We present a stochastic deep collocation method (DCM) based on neural architecture search (NAS) and transfer learning for 
heterogeneous porous media. We first carry out a sensitivity analysis to determine the key hyper-parameters of the network 
to reduce the search space and subsequently employ hyper-parameter optimization to finally obtain the parameter values. 
The presented NAS based DCM also saves the weights and biases of the most favorable architectures, which is then used 
in the fine-tuning process. We also employ transfer learning techniques to drastically reduce the computational cost. The 
presented DCM is then applied to the stochastic analysis of heterogeneous porous material. Therefore, a three dimensional 
stochastic flow model is built providing a benchmark to the simulation of groundwater flow in highly heterogeneous aquifers. 
The performance of the presented NAS based DCM is verified in different dimensions using the method of manufactured 
solutions. We show that it significantly outperforms finite difference methods in both accuracy and computational cost.

Keywords Deep learning · Neural architecture search · Error estimation · Randomized spectral representation · Method of 
manufactured solutions · Log-normally distributed · Physics-informed · Sensitivity analysis · Hyper-parameter optimization 
algorithms · Transfer learning

1 Introduction

In recent years, groundwater pollution has become one of 
the most important environmental problems worldwide. 
To protect groundwater quality, it is necessary to predict 
groundwater flow and solute transport. This in turn is based 
on the theory of porous media. The associated heterogeneity 
and complexity of the porous media still poses a major chal-
lenge for such groundwater flow problems. The hydraulic 

conductivity describes the ability of the medium to transmit 
fluid through pore spaces. It is common to use random fields 
with a given statistical structure to describe the porous media 
because of its intrinsic complexity [1]. Freeze [2] showed, 
that the hydraulic conductivity field can be well character-
ized by random log-normal distribution. This approach is 
often used for the flow analysis in saturated zones [3]. Both 
Gaussian [4] and exponential [5] correlations are commonly 
chosen for the log-normal probability distribution.
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Different approaches have been used express the per-
meability as a function of pore structure parameters [6–8]. 
Analytical spectral representation methods were first used 
by Bakr [9] to solve the stochastic flow and solute transport 
equations perturbed with a random hydraulic conductivity 
field. If a random field is homogeneous and has zero mean, 
then it is always possible to represent the process by a Fou-
rier (or Fourier–Stieltjes) decomposition into essentially 
uncorrelated random components. These random compo-
nents in turn will give the spectral density function, which 
is the distribution of variance over different wave numbers k . 
This theory is widely used to construct hydraulic conductiv-
ity fields, and a number of construction methods have been 
derived such as turning bands method [10], HYDRO_GEN 
method [11] and Kraichnan algorithm [12]. Ababou et al. 
[13] used the turning bands method and narrowed down a 
range of relevant parameters. Wörmann and Kronnnäs [13] 
tested a gradually increase of the heterogeneity of the flow 
resistance and compared the numerically simulated resi-
dence time PDF with the observed based on HYDRO_GEN 
method. Unlike the other two methods, Kraichnan proposed 
an approximation algorithm for direct control of random 
field accuracy, by increasing the modulus through the vari-
ance of the log-hydraulic conductivity random field. Inspired 
by these results, Kolyukhin and Sabelfeld [1] constructed 
a randomized spectral model (RSM) studying the steady 
flow in porous media in 3D assuming small fluctuations. 
We adopted this approach here to generate hydraulic con-
ductivity fields.

Deep learning methods have become very popular since 
the development of deep neural networks (DNNs) [14, 15]. 
They have been applied to a variety of problems including 
image processing [16], object detection [17], speech recog-
nition [18], just to name a few. While the majority of appli-
cations employ DNN as regression models, there has been 
some recent interest in exploiting DNN for the solution of 
PDEs. Mills et al. for instance solved the Schrödinger equa-
tion with convolutional neural networks by directly learning 
the mapping between the potential and energy [19]. Weinan 
E et al. presented deep learning-based numerical methods 
for high-dimensional parabolic PDEs and back-forward sto-
chastic differential equations [20, 21]. Raissi et al. devised 
a machine learning approach for the solution of linear and 
nonlinear differential equations using Gaussian Processes 
[22]. In [23, 24] they presented a so-called physical informed 
neural network for supervised learning of nonlinear partial 
differential equations solving for instance Burger’s equa-
tions and Navier–Stokes equations. Beck et al. [25] solved 
stochastic differential and Kolmogorov equations with neu-
ral networks. For several forward and inverse problems in 
solid mechanics, we presented a Deep Collocation Method 
(DCM) [26, 27]. Instead of exploiting the strong form of 
the boundary value problem, we presented a deep energy 

method (DEM) [28–30] which requires the definition of an 
energy potential instead of a BVP.

In a typical machine learning application, the practitioner 
must apply appropriate data pre-processing, feature engi-
neering, feature extraction and feature selection methods to 
make the dataset suitable for machine learning. Following 
these pre-processing steps, practitioners must perform algo-
rithm selection and hyper-parameter optimization to maxi-
mize their final machine learning model’s predictive perfor-
mance. The physics informed neural network (PINN) models 
discussed in the previous paragraph are no exception though 
the randomly distributed collocation points are generated for 
further calculation without the need for data-preprocessing. 
Most of the time wasted in PINN models are related to the 
tuning of neural architecture configurations, which strongly 
influences the accuracy and stability of the approach. Since 
many of these steps are typically beyond the capabilities 
of non-experts, automated machine learning (AutoML) has 
become popular. The oldest AutoML library is AutoWEKA 
[31], first released in 2013, which automatically selects mod-
els and hyper-parameters. Other notable AutoML libraries 
include auto-sklearn [32], H2O AutoML [33], and TPOT 
[34]. Neural architecture search (NAS) [35] is a technique 
for automatic design of neural networks, which allows algo-
rithms to automatically design high-performance network 
structures based on sample sets. Neural architecture search 
(NAS) aims to find a configuration comparable to human 
experts on certain tasks and even discover certain network 
structures that have not been proposed by humans before, 
which can effectively reduce the use and implementation 
cost of neural networks. In [36], the authors add a control-
ler in the efficient NAS, which can learn to discover neural 
network architectures by searching for an optimal subgraph 
within a large computational graph. They used parameter 
sharing between the subgraphs to make the computing pro-
cess faster. The controller decides which parameter matri-
ces are used by choosing the previous indices. Therefore, in 
ENAS, all recurrent cells in a search space share the same 
set of parameters. Liu [37] used a sequence model-based 
optimization (SMBO) strategy to learn a surrogate model 
to guide the search of the structure space. To build up an 
Neural architecture search (NAS) model, it is necessary to 
conduct dimensionality reduction and identification of valid 
parameter bounds to reduce the calculation involved in auto-
tuning. A global sensitivity analysis can be used to identify 
valid regions in the search space and subsequently decrease 
its dimensionality [38], which can serve as a starting point 
for an efficient calibration process.

The remainder of this paper is organized as follows. In 
Sect. 2, we describe the physical model of the groundwater 
flow problem, the randomized spectral method to generate 
hydraulic conductivity fields as well as the approach of man-
ufactured solutions to verify the accuracy of our model. In 
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Section 3, we introduce the neural architecture search model. 
We subsequently present an efficient sensitivity analysis and 
compare several hyper-parameter optimizers to find an accu-
rate and efficient search method. In Section 4, we briefly 
describe the employed finite difference method which is used 
to solve several benchmark problems as comparison. At last, 
some conclusions are drawn in Section 5.

2  Stochastic analysis of a heterogeneous 
porous medium

2.1  Darcy equation for groundwater flow problem

Consider the continuity equation for steady-state, aquifer 
flow in a porous media governed by the Darcy law:

where q is the Darcy velocity, K is the hydraulic conductiv-
ity, h the hydraulic head h = H + �h with the mean H and the 
perturbation �h . To describe the variation of the hydraulic 
conductivity as a function of the position vector x , it is con-
venient to introduce the variable

where Y(x) is the hydraulic log-conductivity with the mean 
⟨Y⟩ and perturbation Y �(x):

with E[Y �(x)] = 0 , and Y(x) is taken to be a three-dimen-
sional statistically homogeneous random field characterized 
by its correlation function

where r is the separation vector. According to the conserva-
tion equation ∇ ⋅ q = 0 , Equation (1) can be rewritten in the 
following form:

which is subjected to the Neumann and Dirichlet boundary 
conditions

with N denoting the dimension. The groundwater flow prob-
lem can be boiled down to find a solution h such that Equa-
tions (5) and (6) hold; E is an operator that maps elements 
of vector space H to vector space V:

(1)q(x) = −K(x)∇(h(x)),

(2)Y(x) = lnK(x),

(3)Y(x) = ⟨Y⟩ + Y �(x),

(4)CY (r) = ⟨Y �(x + r)Y �(x)⟩,

(5)E(h) =

N∑
j=1

�

�xj

(
K(x)

�h

�xj

)
= 0,

(6)
h(x) = h̄, x ∈ 𝜏D,

qn(x) = q̄n, x ∈ 𝜏N .

