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Abstract
Code review is an important process in software engineering – yet, a very expensive
one. Therefore, understanding code review and how to improve reviewers’ performance is
paramount. In the study presented in this work, we test whether providing developers with
explicit reviewing strategies improves their review effectiveness and efficiency. Moreover,
we verify if review guidance lowers developers’ cognitive load. We employ an experimental
design where professional developers have to perform three code review tasks. Participants
are assigned to one of three treatments: ad hoc reviewing, checklist, and guided checklist.
The guided checklist was developed to provide an explicit reviewing strategy to develop-
ers. While the checklist is a simple form of signaling (a method to reduce cognitive load),
the guided checklist incorporates further methods to lower cognitive demands of the task
such as segmenting and weeding. The majority of the participants are novice reviewers
with low or no code review experience. Our results indicate that the guided checklist is a
more effective aid for a simple review,while the checklist supports reviewers’ efficiency and
effectiveness in a complex task. However, we did not identify a strong relationship between
the guidance provided and code review performance. The checklist has the potential to lower
developers’ cognitive load, but higher cognitive load led to better performance possibly due
to the generally low effectiveness and efficiency of the study participants. Data and mate-
rials: https://doi.org/10.5281/zenodo.5653341. Registered report: https://doi.org/10.17605/
OSF.IO/5FPTJ.
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1 Introduction

Code review is a widely used (Rigby and Bird 2013; Bacchelli and Bird 2013; Gousios et al.
2014; Sadowski et al. 2018) software engineering practice in which one or more reviewers
inspect a code change written by a peer (Bacchelli and Bird 2013; MacLeod et al. 2017)
to improve software quality (Baum et al. 2017a), find defects (Baum and Schneider 2016),
and transfer knowledge (Bacchelli and Bird 2013).

Performing efficient and useful code reviews is an expensive and time-consuming
task (Cohen 2010), therefore improving developers’ performance during code review is of
great interest. Performance in the context of code review is often defined as how many
defects are found (effectiveness) in the code change under review and in how much time
(efficiency) (Biffl 2000).

The mentally challenging nature of reviewing code is one of the reasons why code
review is expensive (Pascarella et al. 2018; Bacchelli and Bird 2013; Baum 2019). To
find defects, developers need to process a vast amount of information related to the code
change, to its rationale, to its context in the whole codebase, and to its implications for
software quality (Pascarella et al. 2018). Understanding a change-set to review (e.g., a
pull request (Gousios et al. 2014)) and its context is one of the main challenges of code
review (Tao et al. 2012; Bacchelli and Bird 2013).

The cognitive resources (e.g., working memory capacity) are available to developers dur-
ing code review can impact review performance. For example, working memory capacity
is helpful to find delocalized (Dunsmore et al. 2003) defects (i.e., defects that can only be
identified by inspecting non-contiguous parts in a program) (Baum et al. 2019). However,
working memory is a limited resource (Paas et al. 2003) and the cognitive load that a task
poses on the cognitive system can deplete the available capacity, thus leading to cognitive
overload and poor performance (Paas et al. 2003; Matthews et al. 2019).

In recent years, researchers devised approaches to support the code review process, such
as visualizations (Tymchuk et al. 2015; Oosterwaal et al. 2016), optimizations of the order
in which review files are displayed (Baum et al. 2017b; Baum 2019), and untangling of
unrelated changes in a changeset under review (Barnett et al. 2015; Dias et al. 2015; Tao
and Kim 2015). These aim at increasing developers’ review performance. Although most of
these approaches do not directly aim to reduce developers’ cognitive load, they do improve
reviewers’ ability to understand the change-set under review and navigate it—activities that
require high cognitive resources.

Existing tools to support developers and improve their code review performance do not
guide developers on how to perform the review, even though this kind of guidance could
help to lower required cognitive resources (Mayer and Moreno 2003). Rather, to give this
kind of support to reviewers, researchers investigated reading techniques for formal code
inspection (Fagan 2002; Basili et al. 1996). These techniques guide developers in how to
inspect the code searching for defects (Baum 2019).1

A reading technique for code review used in industry (Baum 2019; Gutha 2015; Gridnev
2017; Carver 2003) is checklist-based reading (Fagan 2002). A checklist guides develop-
ers in what and how to review by providing explicit instructions: For instance, a checklist
might ask developers to “check an issue for each method” (Kamsties and Lott 1995). Check-
lists explicitly aim to aid developers in performing complex tasks by systematizing their

1Tools that follow a similar principle have been developed (e.g., (LaToza et al. 2020)), but to support other
software development tasks, such as testing and debugging. The tool developed by LaToza et al. (2020)
provides means to follow and execute explicit strategies on how to perform the task.
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activity, thus lowering the cognitive load of the task (Kamsties and Lott 1995; LaToza
et al. 2020). However, the relationship between checklists and lowered cognitive load has
yet to be empirically tested. Moreover, checklists provide a basis to develop an executable
reviewing strategy: Automatizing the flow of its items, a checklist can be turned into a
step-by-step strategy.

In this paper, we present a study we designed to explore how to assist developers in
decreasing the complexity and cognitive challenges of code review, focusing specifically
on checklist-based code review. Our aim is to test whether implementing a reviewing strat-
egy using additional methods of cognitive load reduction in a code review tool leads to
improved review effectiveness and efficiency. We use checklists as a code reading technique
and we aim to improve the code review performance by (1) providing the steps on how to
execute the review, (2) strengthening the tool-support to systematically execute the check-
list, and (3) making the review more focused and flexible to fit better the change-based
characteristics of modern code review. To this aim, we developed a guided checklist, whose
step-by-step execution is supported by a tool and reflects the content of the specific review.
We measure how this method compares to a normal checklist and a control group. Par-
ticularly, we investigate whether these approaches improve performance through lowering
cognitive load and assess the usability of the implemented guidance approaches.

The research design of this study was accepted as a Registered Report at MSR’20
(Gonçalves et al. 2020). Accordingly, we conducted an experiment with 70 developers who
performed three review tasks. The experiment has three treatments: (1) ad hoc reviewing,2

(2) checklist-based reviewing, and (3) guided checklist-based reviewing (which uses further
means of reducing cognitive load). After each review, we measured developers’ cognitive load.

The majority (71.6%) of the developers who eventually took part in our experiment does
not commonly practice code review—they can be considered as novice reviewers.

The participants achieved low review effectiveness and efficiency regardless of the
treatment to which they were assigned, therefore limiting the strength of our results. Never-
theless, we provide an initial indication on the relationships between guidance, code review
performance, and cognitive load. Our results show that the guided checklist performs better
in a simpler task: Using a regression model, we identified a statistically significant relation-
ship between the use of the guided checklist and review effectiveness in the small review
task (Small Change). The checklist, instead, seems to increase our participants’ review
effectiveness and efficiency in the more complex tasks: We identified the existence of a
relationship between the use of the checklist and higher review effectiveness and efficiency
in one of the large review tasks (Large Change B).

Moreover, we observed that a higher cognitive load is linked to better performance.
This contradicts our expectations. This result might have been caused by the generally low
review performance of the participants and could indicate that investing cognitive resources
is actually needed to perform well for novice reviewers.

Registered report: https://doi.org/10.17605/OSF.IO/5FPTJ.

2 Background and RelatedWork

Over the years, substantial research has been dedicated to improving developers’ perfor-
mance during peer code review. Some approaches focus on giving developers information

2This treatment provides no guidance during the review.
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on the context of a review change-set: e.g., employing visualizations to show the structure
of the code (Tymchuk et al. 2015) and finding potential issues with the change, based on
similar changes in the codebase (Zhang et al. 2015). Other approaches focus on simplifying
complex review change-sets by decomposing them into groups of related changes (Tao and
Kim 2015; Barnett et al. 2015; Dias et al. 2015).

Code review is a cognitively demanding task (Baum 2019; Pascarella et al. 2018; Bac-
chelli and Bird 2013). For this reason, researchers devised approaches to lower reviewers’
cognitive load during code review. For instance, Baum et al. (2017b) proposed to order
review changes based on their relations (instead of using the alphabetical order of the file
names as done by popular code review tools, such as Gerrit and GitHub), as a way to lower
the effort developers need to put in understanding of the construction, connections, and
logic of the changes to review.

In the following section, we expand on the role that cognitive load plays during code
review and present how current tools help to reduce reviewers’ cognitive load.

2.1 Cognitive Load and Reviews

Working memory is the part of human memory in charge of storing short-term information
in processing tasks. It remains stable throughout a person’s life and cannot be significantly
trained or improved (Dobbs and Rule 1989). Research found evidence that working memory
capacity is linked to the capacity of finding delocalized defects during code review (Baum
et al. 2019). In fact, finding delocalized defects requires simultaneous cognitive processing
of different parts of the code.

