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Abstract
In machine learning, if the training data is independently and identically distributed as the test data then a trained model can 
make an accurate predictions for new samples of data. Conventional machine learning has a strong dependence on massive 
amounts of training data which are domain specific to understand their latent patterns. In contrast, Domain adaptation and 
Transfer learning methods are sub-fields within machine learning that are concerned with solving the inescapable problem of 
insufficient training data by relaxing the domain dependence hypothesis. In this contribution, this issue has been addressed 
and by making a novel combination of both the methods we develop a computationally efficient and practical algorithm to 
solve boundary value problems based on nonlinear partial differential equations. We adopt a meshfree analysis framework to 
integrate the prevailing geometric modelling techniques based on NURBS and present an enhanced deep collocation approach 
that also plays an important role in the accuracy of solutions. We start with a brief introduction on how these methods expand 
upon this framework. We observe an excellent agreement between these methods and have shown that how fine-tuning a 
pre-trained network to a specialized domain may lead to an outstanding performance compare to the existing ones. As proof 
of concept, we illustrate the performance of our proposed model on several benchmark problems.

Keywords Transfer learning · Domain adaptation · NURBS geometry · Navier–Stokes equations

List of symbols
� ≥ 0  Learning rate
S̄  A bounded set S that also contains its boundary
ΓCL  Learning curve of the CL model
ΓTL  Learning curve of the TL model
Cp(ℝn)  Space of all continuously differentiable func-

tions at least up to p times
𝜁 > 0  Momentum
Nbnd ∈ ℕ  Total boundary training points
Nint ∈ ℕ  Total interior training points
Tol > 0  Tolerance

1 Introduction

Over the last few decades, Deep Neural Networks (DNNs) 
have perhaps witnessed the highest boom in large scale prob-
lems in various disciplines of science and engineering [1–5]. 
NNs have been around since the 1940s [6] and have been 
used in systematic applications. However, the recent suc-
cess in deep learning is due to the combination of improved 
hardware resources such as GPUs and advanced theories 
starting with un-supervised pre-training and deep belief 
nets that have undergone rapid development from time to 
time in last few decades. Conventional machine learning 
(CL) is designed to function optimally under such assump-
tions that the training data and test data should belong to 
the same domain. It has been shown to be a versatile tool 
in capturing the complex pattern of different physical phe-
nomena by using the acquired knowledge from a given set 
of input values. Despite its excellent performance in vari-
ous domains, however, one major bottleneck lies in data 
acquisition which can be quite expensive, particularly in 
the course of analyzing complex engineering systems. In 
addition, there are many scenarios in the real world applica-
tions where collecting sufficient amounts of training data 
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manually and annotating from a specific domain may turn 
out to be intensive or laborious because of various reasons, 
such as the scarcity of data. Nevertheless, there may exist 
an abundance of similar data but with different distribution 
characteristics. Also intuitively, it is not always feasible to 
learn everything from scratch.

Transfer learning (TL) [7–10] is an inspiring method-
ology that utilizes the stored knowledge obtained from a 
source task and applies it to a new target task. The stark 
difference that isolates conventional learning from transfer 
learning is that in this approach one can leverage knowl-
edge from pre-trained models for training newer models and 
also even for tackling the challenges of having limited data. 
Real world is messy and everytime we may not necessarily 
apply our model to a carefully constructed data set instead 
it may encounter different scenarios. Therefore, the goal is 
to achieve some transferable representations between source 
domain and target domain and build a concrete model up to 
an acceptable performance which in turn should be able to 
make proper predictions. The insight behind TL is that the 
model must be able to learn first how to behave in a task 
effectively and then generalize its gained knowledge as much 
as required to transfer and then apply it in a new domain.

The main aim of this paper is to facilitate TL through 
domain adaptation techniques, by extracting the common 
aspects between the source and target domains. If the input 
feature space between the source and target domains are 
same then this is referred to as homogeneous transfer learn-
ing and remains our focus throughout this paper. Some inter-
esting transfer learning topics are reinforcement transfer 
learning [11], online transfer learning [12], lifelong transfer 
learning [13] and multi-task learning [14]. Domain adap-
tation [15, 16] is a widespread technique associated with 
TL seeking similar goals in machine learning paradigm and 
as it pertains here, the procedure is to adapt one or more 
source domains for the means of transferring “knowledge” 
to improve the performance of a target learner. This pro-
cess attempts to alter a source domain in an attempt to bring 
the distribution of the target closer to the source. Our main 
objective is to learn and investigate such transformations 
that can map both source and target domains into a common 
feature space.

In this work, we explore a domain adaptation based trans-
fer learning approach to approximate the solutions to par-
tial differential equations (PDEs) in complex geometries. As 
mentioned earlier, our proposed method incorporates skills 
learned previously from source tasks to speed up learning 
on a new target task, while retaining the effectiveness of 
NNs. A fundamental requirement in this process is building 
a model that gives an excellent performance on the source 
tasks. The underlying models are layered architectures that 

learn different features at different layers. This is a more 
involved technique, where the initial layers are trained to 
capture more generic features and the high level final lay-
ers are tailored for the specific task at hand. In addition, 
we need to retrain (i.e., fine-tune) selectively some (or all) 
of the previous layers during the process. Past research 
[17–19] shows that the internal representations of DNNs 
learned from source data sets can be effectively used to solve 
a variety of tasks and one just needs to fine-tune the entire 
model with the target data set to reduce the domain shift 
errors. Interested readers are referred to [18, 20, 21] for a 
more detailed explanations on fine-tuning and how to get 
the work done more effectively. We note that the idea in this 
work is in some ways similar to that of model defeaturing 
used in finite element workflows, where a complex model 
is simplified to make it more tractable for obtaining a rough 
solution. However, in transfer learning, we directly use the 
simplified solution to more quickly perform analysis on the 
actual model.