Wi t h  E qu a t i o n   ( 5 )  a n d  N = 3 i n  d o m a i n 
D = [0, Lx] × [0, Ly] × [0, Lz] , the Dirichlet boundary and 
Neumann boundary conditions can be assumed as follows:

where J is the mean slope of the hydraulic head in x direc-
tion [9]. As suggested by Ababou [13], the scale of the fluc-
tuation should be significantly smaller than the scale of the 
domain. The lengths Lx, Ly, Lz of the domain are usually set 
to be ten times larger than λ . A reasonable mesh size Δx 
could then be

As Y ′ is homogeneous and isotropic, we consider two cor-
relation functions: the exponential correlation function [39],

and the Gaussian correlation function [40],

where λ is the log conductivity correlation length scale.

2.2  Generate the hydraulic conductivity fields

Due to the intrinsic complexity of heterogeneous porous 
media, random field theory is implemented for the genera-
tion of the heterogeneous field showing a fractal behavior. 
Applying Wiener–Khinchin theorem to the heterogeneous 
groundwater flow problem, the Gaussian random field [41] 
with given spectral density S(k) is just the Fourier transform 
of the correlation function (in Equation (4)):

with S(k) spectral function of the random field Y �(x) and

(7)E ∶ H → V ,with h ∈ H.

(8)

⎧
⎪⎨⎪⎩

h(0, y, z) = −J ⋅ Lx, h(Lx, y, z) = 0, ∀y ∈ [0, Ly], z ∈ [0, Lz],
�h

�y
(x, 0, z) =

�h

�y
(x, Ly, z) = 0, ∀x ∈ [0, Lx], z ∈ [0, Lz],

�h

�z
(x, y, 0) =

�h

�z
(x, y,Lz) = 0, ∀x ∈ [0, Lx], y ∈ [0, Ly],

(9)
Δx

λ
≤ 1

5
.

(10)CY (r) = �2
Y
exp

(
−
|r|
λ

)
,

(11)CY (r) = �2
Y
exp

(
−
|r|2
λ2

)
,

(12)CY (r) = ∫
ℝN

ei2�k⋅rS(k),

(13)S(k) = ∫
ℝN

e−i2�k⋅rCY (r),

(14)F(exp(−
|r|
λ
)) =

2λ

1 + 4�2k2r2
,
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Substituting Eqs. (10), (11), (14) and (15) into Eq. (13), 
respectively, the spectral function under the exponential and 
the Gaussian correlation coefficient can be derived:

A Gaussian homogenous random field in the general case 
can be retrieved [42]:

where �i are mutually independent Gaussian random vari-
ables. For the random variable ki , we can get its prob-
ability density distribution function p(k) and calculate 
its cumulative distribution function ( cdf  ) according to 
F(k) = ∫ k

−∞
p(x)dx . As long as there exists another uni-

formly distributed random variable � , the inverse function 

(15)F(exp(−
�r�2
λ2

)) = λ
√
�e−�

2k2r2 .

(16)S(k, λ) = �2
Y
λd(1 + (2�kλ)2)−

d+1

2 ,

(17)S(k, λ) = �2
Y
�d∕2λde−(�kλ)

2

.

(18)Y �(x) =

√
2�2

N

N∑
i=1

(
�1cos(2�kix) + �2sin(2�kix)

)
,

k = F−1(�) can be obtained, and k must obey the p(k) dis-
tribution. More details can be found in  AppendixB while 
the associated python script is summarized in  AppendixC. 
Figures 1 and 2 show the two- and three-dimensional ran-
dom field space with fixed ⟨k⟩ = 15, �2 = 0.1 and N = 1000.

2.3  Defining numerical experimental model

After determining the expression for the stochastic flow 
analysis in heterogeneous porous materials, we need to set 
the geometric and physical parameters. It is well known 
that the number of modes N and the variance �2 govern the 
hydraulic conductivity. For the exponential correlation coef-
ficient, large values of N might lead to a non-differentiable 
K-field [43]. We set the N values to 500, 1000 and 2000; 
�2 determines the heterogeneity of the hydraulic conduc-
tivity, a larger �2 indicating a larger heterogeneity. In real 
geological formations, �2 has a wide range of variation. As 
summarized in Sudicky’s study [44], in low heterogeneous 
Canadian Forces Base Borden aquifers, it is �2 = 0.29 , for 
Cape Cod it is 0.14, but in highly heterogeneous Columbus 
aquifers, �2 = 4.5 . First-order analysis [9] has been proven 

Fig. 1  Two-dimensional 
hydraulic conductivity field 
with (a) exponential correlation 
and b Gaussian correlation

(a) (b)

Fig. 2  Three-dimensional 
hydraulic conductivity field 
with (a) exponential correlation 
and b Gaussian correlation
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as a solid basis for predictions. Numerical simulations [11] 
indicate that the first-order results are robust and applicable 
when �2 is close to and even above 1. With this approxi-
mation, we can get the e⟨Y⟩ = ⟨K⟩exp(−�2∕2) for one- and 
two-dimensional cases [45], and e⟨Y⟩ = ⟨K⟩exp(−�2∕6) for 
three-dimensional cases [46]. In this paper, we set the value 
of �2 to 0.1, 1 and 3, covering the three cases from small 
to medium and large. The mean hydraulic conductivity is 
fixed to ⟨K⟩ = 15m∕day , a value representative for gravel 
or coarse sand aquifers [47]. And we set all the correlation 
lengths in one- and two-dimensional cases equal 1m, in three 
dimensional cases, we set them to λ1 = 0.5m , λ2 = 0.2m and 
λ3 = 0.1m . Based on the above settings, we have finalized 
our test domain:

• One-dimensional groundwater flow → [0, 25].
• Two-dimensional groundwater flow → [0, 20] × [0, 20].
• T h r e e - d i m e n s i o n a l  g r o u n d w a t e r  f l o w 

→ [0, 5] × [0, 2] × [0, 1].

2.4  Manufactured solutions

To verify the accuracy of our model and obtain an error 
estimation, we use the method of manufactured solution 
(MMS), which provides a general procedure for generat-
ing analytical solutions [48]. Malaya et al. [49] discussed 
the method of manufactured solutions in constructing an 
error estimator for solution verification where one simulates 
the phenomenon of interest with no priori knowledge of the 
solution. This artificial solution is then substituted into the 
equations. There will be a residual term since the chosen 
function is unlikely to be an exact solution to the original 
partial differential equations. This residual can then be added 
as a source term. With MMS, the original problem to find 
the solution of Equation (5) is thus changed to the follow-
ing form:

For operator E(ĥ) , we now get a source term f. By adding the 
source term to the original governing equation E, a slightly 
modified governing equation will be obtained:

which is solved by the manufactured solution ĥ . The Neu-
mann and Dirichlet boundary conditions are thus modified 
as follows:

(19)E(ĥ) =

N∑
j=1

(
𝜕

𝜕xj

(
K(x)

𝜕ĥ

𝜕xj

))
=

N∑
j=1

fj = f .

(20)E�(ĥ) = E(ĥ) − f = 0,

(21)
ĥ(x) = ĥMMS(x), x ∈ 𝜏D,

q̂n(x) = −K(x)ĥMMS,n(x), x ∈ 𝜏N .

We adopt the form of the manufactured solution mentioned 
in Tremblay’s study [48],

where 
{
ai
}
 are arbitrary non-zero real numbers. When the 

manufactured solutions (22) are applied on the left side of 
Eq. (5), we will get a source term f,

To verify the adaptability of our model to different solutions, 
we also used another form of manufactured solution [49],

where the parameter values are the same as in Equation (22). 
We can get the source term as follows:

This leads to the change of the boundary conditions from 
Equation (6) to

These source terms can be used as a physical law to describe 
the system, and also as a basis for evaluating neural net-
works. The specific form of the constructed solutions and 
source terms f used in this paper are given in  AppendixC.

3  Deep learning‑based neural architecture 
search method

3.1  Modified neural architecture search (NAS) 
model

The convolutional NAS approach has three main compo-
nents [35]. The first one is a collection of candidate neural 
network structures called the search space. The second one 
is the search strategy and the last one is the performance 

(22)ĥMMS(x) = a0 + sin

(
N∑
j=1

ajxj

)
,

(23)

f (xj) = aj
�K(x)

�xj
cos

(
N∑
i=1

aixi

)
− a2

j
K(x)sin

(
N∑
i=1

aixi

)
.

(24)ĥMMS(x) = a0 +

N∑
j=1

sin(ajxj),

(25)f (xj) = aj
�K(x)

�xj
cos(ajxj) − a2

j
K(x)sin(ajxj).