Cognitive load refers to the amount of working memory used while performing a task
(Paas et al. 2003). Once the cognitive load exceeds one’s working memory capacity, their
performance in the task lowers considerably (Matthews et al. 2019). More difficult tasks
(e.g., more challenging code reviews) pose a higher cognitive load and deplete working
memory capacity faster. Supporting people in using less working memory capacity while
performing their tasks can prevent them from reaching working memory overload. More-
over, this kind of support might also help those with lower working memory capacity to
perform well in complex tasks (Bannert 2002).

When it comes to processing information, there are three types of cognitive load at play
that contribute to the total cognitive load and potential overload. Since it is important that the
cumulative cognitive load does not exceed the working memory capacity (Paas et al. 2003),
the goal should be to minimize the cognitive load caused by processing the information
related to efficiently solving a task (intrinsic and extraneous load) and free capacity for the
load used for dedicated and focused performance (germane load) (Bannert 2002).

Intrinsic load: The intrinsic load relates to the complexity of a task. It refers to the
amount of interacting elements that must be simultaneously handled by the working
memory. The intrinsic load can be lowered by simplifying the task or reducing the
amount of interacting elements. The human mind can deal with intrinsic cognitive load
by storing information in the long-term memory and retrieving it only when needed or
by automating repeated cognitive processes and behaviors. For this reason, experience
is fundamental to reach efficiency in a task (van Bruggen et al. 2002). Tools that con-
tribute to lowering the intrinsic load in software development help with these functions
– by storing information and providing it in the right moment (LaToza et al. 2020) or by
automating repetitive tasks (Rafi et al. 2012). Some tools to support code review sim-
plify unnecessary processing of interacting elements by partitioning changes into smaller
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related portions (Tao and Kim 2015; Barnett et al. 2015) or by providing a summary
through visualizations (Tymchuk et al. 2015).

Extraneous load: The extraneous (ineffective) load is caused by the need to process
unnecessary or unrelated information, thus harming the performance. For instance,
the need to switch contexts/documents, to understand unclear documentation, and to
search for information without available pointers are situations impacting the extraneous
cognitive load.

Checklists can also be employed to reduce reviewers’ extraneous cognitive load.
They help developers to focus their attention on the specific areas of code that need
inspection (Gutha 2015; Gridnev 2017; Rong et al. 2012).

Germane load: The germane (effective) load comes from the effort put in solving a task.
This type of load is helpful for developers’ effectiveness and efficiency. It is related
to motivation (higher determination also poses higher germane load) but also to previ-
ous knowledge about the issue (less effort is needed to solve the task if the developer
already has the needed knowledge). In practice, this type of cognitive load can be cre-
ated, for instance, by introducing gamification in code reviews to improve the interest and
motivation of developers (Khandelwal et al. 2017; Unkelos-Shpigel and Hadar 2015).

Intrinsic cognitive load is the most difficult to manipulate, as often there is no choice in how
complex the materials necessary for completing a task are. This limits the working memory
available to deal with sub-optimal information inputs or that can be put in motivated and dedi-
cated performance. Therefore, the effect of lowering the ineffective load and raising the effec-
tive one is particularly important when dealing with challenging reviews (Bannert 2002).

As shown in Fig. 1, the cognitive load for an individual is determined by their charac-
teristics (e.g., available knowledge), the characteristics of the task (e.g., complexity, type of
problem), and their interaction (experience with a specific type of problem). Therefore, to
lower the cognitive load in a task, interventions can be done to improve individuals’ abili-
ties, adjust tasks to pose a lower cognitive load, or optimize the fit between the needs and
possibilities of individuals and the tasks they are performing.

With respect to measuring and assessing, cognitive load is conceptualized through the
affected factors represented on the right-hand side in Fig. 1 (Paas and Van Merriënboer
1994). Mental load represents the demands posed on the cognitive system by the task itself,
while mental effort represents the cognitive demands consciously allocated to solving the task.

Fig. 1 Conceptual framework for understanding and assessing cognitive load, adapted from Paas and Van
Merriënboer (1994)
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Several methods have been proposed to lower mental load , i.e., the cognitive demands of
tasks. Each of them addresses different types of cognitive demands. Apart from the demands
originated from the complexity of the information (essential to the task) and the demands
caused by processing the incidental (unessential) information, it is demanding to hold the
information in working memory for a long time (Mayer and Moreno 2003).

Table 1 presents a list of methods to reduce mental load from Mayer and Moreno (2003).
Among these methods, some have already been integrated into tools to support code review.
For instance, tool support such as visualizations or change ordering incorporate methods
such as parallel processing of verbal and graphical information, reducing visual scan-
ning, segmenting information, or reducing the processing of unessential information for the
review.

In summary, mental load and mental effort both contribute to the overall cognitive load
and potential cognitive overload. Making review less demanding on available cognitive
resources can help to prevent cognitive overload. Therefore, in this study we aim to prevent
cognitive overload by reducing the mental load code review is posing on the developers’
mind. We measure cognitive load as the goal concept and refer only to this concept in the
following sections.

2.2 Code Inspection Reading Techniques and Strategic Reviewing

This study aims to explore whether the use of an explicit strategy to review code improves
review performance. The idea of defined processes and steps for reviewing is integral to
formal code inspection (Ebad 2017).

Over the years, multiple reading techniques have been developed to guide developers
in inspecting code and other types of documents (Ebad 2017). Some code reading tech-
niques are simple checklists that focus reviewers on certain aspects to ensure that these are
checked, while others offer an explicit step-by-step guide to follow to review the artifact at
hand (Baum 2019). However, modern code review does not commonly apply formal inspec-
tion reading techniques (Baum et al. 2017a), focusing more on the advantages offered by the
use of review-specific tools (e.g., Gerrit3, Microsoft CodeFlow (Greiler 2021), Facebook’s
Phabricator4, and Atlassian Crucible5), as also described in Section 2.1.

Checklists are an example of a reading technique that has been used not only for code
inspection (Thelin et al. 2003), but also for other types of code review (Gutha 2015; Grid-
nev 2017; Rong et al. 2012). Checklists utilize signaling (see Table 1) and are thought to
improve performance through lowering cognitive load (Kamsties and Lott 1995). They have
been found to be an efficient aid for finding defects (Rong et al. 2012), but are outper-
formed by reading techniques that follow a specific reviewing scenario (Abdelnabi et al.
2004; Denger et al. 2004). This suggests that guidance that shows reviewers how to proceed
with the review by further signaling cues for what to look for, where, and when may be
beneficial. Nevertheless, the positive effect of explicit strategies is not supported by all stud-
ies (McMeekin et al. 2009; Lanubile et al. 2004) and checklists seem to be better accepted
by reviewers compared to reading scenarios (Lanubile et al. 2004).

The importance of defined cognitive processes and their systematic execution is recog-
nized when aiding software development tasks like debugging (LaToza et al. 2020; Ko et al.

3Gerrit Code Review: https://www.gerritcodereview.com
4Phabricator: https://secure.phabricator.com
5Atlassian Crucible: https://www.atlassian.com/software/crucible
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2019). These strategies for executing programming tasks take advantage of the function-
alities that tools provide to lower developers’ cognitive load by storing and managing the
information needed to solve the issues.

By building on methods to reduce mental load, we have developed a tool-supported
reviewing strategy to assist developers in improving their code review performance.

3 Research Questions

Supporting developers with reading techniques (e.g., checklist) has been found to be an
efficient way to help reviewers find defects during code inspection (Biffl 2000). However,
checklists were found to be less effective compared to reading techniques that offer guid-
ance on how to review, such as Systematic Order-based Reading (Abdelnabi et al. 2004).
Assisting developers in defining and executing strategies for software development tasks
(e.g., debugging) increases developers’ productivity (LaToza et al. 2020).

The positive outcome of previous research suggests that incorporating methods to reduce
developers’ cognitive load (e.g., signaling (Mayer and Moreno 2003)) can positively affect
review performance. In this study, we investigate whether code review efficiency and effec-
tiveness can be improved using additional methods to reduce developers’ cognitive load. We
compare a tool-supported systematic guidance on how to perform a review (guided check-
list) to guidance only on what to look for in the review (checklist) and to an ad hoc review
where developers perform the review according to their own process. Our first research
question is the following:

We formalize our research question into the following hypotheses:
H1.1: There are differences in review effectiveness between ad hoc review, checklist, and

guided checklist.
H01.1: There are no differences in review effectiveness between ad hoc review, checklist,

and guided checklist.
H1.2: There are differences in review efficiency between ad hoc review, checklist, and

guided checklist.
H01.2: There are no differences in review efficiency between ad hoc review, checklist,

and guided checklist.
Checklists, as well as tool-supported strategies, are expected to systematize the activity

of the developers, thus lowering their cognitive load by reducing the amount of information
they have to keep in mind and helping them to focus on relevant issues (Paas and Van
Merriënboer 1994; LaToza et al. 2020). In the software engineering literature, however, we
found no direct measurement of the effect of tools on cognitive load and its effect on code
review performance. Therefore, we ask:
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We formalize our research question as:
H2.1: Cognitive load mediates the relationship between the guidance approach and

review effectiveness.
H02.1: Cognitive load does not mediate the relationship between the guidance approach

and review effectiveness.
H2.2: Cognitive load mediates the relationship between the guidance approach and

review efficiency.
H02.2: Cognitive load does not mediate the relationship between the guidance approach

and review efficiency.
Figure 2 summarizes our research questions and their link with the key concepts of our

investigation: e.g., cognitive load and review performance.

