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Abstract
We introduce a greedy algorithm optimizing arrangements of lines with respect to a
property. We apply this algorithm to the case of simpliciality: it recovers all known
simplicial arrangements of lines in a very short time and also produces a yet unknown
simplicial arrangement with 35 lines.We compute a (certainly incomplete) database of
combinatorially simplicial complex arrangements of hyperplanes with up to 50 lines.
Surprisingly, it contains several examples whose matroids have an infinite space of
realizations up to projectivities.

Keywords Simplicial arrangement · Reflection group · Matroid

Mathematics Subject Classification 20F55 · 52C35 · 14N20

1 Introduction

A simplicial arrangement is a finite set of linear hyperplanes in a real vector space
which decomposes its complement into open simplicial cones, cf. [17]. A classification
of simplicial arrangements, even in the case of dimension three, has not been achieved
in full generality yet. There is a topological result by Deligne [13] and there are some
classifications of smaller classes, as in [9], [10], or [12]. But until now, no explicit
approach to a classification is known. In this early stage of investigations, it is common
to collect examples as in [2,6,15,16].
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Fig. 1 Our newly found
simplicial arrangement of rank
three with 35 hyperplanes (from
two different perspectives)

In many areas of mathematics, examples are mainly used as counter-examples in
order to demonstrate that certain propositions do not hold. When dealing with discrete
structures however, one often encounters a finite set of exceptions. For instance, the
discovery of some of the finite simple groups has been celebrated although each
such group is “merely” an example. Reflection groups are a further example of a
structure with sporadic cases in which the situation is less difficult (a classification
of finite real reflection groups is even accessible to students). The situation is, albeit
less prominent, apparently similar in the case of simplicial arrangements (note that
real reflection groups “are” very special simplicial arrangements). For the case of rank
three it is conjectured that there is, apart from three infinite series, only a finite number
of sporadic examples. This is why a classification will ultimately probably be found
via a combination of theoretical arguments and a collection of examples.

In this paper, we introduce an algorithm to approximate arrangements of lines with
respect to a given property. This algorithm works surprisingly well in the case of
simpliciality, since its implementation finds all known simplicial arrangements (with
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up to 50 lines1) in a few minutes on an ordinary computer (i.e., those listed in [6,16]).
Using a computer cluster we even find a yet unknown simplicial arrangement of lines
with 35 lines (Fig. 1). Moreover, this algorithm may also be used to attack other open
problems as for example Terao’s conjecture, where one difficulty is to find matroids
with an infinite moduli space of realizations. Again, our implementation finds all
known prominent examples (free but not recursively free or with similar properties)
within a short time.

The algorithm is based on the following intuition. Simplicial arrangements of lines,
likemost “interesting” arrangements (as for example those considered in the context of
Terao’s conjecture), have fewdouble points. In fact, it even turns out that simpliciality is
closely related to the property to have few double points, as demonstrated for example
in [14], where it is shown that asymptotically, an arrangement of lines with few double
points is close to be a simplicial arrangement belonging to one of the infinite series.
Moreover, it is easy to associate an invariant in Z to each matroid of rank three which
is zero if and only if any realization of the matroid is simplicial and which quantifies
how “far” it is from being simplicial.

Now the key idea in the algorithm is: take an arrangement of lines, remove a line,
and replace this line by a line through two intersection points of the arrangement. This
will often reduce the number of double points. If the new arrangement “improves” the
chosen invariant, then discard the old arrangement and repeat the procedure with the
new one until the invariant is zero. This idea alone is not sufficient to obtain all the
desired examples. In this primitive version, an arrangementwill tend to become rational
during the procedure (seeRemark 4.4 for an explanation). It is thus important to include
algebraic numbers or possibly transcendents if requested (see Remark 4.7). Further
technical improvements which are necessary to produce a working implementation
are discussed in Sect. 4. As a result we present several yet unknown arrangements of
lines:

• We find a real simplicial arrangement of rank three with 35 lines which does not
appear in any previous table of simplicial arrangements.

• We collect a database with 1318 combinatorially simplicial arrangements of lines
with up to 50 lines over C.

• This database includes several matroids of rank three which are combinatorially
simplicial and have infinite moduli space in characteristic zero.

In Sects. 2 and 3 we recall all required notions on simplicial arrangements and moduli
spaces of matroids of rank three, including some (maybe new) open problems. Section
4 is devoted to the description of the algorithms, results of our implementations are
collected in Sect. 5.

All data generated or analysed during this study are included in this published
article and its supplementary information files.

1 Grünbaum conjectured that there are no sporadic simplicial arrangements with more than 37 lines.
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2 Simplicial Arrangements

The main application of our algorithm is to produce simplicial arrangements, so let us
recall the basic notions in this section.

Definition 2.1 Let K be a field, r ∈ N, and V := Kr . An arrangement of hyperplanes
(A, V ) (orA for short) is a finite set of hyperplanesA in V . It is central if all elements
of A are linear subspaces and essential if

⋂
H∈A H = 0.

Definition 2.2 Let r ∈ N, V := R
r , and A an arrangement in V . Let K(A) be the

set of connected components (chambers) of V \ ⋃
H∈A H . If every chamber K is an

open simplicial cone, i.e., there exist α∨
1 , . . . , α∨

r ∈ V such that

K =
{

r∑

i=1

aiα
∨
i

∣
∣
∣ ai > 0 for all i = 1, . . . , r

}

=: 〈α∨
1 , . . . , α∨

r 〉>0,

then A is called a simplicial arrangement.