(26)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ĥ(0, y, z) = ĥMMS(0, y, z), ∀y ∈ [0, Ly], z ∈ [0, Lz]

ĥ(Lx, y, z) = ĥMMS(Lx, y, z), ∀y ∈ [0, Ly], z ∈ [0, Lz]
𝜕ĥ

𝜕y
(x, 0, z) =

𝜕ĥMMS

𝜕y
(x, 0, z), ∀x ∈ [0, Lx], z ∈ [0, Lz]

𝜕ĥ

𝜕y
(x, Ly, z) =

𝜕ĥMMS

𝜕y
(x, Ly, z), ∀x ∈ [0, Lx], z ∈ [0, Lz]

𝜕ĥ

𝜕z
(x, y, 0) =

𝜕ĥMMS

𝜕z
(x, y, 0), ∀x ∈ [0, Lx], y ∈ [0, Ly]

𝜕ĥ

𝜕z
(x, y,Lz) =

𝜕ĥMMS

𝜕z
(x, y,Lz), ∀x ∈ [0, Lx], y ∈ [0, Ly]
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evaluation. Inspired by Park [50], we construct the system 
configuration of the NAS fitted to the PINNs model in Fig. 3. 
It consists of a sensitivity analyses (SA), search methods, a 
physics-informed neural networks (NN) generator, which 
eventually outputs the optimum neural architecture configu-
ration and the corresponding weights and biases. A trans-
fer learning model is eventually built based on the weights, 
biases and the selected neural network configurations.

3.1.1  Components of convolutional NAS

As already pointed out, the main components of the conven-
tional neural architecture search method are

• Search Space. The search space defines the architecture 
that can be represented. Combined with a priori knowl-
edge of the typical properties of architectures well suited 
to the underlying task, this can reduce the size of the 
search space and simplify the search. For the model in 
this study, the priori knowledge of search space is gained 
from the global sensitive analysis. Figure 4b shows 
a common global search space with a chain structure. 
The chain-structured neural network architecture can be 

Fig. 3  Overall methodology for 
NAS

(a) (b)

Fig. 4  a Abstract illustration of NAS methods and b search space
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written as a sequence of n layers, where the ith layer Li 
receives input from layer i − 1 and its output is used as 
input for layer i + 1 : 

 where ⊙ are operations.
• Search Method. The search method is an initial filter-

ing step narrowing down the search space. In this paper, 
hyperparameter optimizers will be used. The choice of 
the search space largely determines the difficulty of the 
optimization problem, which may result in the optimiza-
tion problem remaining (i) noncontinuous and (ii) high-
dimensional. Thus, some prior knowledge of the model 
features is needed.

• Performance Estimation Strategy. The simplest option 
for a performance estimation strategy is standard training 
and validation of the data for the architecture. As pointed 
out in Sect. 2.4, we define the relative error of manufac-
tured solution for the performance estimation strategy: 

3.1.2  Modified NAS

For the modified model shown in Fig. 3, the NAS is divided 
into four main phases. First, a sensitivity analysis will con-
struct the search space with less human expert knowledge. 
Secondly, we test several optimization strategies includ-
ing randomization search method, Bayesian optimization 
method, Hyperband optimization method, and Jaya optimi-
zation method. The third phase is the neural network gen-
eration including the generation of physics-informed deep 
neural networks tailored for a mechanical model based on 
the information from optimization. The final phase are the 
training and validation models, with the input neural archi-
tectures, which outputs the estimation strategies. A suitable 
estimation is recommended in Eq. (28).

3.2  Neural networks generator

Mathematicians have developed many tools to approximate 
functions such as interpolation theory, spectral methods, 
finite elements, etc. From the perspective of approxima-
tion theory, neural networks can be viewed as a nonlinear 
smooth function approximator. Using the neural network 
(NN), we can obtain an output value that reflects the qual-
ity, validity, etc. of the input data, adjusts the configuration 
of the neural network based on this result, recalculates the 
results and repeats these steps until the target is reached. 
Physics-informed neural networks, on the other hand, add 
physical conservation law and prior physical knowledge 

(27)output = Ln ⊙ Ln−1 ⊙ ...L1 ⊙ L0,

(28)𝛿h =
‖ĥ − ĥMMS‖2
‖ĥMMS‖2

.

to the existing neural network, which require substantially 
less training data and can result in simpler neural network 
structures, while achieving high accuracy. The diagram of 
its structure is shown in Fig. 5. In this section, we further 
formulate the schematic on generation of physics-informed 
neural networks from two aspects: first, the deep neural net-
work as universal smooth approximation methods is intro-
duced and a simple and generalized way to introduce physics 
information for flow in heterogeneous media into the deep 
neural networks.

3.2.1  Physics‑informed neural network

Physics-informed neural networks generators include neural 
network interpreters, which represent the configuration of a 
NN and physical information checkers. The neural network 
interpreter consists of a deep neural network with multiple 
layers: the input layer, one or more hidden layers and the 
output layer. Each layer consists of one or more nodes called 
neurons, shown in Fig. 5 by small coloured circles, which 
is the basic unit of computation. For an interconnected 
structure, every two neurons in neighbouring layers have a 
connection, which is represented by a weight, see Figure 5. 
Mathematically, the output of a node is computed by

with input zi , weight wi , bias bi and activation function �i . 
Now let us define:

Definition 3.1 (Feedforward Neural Network) A gen-
eralized neural networks can be written in tuple form (
(f1, �1), ..., (fn, �n)

)
 , fi being an affine-line function 

(fi = Wix + bi) that maps Ri−1
→ Ri and the activation �i 

mapping Ri
→ Ri . The tuple form defines a continuous 

bounded function mapping Rd to Rn:

(29)yi = �i

(∑
j

wi
j
zi
j
+ bi

)

Fig. 5  Physics-informed neural networks
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where d the dimension of the input, n the number of field 
variables, � consisting of hyperparameters such as weights 
and biases and ◦ denotes the element-wise composition.

The universal approximation theorem [51, 52] states that 
this continuous bounded function F with nonlinear activa-
tion � can be adopted to capture the smoothness, nonlinear 
property of the system. Accordingly, it can be shown that the 
following theorem holds: [53]:

Theorem 1 If �i ∈ Cm(Ri) is nonconstant and bounded, then 
Fn is uniformly m-dense in Cm(Rn).

3.2.2  Deep collocation method

Collocation method is a widely used method seeking numer-
ical solutions for partial differential and integral equations 
[54]. It is a popular method for trajectory optimization in 
control theory. A set of randomly distributed points (also 
known as collocation points) represents a desired trajectory 
that minimizes the loss function while satisfying a set of 
constraints. The collocation method is relatively insensitive 
to instabilities (such as blowing/vanishing gradients with 
neural networks) and is a viable way to train the deep neural 
network [55].

The modified Darcy equation (19) can be boiled down 
to the solution of a second-order differential equations 
with boundary constraints. Hence, we first discretize 
the physical domain with collocation points denoted by 
x Ω = (x1, ..., xNΩ

)T . Another set of collocation points are 
employed to discretize the boundary conditions denoted by 
x Γ(x1, ..., xNΓ

)T . Then the hydraulic head ĥ is approximated 
with the aforementioned deep feedforward neural network 
ĥh(x;𝜃) . A loss function can thus be constructed to find the 
approximate solution ĥh(x;;𝜃) by minimizing the governing 
equation with boundary conditions. Substituting ĥh

(
x Ω;𝜃

)
 

into governing equation, we obtain

which results in a physical informed deep neural network 
E�
(
x Ω;�

)
 . The boundary conditions illustrated in Section 2 

can also be expressed by the neural network approximation 
ĥh
(
x Γ;𝜃

)
 as

On ΓD , we have

On ΓN,

(30)FNN ∶ ℝ
d
→ ℝ

n, with Fn(x;�) = �n◦fn◦⋯◦�1◦f1,

(31)
E�
(
x Ω;𝜃

)
= K(x)ĥh

,ii

(
x Ω;𝜃

)
+ K,i(x)ĥ

h
,i

(
x Ω;𝜃

)
− f

(
x Ω

)
,

(32)ĥh
(
x ΓD

;𝜃
)
= ĥMMS

(
x ΓD

)
.

Note the neural network E�(x;�) , q(x;�) shares the same 
parameters as ĥh(x;𝜃) . With the generated collocation points 
in the domain and on the boundaries as training dataset, the 
field function can be learned by minimizing the mean square 
error loss function:

with

where x Ω ∈ RN , � ∈ RK are the neural network parameters. 
L(�) = 0 , ĥh(x;𝜃) is a solution to the hydraulic head. Here, 
the defined loss function measures how well the approxi-
mation satisfies the physical law (governing equation) and 
boundaries conditions. Our goal is to find the a set of param-
eters � that the approximated potential ĥh(x;𝜃) minimizes the 
loss L. If L is a very small value, the approximation ĥh(x;𝜃) 
is closely satisfying the governing equations and boundary 
conditions, namely

The solution of groundwater flow problems by the deep col-
location method can be reduced to an optimization problem. 
To train the deep feedforward neural network, the gradient 
descant based optimization algorithms such as Adam are 
employed. The idea is to take a descent step at collocation 
point xi with Adam-based learning rates �i,

The process in Eq. (37) is repeated until a convergence crite-
rion is satisfied. The combined Adam-L-BFGS-B minimiza-
tion algorithm is used to train the physics-informed neural 
networks. This strategy consists of training the network first 
using the Adam algorithm, and after a defined number of 
iterations, we perform the L-BFGS-B optimization of the 
loss with a small limit of executions.