4 Methodology

After having reported the goal of our experiment and our hypothesis in the previous section,
in this section we describe the experiment planning, following the reporting guidelines of
Jedlitschka et al. (2008).

According to the methodology presented in our registered report (Gonçalves et al. 2020),
we set up a controlled experiment where developers have to complete three code review
tasks searching for defects. Each participant is randomly assigned to one of three pos-
sible treatments: (1) a control treatment with no guidance (henceforth: ‘ad hoc review’),
(2) checklist supported review (‘checklist’), and (3) strategic checklist execution (‘guided
checklist’).

Fig. 2 The research questions as related to the main theoretical concepts
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4.1 Study Participants

As reported in our registered report (Section 3.4) (Gonçalves et al. 2020), we performed a
power analysis to estimate the sample size needed to identify existing differences between
the treatment groups. Based on previous studies, we do not expect a large effect size to
appear (Dunsmore et al. 2001). The sample size is calculated using a convention for an
ANOVA medium effect size (Cohen 1992). The estimated total sample size is 66 par-
ticipants. Based on this analysis, we hired 70 developers from a software development
outsourcing company located in India to take part in our experiment. The company has
more than 2,000 employees and provides a wide range of services (e.g., DevOps, web
development, and mobile development).

We contacted the developers through the company and they completed the experiment
as part of their job. We requested all developers to have experience in Java, but we had no
further control over the selection of the sample, which was up to the project manager at the
company. We had the option to ask for additional developers in case of irregularities in data
or drop-outs.

4.1.1 Descriptives

Characteristics of the study sample are described in Figs. 3, 4, and Table 6. After the data
cleaning, our participants’ sample consisted of 67 professional Java developers, counting
66 programmers and one tester. Among them, 54 identified themselves as male and 13 as
female. The age of the participants ranged between 22 and 33 (M = 26.85). Furthermore,
we know that 28 participants had a B.Sc. in Computer science and 18 had a M.Sc. degree in
Computer Science, totaling 68.7% of the study participants with a university degree.

Most participants had no experience with jEdit – the system used in the review tasks.
However, five of them used it in the past and six have contributed to the jEdit code base.
While analyzing collinearity in the data, we did not find a significant relationship between
experience with jEdit and performance in the experiment reviews.

Our sample consisted of professional Java developers, however many of them did not
have code review experience. Several (39) of them already worked more than 8 hours before
doing the experiment and 30 of them reported being moderately or very stressed before the
experiment. Participants reached low effectiveness and efficiency, as reported in Table 6.
Furthermore, we verified developers’ understanding of the change-set at the end of each
review task. The results are shown in Table 2.

4.2 Experiment Treatments andMaterials

In this section, we describe the materials used in our experiment. First, we describe the
experiment UI; then we present the three treatments (i.e., ad hoc review, checklist, and
guided checklist). Moreover, we describe how we measured the cognitive load of the par-
ticipants as well as how we assessed the usability of the devised guidance approaches. An
explanation of the materials is provided in our registered report (Gonçalves et al. 2020).

4.2.1 Experiment UI

To conduct our experiment, we use a web-based tool (Fig. 5 shows an example view) that
allows participants to complete the experiment remotely. We log participants’ answers, envi-
ronment, and UI interactions. The tool was built and used in our previous work (Baum et al.
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Fig. 3 Participants’ demographics (1)

2019) and modified according to the new experiment’s requirements. The tool is available
in our replication package6.

4.2.2 Treatment: Ad hoc Review

The ad hoc review (Uwano et al. 2006) condition is our control group, which we use as a
baseline to evaluate participants’ review performance. Developers assigned to this treatment
use the same web-based experiment platform as the other treatments to perform the review
tasks. All participants review the same tasks regardless of the treatment to which they are
assigned. Developers in the ad hoc review group do not receive any specific aid during the
review and can carry on the reviews as they prefer.

4.2.3 Treatment: Checklist

Checklists provide cues on where to focus attention to find common defects and improve
the usage of cognitive resources (Bannert 2002). This can be seen as using Signaling to
reduce cognitive load (see Table 1).

6Replication package: https://doi.org/10.5281/zenodo.5653341
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Fig. 4 Participants’ demographics (2)

Developers assigned to the “Checklist” treatment of our experiment are required to iden-
tify defects using a checklist. We developed this checklist based on items from Microsoft
checklists (McConnell 2004) and recommendations in the literature: A good checklist
(1) requires a specific answer for each item, (2) separates items by topic, and (3) focuses
on relevant issues (Degani and Wiener 1991; Kamsties and Lott 1995; Chernak 1996).
Checklists should specify the scope in which items must be checked (e.g., “for each
method/class”) to prevent developers from memorizing big portions of code and jumping
through it (Kamsties and Lott 1995).

Following these recommendations, we created the checklist for our experiment. For each
defect, our checklist contains at least one item related to the issue but without explicitly
pointing at it. Thus, the checklist contains items relevant to the review at hand but does not
give obvious clues about the type or location of the defects.

Table 2 Participants’ scores in the understanding questions shown at the end of each review task

Change Mean Standard deviation Num. of understanding questions

Small/Warm-up 1.21 0.71 2

Large Change A 1.45 0.86 4

Large Change B 1.37 0.76 3
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Fig. 5 Partial view of the checklist implementation in the web-based experiment UI

Every item in the checklist was extracted from the Microsoft checklists presented by
McConnell (2004). We created an initial version of the checklist and performed an assess-
ment with three Java developers with experience in code review to evaluate its goodness.
Based on the collected feedback, we improved the items in our checklist. Then, we repeated
this process with a new set of three developers.

The final version of the checklist contains 18 items, grouped by their scope (general,
class, or method). For each item, developers can indicate whether they considered it without
finding any defect or they found a defect while inspecting it. Reviewers are not forced to
check every item, but a warning is shown if they attempt to complete the review without
having marked all checklist items as checked. The checklist is displayed as a lateral bar on
the left side of the screen (Fig. 5). Developers can open or close the checklist bar by clicking
on the collapse checklist button on the top-left corner of the screen. Furthermore, we ask
developers to note any defects that they encounter, even if they are unrelated to the content
of the checklist.

The checklist items are reported in Appendix A.1; the mapping to the defects they help
identify is in our replication package7.

4.2.4 Treatment: Guided Checklist

The human brain has a great potential to retrieve complex information and consequently
make contextualized decisions. A tool-supported strategy could free the mental capacity
to do these tasks by aiding systematic execution of steps and providing relevant informa-
tion when needed (LaToza et al. 2020). Therefore, providing explicit strategies to perform
code review might support developers by reducing their cognitive load and improving their
performance.

The guided checklist is a version of the previous checklist (Section 4.2.3). Checklists
should specify the scope for which an item must be checked: e.g., “for each class”. Differ-
ently from a classic checklist, the guided checklist is not static but iterates over the classes

7Replication package: https://doi.org/10.5281/zenodo.5653341
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and methods in the review change-set. This allows a detailed step-by-step review of each
relevant checklist item, e.g., “For the class VFSBrowser, please check . . .”.

In comparison to the checklist, the implementation of the guided checklist is improved
by multiple methods for lowering cognitive load, as seen in Table 1. The guided checklist
uses the same items and signals what to look for. Additionally, it (1) segments the task
into smaller units, (2) reduces the need to hold information in the working memory by
iterating through classes and methods, (3) reduces visual scanning by highlighting chunks
and asking focused questions on a specified piece of code, and (4) minimizes the processing
of unessential information by offering only items relevant to that chunk. Therefore, even
though both checklist and guided checklist use signaling as a method to reduce cognitive
load, the guided checklist is expected to reduce the amount of information a developer needs
to process at a time and the scope to which they need to pay attention—the signal is more
precise. Thanks to the identical content of checklist and guided checklist items, we can
conceptually separate the effect of additional measures for reducing cognitive load.

The guided checklist is implemented as a top bar in the review task interface (Fig. 6). It
displays the same items as the checklist. Differently from the checklist, items are not shown
all at the same time, but participants are explicitly asked first to check the general items,
then the class and method ones. The execution flow of the guided checklist is reported
in Algorithm 1. We display only the items that are relevant for the selected code chunk.
Furthermore, the strategy highlights to the user which code chunk(s) they are currently

Fig. 6 Example of a strategy item in the web-based experiment UI
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reviewing. The user must explicitly mark the items as checked before being able to proceed
with the review.