We mention that in computational studies, several other 
techniques have also been used. For example, [22, 23] pre-
sent a strong form-based meshfree point collocation method 
for mechanical contact between two bodies. In [24], a par-
ticle difference method for weak discontinuities in elliptic 
problems is presented. Moreover, in [25], a machine learning 
framework is developed to obtain a posteriori error estimates 
for multiple goal functionals employing the dual-weighted 
residual approach.

Our contributions in this work are as follows:

• We prove a theorem regarding the convergence of neural 
networks for a more general class of PDEs.

• By implementing domain adaptation techniques into 
transfer learning, on one hand we avoid expanding the 
huge resources required to train a data-hungry model, on 
the other hand we have developed a sophisticated algo-
rithm that can carefully handle the singularities in the 
domain and achieve similar accuracy to the state-of-the-
art adaptive refinement algorithms.

• We investigate the ability of optimizers with respect to 
their performance and successfully demonstrates how the 
modifications of few hyperparameters (for example learn-
ing rate) have a strong influence over the model architec-
ture, which up to now, has not gained much attention.

The paper is structured as follows: In Sect. 2 a detailed 
description of the model problem, convergence theorem, 
discussion about the core architecture with implementation 
details and training algorithm is presented. Next in Sect. 3 
we briefly reviews NURBS geometry and its importance 
to construct complex shapes and objects. In Sect. 4 several 
numerical tests showcasing the performance of the proposed 
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algorithm are provided. Finally, in Sect. 5, we draw the con-
clusions and present remarks on future extensions.

2  Neural network (NN) approximation 
for PDEs

2.1  Problem statement and methodology

The idea to approximate PDEs using NNs was first proposed 
by Dissanayake et al [26]. In this paper we will also provide 
a strong theoretical formulation regarding the approximation 
power of NN for some specific family of PDEs. Consider 
the family,

where L and B is a differential and boundary operator (quasi-
linear or non-linear), respectively, domain of interest Ω ⊂ ℝ

n 
is bounded , boundary �Ω is at least Lipschitz continuous 
unless mentioned otherwise and � is its subset on which the 
boundary conditions (BCs) are imposed. We intend to train 
the DNN approximate solution U� ∶= U(x,�) We proceed 
by approximating u and L using Deep Neural Networks 
(DNNs) U� = U(�, �) . Any prior knowledge on the exact 
analytical solution u is redundant. As previously mentioned, 
our approach adopts the deep collocation method, which 
assumes a certain discretization of the domain Ω and the 
boundary � into a collection of points �Ω and �� , respec-
tively. The goal is to learn the parameters of NNs. These 
along with parameters of the operator L are learned by mini-
mizing the error function under mean squared error (MSE) 
norm. For xi ∈ �Ω and �i ∈ �� , we define:

The points are uniformly sampled from the domain and the 
given boundary. Basically this equation is a Monte Carlo 
approximation of

where U(Ω) and U(�) represent the uniform distribution over 
the domain and given boundary. This error function meas-
ures how accurately our model approximates the original 

(1)
L[u(x)] = h(x) x ∈ Ω

B[u(x)] = 𝜓(x) x ∈ 𝛾 ⊆ 𝜕Ω

}

(2)

E[�] ∶=
1

Nint

Nint∑
i=1

|(L [U�] − h)(xi)|2

+
1

Nbnd

Nbnd∑
i=1

|B[u] − �(�i)|2

= ||(L [U�] − h)(x)||2
�Ω

+ ||B[u] − �(s)||2
��

Err[�] ∶= �
x∼U(Ω)

[
((L [U�] − h)(x))2

]

+ �
s∼U(�)

[
(B[u] − �(�))2

]

solution and satisfies the boundary value problem (BVP) 
with respect to the defined norm. Our main objective is to 
construct such a neural network function U� by fine tuning 
the entire model so that E is as close to 0 as possible.

2.2  Model architecture: transfer Learning setup

DNN is comprised of multiple hidden layers and single 
input–output layers, where each layer is consisting of numer-
ous neurons. For example if we have N neurons in the input 
layer, and M neurons in the output layer then the neural net-
work is simply a mapping: ℝN

↦ ℝ
M . The neurons in each 

layer are connected by weights-bias parameters and they are 
used to compute a weighted sum of the input neurons from 
the preceding layers to which they are connected. For exam-
ple two adjacent layers are coupled as follows :

where y
�
 is the output of layer � , W

�
 are affine mappings 

and �
�
 is a fixed element wise activation function. The con-

nection strength between neurons are solely dependent upon 
the weights and bias terms associated with these. The entire 
signal is now summed and used as an input for the layers 
activation function. The role of activation function is to 
introduce non linearity into the network. This is a crucial 
component for modeling nonlinear responses. The structure 
of the network can be complex. Once the network is fixed, 
the training is initiated and the task is to update the param-
eters appropriately. The network is trained using back-prop-
agation which ultimately becomes the optimization problem 
of finding the parameters that minimize the loss function or 
the output errors. Gradually, as the parameters are adjusted, 
the network evolves and predicts the output with minimal 
errors. In short, this is the “learning pattern” of NN. In 
transfer learning, the goal is to store and access this previ-
ously gained knowledge from source data to reuse for second 
workflow. One needs to add a few high-level new layers see 
Fig. 1 on top of pre-trained fully connected layers in order to 
utilize the off-the-shelf representations from preceding deep 
layers. The core idea of transfer learning is inherent in the 
fact that neural networks are made up of layers which can 
be seen as interchangeable building blocks. Basically, in this 
approach we use well-trained, well-constructed models that 
have gained sufficient knowledge over the training process 
through larger or more generic data sets and apply them 
to boost the performance on smaller or more specific data 
sets. Fine-tuning begins, i.e, retraining of the entire model 
with a suitable learning rate and gradually the new layers 
learn to turn the old features into predictions on a target data 
set. In practice, differential learning rate a.k.a discrimina-
tive fine-tuning can be an effective strategy to customize the 
model. In this process, one may start with a fixed learning 