The approximation ability of neural networks for solv-
ing partial differential equations has been proven by Sirig-
nano et al. [56]. For the stochastic analysis of porous mate-
rial model, as long as the problem has a unique solution, 

(33)q̂h
n

(
x ΓN

;𝜃
)
= −K

(
x ΓN

)
ĥMMS,n

(
x ΓN

)
.

(34)L(�) = MSE = MSEE� +MSEΓD
+MSEΓN

,

(35)

MSEE� =
1

Nd

Nd∑
i=1

‖‖‖E�
(
x Ω;𝜃

)‖‖‖
2

,

MSEΓD
=

1

NΓD

NΓD∑
i=1

‖‖‖ĥh
(
x ΓD

;𝜃
)
− ĥMMS

(
x ΓD

)‖‖‖
2

,

MSEΓN
=

1

NΓN

NΓN∑
i=1

‖‖‖‖q̂n
(
x ΓN

;𝜃
)
+ K

(
x ΓN

)
ĥMMS,n

(
x ΓN

)‖‖‖‖
2

,

(36)ĥh = argmin
𝜃∈RK

L(𝜃).

(37)�i+1 = �i + �i▽�L
(
xi;�i

)
.
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s.t. ĥ ∈ C2(Ω) with its derivatives uniformly bounded and 
the heterogeneous hydraulic conductivity function K(x) is 
assumed to be C1,1 ( C1 with Lipschitz continuous derivative), 
we can conclude that

More details can be found in  AppendixD and [56].

3.3  Sensitivity analyses (SA)

Sensitivity analysis determines the influence of each param-
eter of the model on the output. Only the most important 
ones will be considered in the model calibration process. 
Parameters that have an impact on the output can be disre-
garded if they have little or no effect on the model results. 
This will significantly reduce the workload of model calibra-
tion [57–59]. In this work, the parameter sensitivity analysis 
experiment contributes to the whole NAS model by offering 
prior knowledge of the DCM, which helps to reduce dimen-
sions of the search space and further improves the compu-
tational efficiency for the optimization method.

Global sensitivity analysis methods can be subdivided 
into qualitative ones such as Morris method [60], Fourier 
amplitude sensitivity test (FAST) [61] and quantitative anal-
ysis methods including Sobol method [62] or extend FAST 
[63]. Scholars have conducted numerous experiments to 
compare the advantages and disadvantages between differ-
ent methods [64–66]. The results shows that Sobol’ method 
can provide quantitative results for SA, but it requires a 
large number of runs to obtain stable results. eFAST is more 
efficient and stable than Sobol’ method and is thus a good 

(38)∃ ĥh ∈ Fn, s.t. as n → ∞, L(𝜃) → 0, ĥh → ĥ.

alternative. The method of Morris is able to correctly screen 
the most and least sensitive parameters for a highly param-
eterized model with 300 times fewer model evaluations than 
the Sobol’ method. We will follow an approach proposed by 
Crosetto [67], i.e., first test all the hyper-parameters using 
the Morris method, remove the two most and least influen-
tial parameters, then filter them again, but with the eFAST 
method. This yields the highest accuracy in a relatively small 
amount of time.

3.4  Search methods for NNs

After the sensitivity analysis, the search space is reduced 
and a suitable search method is employed to explore the 
space of the neural architecture. The search method adopts 
the performance metrics as rewards and learns to generate 
a high-performance architecture candidate. We employ the 
classical randomization search method, Bayesian optimiza-
tion method [68] and some recently proposed optimization 
methods including the Hyperband algorithm [69] and Jaya 
algorithm [70].

3.5  Transfer learning (TL)

A combined optimizer is adopted for the model training. 
To improve the computational efficiency and inherit the 
learned knowledge from the trained model, transfer learn-
ing algorithm is added to train the model. Transfer learn-
ing stores knowledge gained while solving one problem 
and applies it to a different but related problem. The basic 
architecture of Transfer learning of this Model is shown in 
Figure 6. It is composed of a Pre-train model and several 

Fig. 6  Transfer learning sche-
matic
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Fine-tune models. During the neural architecture procedure, 
the optimum neural architecture configuration is obtained 
through a hyperparameter optimization algorithm saving 
the corresponding weights and biases. Then the weights and 
biases are transferred to the fine-tuning model. It has been 
proven in the numerical example section that this inherit-
ance method can greatly improve the learning efficiency. 
For different statistical parameters involved in the random 
log-hydraulic conductivity field, there is no need to train the 
whole model from scratch and the solution to the modified 
Darcy equation is obtained with less iterations, lower learn-
ing rates and higher accuracy.

4  Numerical examples

In this section, numerical examples in different dimensions 
and with various boundary conditions are studied and com-
pared. Firstly, the influence of the exponential and Gaussian 
correlation functions is discussed. Next, we filter the algo-
rithm-specific parameters by means of a sensitivity analysis 
and select the parameters that have the greatest impact on the 
model as our search space. Then, four different hyperparam-
eter optimization algorithms are compared in both accuracy 
and efficiency identifying a trade-off search method for the 
NAS model. The relative error in Equation (28) between the 
predicted results and the manufactured solution is obtained 
to built the search strategy for the NAS model. These results 
are then substituted into the PINN. The results of the PINN 
model are compared to results obtained with FDM. All 
simulations are done on a 64-bit Windows 10 server with 
Intel(R) Core(TM) i7-7700HQ CPU, 8GB memory. The 

accuracy of the numerical results are compared through the 
relative error of the hydraulic head defined as

‖ ⋅ ‖ referring to the l2 − norm.

4.1  Comparison of Gaussian and exponential 
correlations

We first compare the two correlation coefficients, Gaussian 
and exponential. Those two are the most widely used corre-
lations for random field generation. We calculated the results 
obtained with these two correlation coefficients for the one-
dimensional (1D), two-dimensional (2D), and three-dimen-
sional (3D) stochastic groundwater flow cases, respectively, 
with the same parameters. The number of hidden layers and 
the neurons per layer are uniformly set to 6 and 16.

4.1.1  One‑dimensional groundwater flow 
with both correlations

The non-homogeneous 1D flow problem for Darcy equa-
tion can be reduced to Eq (19) subjected to Eq (C16). The 
hydraulic conductivity K is constructed from Eq (18) by the 
random spectral method, see Eq (C17). The source term f of 
the manufactured solution, Eq (C15), is obtained from Eq 
(C18). The detailed derivation can be found in  AppendixC.

The relative errors 𝛿ĥ of the predicted hydraulic heads for 
the exponential and Gaussian correlation of the ln(K) field 
are shown in Tables 1 and 2. The Gaussian correlation is 
more accurate for all N and �2 . With transfer learning model, 

(39)𝛿ĥ =
‖ĥpredict − ĥMMS‖

‖ĥMMS‖

Table 1  𝛿ĥ for 1D case 
computed with exponential 
correlation in different variance 
and number of modes

�2

N 0.1 1 3

without TL with TL without TL with TL without TL with TL

500 1.184e-3 1.797e-4 1.100e-2 4.884e-4 1.159e-1 5.360e-4
1000 2.437e-2 2.354e-4 9.026e-3 5.282e-4 3.752e-2 1.754e-3
2000 5.789e-4 1.007e-4 3.813e-3 5.939e-4 3.532e-2 4.316e-3

Table 2  𝛿ĥ for 1D case 
computed with Gaussian 
correlation in different variance 
and number of modes for one-
dimensional case

�2

N 0.1 1 3

without TL with TL without TL with TL without TL with TL

500 1.211e-4 1.137e-4 9.065e-4 1.204e-4 7.539e-3 1.690e-4
1000 1.317e-4 1.133e-4 8.312e-4 1.200e-4 2.864e-3 3.662e-4
2000 1.158e-4 1.333e-4 2.811e-4 1.538e-4 2.904e-3 5.756e-4
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the accuracy even improves. The predicted hydraulic head, 
the velocity and the manufactured solution for both exponen-
tial and Gaussian correlations with �2 = 0.1 and N = 2000 
are shown in Fig. 7. The predicted results nearly coincide 
with the manufactured solution Eq (C15) in the 1D domain.