4.2.5 Cognitive Load

To measure cognitive load, we use a standardized questionnaire (StuMMBE-Q (Krell 2017))
that captures the two components of cognitive load (i.e., mental load and mental effort)
in two 6-item sub-scales. The items are rated on a 7-point Likert scale. The individual
responses are recorded as a score from 1 to 7. These scores are averaged to achieve a final
score directly comparable to the response anchors. The scale contains no reverse-scored
items. Effort and difficulty ratings are reliable measures for the cognitive processing that
contributes to cognitive load (DeLeeuw and Mayer 2008). While there are other potential
measures of cognitive load, such as response time to a secondary task (Paas et al. 2003), we
use a questionnaire because it does not require the physical presence of the respondents or
the usage of special equipment. Moreover, it does not directly interfere with the code review
performance.

4.2.6 Usability of the Treatment Implementation

We adapted the System Usability Scale (Brooke and et al 1996) to measure the usability of
the devised guidance approaches: We rephrased the items of the System Usability Scale to
fit the purpose of the checklist and guided checklist evaluation. Using the scoring manual,
the treatment is graded on the scale from A to F, Excellent to Awful (UsabiliTEST 2020).

4.3 Tasks

Participants in our experiment were asked to complete three code review tasks. Moreover,
before starting the review, developers were shown a tutorial to familiarize themselves with
the review UI used in the experiment. In the following, we describe how the tutorial and the
review tasks are implemented. The code of the tasks used in the experiment is available in
our replication package8.

4.3.1 Tutorial

The tutorial (Fig. 7) shows a brief code review consisting of one file. Reviewers are asked to
perform either three tasks (in the ‘checklist’ or ‘guided checklist’ conditions) or two tasks
(in the ‘ad hoc’ condition) to familiarize themselves with the review UI before proceeding
to the experiment. (1) click on the view more context button to expand the context of a
review change; (2) insert a remark; (3) if developers were assigned to the checklist or guided
checklist treatments, mark an item of the checklist (guided checklist) as complete. The code
to be reviewed contains a bug9 for the reviewers to find.

4.3.2 Code Review Tasks

First, participants review a short, simpler change-set, then they have to do two reviews of
two distinct, longer change-sets. The first change-set contains three defects, while the others

8Replication package: https://doi.org/10.5281/zenodo.5653341
9A plus sign was replaced with a minus in a function that sums two numbers (passed as parameters).
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Fig. 7 The Experiment Tutorial. In the first task of the tutorial, participants need to click on the show more
context button to expand the context of a review change, and then click on the continue button to proceed to
the next task of the tutorial

contain nine and ten, respectively. The two large review tasks are presented to the partici-
pants in a randomized order. Among the initial 70 participants, 36 reviewed change Large
Change A first, while 34 were assigned to change Large Change B first. Table 3 describes
the review tasks (also available in our replication package) and Table 4 provides the num-
ber of participants assigned to each combination of treatment (ad hoc review, checklist, or
guided checklist) and change order (Large Change A first or Large Change B first).

The code changes for the review are taken from a previous experiment on code review
and contain both original and seeded defects (Baum et al. 2019). The review changes
are extracted from an existing open-source project named jEdit10 that was successfully
employed in previous studies (Rothlisberger et al. 2012; Baum et al. 2019). To control for
potential bias caused by developers’ familiarity with this system, we explicitly ask devel-
opers about their previous experience with it. We instruct the participants to focus only on
functional defects.

4.4 Variables

Our study relies on a number of quantitative measures concerning both the performance and
the perception of the participants. Table 5 reports the variables considered in our study and
presented in Section 3.1 of our registered report (Gonçalves et al. 2020).

4.4.1 Remark Evaluation and Review Performance

Developers enter their review comments (remarks) in the code review UI by writing in a text
area that appears once they click on a code line. As done in previous experiments (Baum

10http://www.jedit.org
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Table 3 Code change sizes, complexity, and number of correctness defects. The code and defects were
previously used and described in Baum et al. (2019)

Change Changed Files Change Parts Presented Cyclomatic Total

LOC (a) Complexity (b) Defects

Small/Warm-up 2 3 31 12 3

Large Change A 7 15 490 57 9

Large Change B 7 21 233 83 10

(a)The amount of lines of code visible to the participant on the right (=new) side of the two-pane diffs without
expanding the visible context
(b)total cyclomatic complexity (McCabe 1976) of the methods on the right (=new) side of the two-pane diffs

et al. 2019), we count a comment as referring to a defect iff it is in the right position and
can make a reader aware of the defect. In case a comment is on the right line but highlights
an unrelated issue, we do not count it.

The first two authors independently classified the comments of the ten developers
assigned to the first iteration of the experiment. The first iteration contained 131 remarks.
These were marked as either pointing to a defect (specifying which defect) or as false
positives. Then, we computed the agreement between the two authors involved in this pro-
cess using Cohen’s kappa (Kvålseth 1989). They reached an inter-rater agreement of 0.769;
disagreements (N = 7) were discussed to reach a consensus.

Afterward, we proceeded in an iterative fashion: The two authors independently evalu-
ated two other batches of 131 remarks each. Then, the authors computed the agreement and
discussed cases of disagreement until a consensus was reached. A Cohen’s kappa of 0.891
and 0.806 was reached classifying the second and third batches of remarks, respectively.
Since the inter-rater agreement between the authors involved in the classification achieved
good results, the rest of the remarks were split between the authors for the classification. At
this stage, the authors discussed only cases deemed as unclear during their individual work
(N=14).

Once all the remarks are classified, we evaluate the review performance (review effec-
tiveness and efficiency) of the experiment participants. We measure (1) developers’ review
effectiveness (the percentage of discovered defects in the task) and (2) review efficiency
(the number of defects found per minute spent reviewing).

4.5 Experiment Design and Procedure

In our experiment, we use the measurement-of-mediation design (Spencer et al. 2005). The
experimental design manipulates the independent variable (type of guidance), while the

Table 4 Number of initial
participants (N=70), assigned to
each combination of guidance
approach (ad hoc review,
checklist, guided checklist) and
review change order (Large
Change A first or Large Change
B first)

Treatment Change A First Change B First Total

Ad hoc 14 16 30

Checklist 13 11 24

Guided checklist 9 7 16
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Fig. 8 The Experiment Flow

mediator (cognitive load) is “only” measured as in observational studies. Figure 8 shows the
flow of our experiment. Differently from what we reported in our registered report (section
3.5) (Gonçalves et al. 2020), we included a short tutorial in the explanation step (step 2) to
allow participants to familiarize themselves with the experiment UI. At the start (Step 1 in
Fig. 8), developers are briefed on the experiment and the data handling policy.

We ask for informed consent and explicitly request the developers to not share informa-
tion about the experiment with each other. Then (Step 2), participants are randomly assigned
to one of the three treatments and have to complete a short tutorial before proceeding to the
review tasks. The tutorial aims to ensure that all participants reach a clear understanding of
the tasks, possess a basic level of familiarity with the review platform, and experience their
specific guidance approach (if any). A description of the tutorial is given in Section 4.3.1.

After each review, participants are administered a standardized questionnaire (Krell
2017) to measure cognitive load relating to the review they just did (see Section 4.2.5; Step 4
in Fig. 8).

When the participants assigned to the checklist or guided checklist treatment complete
the review tasks, we ask them to answer an adapted version of the System Usability
Scale (Brooke and et al 1996) (see Section 4.2.6; Step 5 in Fig. 8).

At the end of the experiment (Step 6), we collect demographic data to gather descrip-
tive characteristics of our sample and intervening variables such as programming and Java
experience, coding and reviewing frequency, education, and current stress level.

Developers access the experiment online via a provided URL. Throughout the exper-
iment, we control developers’ comprehension of the system by asking questions about
the change under review because code comprehension is an important condition for good
reviews (Bacchelli and Bird 2013; Pascarella et al. 2018). The comprehension questions are
taken from a previous experiment on code review (Baum et al. 2019) and are described in
the related replication package (Baum et al. 2018).

The experiment was conducted in three iterations, with the aim of adjusting the exper-
iment setup, if necessary. A group of ten developers took part in the first iteration of the
experiment, while 30 developers were allocated to both the second and third iteration. Apart
from asking for participants with higher review experience at the end of the first iteration,
we did not make any further adjustments to the experiment.

4.6 Analysis

4.6.1 Data Cleaning

According to the outline planned in our registered report (Gonçalves et al. 2020), partici-
pants who spent less than 5 minutes on a review or did not enter any review remark were
classified as NAs (for each review task). We also checked to exclude participants who
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restarted the experiment or participated several times (we collect client IPs—hashed to guar-
antee data anonymization—and cookies). None of the participants was removed as a result
of this process. However, three developers did not answer the experiment’s demographics
questions. Therefore, we excluded them from the final dataset. This left us with a resulting
sample size of 67 developers.

4.6.2 Analysis Plan

In this section, we present our analysis plan (originally stated in our registered report
(Gonçalves et al. 2020)). Since the developers in the sample reached low review effec-
tiveness and efficiency and the data provided only limited evidence of the relationships
we aimed to investigate, we had to adjust the analysis we could perform significantly, as
described in Section 4.7.