y
�
(x) ∶= �

�
(W

�
y
�−1(x) + �

�
) ; � = 1, 2, 3…
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rate � ∈ [0.001, 0.1] to instantiate the base or inception 
model with pre-trained weights and once the model starts 
to converge on source data, in the second workflow one 
needs to drop � preferably by a factor of � ∈ (2, 20) to avoid 
larger weight updates while embedding fine-tuning to the 
pretrained layers. In general, this is the guiding principle to 
update the parameters progressively from top-to-bottom to 
encourage the target model parameters to stay close to the 
parameters of pre-trained model. Freezing (when, � = 0 ) has 
not been investigated in detail in the present work. For a rela-
tively tiny neural network model this setting can be deemed 
robust. However, if the network is too large, for example 
ResNet, it is recommended to partition the entire network 
into small groups of layers and set different learning rates to 
each group during the training, otherwise the whole process 
would be very slow and memory intensive. Some excellent 
literature on this topic can be found in [27, 28].

2.2.1  Definitions

In their seminal paper [7] authors give an elegant mathe-
matical definition of transfer learning. They introduce the 
notion of domain, task and marginal probabilities to present 
a framework for understanding transfer learning.

Definition 2.1 A domain consists of two components, a fea-
ture space X  and a marginal probability distribution P(X) , 
where X = {x1,… , xk} ∈ X  . It is denoted as D = {X,P(X)}.

Definition 2.2 Given a domain D define a task T = {Y,P(Y)} 
which consists of a label space Y and an objective predic-
tive function f(X,Y) that can be learned from training data 
{(xi, yi)} ⊂ X × Y .

Definition 2.3 Let DS,DT be the source domain space and 
target domain space as well TS, TT be the source learning 

task and targeted learning task, respectively, then Transfer 
Learning aims to improve the target predictive function fT 
in DT using its prior knowledge, i.e, from DS, TS , where 
DS ≠ DT and TS ≠ TT

2.3  Implementation

The success of a neural network completely depends on 
its architecture. There is no exact formula for selecting an 
optimal architecture, and different problems demand dif-
ferent architectures. For example, activation functions are 
one of the core components and are used as gates to filter 
between “useful” and “not so useful” from the plethora of 
information. There exist numerous works in the literature 
[25, 29, 30] and the references therein, where authors have 
conducted comparative experiments to obtain the best pos-
sible results from an activation function. One thing to note 
is that the final layer should always be the linear function of 
its preceding layers. Apart from that, optimizers also have 
a significant influence for fast and easy convergence of the 
network. The optimizer shapes and molds the model into its 
most accurate possible form by updating the parameters. In 
our experiments, we have explored different optimizers, con-
figuring the key hyper-parameters (momentum, learning rate 
etc.) to improve much as possible the accuracy of the model.

We now provide the implementation details of the algo-
rithm and have highlighted some typical steps that one 
would have to follow for a Python based Tensorflow [31], 
an open source well documented and currently one of the 
most popular, fastest growing deep learning library. The idea 
is to demonstrate the general procedure. The full source code 
is available on Github.

Using the Xavier Initialization technique [32] the param-
eters are initialized in the following manner:

Fig. 1  Model architecture
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def initialize_NN(self,layers):
weights = []
biases = []
num_layers = len(layers)
for l in range(0, num_layers - 1):

W = self.xavier_init(size=[layers[l], layers[l + 1]])
b = tf.Variable(tf.zeros([1, layers[l + 1]]))
weights.append(W)
biases.append(b)

return weights, biases

def xavier_init(self, size):
in_dim = size[0]
out_dim = size[1]
xavier_stddev = np.sqrt(2.0 / (in_dim + out_dim))
return tf.Variable(tf.truncated_normal([in_dim, out_dim], stddev=

↪→ xavier_stddev))

u(�) is defined as follows:

u(x) is defined as follows :

def net_u(self,x,y):

X = tf.concat([x,y],1)

u = self.neural_net(X,self.weights,self.biases)

 The neural network is defined using an activation  
function:

The neural network is defined using an activation function :

def neural_net(self,X,weights,biases):

num_layers = len(weights) + 1

H = 2.0*(X - self.lb)/(self.ub - self.lb) - 1.0
for l in range(0,num_layers-2):

W = weights[l]
b = biases[l]
H = tf.activation(tf.add(tf.matmul(H, W), b))

W = weights[-1]
b = biases[-1]
Y = tf.add(tf.matmul(H, W), b)
return Y

 Define the base model and network learning:
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Define the base model and network learning :

layers = [.,.,.,.] # say 4 layers
num_train_its = ... # number of training iterations
train_op = tf.optimizers(learning_rate1)
pred_model= PDE_model(layers, train_op, batch-size, num_epoch)
pred_model.network_learn(data1, num_train_its)

 Transfer learning model and fine-tuning:

Transfer learning model and fine-tuning :

layers = [.,.,.,.,.,.] # additional high level layers on top of preceding
↪→ layers

num_train_its = ...
train_op = tf.optimizers(learning_rate2)
pred_model= PDE_model(layers, train_op, batch-size, num_epoch)

for layer in pred_model.layers[:k]:
layer.trainable = False

for layer in pred_model.layers[k:]:
layer.trainable = True

pred_model.network_learn(data2, num_train_its)

2.4  Convergence result

Motivated by the results in [33, 34] we are also going to 
provide an existence theorem ensuring a feed forward multi-
layer network U capable to approximate the solution of (1) 
along with optimizing (2). For the convenience sake we have 
assumed the existence of classical solution and consider,

and B[⋅] as a linear combinations of �m
x

 , where |m| ≤ 2 . 
Therefore, (1) can re written as,

(3)