The log(Loss) vs. iteration graph for different parameters 
in constructing the random log-hydraulic conductivity field 
can be found in Fig. 8 and shows (1) the loss value for the 
Gaussian correlation is much smaller than the exponential 
correlation for all �2 and N values. (2) With transfer learn-
ing, the loss function drops significantly faster and the num-
ber of required iterations is greatly reduced. In summary, 
the Gaussian correlation outperforms the exponential one 
in generating random log-hydraulic conductivity fields for 
the PINN.

4.1.2  Two‑dimensional groundwater flow 
with both correlations

To solve the non-homogeneous 2D flow problem for Darcy 
equation, the manufactured solution in Eq (C19) is adopted. 
The hydraulic conductivity K is constructed from Eq (18) by 
the Radom spectral method, see Eq (C21). The source term f 
is computed according to Eq (C22), see AppendixC for more 
details. The exponential and Gaussian correlations for the 
heterogeneous hydraulic conductivity are tested with varying 
�2 and N values. The same conclusion can be drawn from 
Tables 3 and 4 that with increasing N, the predicted hydrau-
lic head becomes more accurate, however when �2 becomes 
bigger, the accuracy deteriorates in most cases. The PINNs 
with Gaussian correlation based hydraulic conductivity 

Fig. 7  One-dimensional 
hydraulic head when �2 = 0.1 , 
N = 2000 with (a) exponential 
correlation and b Gaussian 
correlation

(a) (b)

Fig. 8  One-dimensional 
logarithm loss function with (a) 
exponential correlation and b 
Gaussian correlation

(a) (b)

Table 3  𝛿ĥ for 2D case 
computed with exponential 
correlation in different variance 
and number of modes

�2

N 0.1 1 3

Without TL With TL Without TL With TL Without TL With TL

500 6.777e-2 9.345e-2 3.817e-2 4.635e-2 2.560e-1 5.5080e-2
1000 1.479e-2 4.832e-2 1.790e-3 8.157e-2 9.739e-2 7.201e-2
2000 7.147e-3 4.829e-2 4.471e-2 4.924e-2 9.357e-2 1.187e-1
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outperforms the exponential correlations. The contour plots 
of the predicted hydraulic head and velocity as well as the 
manufactured solution for both exponential and Gaussian 
correlations with �2 = 0.1 and N = 2000 are listed in the 
supplementary material, in Figs. S1, S2, S3 and S4. The 
predicted physical patterns agree well with the manufactured 
solution Eq (C15).

The log(Loss) vs. iteration graph for different parameters 
in constructing the random log-hydraulic conductivity field 
is illustrated in Fig. 9. The loss for the PINN with Gaussian 
correlations is much smaller and decreases faster while the 
loss is not fully minimized for the exponential correlations. 
With transfer learning, the loss function converges with less 
iterations, which largely reduces the training time. Also for 
the two-dimensional groundwater flow, the Gaussian corre-
lation shows much better performance than the exponential 
correlation.

4.1.3  Three‑dimensional groundwater flow 
with both correlations

Let us now focus on the 3D non-homogeneous Darcy equa-
tion problem [43]. The manufactured solution in Equation 
(C30) is adopted. The hydraulic conductivity K is con-
structed according to Eq (C28). The source term f is devised 
from Eq (C29). The exponential and Gaussian correlations 
for the heterogeneous hydraulic conductivity and varying �2 
and N values are tested again. Tables 5 and 6 list the relative 
error of the hydraulic head for DCM with and without trans-
fer learning. For different �2 and N values, the performance 
of the PINN varies largely for both correlations. The same 
tendency as in 1D and 2D holds: The Gaussian correlation 
outperforms the exponential one and transfer learning has a 
significant impact on the computational cost. The hydraulic 
head predicted by both correlation functions with �2 = 0.1 
and N = 2000 are shown in Fig. S5, S6, S7 and S8 (Fig. 10).

Table 4  𝛿ĥ for 2D case 
computed with Gaussian 
correlation in different variance 
and number of modes

�2

N 0.1 1 3

Without TL With TL Without TL With TL Without TL With TL

500 9.974e-4 9.842e-4 3.530e-3 7.900e-4 3.053e-2 2.475e-3
1000 2.980e-4 6.954e-4 6.270e-3 1.527e-3 3.855e-2 2.904e-3
2000 7.299e-4 5.717e-4 7.719e-3 1.704e-3 7.486e-2 2.506-2

Fig. 9  Two-dimensional 
logarithm loss function with (a) 
exponential correlation and b 
Gaussian correlation

(a) (b)

Table 5  𝛿ĥ for 3D case 
computed with exponential 
correlation in different variance 
and number of modes

�2

N 0.1 1 3

Without TL With TL Without TL With TL Without TL With TL

500 3.419e-3 1.529e-2 1.131e0 5.885e-2 6.264e-1 7.340e-2
1000 1.219e-1 8.333e-3 3.257e-1 5.668e-2 1.055e0 8.982e-2
2000 5.667e-2 1.230e-2 4.287e-1 6.161e-2 1.204e0 5.313e-2
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The computational cost of the DCM with both correlation 
functions are shown in Table 7. The Gaussian correlation 
function is not only more accurate but also more efficient.

In summary, the comparison reveals that the loss func-
tion in the Gaussian correlation tends to decrease faster 
than the exponential, and that the error using Gaussian is 
much smaller and more stable than the exponential one. The 
Gaussian correlation also requires less computation time. 
Note also that the loss function of the exponential correla-
tion coefficient leads to gradient explosion when the number 
of collocation points exceeds a value of 150, while this is not 
observed form the Gaussian correlation coefficient, even for 
much larger number of collocation points. Subsequently, we 
will only use the Gaussian correlation.

4.2  Sensitivity analysis results

The sensitivity analysis should eliminate irrelevant vari-
ables to finally reduce the computational cost for the 

hyperparameter optimizer. The hyper-parameters in this flow 
problem are listed in Table 8.

The sensitivity analysis results obtained by the hybrid 
Morris-eFAST method are shown as follows:

From Figs. 11 and  12, we conclude that the number of 
layers and the neurons have the greatest impact. In contrast, 
the maximum line search of L-BFGS has almost no effect. 
So we remove the number of layers and the maxls, and con-
tinue to calculate the sensitivity of the remaining three in 

Table 6  𝛿ĥ for 3D case 
computed with Gaussian 
correlation in different variance 
and number of modes

�2

N 0.1 1 3

Without TL With TL Without TL With TL Without TL With TL

500 1.161e-2 5.439e-3 6.247e-3 1.540e-2 9.294e-2 1.078e-2
1000 1.187e-3 5.620e-3 4.087e-2 1.205e-2 3.004e-1 1.996e-2
2000 8.342e-3 1.661e-2 1.218e-2 1.278e-2 1.562e-1 1.952-2

Fig. 10  Three dimensional 
logarithm loss function with (a) 
exponential correlation and (b) 
Gaussian correlation

(a) (b)

Table 7  Calculation time 
required in different dimensions

Dimension

Correlation 1 2 3

Without TL With TL Without TL With TL Without TL With TL

Exponential 30s 3.0s 97s 6.5s 58s 7.8s
Gaussian 28s 3.0s 58s 9.8s 52s 5.9s

Table 8  Hyper-parameters and their intervals in groundwater flow 
problem

Hyper-parameters Intervals

Layers of NNs [2, 30]
Neurons per layer [10, 50]
Number of iterations [1500, 3000]
Number of collation points [800, 2000]
Maximum line search of L-BFGS algorithm [30, 300]
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the eFast model. The results are summarized in Fig. 13. The 
neurons are the second most important parameter. Hence, 
the layers and the neurons are chosen as the hyper-parame-
ters in the search space for the automated machine learning 
approach.

4.3  Hyperparameter optimizations method 
comparison

   To select the most suitable hyperparameter optimization 
algorithm, we use the two hyperparameters selected from 
the sensitivity analysis results in Sect. 4.2 as search variables 
in search space and compute the four algorithms presented 
in the previous section. All remaining conditions are equal. 
The horizontal coordinates in Fig. 14 represent the number 
of neurons per layer and the vertical coordinates refer to the 
number of hidden layers.

The time required for each method and the search accu-
racy are shown in Table 9.

The Bayesian method gives the best accuracy in the 
shortest time and will subsequently be adopted. Due to the 
limited search numbers, the optimal solution searched by 
the algorithm is not necessarily the best one and will gradu-
ally approach the optimal configuration as the number of 
searches increases. For two and three dimension cases, the 
optimal configuration are illustrated in Figs. 15 and 16.

The optimal configuration obtained after screening is 
shown in Table 10. These neural network configurations 
will be used as input parameters for the next numerical tests.

4.4  Model validation in different dimensions

Now we solve the modified Darcy Eq (19) by the NAS based 
DCM and the optimized configurations from Sect. 3, i.e. we 
fix �2 to 0.1, and N to 1000. The manufactured solutions can 
be found in  AppendixC. The results are compared to solu-
tions obtained from the finite difference method.