In RQ1, we perform a One-way ANOVA to identify whether there is a significant dif-
ference in code review effectiveness and efficiency among the three treatment groups.
Specifics of these differences are explored using Tukey’s Range Test for the post-hoc anal-
ysis. In response to RQ1, we also present the first regression model used in answering RQ2
as it refers to the relationship between guidance and performance as well.

We aimed to use mediation analysis (Spencer et al. 2005) for RQ2 as described and
formulated by Imai, Keele and Tingley (Imai et al. 2010). Mediation analysis combines
regression models to assess the size of a direct and indirect (mediated) effect of an indepen-
dent variable on the dependent one. Separate regression models are built for (1) the direct
effect of the guidance on code review effectiveness and efficiency, (2) the effect of guid-
ance on cognitive load as a mediator, and (3) the effect of cognitive load on code review
performance while controlling for the effect of guidance and other control variables. As last
step, (4) a mediation model is built using the regression models as arguments to calculate
the significance of the indirect effect.

We planned to construct the models employed in our analysis using the mediation R
package (Tingley et al. 2014). The type of guidance is considered as the independent vari-
able, code review effectiveness and efficiency as the dependent variables, and the cognitive
load as the mediator. To conclude a mediated effect of the treatment on the outcome vari-
able, there must be a significant direct relationship between the treatment and the outcome
variables in the model (1) and a significant relationship between the treatment and the
mediator and between the mediator and the outcome in models (3) and (4). Model (4) also
calculates the overall significance of the path from treatment to the outcome through the
mediator (Tingley et al. 2014). If the direct relationship between guidance and code review
performance remains significant in the models (3) and (4), we talk about partial media-
tion. If the relationship between the treatment and outcome becomes insignificant due to
adding the mediator to the model, we talk about a full mediation (MacKinnon et al. 2007;
MacKinnon and Fairchild 2009).

4.6.3 Correlations and Collinearity

Figure 9 presents the statistically significant correlations among core and control variables
for our analysis (Pearson correlation, p < 0.05). Apart from programming, Java, and code
review experience being inter-correlated, we observed a relationship between developers’
understanding of the change (measured as the number of correct answers to questions con-
cerning the reviewed change) and the review time (r(48) = .46) as well as a negative
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Fig. 9 Significant correlations among independent, dependent and control variables

correlation between cognitive load and Java and code review experience (r(48) = −.32 and
−.38). In other words, as expected, developers who spent more time on the review had a
higher understanding of the change and experienced Java developers and reviewers found
the reviews less cognitively demanding. In our sample, developers with more programming
and Java experience performed the experiment after fewer hours of work (r(48) = −.28
and −.28).

We performed a linear regression to assess which of our control variables are predictors
of the output variables, including age, gender, experience with jEdit, and other demographic
variables. We found stress, hours worked before the experiment, and review time to be sig-
nificant predictors of code review effectiveness (p < 0.1, aggregated for all three changes).
More hours worked and lower stress were also predictors of higher code review efficiency
(p < 0.05) in the Large Change A and the hours worked were significant as well in the
model aggregating data from all reviews (p < 0.1). Furthermore, we calculated the Variance
Inflation Factor (VIF), finding no multicollinearity.

4.7 Adjustments

The methodology of the study has been pre-registered as a Registered Report at MSR’20
(Gonçalves et al. 2020). We committed to following the pre-approved study design. How-
ever, we found out that developers’ performance throughout the experiment was deficient
despite the proposed treatments. This presented a challenge for the analysis as there was
very little variance in the values of code review effectiveness and efficiency. This limited our
ability to perform the envisioned mediation analysis. Mediation analysis can be performed
only if a relationship between the dependent and independent variable was established. If
the relationship is not clearly established, it also cannot be mediated and therefore the medi-
ation analysis becomes unsuitable. This proved to be the case, as reported in Sections 5.1
and 5.2 Mediation analysis is built in several steps, building regression models to investi-
gate the relationships suggested in Fig. 2 and a model where the code review performance is
predicted with guidance, cognitive load, and other control variables at the same time (equiv-
alent to model (3) in Section 4.6.2). This sequence of regression models was used to answer
the RQ2. Furthermore, since one of the regression models investigates the direct relation-
ship between guidance and code review performance (see model (1) in Section 4.6.2), we
report its results in answering RQ1.
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We attempted to use several strategies to mitigate the low performance of developers.
The first attempt was to avoid excluding some participants by trying to pinpoint those who
did indeed the task, but just performed poorly. To this aim, we used information about the
amount participants scrolled during the experiment as well as their understanding. Partic-
ipants who were marked as missing values due to lack of review comments or very fast
reviewing were included in the analysis with recorded, if they scrolled and answered at least
one understanding question after the review correctly. This strategy resulted in several par-
ticipants being included in the analysis. Several coefficients in our analysis have changed,
but it did not improve the quality of the data for analyzing the relationship with code review
effectiveness and efficiency as it raised the portion of inefficient developers included in the
analysis. Therefore we excluded this approach.

The second strategy we employed was to exclude participants who potentially did not
understand the reviewed code enough. We excluded from the analysis developers who did
not answer any understanding question in a change correctly. Surprisingly, this strategy
resulted in losing several cases of developers who not only entered review comments, but
also successfully identified defects and furthered the problem with low variance of values
in the variables measuring code review performance.

Seeing that these attempts did not resolve the issues with data quality, we stuck with
the original selection criteria and worked with data of developers who spent more than five
minutes on the review or entered at least a review remark. In the following sections, we
present results based on this sample selection criteria.

All data and materials used in the study are available in our replication package11.

5 Results

5.1 RQ1: Does Guidance in Review Lead to a Higher Review Performance?

Our analysis addressed the relationship between guidance and code review effectiveness and
efficiency in two ways: (1) comparing the means of the three treatments through a One-Way
ANOVA and (2) using a regression model as the first step in the mediation analysis.

The experiment participants showed overall low review effectiveness and efficiency
(Table 6, Figs. 10 and 11), which made addressing our research question challenging.
To compute developers’ review effectiveness and efficiency, we analyzed the aggregated
performance in all three review tasks as well as the results of each review change task
separately.

The small change had mean effectiveness of 12.5%, while the Large Change A (M =
7.53%) and Large Change B (M = 2.41%) were more cognitively demanding and
developers found fewer defects, as reported in Table 6, Figs. 10, 11, and 12.

Using ANOVA analysis (see Table 7), which compares means of multiple groups, we
found the only significant difference to be in the Large Change B, where the checklist
showed significantly better efficiency than the control group (p < 0.1) while the guided
checklist was not significantly different from neither. The Tukey’s Range post-hoc test, also
presented in Table 7, did not identify further differences between the three treatments. This
was also confirmed in the regression model built to assess the direct relationship between
guidance and efficiency, as reported in Table 8. In the Large Change B, the use of the

11Replication package: https://doi.org/10.5281/zenodo.5653341
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Fig. 10 Effectiveness (in % of found defects) by Guidance Treatment

Fig. 11 Efficiency (in defects found per hour) by Guidance Treatment
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Fig. 12 Cognitive Load (on a scale from 1 to 7) by Guidance Treatment

checklist is a significant predictor for review effectiveness (p < 0.1) and efficiency
(p < 0.05). It seems that the checklist in the most complex change indeed helped developers
to find more defects and to find them in shorter time.

Our regression models also gave us an indication of the presence of a relationship
between guided checklist usage and code review effectiveness (p < 0.05) in the Small
Change. All the regression models assessing the direct effect of treatments on effectiveness
and efficiency are presented in Table 8.

Overall, we cannot conclude that a strong relationship exists between guidance approaches
using cognitive load reducing methods and code review effectiveness and efficiency. The
developers who participated in our study achieved deficient code review performance,
regardless of the treatment to which they were assigned. This situation significantly under-
mined the possibility of achieving statistically significant results. Nonetheless, our data
provide initial indications that the guided checklist effectively supported developers in find-
ing defects in the small task, while the checklist allowed them to be more effective and
efficient in the more complex review (Large Change B), as shown by our regression model.
Our ANOVA analysis confirmed that, in the more complex review change-set, the use of
the checklist led to better review efficiency compared to the ad-hoc review (control group).
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5.2 RQ2: Is the Effect of Guidance on Code ReviewMediated by a Lower Cognitive
Load?

In RQ2, we aimed to examine whether the relationship between guidance and code review
performance works through lowering the cognitive load. However, the experiment’s partici-
pants showed overall low review effectiveness and efficiency, and our data did not fulfill the
starting condition of an existing relationship between the treatment variable and the outcome
(Section 5.1). As we could not perform the mediation analysis, we focused on investigating
the individual relationships between guidance and cognitive load, cognitive load and code
review performance and effect of guidance and cognitive load on code review performance
using regression models.

Examining the direct relationships, we found out that the checklist use significantly low-
ers cognitive load in the most complex change (Large Change B, p < 0.01) and in the total
score for all changes (p < 0.1), see Table 8.