L[u] = ∇ ⋅ {�(x, u(x),∇u(x))} + �(x, u(x),∇u(x))

�̂r ≡
�

�uxr

r = 1, 2,… , n

�s ≡
�

�xs
s = 1, 2,… , n

�r,s ≡
�2

�xr�xs
r, s = 1, 2,… , n

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

n∑
r,s=1

�̂s�r(x, u(x),∇u(x)) �r,su

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
X(x,u,∇u)

+

n∑
r=1

[
�

�u
�r(x, u(x),∇u(x)) �ru + �r�r(x, u(x),∇u(x))

]
+ �(x, u(x),∇u(x))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Y(x,u,∇u)

= h(x)

In simplified form,

For any activation function � ( preferably “non-linear” and 
mandatorily “bounded”) consider the set of NNs with a sin-
gle hidden layer and � neurons,

and the class of all functions implemented in such network 
for � ∈ ℕ

Definition 2.4 A function f ∶ ℝ
i ×ℝ

j
↦ ℝ is said to be H ̈o

lder Continuous if there exists a � ∈ (0, 1] and Mf > 0 such 
that,

X(x) + Y(x) = h(x)

�
𝓁

n
(�) ∶= {z ∶ ℝ

n
↦ ℝ ∶ z(x) =

𝓁∑
i=1

�i�(� ⋅ x + �i)}

�n(�) ∶=

∞⋃
�=1

�
�

n
(�)
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holds over ℝi ×ℝ
j . Here � is called a Hölder exponent.

Theorem 2.1 Let, � ∈ Cp(ℝn) be a non constant bounded 
function then, �n(�) is an uniformly-2 dense on compact 
sets of Cp(ℝn).

Proof See [33]   ◻

Theorem 2.2 Let us assume that (3) has a unique classical 
solution over Ω̄ and both the non linear terms �s�r(x, u,∇u) , 
Y(x, u,∇u) are H ̈older continuous in (u,∇u) uniformly 
w.r.t x . Then for every 𝜖 > 0 there exists a neural network 
f� ∈ �d(�) such that,

where � is a Hölder exponent.

Proof We have from Theorem  2.1 an existence of an 
f�(= f ) ∈ �n(�) that is uniformly-2 dense on compacts of 
C2(ℝn) . In other words it yields that for every 𝜖 > 0 there is 
a f ∈ �n(�) such that,

Therefore, with the assumptions of Hölder continuity we 
obtain,

where “ ⪯ ” implies that the inequality is independent of any 
important constants. Again considering the expression,

|f (xi, xj) − f (yi, yj)| ≤ Mf

(||xi − yi||� + ||xj − yj||�
)

E[f�] ≤ C(u,∇
x
u) �2�

(4)
∑
|m|≤2

sup
x∈Ω̄

|𝜕(m)
x

u(x) − 𝜕(m)
x

f (x;�)| < 𝜖

(5)

||Y(x, f ,∇
x
f ) − Y(x, u,∇

x
u)||2

�Ω

=
1

Nint

Nint∑
i=1

|||Y(xi, f (xi),∇xi
f ) − Y(xi, u(xi),∇xi

u)
|||
2

≤
L

Nint

Nint∑
i=1

[|f (xi;�) − u(xi)|2� + |∇
xi
f (xi;�) − ∇

xi
u(xi)|2�

]

⪯ �2�

Applying Hölders Inequality with exponents p, q we have,

which finally obtain using (4) and simplifying. Now follow-
ing (4)–(6), consequently the loss function can be simplified 
into,

||X(xi, u(xi),∇xi
u)X(xi, f (xi),∇xi

f )||2
�Ω

=
1

Nint

Nint∑
i=1

||||
n∑

r,s=1

(
�

�uxs

�r(xi, u(xi),∇u(xi)) �r,su

−
�

�fxs

�r(xi, f (xi),∇f (xi)) �r,sf

)||||
2

≤
1

Nint

Nint∑
i=1

||||
n∑

r,s=1

(
�

�uxs

�r(x, u(x),∇u(x))

−
�

�fxs

�r(x, f (x),∇f (x))

)
�r,su

||||
2

x=xi

+
1

Nint

Nint∑
i=1

||||
n∑

r,s=1

�

�fxs

�r(x, f (x),∇f (x)) (�r,su − �r,sf )
||||
2

x=xi

(6)

⪯
1

Nint

n∑
r,s=1

[(Nint∑
i=1

|�r,su(xi)|2p
)1∕p

⋅

(
Nint∑
i=1

|||||
�

�uxs

�r(x, u(x),∇u(x)) −
�

�fxs

�r(x, f (x),∇f (x))
|||||

2q

x=xi

)1∕q

+

(
Nint∑
i=1

|||||
�

�fxs

�r(xi, f (xi),∇f (xi))
|||||

2p
)1∕p

⋅

(
Nint∑
i=1

||�r,su − �r,sf
||2qx=xi

)1∕q]

⪯
1

Nint

n∑
r,s=1

[ Nint∑
i=1

(|�r,su(xi)|2p
)1∕p

⋅

(
Nint∑
i=1

(|f (x;�) − u(x)|� + |∇
x
f (x;�) − ∇

x
u(x)|�)2q

x=xi

)1∕q

+

(
Nint∑
i=1

|||||
�

�fxs

�r(xi, f (xi),∇f (xi))
|||||

2p
)1∕p

⋅

(
Nint∑
i=1

||�r,su − �r,sf
||2qx=xi

)1∕q]

⪯ �2�
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The last step is validated with an appropriate constant C that 
can be dependent upon the actual solution.   ◻

Remark 1 Since Ω̄ is a compact subset in ℝn , therefore, 
above theorem trivially holds for locally Hölder continuous 
function.