4.4.1  One‑dimensional case model validation

The 1D manufactured solution is Eq (C15). We validate 
the two methods by comparing the hydraulic head in the 
x-direction in the interval [0, 25], see Fig. 17.

4.4.2  Two‑dimensional case model validation

The 2D manufactured solution is Equation (C23) and we 
focus on the hydraulic head and velocity in the x-direc-
tion, along the midline at y = 10 within the interval 
[0, 20] × [0, 20].

Figure 18 demonstrates that both methods match well 
with the exact solution for the hydraulic head. However, as 
seen from Figure 19, the FDM method poorly predicts vx 
while the proposed DCM still agrees well.

4.4.3  Three‑dimensional case model validation

The manufactured solution for 3D the case is given by 
Equation (C30). We again compute the hydraulic head and 

Fig. 11  Sensitivity histogram of Morris

Fig. 12  Morris �∗ and � computed using the Morris screening algo-
rithm

Fig. 13  Sensitivity histogram of eFAST



Engineering with Computers 

1 3

Fig. 14  Neural network configu-
ration search results with (a). 
Randomization search method; 
b Bayesian optimization; c 
hyperband optimization; d Jaya 
optimization

Table 9  Hyper-parameters search results with different algorithms

Algorithms Time Relative error

RSM 1830s 0.00051
Bayesian 1395s 0.00032
Hyperband 1449s 0.00058
Jaya 1757s 0.00139

Fig. 15  Neural network configuration search results of Bayesian opti-
mization in two dimension

Fig. 16  Neural network configuration search results of Bayesian opti-
mization in three dimension

Table 10  Neural architecture 
search results with Bayesian 
optimization

Dimension Layer Neurons

1D 2 37
2D 6 17
3D 2 14
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velocity in the x-direction at y = 1, z = 0.5 over the inter-
val [0, 5] × [0, 2] × [0, 1] . The results are summarized in 
Tables 11 and 12. While the results obtained by the FDM is 
rather poor, the DCM approach still provides solutions close 
the the exact one (Fig. 20).

The higher the dimensionality of the problem, the more 
pronounced is the difference between the two methods 
(FDM and DCM). The FDM method requires an extremely 
dense discretization, which in turn leads to a high computa-
tional cost. DCM yields very accurate results even for very 
few training points. Transfer learning further reduces the 
computational cost while simultaneously slightly improving 
the accuracy. The contour plots for the hydraulic head and 
velocity are visualized in Figs. 21 and 22.

The isosurface diagrams of the predicted head and veloc-
ity are illustrated in Figs. 23 and 24.

5  Conclusion

In this paper, we proposed a NAS-based stochastic DCM 
employing sensitivity analysis and transfer learning to 
reduce the computational cost and improve the accuracy. 
The random spectral method in closed form is adopted for 
the generation of log-normal hydraulic conductivity fields. It 
was calibrated to generate the heterogeneous hydraulic con-
ductivity field with Gaussian correlation function. Exploit-
ing sensitivity analysis and comparing hyperparameter 
selection methods, the Bayesian algorithm was identified 
as the most suitable optimizer for the search strategy in the 
NAS model. While the sensitivity analysis and NAS mean 
additional cost, it still reduces the computational cost for a 
specified accuracy. Furthermore, for certain type of prob-
lems, it is not necessary to repeat this steps. To validate our 
approach, groundwater flow in highly heterogeneous aqui-
fers are considered.

Since no feature engineering is involved in our PINN, 
the NAS based DCM can be considered as truly automated 

Fig. 17  Hydraulic head calculated by FDM and DCM methods in one 
dimension

Fig. 18  Hydraulic head along y = 10 calculated by FDM and DCM 
methods in two dimension

Fig. 19  Velocity in x-direction along y = 10 calculated by FDM and 
DCM methods in two dimension

Table 11  Solving Darcy equation with FDM

Dimension

Results 1 2 3

Relative error 6.443e-5 0.017 5.711
Time 2.8s 180s 1245s
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“meshfree” method. It approximates any continuous func-
tion. The presented automated DCM is simple to implement 
as it defines only the definition of the underlying BVP/IBVP 
and boundary conditions.

Through several numerical examples in 1D, 2D and 3D, 
we showed that the presented NAS-based DCM significantly 
outperforms the FDM method in terms of computational effi-
ciency and accuracy. The benefits become more pronounced 
with increasing dimension and hence ’complexity’. Note 
that the presented NAS-based DCM outperforms the FDM 

even if all the steps from sensitivity analysis, optimization 
and training are accounted for. However, once those deep 
neural networks are trained, they can be used to evaluate 
the solution at any desired points with minimal additional 
computation time. Besides those advantages, the limitations 
for the proposed stochastic deep collocation method can be 
encapsulated in the computational cost in neural architecture 
search model for large multi-scale complex problems and 
that the gradient-descant based optimizer may get stuck in a 
local optimal. Those topics will be further investigated in our 
future research regarding a more generalised and improved 
NAS-based deep collocation method.

Appendix

Data flow in stochastic deep collocation 
method

The submodules for the stochastic deep collocation method 
and data flow inside the whole model are illustrated in Fig-
ure 25. There are three main submodules involved for sto-
chastic deep collocation method: neural architecture search 

Table 12  Solving Darcy 
equation with DCM

Dimension

Results 1 2 3

without TL with TL without TL with TL without TL with TL

Relative error 1.369e-4 1.195e-4 4.262e-3 4.405e-3 8.915e-3 8.864e-3
Time 14.3s 1.5s 108.5s 9.8s 32.2s 1.9s

Fig. 20  Logarithm loss function with and without transfer learning

Fig. 21  Three-dimensional 
hydraulic head when �2 = 0.1 , 
N = 1000 with Gaussian cor-
relation (a) exact solution and b 
predict solution
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method, physics-informed deep neural networks and a trans-
fer learning technique. First, the neural architecture search 
model shown on the left module is performed to find a phys-
ics-informed deep neural network with optimal performance 
and then the deep collocation method is constructed based 
on the deep neural network with searched configurations on 
the right. To enhance the model generality and efficiency, 
the neural network settings is inherited for transfer learn-
ing. In general, the data first flow inside neural architecture 
search model to help find an optimal deep neural network 
architecture and corresponding parameter settings and then 
to the PINNs model for stochastic analysis of heterogeneous 

porous media with initial hydraulic and material parameters. 
Finally, the data will flow to transfer learning module for 
stochastic flow analysis in more general cases to reduce the 
computational costs and enhance the model accuracy and 
generality.

Choices of random variables �

From Section 2.2, we can derive the following probability 
density function (PDF) p(k) for exponential and Gaussian 
correlations:

Fig. 22  Three-dimensional 
velocity when �2 = 0.1 , 
N = 1000 with Gaussian cor-
relation (a) exact solution and b 
predict solution

Fig. 23  Three-dimensional isosurface diagram of hydraulic head when �2 = 0.1 , N = 1000 with Gaussian correlation (a) exact solution and b 
predict solution
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(B1)p(k) =λd
Γ[

d+1

2
]

(�(1 + (kλ)2))
d+1

2 where Γ means the gamma function, with Γ(n) = (n − 1)! 
and Γ(n + 1∕2) =

√
�

2n
(2n − 1)!! for n = 1, 2, 3...

(B2)p(k) =�d∕2λde−(�kλ)
2

,

Fig. 24  Three-dimensional isosurface diagram of velocity when �2 = 0.1 , N = 1000 with Gaussian correlation (a) exact solution and a predict 
solution

Fig. 25  Data flow in stochastic deep collocation method and its submodules
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For Gaussian correlations in three dimensional case, the 
PDF of k can be transformed into the following form:

Each part of Equation (B3) can be considered as a normal 
distribution with � = 0 and � =

1√
2�λi

 . Thus, the random 

vector  k  can  be  s imulated  by the  formula 
k =

1√
2�
(�1∕λ1,�2∕λ2,�3∕λ3) , where �i are independent 

standard Gaussian random variables.
The k in the two-dimensional case can be derived by anal-

ogy from the above inference as k =
1√
2�
(�1∕λ1,�2∕λ2).

For exponential correlations in two-dimensional case, the 
PDF of k can be transformed into the following form:

A possible solution to calculate the cumulative distribution 
function (CDF) is the transformation from Cartesian into 
polar coordinates, i.e. a representation like:

Here ĥ is a uniformly distributed random variable and r is a 
random variable distribute according to

Integrating Equation (B6) yields the CDF

Choose a uniformly distributed random variable � , the 
inverse function k = F−1(�) can be obtained

(B3)
p(k) =

�√
�λ1e

−(�k1λ1)
2
��√

�λ2e
−(�k2λ2)

2
�

�√
�λ3e

−(�k3λ3)
2
�
.

(B4)p(k) =
λ1λ2

2�
(
1 + (k1λ1)

2 + (k2λ2)
2
) 3

2

.