Furthermore, using a univariate regression model we established the direct relationship
between cognitive load and code review performance, finding that higher cognitive load
significantly predicts effectiveness in the Small change (p < 0.05) and Large Change A
(p < 0.1) and also better efficiency in the Small Change (p < 0.05), as shown in Table 9.
These results are surprising and they are further discussed in Section 6.

In the case of checklist in the Large Change B, we can confirm that the direct effects
show that it lowers the cognitive load and improves code review performance. However, the
use of the guided checklist showed no statistically significant effect on the level of cognitive
load.

After establishing the direct effect of the treatment, we built a regression model to esti-
mate the effect of the treatment on the dependent variable while controlling for the mediator
and control variables: i.e., the effect of the guidance, cognitive load, and control variables on

Table 9 Regression results for the direct effect of cognitive load on effectiveness and efficiency

Effectiveness Efficiency

Estimate S.E. Sig. Estimate S.E. Sig.

Small\Warm-up Intercept − 21.75 15.56 − 6.14 1.69 *

Cognitive Load 7.45 3.35 * 1.73 0.65 *

Large Change A Intercept − 7.67 10.00 − 2.35 4.08

Cognitive Load 3.57 1.94 . 0.93 0.79

Order − 6.92 2.94 * 0.01 1.20

Large Change B Intercept 7.19 5.01 3.93 2.59

Cognitive Load − 0.79 0.97 − 0.42 0.50

Order − 1.51 1.421 − 1.35 0.74 .

TOTAL Intercept 2.94 10.53 − 1.26 3.77

Cognitive Load 1.56 2.09 0.71 0.75

Order − 5.437 2.387 * − 0.61 0.86

Significance codes: ‘***’ < 0.001, ‘**’ < 0.01, ‘*’ < 0.05, ‘.’ < 0.1

Adjusted R2: Effectiveness: Small - 0.06, Large A - 0.09, Large B - 0.00, Total - 0.07; Efficiency: Small -
0.09, Large A - 0.01, Large B - 0.04, Total - 0.01
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code review effectiveness and efficiency. As reported in Section 4.6.3, the control variables
for effectiveness are stress, review time in minutes, and hours worked before the experi-
ment. Stress and hours worked are intervening variables for efficiency as well. The resulting
models are presented in Tables 10 and 11.

When including the control variables, some of the direct effects disappeared while others
emerged. In the Small Change, higher cognitive load remains related to higher effectiveness
(p < 0.1) and efficiency (p < 0.01). However, the direct effect of the guided checklist
on review effectiveness cannot be observed anymore. The use of the guided checklist was
significantly related to a lower review effectiveness in the Large Change A (p < 0.1),
suggesting that the guided checklist was not helpful for this change. Checklist remained a
significant predictor of code review efficiency in Large Change B (p < 0.05). The checklist
use and higher cognitive load were also predictors of efficiency considering the aggregated
performance of all three review tasks.

The control variables predict code review performance too. A lower level of stress and
a higher amount of hours worked before taking part in the experiment are related to higher
code review effectiveness (Large Change A; all three reviews). More hours worked are also
related to higher review efficiency (Large Change A and B). Furthermore, developers who
spent more time on the review of Large Change A were more effective.

In our RQ2, despite not being able to perform a mediation analysis because of the
low review performance of the participants, we still collected insights about the relation-
ship between guidance, cognitive load, and code review performance. We (1) observed that
higher cognitive load is a statistically significant predictor of review effectiveness (in the
Small Change and Large Change A) and review efficiency (Small Change), and (2) provided
initial evidence for the mediation effect for checklists as they improve review performance
while reducing developers’ cognitive load.

5.3 Checklists Usability

The checklist and guided checklist achieved similar usability scores (M = 57.35 and
M = 58.5). Moreover, the scale assigns a letter grade to the assessed system. Both of our
treatments were rated as D (Poor usability). Even though the resulting score is not optimal,
the lower performance of the control group developers seems to indicate that a poor imple-
mentation of these treatments is not the main reason for the low performance. The ratings
of the individual items are reported in Fig. 13.

Developers reported that they would need more time to familiarize themselves with the
checklist, while the guided checklist was reported as easier to learn to use. Moreover, the
guided checklist was more positively evaluated regarding its integration into the experiment
UI. Both guidance approaches (checklist and guided checklist) were reported as easy to use
and developers felt confident in their use.
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Table 10 Regression results for the effect of guidance and cognitive load on effectiveness while controlling
for other variables

Effectiveness

Estimate S.E. Sig.

Small\Warm-up Intercept -24.60 15.97

Checklist 7.26 5.30

Guided Checklist 4.32 6.14

Cognitive Load 6.63 3.37 .

Stress -4.31 2.76

Review Time 0.06 0.07

Hours worked 0.88 0.93

Large Change A Intercept -6.39 11.39

Checklist -1.06 3.24

Guided Checklist -6.41 3.59 .

Cognitive Load 2.31 1.87

Stress -3.99 1.67 *

Review Time 0.21 0.09 *

Hours worked 1.05 0.55 .

Order -0.012 2.99

Large Change B Intercept -0.47 6.67

Checklist 2.86 1.79

Guided Checklist 0.00 2.05

Cognitive Load -0.09 1.07

Stress -0.20 0.86

Review Time 0.07 0.06

Hours worked 0.33 0.30

Order -2.37 1.54

TOTAL Intercept -4.12 11.07

Checklist 3.57 2.66

Guided Checklist -2.13 2.98

Cognitive Load 1.70 2.00

Stress -2.99 1.30 *

Review Time 1.00 0.44

Hours worked 1.00 0.44 *

Order -5.63 2.18 *

Significance codes: ‘***’ < 0.001, ‘**’ < 0.01, ‘*’ < 0.05, ‘.’ < 0.1

Adjusted R2: Small- 0.14, Large A - 0.23, Large B - 0.00, Total - 0.25

We also observed significant correlations between usability and other variables in the
analysis. Among checklist users, developers who code more frequently reported a better
usability of the checklist (r(22) = 0.5, p < 0.05). Also developers with higher cognitive
load found the checklist more usable (r(22) = 0.35, p < 0.05).
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Table 11 Regression results for the effect of guidance and cognitive load on efficiency while controlling for
other variables

Efficiency

Estimate S.E. Sig.

Small\Warm-up Intercept -7.30 3.36 *

Checklist 1.58 1.06

Guided Checklist 0.27 1.19

Cognitive Load 1.84 0.67 **

Stress -0.64 0.59

Hours worked 0.13 0.19

Large Change A Intercept -2.61 4.69

Checklist 1.07 1.33

Guided Checklist -2.09 1.39

Cognitive Load 0.96 0.75

Stress -1.72 0.69 *

Hours worked 0.40 0.22 .

Order -0.056 1.121

Large Change B Intercept -1.01 3.33

Checklist 1.85 0.90 *

Guided Checklist -0.06 0.97

Cognitive Load 0.04 0.54

Stress 0.08 0.43

Hours worked 0.25 0.15 .

Order -1.506 0.723 *

TOTAL Intercept -3.29 4.01

Checklist 1.72 0.97 .

Guided Checklist -1.16 1.01

Cognitive Load 0.84 0.72

Stress -0.88 0.47 .

Hours worked 0.35 0.16 *

Order -0.772 0.783

Significance codes: ‘***’ < 0.001, ‘**’ < 0.01, ‘*’ < 0.05, ‘.’ < 0.1

Adjusted R2: Small - 0.09, Large A - 0.12, Large B - 0.09, Total - 0.16

Developers assigned to the guided checklist took, on average, half an hour longer to
complete the experiment compared to the developers in the control group or the checklist
group. Users of the guided checklist reported lower usability with increasing time spent on
the reviews (r(15) = −0.45, p < 0.05). Therefore, the time overhead posed by the guided
checklist compared to the other two treatments decreased its usability. The longer time spent
on the reviews potentially put an extra strain on the need of developers to hold the reviewed
code in their working memory and increased the representational holding demands. We did
not observe relationships between usability and code review performance.
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Fig. 13 Mean scores of individual System Usability Scale items

6 Discussion and Lessons Learned

The developers who took part in our study achieved an overall low review performance
(both in terms of review effectiveness and efficiency) regardless of the treatment to which
they were assigned. Nevertheless, we observed significant relationships in the experiment
data that allowed us to draw initial conclusions (1) on the benefits of providing guidance to
developers during code review to lower cognitive load and (2) on the role of cognitive load
in reaching code review effectiveness and efficiency. Furthermore, we collected valuable
lessons learned to conduct future studies on this topic.