2.5  Algorithm

A significant improvement over the performance of the base 
model, i.e, a positive transfer is an indication of a successful 

E[f�] = ||L[f�] − h||2
�Ω

+ ||B[f�] − � ||2
��

= ||L[f�] − L[u] ||2
�Ω

+ ||B[f�] − B[u] ||2
��

≤ ||X(x, u,∇
x
u) − X(x, f� ,∇x

f�)||2�Ω
+ ||Y(x, f� ,∇x

f�) − Y(x, u,∇
x
u)||2

�Ω

+ ||B[f�] − B[u] ||2
��

⪯ �2�

≤ C �2�

algorithm. The choice of pretraining and target tasks is inter-
twined closely and, therefore, for the sake of best target 
performance, it is beneficial to opt for similar pretraining 
tasks. The whole algorithm is tailored for an accurate and 
efficient approximation to obtain ΓTL < ΓCL . The general 
practice is to set a termination criteria by enforcing a Tol at 
the pretraining phase. Thus if the condition is not satisfied 
then this can serve as an error indicator which is employed 
to guide the parameters in the neural network architecture. 
The parameters get updated accordingly and this process 
continues iteratively. To the end summarizing all steps, we 
obtain the basic scheme shown in Fig. 2 and detailed in 
Algorithm 1.

Fig. 2  Transfer learning applied 
to domain geometry adaptation Simplified geometry

(source data)
Training

(low capacity network)

Knowledge transfer
(pre-trained layers)

Actual geometry
(target data)

Training
(with added layers)

Solution
(output)
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Algorithm 1: Error estimation through transfer learning
Input: Training data sets, number of layers, α, ζ.

1 Initialize : Provide number of iteration steps, epochs and the model.

2 Initialize the neural network
3 Initialize the weights of the network using Xavier initialization technique
4 Calculate the loss function E [θ] for the current mini-batch points

5 Pretraining : Train the model on source task
6 Minimize the loss up to Tol

7 Final Estimation :
8 Modify internal architecture
9 Jointly train newly added layers and layers of the base model

10 Evaluate model by observing the performance of ΓTL

11 if ΓTL < ΓCL then
12 STOP

13 else
14 tune the parameters, adjust Tol & repeat steps until the criteria is satisfied

3  NURBS‑based geometrical modelling

In various applications of describing objects (2- or 3-D), 
NURBS (Non Uniform Rational B-Splines) approximation 
have become a standard mathematical tool to create and rep-
resent complex shapes regardless of whether freeform or an 
analytical surface. In general, they are widely used in the 
area of CAD geometry and because of their elegant algorith-
mic properties (smoothness, possibility of local modifica-
tions etc.) NURBS ideally offer designers the possibility to 
easily manipulate control points, weights, vertices, control 
curvature while generating a complicated geometry. In addi-
tion, they also provide a reasonably compact and intuitive 
representation for the construction. A thorough explanation 
is beyond the scope of this article, readers are referred to 
[35–40] for more in depth descriptions and applications.

NURBS are an extension of B-Splines to piecewise 
rational functions, which adds the ability to exactly represent 
some simple shapes, such as circles, ellipsoids, etc. In other 
words, NURBS are defined as a ratio of two polynomial 
B-Spline functions. Non uniform is the concept that some 
portion of a defined object can be elongated or shortened 
relative to other portion of overall shape. The geometric 
modeling typically consists of two meshes: a physical mesh 

and a control mesh. While the physical mesh is a represen-
tation of the original geometry, the control mesh forms a 
scaffold of the geometry. NURBS shapes are defined by the 
degrees, weights, knot vector and set of control points which 
are the inputs to be provided by the user. These determine 
a mapping between the parameter space, which is the unit 
segment for curves, unit square for surfaces and unit cube 
for volumes, and the physical space. A knot vector is an 
increasing set of coordinates in the parametric space gener-
ally denoted by Ξ = {�k}

n+p+1

k=1
 , where �k is the kth knot, n is 

the number of basis functions and p is the polynomial order. 
Depending on the degree of basis functions and the number 
of control points a knot can be repeated several times and it 
is even possible to insert a new knot without changing the 
curve geometry and parameterization, see Fig. 3, which is 
known as h-refinement. Knot refinement offers a wide range 
of tools to design and analyse the shape information. A uni-
variate rational basis function is defined as :

Here, {Nk,p(�)}
n
k=1

 is the set of basis functions of the B-Spline 
curves, {wk ∶ wk > 0}n

1
 is the set of NURBS weight. Choos-

ing appropriate weights permits the definition of varieties 

Rk,p(�) ∶=
wkNk,p(�)∑n

k=1
wiNk,p(�)

; k ∈ [1, p + 1]
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of curves and in particular if all the weights are equal its 
reduces to the B-Spline basis. These basis functions are mul-
tiplied with a set of weights and control points and summed 
up to generate a NURBS geometry. The implementation 

is done using NURBS-Python (geomdl) library. Follow-
ing snippet of code is an illustration how to generate a 2D 
NURBS curve and visualizing it using NURBS-Python [40].

from geomdl import NURBS

class Annulus(NURBS):
"""
Class for defining an annular ring
Input: radint,radext - interior and exterior radius of the ring
"""
def __init__(self, radint, radext):

geomData = dict()

# Users set degrees
geomData[’degree_u’] = x_1
geomData[’degree_v’] = x_2

# Users set control points
geomData[’ctrlpts_size_u’] = y_1
geomData[’ctrlpts_size_v’] = y_2

geomData[’ctrlpts’] = [...,...,...,.....]

geomData[’weights’] = [...,...,...,.....]