(B5)
k1 = rcos(2𝜋ĥ)∕λ1,

k2 = rsin(2𝜋ĥ)∕λ2.

(B6)pr(r) =
2�rp(r)

λ1λ2
.

(B7)

F(r) = ∫
r

−∞

pr(r)dr

= ∫
r

−∞

r

(1 + r2)3∕2
dr

= −
1

(1 + r2)1∕2

||||
r

−∞

= −
1

(1 + r2)1∕2
.

(B8)

� = −
1

(1 + r2)1∕2

�2 =
1

1 + r2

r =
√
1∕�2 − 1.

Substitute Equation  (B5) into Equation  (B5), 
we  g e t  t h e  k1 = (1∕𝜇2 − 1)1∕2cos(2𝜋ĥ)∕λ1 ,  a n d 
k2 = (1∕𝜇2 − 1)1∕2sin(2𝜋ĥ)∕λ2.

For exponential correlations in three-dimensional case, 
the PDF of k can be transformed into the following form:

A similar procedure can be used, where spherical instead of 
polar coordinates are used

Here � is again a uniformly distributed random variable and 
� is given as

with � being a uniformly distributed random variable. The 
two random variables were chosen with reference to Weis-
sten’s research on generating random points on the surface 
of a unit sphere [71]. The radius r is distributed according to

The CDF can be calculated as follows:

Choose a uniformly distributed random variable �1 , r can be 
obtained by solving the next Equation (B14):

Manufactured solutions

For the 1D case, we have selected the following manufac-
tured solution according to benchmark [43]:

This leads to the following Dirichlet boundary conditions :

(B9)p(k) =
λ1λ2λ3

�2(1 + (k1λ1)
2 + (k2λ2)

2 + (k3λ3)
2)2

.

(B10)

k1 = rsin(�)cos(2��)∕λ1,

k2 = rsin(�)sin(2��)∕λ2,

k3 = rcos(�)∕λ3.

(B11)� = arccos(1 − 2�),

(B12)pr(r) = 4�r2p(r).

(B13)

F(r) = ∫
r

−∞

pr(r)dr

= ∫
r

−∞

4r2

�(1 + r2)2
dr

=
2

�
(−

r

1 + r2

||||
r

−∞

− ∫
r

−∞

−
1

1 + r2
dr)

=
2

�
(arctan(r) −

r

1 + r2
).

(B14)
2

�

(
arctan(r) −

r

1 + r2

)
= �1.

(C15)ĥMMS(x) = 3 + sin(x),with x ∈ [0, 25].



Engineering with Computers 

1 3

The function K is now given by

where we use the shorthand notations C1 = ⟨K⟩exp(− �2

2
) and 

C2 = �

√
2

N
 . And the source term f has the following form:

The Python code for the generation of K is shown as follows:

(C16)
{

ĥ(0) = 3,

ĥ(25) = 3 + sin(25).

(C17)K(x) = C1exp

(
C2

N∑
i=1

cos
(
�1 + 2�(ki,1x + ki,2)

))
,

(C18)

f (x) =C1exp

(
C2

N∑
i=1

cos
(
�1 + 2�(ki,1x + ki,2)

))

⋅

(
(−2�)C2ki,1

N∑
i=1

sin
(
�1 + 2�(ki,1x + ki,2)

)

cos(x) − sin(x)

)
.

 

 

For the 2D case, we consider the following smooth manu-
factured solution :

along with the Dirichlet and Neumann boundary conditions:

The function K is now given by

(C19)
ĥMMS(x, y) =1 + sin(2x + y),

with x ∈ [0, 20] and y ∈ [0, 20],

(C20)

⎧
⎪⎪⎨⎪⎪⎩

ĥ(0, y) = 1 + sin(y), ∀y ∈ [0, 20],

ĥ(20, y) = 1 + sin(2 × 20 + y), ∀y ∈ [0, 20],
𝜕ĥ

𝜕y
(x, 0) = cos(2x), ∀x ∈ [0, 20],

𝜕ĥ

𝜕y
(x, 20) = cos(2x + 20), ∀x ∈ [0, 20].

(C21)

K(x, y) = C1exp

(
C2

N∑
i=1

cos
(
�1 + 2�(ki,1x + ki,2y)

))
,

where we use the shorthand notations C1 and C2 same as in 
1-dimensional case. And the source term f has the follow-
ing form:
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An alternative manufactured solution is

along with the Dirichlet and Neumann boundary conditions:

The source term f has the following form:

For the 3D case, we consider the following smooth manu-
factured solution:

(C22)

f (x, y) =2C1C2exp

(
C2

N∑
i=1

cos
(
�1 + 2�(ki,1x + ki,2y)

))

⋅

N∑
i=1

(
− 2�ki,1sin

(
�1 + 2�(ki,1x + ki,2)

))

cos(2x + y)

− 5C1exp

(
C2

N∑
i=1

cos
(
�1 + 2�(ki,1x + ki,2y)

))

sin(2x + y)

+ C1C2exp

(
C2

N∑
i=1

cos
(
�1 + 2�(ki,1x + ki,2y)

))

⋅

N∑
i=1

(
− 2�ki,2sin

(
�1 + 2�(ki,1x + ki,2)

))

cos(2x + y).

(C23)
ĥMMS(x, y) =1 + sin(2x) + sin(y),

with x ∈ [0, 20] and y ∈ [0, 20],

(C24)

⎧⎪⎪⎨⎪⎪⎩

ĥ(0, y) = 1 + sin(y), ∀y ∈ [0, 20],

ĥ(20, y) = 1 + sin(2 × 20) + sin(y), ∀y ∈ [0, 20],
𝜕ĥ

𝜕y
(x, 0) = cos(0), ∀x ∈ [0, 20],

𝜕ĥ

𝜕y
(x, 20) = cos(20), ∀x ∈ [0, 20].

(C25)

f (x, y) =2C1C2exp

(
C2

N∑
i=1

cos
(
�1 + 2�(ki,1x + ki,2y)

))

⋅

N∑
i=1

(
− 2�ki,1sin

(
�1 + 2�(ki,1x + ki,2)

))
cos(2x)

− C1exp

(
C2

N∑
i=1

cos
(
�1 + 2�(ki,1x + ki,2y)

))

(
4sin(2x) + sin(y)

)

+ C1C2exp

(
C2

N∑
i=1

cos
(
�1 + 2�(ki,1x + ki,2y)

))

⋅

N∑
i=1

(
− 2�ki,2sin

(
�1 + 2�(ki,1x + ki,2)

))
cos(y).

along with the Dirichlet and Neumann boundary conditions:

The function K is now given by

where we use the shorthand notations C2 same as in 
1-dimensional case, but C1 = ⟨K⟩exp(− �2

6
) . And the source 

term f has the following form:

An alternative manufactured solution is

along with the Dirichlet and Neumann boundary conditions:

(C26)

ĥMMS(x, y, z) =1 + sin(3x + 2y + z),

with x ∈ [0, 5], y ∈ [0, 2] and z ∈ [0, 1],

(C27)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ĥ(0, y, z) = 1 + sin(2y + z), ∀y ∈ [0, 2],∀z ∈ [0, 1],

ĥ(5, y, z) = 1 + sin(3 × 5 + 2y + z), ∀y ∈ [0, 2],∀z ∈ [0, 1],
𝜕ĥ

𝜕y
(x, 0, z) = 2cos(3x + z), ∀x ∈ [0, 5],∀z ∈ [0, 1],

𝜕ĥ

𝜕y
(x, 2, z) = 2cos(3x + 2 × 2 + z), ∀x ∈ [0, 5],∀z ∈ [0, 1],

𝜕ĥ

𝜕z
(x, y, 0) = cos(3x + 2y), ∀x ∈ [0, 5],∀y ∈ [0, 2],

𝜕ĥ

𝜕z
(x, y, 1) = cos(3x + 2y + 1), ∀x ∈ [0, 5],∀y ∈ [0, 2].

(C28)

K(x, y, z) = C1exp

(
C2

N∑
i=1

cos
(
�1 + 2�(ki,1x + ki,2y + ki,3z)

))
,

(C29)

f (x, y, z) =3C1C2exp

(
C2

N∑
i=1

cos
(
�1 + 2�(ki,1x + ki,2y + ki,3z)

))

⋅

N∑
i=1

(
− 2�ki,1sin

(
�1 + 2�(ki,1x + ki,2 + ki,3z)

))

cos(3x + 2y + z)

+ 2C1C2exp

(
C2

N∑
i=1

cos
(
�1 + 2�(ki,1x + ki,2y + ki,3z)

))

⋅

N∑
i=1

(
− 2�ki,2sin

(
�1 + 2�(ki,1x + ki,2 + ki,3z)

))

cos(3x + 2y + z)

+ C1C2exp

(
C2

N∑
i=1

cos
(
�1 + 2�(ki,1x + ki,2y + ki,3z)

))

⋅

N∑
i=1

(
− 2�ki,3sin

(
�1 + 2�(ki,1x + ki,2 + ki,3z)

))

cos(3x + 2y + z)

− 14C1exp

(
C2

N∑
i=1

cos
(
�1 + 2�(ki,1x + ki,2y + ki,3z)

))

⋅ sin(3x + 2y + z).