Review guidance reduces cognitive load: Checklists and software development strategies
aim to improve developers’ performance by lowering the cognitive load (Kamsties and Lott
1995; LaToza et al. 2020). However, this relationship has not been explicitly tested yet. The
results of our experiment provided initial results on how guidance can lower the cognitive
load of developers. Based on the literature, we expected the reduction of the cognitive load
to play a fundamental role in preventing cognitive overload in more complex changes (Ban-
nert 2002). We indeed observed that the checklist significantly lowers cognitive load in the
most complex review change (Large Change B) and on the whole review (considering all
review tasks together). Our results gave an initial indication that guidance indeed lowers
reviewers’ cognitive load, indicating that further research could be valuable to be conducted
in this research direction. The review strategy did not prove to lower the cognitive load for
novice reviewers. Nonetheless, further studies need to be conducted to collect insight on the
relationship between guidance and cognitive load.

Higher cognitive load can improve performance. Even though checklist usage lowers
cognitive load, higher cognitive load predicted both code review effectiveness and efficiency
in the Small Change. This stands in opposition to the hypothesis based on the litera-
ture suggesting that lower cognitive load leads to improved code review performance, as
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suggested by previous work in the field (Baum et al. 2017b; Pascarella et al. 2018; Kam-
sties and Lott 1995). The subject changes showed different patterns in the results: While
in the Small Change, the guided checklist and higher cognitive load were more helpful, in
the large changes, the checklist proved to be more efficient and to lower cognitive load,
while the guided checklist led to lower effectiveness. This seems to indicate that the change
complexity plays an important role in which type of guidance developers require.

If confirmed in further studies, this finding can have consequences for both researchers
and practitioners: The complexity of the review change-set under analysis is a significant
factor for choosing the right guidance approach to support the review.

According to the literature, lowering the cognitive load is important to prevent the
upper-limit scenario when working memory is overloaded, therefore saving up limited cog-
nitive resources for effective and efficient performance (Bannert 2002). However, we have
observed a scenario where developers did not perform well regardless of the treatment they
were assigned to. Furthermore, a higher cognitive load was linked to better performance:
We found that a higher cognitive load led to higher review effectiveness and efficiency in
the Small Change. We interpret this as the need to get engaged in the task and invest the cog-
nitive resources into actually being able to identify the defects. If this finding is confirmed
in further studies, when devising guidance approaches, researchers should take into account
the positive effect that cognitive load might have on review performance. Future research
should investigate how to best balance cognitive load to improve developers’ effectiveness
and efficiency.

Code understanding is fundamental: Previous studies reported how understanding the
code is indeed one of the main challenges that developers face during code review (Tao et al.
2012; Bacchelli and Bird 2013). For this reason, researchers devised numerous approaches
to increase reviewers’ understanding: e.g., re-ordering review changes (Baum et al. 2019;
2017b) or untangling complex review change-sets (Barnett et al. 2015; Dias et al. 2015).
The former approach aims at increasing the understandability of a review change-set by
showing changes in a more meaningful order (as opposed to the alphabetical one currently
offered by popular code review tools: e.g., Gerrit or Phabricator). The latter focuses instead
on dividing large review change-sets into smaller ones, comprising only changes related to
the same issue.

We noticed that developers in this experiment faced significant issues in answering cor-
rectly the understanding questions shown at the end of each review task. As reported in
Table 2, in the Small Change participants achieved an average score of 1.21 out of 2 when
answering the understanding questions at the end of the task. In the Large Change A and
Large Change B, developers achieved an average of 1.45 (out of 4) and 1.37 (out of 3) cor-
rect answers. These results seem to indicate that despite the support provided by review
guidance, a significant increase in review performance can not be achieved if reviewers
struggle to understand the content of a review change-set. It seems reasonable to think that
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for review guidance approaches to be effective, it is necessary to ensure that developers
possess a good understanding of the code.

This finding might have practical implications on how to support developers during code
review: Researchers must not only focus on guiding developers during the review but also
support reviewers in gaining a preliminary understanding on the content of a review change-
set.

The experiment tasks must fit the abilities of participants: The user interface and code
reviews have been previously successfully implemented in an experiment with a sample of
developers collected online and in a company (Baum et al. 2019). However, the develop-
ers in our sample not only performed poorly, but also had problems to answer the questions
about understanding the code (as reported in Table 2). Furthermore, we have found a signif-
icant correlation between lower cognitive load and programming and reviewing experience
(as shown in Fig. 9). Therefore, there is a not negligible possibility that the reviews were too
difficult for these developers. This might explain why higher cognitive load was actually a
significant predictor of code review performance. The developers actually needed to put a
considerable mental effort into comprehending and successfully reviewing the code. To be
more successful and also provide more diverse data, a future experiment should test more
types of changes and defects with the target developers before selecting the appropriate
changes for the final experiment.

Autonomy adds value to guidance: Our results indicate that the guided checklist per-
formed better in the simpler task and was unhelpful in the Large Change A, while the simple
checklist was more effective in the complex task. As reported in Section 5.1, the devised
regression models highlighted the existence of a relationship between the guided checklist
and review effectiveness in the Small Change, while no effect was reported for the two com-
plex changes. At the same time, the use of the checklist was shown to be correlated with
higher review performance (effectiveness and efficiency) in Large Change B. Given that
the guided checklist implemented additional methods to reduce cognitive load compared to
the checklist, these results are surprising. We believe the reason for this difference lies in
developers’ autonomy.

While the checklist allows developers to have maximum flexibility on how to check the
items, the devised guided checklist controlled the flow of review explicitly telling participants
what to check and when. This makes the guided checklist useful for a shorter detailed review,
but it might become overwhelming for longer and more complex reviews. The importance
of autonomy seems to be confirmed by LaToza et al. (LaToza et al. 2020), who designed a
tool to support explicit strategies to perform software development tasks. In particular, their
solution supported autonomous execution of these strategies and did not enforce the steps,
rather allowed the developers to define the steps and be flexible in navigating the code.
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The importance of autonomy should be taken into account by both researchers and practi-
tioners (e.g., project managers) when implementing approaches to improve the code review
process of a project. Approaches that too strictly guide developers may deplete their cog-
nitive resources by enforcing a too fine-grained level of review, not allowing reviewers to
adapt the review style to their personal needs. This might undermine the support this kind
of approaches aim to offer.

Familiarity with guidance takes time: The results of our System Usability Scale question-
naire (reported in Fig. 13) show that participants believed our guidance approaches to be
well-integrated in the online experiment platform (the corresponding item achieved a mean
score of 3.53 for the checklist and 3.9 for the guided checklist). Nonetheless, developers
reported difficulties and the need for more support in learning how to use them. Participants
assigned a mean score of 3.7 (for the checklist) and 3.3 (for the guided checklist) to the
“need to get more used to it” item in the SUS questionnaire. This indicates that, despite the
linearity of the implemented guidance approaches and the presence of a tutorial on how to
use them, participants still would have benefited from more time to familiarize with these
tools. Future studies could take into account this factor and either plan for longer controlled
experiments or use different kinds of studies (e.g., field studies). For example, a longitudi-
nal study would give developers time to familiarize themselves with the guidance approach
under investigation.

6.1 Actual vs. Expected results

RQ1. Our first aim was to investigate the effect of guidance approaches (checklist and
guided checklist) on developers’ review performance. We expected these approaches to lead
to higher review effectiveness and efficiency on all three review tasks. We hypothesized
to observe a lower increase in performance on the small review task compared to the two
more complex review tasks: The importance of lowering the cognitive load is greater when
developers perform more complex tasks and potentially might reach the cognitive overload.

However, our results showed that the guidance approaches do not lead to better partici-
pants’ performance on all three review changes. Our checklist increased developers’ review
effectiveness and efficiency only on Large change B, while the guided checklist led to higher
effectiveness only on the small change. Furthermore, our findings highlighted the impor-
tance of developers’ autonomy (see Lesson learned 5) while performing code review. A
more guided approach (guided checklist) was proven effective on a small review change-set
but unhelpful on a larger change-set, potentially because of the extra time overload required
by the detailed level of review and lower usability related to it, as reported in Section 5.3.
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RQ2. In RQ2, we expected our mediation analysis to show that review guidance (check-
list and guided checklist) leads to better performance by lowering developers’ cognitive
load. Even though both guidance approaches led to better performance (albeit in differ-
ent contexts), only the checklist lowered developers’ cognitive load (in the Large change
B and in the total score). Only in the Large change B, the most complex change, we could
observe the mediation pattern hypothesized in the literature – using the checklist lowered
the cognitive load and also led to better performance.

Moreover, we expected that lower cognitive load always leads to better review perfor-
mance. However, our results showed the opposite: A higher cognitive load was related to
better review effectiveness and efficiency in the small change, and to better effectiveness
in Large Change A. These results seem to indicate that cognitive resources also need to be
invested to perform good reviews.

6.2 Influence of Participants’ Lack of Experience

In this section, we reflect on the possible effects that the lack of experience in code review
among our participants may have had on our results. In our experiment, we recorded both
programming experience and review experience of the participants. While our participants
had professional programming experience with Java, they can be considered as novice
reviewers. Therefore, it seems that programming experience does not directly translate into
the ability to find defects during code review. For this reason, in the following reflection,
we focus on code review experience.