# Users set knot vectors
geomData[’knotvector_u’] = [a_1,a_2,..,....]
geomData[’knotvector_v’] = [b_1,b_2,..,....]
super().__init__(geomData)

# Plot the curve
Annulus.PlotSurf()

4  Numerical examples

In this section, based on several well known benchmark 
problems, we are presenting our experimental results for 
empirical validation. Each problem requires their own modi-
fied architecture depending on the operator and domain. The 
implementation details about the network architecture, such 
as number of layers, neurons on each layer, activation func-
tion etc, have been provided with each example. In some 
cases, the exact solution does exist and we have also validate 

the results showcasing the improvement in the performance 
achieved. In all cases, we have used a uniform distribution of 
the collocation points; however, the influence of the arrange-
ment and spacing of collocation points reflects the algorithm 
performance which was discussed in detail in our earlier 
work [25]. Training neural networks consumes a lot of time 
and computational resources as well. Therefore, it is desir-
able to terminate the number of iterations once a certain 
level of accuracy has been reached. Two main factors reduce 
the number of iterations required for convergence. The first 
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is to train the network using sufficient amount of data on a 
simpler, regular domain which saves a lot of computation 
time. The second is setting the number of hidden layers to 
be reasonably small, while still retaining sufficient accuracy. 
Besides, by leveraging pre-trained model architecture and 

parameters transfer learning allows to use the learned high 
level representation of a given data structure and apply it to 
fewer new training data set. For all the problems, we have 
used a combination of SGD and Broyden–Fletcher–Gold-
farb–Shanno (BFGS) algorithm to train the parameters � 

Fig. 3  (From top to bottom) Original geometry to be modeled. Modeling the geometry using linear splines. Modeling via NURBS, where the 
control points are marked by red

Fig. 4  Distribution of boundary and interior collocation points over training sets and test points over testing set
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Fig. 5  Comparison of solutions and both pointwise and relative errors. Learning curves and training time. Comparison between different learn-
ing rates

Fig. 6  Distribution of boundary (red) and interior (blue) and (green) collocation points over the training set
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following Xavier initialization technique. The training points 
are uniformly spaced over the entire domain Ω . The experi-
ments have been carried out using the TensorFlow [31] 
framework on Google Colab GPU.

4.1  Example‑I : 2D Poisson equation ( p = 2 , ı = 0)

Consider,

Define,

and the problem,

A�,p(u) ≡ div((�2 + |∇u|2) p−2

2 ∇u)

Ω ∶= {(x, y) ∈ ℝ
2 ∶ x2 + y2 > 1∕4 & |x|, |y| < 1}

To obtain the exact solution we take, for example

and plug it into the problem to compute f. In the numerical 
model we consider the following domains : a square plate of 
edge length 2 and a similar length plate with a circular hole 
of half-unit radius at its center. We generate N uniformly 
distributed collocation points inside the domain and M uni-
formly distributed points on the boundary. Once the NNs 
have been trained, we can then evaluate on any number of 
points. Initially, the model is trained on a square plate which 

−A�,p(u) = f (x, y) in Ω

u = 0 on �Ω

U(x, y) ∶=

{(
x2 + y2 −

1

4

)
(1 − x2)(1 − y2) if (x, y) ∈ Ω

0 otherwise

Fig. 7  Transfer learning solu-
tions for y > 0 and y ≤ 0 . 
Comparisons of learning curves 
and training period

Fig. 8  Demo comparisons on a Hemisphere
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effectively serve as an inception model. The training process 
on a square plate (i.e., the source task) is less expensive rela-
tive to the training process on a plate with hole (i.e., the tar-
get task). To relate these two tasks more closely and improve 
the learning, the source domain has been subdivided into 
two different data sets. The data set represented by blue dots 
is trained to minimize the loss function evaluated over Ω , 
while the data set represented by green dots is trained to 
match the boundary conditions. Once the learning process is 
invoked and the loss reaches a certain tolerance, we stop the 
process. The stopping criteria is again based on trial-error 
so that the algorithm never fails to converge. Now we uti-
lize this previously constructed model architecture and most 
of the learned parameters, and then using standard training 
methods to learn the remaining, non-reused parameters of 
the new model corresponding to the plate with hole.

In the source task, we have used 3 hidden layers of 40 neu-
rons each and the entire domain is discretized with N ≈ 5600 
interior, M ≈ 1800 boundary training points as shown in 
Fig 4. On the target task, we have considered 2 more hid-
den layers on top of preceding trained layers, comprising of 
35 neurons in each hidden layer, and the domain contains 
N = 2000 interior, M = 500 boundary training points. In 
both cases, the swish activation function has been used and 
SGD optimizer with � ∈ (0.0001, 0.1] and � ∈ (0.3, 1] . In 
the source task, a relatively larger learning rate was used 
and once the layers have been trained to converge we then 
retrain the whole model end-to-end with layer specific learn-
ing rate. In particular, we set a moderate learning rate for 
the pretrained layers to avoid the time-cost. For the sake of 
experiment, we consider three different training schedules 
viz. “Lower learning rate”, “Larger learning rate” and “Dif-
ferential learning rate”. We emphasize that all the sched-
ules require the same amount of training iterations. From 
our findings, we conclude that larger learning rate puts the 
model under a higher risk of exploding gradients and failure 
to converge, while a lower learning rate consumes exces-
sive amounts of time. Therefore, following standard practice, 
we attempt to predict the regime of learning rates, where 
the optimal performance can be achieved. In this phase we 
choose �1 = 0.001 , �2 = 0.008 and �3 = (0.0076, 0.08) and 

continue to use the same set of hyperparameters across tasks. 
The evolution plots are depicted in Fig 5. We find that for a 
fixed computational budget the best performance is always 
achieved in differential learning rate. Nevertheless there 
is a trade-off and one needs to go over trial-error process 
depending on the model. The error plots from a conventional 
learning and transfer learning are also depicted in Fig. 5. In 
addition, performance comparisons between a model trained 
from scratch (i.e., CL model) and a pretrained model (i.e., 
TL model) are demonstrated by learning curves. Since the 
exact solution is known, we also compare relative errors, 
which are defined as:

where Npred is the number of testing points and 
Uerr(x, y) = U(x, y) − U�(x, y) . Together this is a clear cut 
evidence how transfer learning boosts the computation per-
formance with smaller data set, possessing the benefits of 
less training time for a NN model and resulting in a lower 
generalization error in comparison to conventional learning, 
where the model needs to train from scratch on a larger data 
set to reach a desired level of accuracy.