(C30)

ĥMMS(x, y, z) =5 + sin(3x) + sin(2y) + sin(z),

with x ∈ [0, 5], y ∈ [0, 2] and z ∈ [0, 1],
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And the source term f has the following form:
(C31)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ĥ(0, y, z) = 5 + sin(2y) + sin(z), ∀y ∈ [0, 2],∀z ∈ [0, 1],

ĥ(5, y, z) = 5 + sin(3 × 5) + sin(2y) + sin(z), ∀y ∈ [0, 2],∀z ∈ [0, 1],
𝜕ĥ

𝜕y
(x, 0, z) = 2cos(0), ∀x ∈ [0, 5],∀z ∈ [0, 1],

𝜕ĥ

𝜕y
(x, 2, z) = 2cos(2 × 2), ∀x ∈ [0, 5],∀z ∈ [0, 1],

𝜕ĥ

𝜕z
(x, y, 0) = cos(0), ∀x ∈ [0, 5],∀y ∈ [0, 2],

𝜕ĥ

𝜕z
(x, y, 1) = cos(1), ∀x ∈ [0, 5],∀y ∈ [0, 2].

(C32)

f (x, y, z) =3C1C2exp

(
C2

N∑
i=1

cos
(
�1

+ 2�(ki,1x + ki,2y + ki,3z)
))

⋅

N∑
i=1

(
− 2�ki,1sin

(
�1

+ 2�(ki,1x + ki,2 + ki,3z)
))

cos(3x)

+ 2C1C2exp

(
C2

N∑
i=1

cos
(
�1

+ 2�(ki,1x + ki,2y + ki,3z)
))

⋅

N∑
i=1

(
− 2�ki,2sin

(
�1

+ 2�(ki,1x + ki,2 + ki,3z)
))

cos(2y)

+ C1C2exp

(
C2

N∑
i=1

cos
(
�1

+ 2�(ki,1x + ki,2y + ki,3z)
))

⋅

N∑
i=1

(
− 2�ki,3sin

(
�1

+ 2�(ki,1x + ki,2 + ki,3z)
))

cos(z)

− C1exp

(
C2

N∑
i=1

cos
(
�1

+ 2�(ki,1x + ki,2y + ki,3z)
))

⋅
(
9sin(3x) + 4sin(2y) + sin(z)

)
.

Approximation proof

Here we will give a proof of the convergence of physics-
informed neural network approximating hydraulic head 
in solving the proposed model. First, we need to assume 
that this partial differential equation has a unique solution, 
s.t. ĥ ∈ C2(Ω) with its derivatives uniformly bounded and 
the heterogeneous hydraulic conductivity function K(x) 
to be C1,1 ( C1 with Lipschitz continuous derivative). The 
smoothness of the K field is essentially determined by the 
correlation of the random field Y ′ . According to [72], the 
smoothness conditions are fulfilled if the correlation of Y ′ 
has a Gaussian shape and is infinitely differentiable. For the 
source term, the smoothness of the source term is deter-
mined by the constructed manufactured solution ĥMMS , in 
Equations 22 and 24, which is obvious continuous and infi-
nitely differentiable f ∈ C∞(Ω).

Theorem 2 With assumption that Ω is compact and consid-
ering measures �1 , �2 , and �3 whose supports are con-
strained in Ω , ΓD , and ΓN . Also, the governing Equation (19) 
subject to boundary conditions (21) is assumed to have a 
unique classical solution and conductivity function K(x) is 
assumed to be C1,1 ( C1 with Lipschitz continuous derivative). 
Then ∀ 𝜀 > 0 , ∃ λ > 0 , which may dependent on supΩ

‖‖‖ĥii
‖‖‖ 

and supΩ
‖‖‖ĥi

‖‖‖ , s.t. ∃ ĥh ∈ Fn , that satisfies L(�) ≤ λ�.

Proof For governing Equation  (19) subject to bound-
ary conditions  (21), according to Theorem 1, ∀ 𝜀 > 0 , 
∃ ĥh ∈ Fn , s.t.

Recalling that the Loss is constructed in the form shown in 
Equation (34), for MSEG , applying triangle inequality, and 
obtains:

Also, considering the C1,1 conductivity function K(x) , 
∃ M1 > 0, M2 > 0 , ∃ x ∈ Ω , ‖K(x)‖ ⩽ M1 , ‖‖K,i(x)

‖‖ ⩽ M2 . 
From Equation (D33), it can be obtained that

On boundaries ΓD and ΓN,

(D33)

sup
x∈Ω

‖‖‖ĥ,i
(
x Ω

)
− ĥh

,i

(
x Ω

)‖‖‖
2

+ sup
x∈Ω

‖‖‖ĥ,ii
(
x Ω

)
− ĥh

,ii

(
x Ω

)‖‖‖
2

< 𝜀.

(D34)

‖‖‖G
(
x Ω;𝜃

)‖‖‖
2

⩽
‖‖‖K(xΩ)ĥ

h
,ii

(
x Ω;𝜃

)‖‖‖
2

+
‖‖‖K,i(xΩ)ĥ

h
,i

(
x Ω;𝜃

)‖‖‖
2

+
‖‖‖f
(
x Ω

)‖‖‖
2

.

(D35)
∫Ω

K2
,i
(xΩ)

(
ĥh
,i
− ĥ,i

)2

d�1 ⩽ M2
2
𝜀2�1(Ω)

∫Ω

K2(xΩ)
(
ĥh
,ii
− ĥ,ii

)2

d�1 ⩽ M2
1
𝜀2�1(Ω).
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Therefore, using Equations (D35) and (D36), as n → ∞

  ◻

With the hold of Theorem 2 and conditions that Ω is a 
bounded open subset of R, ∀n ∈ N+ , ĥh ∈ Fn ∈ L2(Ω) , it 
can be concluded from Sirignano et al. [56] that

Theorem 3 ∀ p < 2 , ĥh ∈ Fn converges to ĥ strongly in 
Lp(Ω) as n → ∞ with ĥ being the unique solution to the 
potential problems.

In summary, for feedforward neural networks Fn ∈ Lp 
space ( p < 2 ), the approximated solution ĥh ∈ Fn will con-
verge to the solution to this PDE.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00366- 021- 01586-2.
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(D36)

∫ΓD

(
ĥh
(
x ΓD

;𝜃
)
− ĥ

(
x ΓD

;𝜃
))2

d�2 ⩽ 𝜀2�2(ΓD)

∫ΓN

K2(xΓN
)
(
ĥh
,n

(
x ΓN

;𝜃
)
− ĥ,n

(
x ΓN

;𝜃
))2

d�3 ⩽ M2
1
𝜀2�3(ΓN).

(D37)

L(𝜃) =
1

NΩ

NΩ∑
i=1

‖‖‖K(xΩ)ĥ
h
,ii

(
x Ω;𝜃

)
+ K,i(xΩ)ĥ

h
,i

(
x Ω;𝜃

)
− f

(
x Ω

)‖‖‖
2

+

1

NΓD

NΓD∑
i=1

‖‖‖ĥh
(
x ΓD

;𝜃
)
− ĥMMS

(
x ΓD

)‖‖‖
2

+

1

NΓN

NΓN∑
i=1

‖‖‖‖−K(xΓN
)
𝜕ĥ

(
xΓN

;𝜃
)

𝜕n
+ K(xΓN

)
𝜕ĥMMS

𝜕n

‖‖‖‖
2

⩽
1

NΩ

NΩ∑
i=1

‖‖‖K(xΩ)ĥ
h
,ii

(
x Ω;𝜃

)‖‖‖
2

+
1

NΩ

NΩ∑
i=1

‖‖‖K,i(xΩ)ĥ
h
,i

(
x Ω;𝜃

)‖‖‖
2

+
1

NΩ

NΩ∑
i=1

‖‖‖f
(
x Ω

)‖‖‖
2

+
1

NΓD

NΓD∑
i=1

‖‖‖ĥh
(
x ΓD

;𝜃
)
− ĥMMS

(
x ΓD

)‖‖‖
2

+

1

NΓN

NΓN∑
i=1

‖‖‖‖−K(xΓN
)
𝜕ĥ

(
xΓN

;𝜃
)

𝜕n
+ K(xΓN

)
𝜕ĥMMS

𝜕n

‖‖‖‖
2

⩽ (M2
2
+M2

1
+ 1)𝜀2�1(Ω) + 𝜀2�2(ΓD) +M2

1
𝜀2�3(ΓN) = K𝜀.
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