Experience reduces the cognitive load of the reviewers (Section 2): With higher expe-
rience, fewer cognitive resources are needed to complete a review. Developers with no
review experience lack the automatization on what and how to review, how to find appro-
priate information, and how to process it. Therefore, their cognitive resources are depleted
faster. This might have an impact on the type of guidance inexperienced developers need
as opposed to experienced reviewers. A more guided review approach, as the one offered
by our guided checklist, might be beneficial for novice reviewers as it guides them in the
review step by step: The guided checklist supported developers in achieving higher review
effectiveness in the Small Change. However, it did not assist the novice reviewers well in the
complex change. This result is potentially due to the fact that the guided checklist requires a
very detailed and thorough process that leads to a longer review time. Therefore, there is an
additional strain for the mental load caused by representational holding – the need to keep
information ready in the working memory for a prolonged period of time.

Developers’ experience with the system under review might also have had an impact on
our results. In our experiment, participants had to review change-sets extracted from a sys-
tem they were not familiar with. This might have led them to spend significant cognitive
resources on understanding the review changes, increasing their cognitive load and under-
mining the effect of the guidance. Therefore, future work can be designed and executed to
investigate whether the devised guidance approaches achieve better results when applied to
review change-sets with whom developers are already familiar.

7 Threats to Validity

Construct validity: The set of review tasks might influence developers’ results. To miti-
gate this issue, we employed code review tasks already successfully applied in a previous
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experiment on code review (Baum et al. 2019). Moreover, participants had to use an
online platform and guidance treatment with which they were not familiar before. This
might have negatively affected their review performance. To reduce this bias, the online
platform used showed review changes in a similar fashion to the one of popular code
review tools (e.g., Gerrit or Phabricator). Moreover, before starting the experiment, par-
ticipants had to complete a short tutorial explaining the use of the experiment UI and of
the guidance approaches (checklist and guided checklist).

The way in which the checklist and guided checklist were implemented might have
introduced bias in our results. We developed our guidance approaches following best
practices from both researchers (Chernak 1996; Degani and Wiener 1991; Kamsties and
Lott 1995) and industry (McConnell 2004). Nonetheless, we can not rule out that dif-
ferent guidance approaches (e.g., with a more specific focus on developers’ autonomy)
could lead to different results.

Our guided checklist made developers spend significantly longer time than the other
groups. Furthermore, with a longer time, users of the guided checklist reported lower
usability. Therefore, the review time was entered as an important confounding factor in
the regression model.

Internal validity: We analyzed the experiment logs to identify participants who did not
take the experiment seriously. To this aim, we disregarded participants who spent less
than 5 minutes doing the review or did not enter any remark. Moreover, we also con-
trolled for developers who might have taken part in the experiment several times or have
restarted the experiment.

A poor understanding of the use of the experiment UI and the code under review might
have introduced bias in our results. To mitigate this issue, we supported participants
in two ways. (1) We showed them an interactive tutorial on the UI and used guidance
approaches (if they were assigned to one of them). Participants were required to complete
the tutorial by interacting with the UI, before being able to proceed with the experiment.
Furthermore, we asked them questions about the instructions of the experiment. If they
answered wrongly, we displayed the correct answer. (2) Prior to each review task, we
showed participants a description of the context of the change. Moreover, we asked ques-
tions to the participants to verify their correct understanding of the context of the change.
As done before, if developers answered these questions wrongly, we made them aware
of the correct answer. Furthermore, we controlled developers’ understanding of the code
through a set of questions at the end of each review task.

Participants in our experiment achieved overall low review effectiveness and effi-
ciency, regardless of the treatment to which they were assigned (control, checklist, and
guided checklist). This prevented us from drawing strong conclusions to answer our
research questions. Nonetheless, we were able to collect indications on the benefits of
review guidance over developers’ review performance and cognitive load.

External validity: All participants in the experiment were professional developers with
experience in Java. However, they had rather low experience with code reviews and code
review effectiveness and efficiency. Therefore, our results are bound to novice reviewers
with limited ability to identify defects.

Furthermore, all participants work in the same company and, to the best of our knowl-
edge, possess a very similar technical and cultural background. This might limit the
generalizability of our findings.

The majority of the participants (N = 39) worked at least eight hours before taking
part in our experiment. This might have negatively influenced their review performance
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and, therefore, introduced a bias in our results. To check the possible effect of the num-
ber of hours worked on the review performance, we included this variable as a control
variable in our regression models. Our results showed that more hours worked do not
have a negative effect on the reviewers’ performance. On the contrary, they led to better
performance.

We hypothesize three reasons as to why more hours worked before the experiment
can be related to better code review performance: (1) The participants of the experiment
are more productive at the end of their working day, (2) more productive developers
worked on the experiment later in the day, and (3) in our sample, younger developers with
more frequent coding practice had more hours worked before they started the experiment
(Section 4.6.3); therefore, developers with more coding practice were working on the
experiment later in the day.

8 Conclusion

We have examined how two types of guidance incorporating different methods of lowering
cognitive load relate to code review performance and cognitive load. While a checklist per-
formed better in a complex task, a tool-supported strategic checklist execution proved to be
more effective in the simple task. Moreover, we obtained an initial indication that the use of
a checklist lowers developers’ cognitive load. However, a higher cognitive load was related
to better code review performance. The study participants achieved low code review effec-
tiveness and efficiency as well as a limited understanding of the code. Therefore, the higher
cognitive load was probably needed to achieve better performance. Further studies are still
needed to investigate the relationship between guidance, cognitive load, and code review
performance.

Appendix

A.1 Checklist items

Code Review Checklist Please use the following checklist for reviewing the presented
change. For each question check:

• “Yes” field ? in case you have checked the code and everything is OK
• “No” field ? in case you have checked the code and found some defects

If the item of the checklist does not apply or you did not check the code for it, please
leave both columns unchecked.
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Rafi DM, Moses KRK, Petersen K, Mäntylä MV (2012) Benefits And limitations of automated software
testing: Systematic literature review and practitioner survey. In: 2012 7Th international workshop on
automation of software test (AST). IEEE, pp 36-42

Rigby PC, Bird C (2013) Convergent contemporary software peer review practices. In: Proceedings of the
2013 9th joint meeting on foundations of software engineering, pp 202–212

Rong G, Li J, Xie M, Zheng T (2012) The effect of checklist in code review for inexperienced students: An
empirical study. In: 2012 IEEE 25th conference on software engineering education and training. IEEE,
pp 120–124

Rothlisberger D, Harry M, Binder W, Moret P, Ansaloni D, Villazon A, Nierstrasz O (2012) Exploiting
dynamic information in ides improves speed and correctness of software maintenance tasks. IEEE Trans
Softw Eng 38(3):579–591
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Pavlı́na Wurzel Gonçalves1 · Enrico Fregnan1 · Tobias Baum2 ·Kurt Schneider2 ·
Alberto Bacchelli1

Enrico Fregnan
fregnan@ifi.uzh.ch

Tobias Baum
tobias.baum@inf.uni-hannover.de

Kurt Schneider
kurt.schneider@inf.uni-hannover.de

Alberto Bacchelli
bacchelli@ifi.uzh.ch

1 University of Zurich, Zurich, Switzerland
2 Leibniz Universität Hannover, Hannover, Germany

99   Page 46 of 46 Empir Software Eng (2022) 27: 99

http://orcid.org/0000-0002-6897-7665
mailto: fregnan@ifi.uzh.ch
mailto: tobias.baum@inf.uni-hannover.de
mailto: kurt.schneider@inf.uni-hannover.de
mailto: bacchelli@ifi.uzh.ch

	Do explicit review strategies improve code review performance? Towards understanding the role of cognitive load
	Abstract
	Introduction
	Background and Related Work
	Cognitive Load and Reviews
	Code Inspection Reading Techniques and Strategic Reviewing

	Research Questions
	Methodology
	Study Participants
	Descriptives

	Experiment Treatments and Materials
	Experiment UI
	Treatment: Ad hoc Review
	Treatment: Checklist
	Treatment: Guided Checklist
	Cognitive Load
	Usability of the Treatment Implementation

	Tasks
	Tutorial
	Code Review Tasks

	Variables
	Remark Evaluation and Review Performance

	Experiment Design and Procedure
	Analysis
	Data Cleaning
	Analysis Plan
	Correlations and Collinearity

	Adjustments

	Results
	RQ1: Does Guidance in Review Lead to a Higher Review Performance?
	RQ2: Is the Effect of Guidance on Code Review Mediated by a Lower Cognitive Load?
	Checklists Usability

	Discussion and Lessons Learned
	Review guidance reduces cognitive load:
	Higher cognitive load can improve performance.
	Code understanding is fundamental:
	The experiment tasks must fit the abilities of participants:
	Autonomy adds value to guidance:
	Familiarity with guidance takes time:


	Actual vs. Expected results
	Influence of Participants' Lack of Experience

	Threats to Validity
	Conclusion
	Appendix: 
	A.1 Checklist items
	Code Review Checklist

	References
	Affiliations