4.1.1  Example‑II: 3D Poisson equation

In the second example, we consider the Poisson problem 
with discontinuous right hand side on a three dimensional 
irregular domain defined by,

The governing equations are as follows:

where

L2 ∶=

�∑Npred

i=1
U2
err
(xi, yi)�∑Npred

i=1
U2(xi, yi)

Ω ∶=
{
(x, y, z) ∈ ℝ

3 ∶
1

4
< x2 + y2 + z2 < 1 &, z ≥ 0

}

−A�,p(u) = f (x, y, z) in Ω

u = 0 on �Ω

Fig. 9  Distribution of boundary and interior collocation points over training sets and test points over testing set
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Fig. 10  Comparison of solutions and pointwise errors. Learning curves, relative errors and training duration

Fig. 11  Training set and evaluation set
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The exact solution U  is not known in this case; therefore, 
loss function is used as a measurement of how successful 
our model is at predicting the ground truth. In the source 
task, we have chosen a unit hemispherical domain filled 
with N = 64000 interior and M = 15000 boundary train-
ing points, see Fig. 6. The neural network model contains 4 
hidden layers, each with 80 neurons and a combination of 
“swish-tanh” is chosen as the activation function. On the 
other hand, for the target task, we consider a hemispherical 
shell filled with N ≈ 22000 interior and M = 8000 bound-
ary training points and the network model is constructed 
with 2 more hidden layers of equal width of 50 neurons and 
“swish” activation function is applied. In addition, a fine 
tuned SGD optimizer followed by BFGS has been used for 
both the training process. The transfer learning solution in 
this case is shown in Fig. 7. As before, the interesting parts 
are the training time and loss values which are analyzed in 
the figures. As it can be seen in case of conventional learn-
ing, because of excessive training points on the same domain 
and complexity in the network model, the procedure is com-
putationally expensive. In addition, the model ends up with 
worse loss values in comparison to transfer learning.

f (x, y, z) =

� √
x2+y2+z2

6
if y ≤ 0

x + y −
√
z if y > 0

4.2  SGD vs Adam

More recently, researchers are focusing on SGD with 
momentum instead of vanilla SGD. With the goal of train-
ing faster and more accurate neural nets, our empirical 
results demonstrates that SGD + � converges much better 
than Adam. Despite its widespread popularity, under specific 
circumstances Adam sometimes fails to converge to an opti-
mal solution. Exploratory studies [41–43] in this direction 
highlight the possible inabilities of adaptive optimization 
technique, such as Adam compared to SGD. We conducted 
an experiment with Adam and SGD. On the same problem 
setup, we train our model on the data set obtained from the 
hemispherical domain. We follow the same learning rate 
scheme. Figure 8 illustrates the efficacy of the respective 
optimizers. Evidently, this experiment suggests that SGD 
achieves a better accuracy compared to Adam, not only in 
faster decaying the loss values but also with respect to the 
training time and number of epochs necessary to attain that 
performance.

4.3  Example‑III : p = 1.5 ,ı = 0.1

In this example we consider p Laplacian problem with 
homogeneous Dirichlet condition and right hand side f is 
chosen to match the exact solution. However, the problem 
in this case has low regularity. This example is somewhat 

Fig. 12  (Left to right) Exact solution (U) , TL solution (U∼�) and pointwise error differences (U − U∼�)

Fig. 13  (Left to right) Exact solution (V) , TL solution (V∼�) and pointwise error differences (V − V∼�)
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motivated by an example in [44]. The degenerate nature of 
the p type problems makes the study of their regularity prop-
erties difficult, and in general, even with smooth problem 
data, high regularity for the solution u is not guaranteed. It 
has been shown in [45] that under some additional assump-
tions on the problem data, one can obtain a desired level of 
regularity which is sufficient to ensure an optimal conver-
gence of the loss function. In this case, our domain is an 
annular ring,

For the manufactured solution, we consider:

Following previous techniques, the source task here is 
to train the model on a unit disc filled with N = 6400 inte-
rior points and M ≈ 2000 boundary points, see Fig 9. We 
found for this model the hyperparameters : 3 hidden layers 
each with 50 neurons and “swish” activation were effec-
tive. Swish is bounded below but unbounded above and 
non-monotonic in nature; however, the evaluation cost per 
iteration is higher. Therefore, whenever possible, it should 
be combined with tanh or ReLU layers. This is what we also 

Ω ∶=
{
(x, y) ∈ ℝ

2 ∶
1

2
< x2 + y2 < 1

}

U(x, y) ∶=

{ 1

2�
sin[2�(x2 + y2)] if (x, y) ∈ Ω

0 otherwise

follow in our targeted task. Furthermore, here the data set 
contains N ≈ 2500 interior points and M = 900 boundary 
points, we have 2 more hidden layers of equal width of 30 
neurons, and as mentioned earlier SGD followed by BFGS 
is applied in both the training process. Finally, the compari-
son with respect to the exact solution and also loss function 
evaluation determines how well our algorithm models the 
data set. By taking a look at the figures, Fig. 10, constructed 
by our algorithm, one can conclude that even in the case for 
less regularized PDE and also involving a complex domain, 
the transfer learning approximation reaches an error closer to 
≈ 10−7 while leading to a significant speedup in comparison 
to conventional learning.

4.4  Example‑IV : Navier–Stokes equations

In the final example, we turn our attention to an impor-
tant class of partial differential equation that describes 
the dynamics of an incompressible Newtonian fluid flow. 
Because of the regularity issues, here we have studied only 
the stationary version of the problem in two dimensional 
bounded domains. The domains are described in Fig. 11. 
To explore the effectiveness of task-to-task learning, in this 
particular example we have conducted the experiment of 
implementing the pretrained model directly without any 
target task specific modification. In general, for a better tar-
get performance, it is always beneficial to choose a similar 
pretraining task. Therefore, in our experiment, we consider 
the square plate as source domain consisting of uniformly 
distributed N ≈ 6700 interior and M = 1050 boundary col-
location points for training the source task model. We then 
use this pretrained model for initialization and evaluate its 
performance on a geometrically different target task model, 
i.e., plate with multiple holes.

The problem is motivated by an example in [46].

�Δ� = � ⋅ ∇� + ∇p + � in Ω,

∇ ⋅ � = 0 in Ω,

� = � on �Ω.

Fig. 14  (Left to right) Exact solution (P) , TL solution (P∼�) and pointwise error differences (P − P∼�)

Fig. 15  Relative errors on test domain
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Here, � = 0.01 is the kinemetic viscosity coefficient, 
�(x, y) = [v1(x, y) v2(x, y)] & p(x, y) are the Eulerian veloc-
ity and pressure fields. We choose the boundary conditions 
and � so that the exact solution is given by,

As mentioned earlier, our goal here is to train the model on 
a simpler regular domain, e.g., square plate and then we are 
generalizing the gained knowledge by applying this model 
on the targeted domain, e.g., plate with multiple holes of 
different dimensions. We avoid the training process on such 
domain which is quite challenging. Nevertheless, transfer 
learning allows to deal with these scenarios by leveraging 
the pre-built model from source task. The basic architecture 
consists of 3-hidden layer neural network containing 60 neu-
rons in each layer. We have trained one neural network with 
3 outputs but, it can also be done individually to approximate 
� and p. This seems to be much harder, because training dif-
ferent architectures and attaining optimal hyperparameters 
is itself a daunting task and it also requires a lot of compu-
tational time. Besides, the former task is more suited for 
grasping the underlying equations. The weights are initial-
ized using a Xavier initialization, while the biases are gen-
erated using a normal distribution with mean 0 and stand-
ard deviation 1. They are trained using an SGD optimizer 
with the fine tuned learning rate and momentum followed 
by BFGS. The first two hidden layers are connected with 
“swish” activation and the final layer is with “tanh” activa-
tion. The resulting prediction error is validated against the 
test data. Figures 12, 13, 14 provide a comparison between 
the exact solution and the transfer learning outcome. It can 
be observed that the predicted outputs and exact solutions 
are quite close on the testing sets, which evidently supports 
the success of the pretrained model over the targeted task. 
Therefore, from these empirical findings, we conclude that 
even without learning every task specific features, TL imple-
mentations are still adaptable enough to achieve reasonable 
accuracy with only a pretrained model. Thus by learning 
quite generic feature of the target domain, the model is capa-
ble of capturing the intricate non linear behavior of N–S 
equation in that domain. Moreover, as an addendum, we 
have achieved such performances with zero training dura-
tion on target model. To quantify the accuracy of this novel 
approach we also compute the relative error as:

v1(x, y) = 1 + e
x

2 sin 2�y

v2(x, y) =
1

4�
e

x

2 cos 2�y

p(x, y) = 1 − e
2x+2y

�

Lu
2
∶=

�∑Npred

i=1
U2
err
(xi, yi)�∑Npred

i=1
U2(xi, yi)

where Npred  is  the no. of testing points and 
Uerr(x, y) = U(x, y) − U∼�(x, y) . Similarly, Lv

2
 and Lp

2
 are also 

defined. To the end an experimental assessment of perfor-
mance is demonstrated in Fig. 15.

5  Conclusions

In this paper, we proposed a novel approach to predict the 
solutions of complex BVPs while capturing the features 
of interest in the input domain using the mechanisms and 
strategies of transfer learning from the perspectives of data 
and model. We have shown how the proposed framework is 
superior in various aspects to existing protocols. Our find-
ings enable the efficient use of optimizers and analyse how to 
control the learning rate and momentum coefficients in order 
to achieve near-identical model performance on the test set 
with the same number of training iterations but significantly 
fewer parameter updates. Furthermore, the implementation 
of NURBS based modeling possesses profound computa-
tional benefits of designing the shape of domain, since the 
time taken to analyze is greatly reduced and consequently 
our results have high accuracy even in the case of more 
sophisticated shapes of the boundary. Towards this end, 
experiments have been conducted to evaluate the perfor-
mance of the proposed model to handle the mainstream area 
in domain adaptation algorithm. The comparisons of differ-
ent models clearly reflect that selection of transfer learning 
model is an important research topic when solving com-
plex problems for practical applications. Several techniques 
remain open to explore and a wider range of new approaches 
are still require, to solve the knowledge transfer problems in 
more complex scenarios for example how to tackle negative 
transfer learning [47, 48], catastrophic forgetting [49, 50] 
etc, would be our future direction to study extensively. It is 
also left to mention that, as one of the popular and promising 
subject in machine learning algorithm optimization method 
remains a major bottleneck and deserves further system-
atic analysis. Recent research [51–53] shows that this gap 
can be eliminated by careful use of classical momentum or 
Nesterov accelerated gradient based techniques. Some other 
commonly employed technique includes time based decay 
learning rate and adaptive learning rate. Studying this area is 
also a subject in our future work. Finally, this method could 
be applied to other problems, where domain adaptation is 
important, such as classifying whole-slide images in medi-
cal applications.
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