Example 2.3 • Figure 1 displays an example for r = 3, displayed in the real projective
plane. Simpliciality of the chambers translates to the fact that all regions are triangles
in the picture.

• Let W be a real reflection group, R ⊆ V ∗ the set of roots of W . Then A = {ker α |
α ∈ R} is a simplicial arrangement.

Since a hyperplane is uniquely determined by a linear form up to scalars, i.e., a one
dimensional subspace of the dual space, it is often easier to work in the projective
space instead of V . We will mostly concentrate on the case of rank three, thus we are
working with lines in the projective plane. We denote P2K the projective plane over
K and PG(2, q) = P

2
Fq . Moreover, we will sometimes denote both projective lines

and points with coordinates (a : b : c) since points and lines are dual to each other in
the plane. So it makes sense to write (a : b : c), a, b, c ∈ K , for a hyperplane in an
arrangement of rank three over K .

Definition 2.4 ([18, Defn. 1.12]) Let (A, V ) be an arrangement. The intersection
lattice L(A)ofA consists of all intersections of elements ofA includingV as the empty
intersection. The rank rk(A) ofA is defined as the codimension of the intersection of
all hyperplanes in A. For 0 ≤ k ≤ r we write Lk(A) := {X ∈ L(A) | r(X) = k}.
Definition 2.5 ([18, Defn. 1.13]) Let (A, V ) be an arrangement. For X ∈ L(A), we
define the localization

AX := {H ∈ A | X ⊆ H}
of A at X , and the restriction (AX , X) of A to X , where

AX := {X ∩ H | H ∈ A \ AX and X ∩ H 
= ∅}.

Remark 2.6 IfA is simplicial, then all localizations and restrictions to elements of its
intersection lattice are simplicial.
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Proposition 2.7 (e.g. [8, 2]) LetA be a central essential arrangement of hyperplanes
in Rr , r ≥ 2. Then A is simplicial if and only if

r |K(A)| = 2
∑

H∈A
|K(AH )|. (1)

Remark 2.8 By Zaslavsky’s theorem, |K(A)| = (−1)rχA(−1) where χA is the
characteristic polynomial. This depends only on the intersection lattice of A. Thus
simpliciality is a purely combinatorial property.

In this article the following equivalent formulation is more convenient 2.

Corollary 2.9 LetA be a central essential arrangement in V = R
3. ThenA is simpli-

cial if and only if σ(A) = 0, where

σ(A) = σ(L(A)) := 3 +
∑

v∈L2(A)

(|Av| − 3) ∈ Z. (2)

It is interesting to extend the definition of simpliciality to arbitrary arrangements
although the original motivation using chambers is lost.

Definition 2.10 Let K be a field and A an arrangement of hyperplanes in K 3. Then
A is (combinatorially) simplicial if σ(L(A)) = 0.

For example, simplicial arrangements over C have many other nice properties and
seem to be rare like real simplicial arrangements.

3 Matroids andModuli Spaces

Definition 3.1 (cf. [1]) Let K be a field and A = {H1, . . . , H�} be a central
arrangement in Kn ordered by the indices of the hyperplanes. To a matrix M =
[m1, . . . ,m�] ∈ Kn×�, we attach a central arrangement BM = {H ′

i = ker(mi ) | 1 ≤
i ≤ �} \ {Kn} in Kn . Consider the following condition for M :

|BM | = � and there exists an isomorphism π : L(A) → L(BM )

of graded lattices such that π(Hi ) = H ′
i for 1 ≤ i ≤ �.

(∗)

For a lattice L on {1, . . . , �}, Yuzvinsky [20] analyzes the following space:

U(L) = {M ∈ Kn×� | M satisfies (∗)}.

Since the condition (∗) is determined in terms of vanishing or non-vanishing of minors
of M , it follows that U(L) is an algebraic variety. We define the moduli space VK (L)

of arrangements whose intersection lattice is L as

VK (L) := PGL(n, K ) \ (U(L)/(K×)�).

2 Notice the constant 3 which appears because the Euler characteristic of the sphere is 2.
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For a lattice L , we write Aut(L) for the set of automorphisms of posets, i.e., the set
of bijections preserving the relations in the poset.

The intersection lattices of arrangements of lines with few double intersection points
(except the pencil and near-pencil) have mostly a very small moduli space.

Example 3.2 LetA be the reflection arrangement of an irreducible complex reflection
group of rank three. Then the moduli space VC(L(A)) is finite and these finitely many
realizations of L(A) in VC(L(A)) are Galois conjugate under automorphisms of the
smallest field extension of Q over which L(A) is realizable:

(1) Let A be the reflection arrangement of type B3. Then VC(L(A)) consists of one
point since any realization of L(A) over C is the same up to projectivities.

(2) Let A be the reflection arrangement of type H3. Then VC(L(A)) consists of two
points since there are two realizations of L(A) over C up to projectivities; these
two points are Galois conjugate under the automorphism

√
5 �→ −√

5.

Open Problem 3.3 Is it true that themoduli space of an irreducible simplicial arrange-
ment over the real numbers is always finite?

We will see in the last section that our algorithm produces examples of irreducible
simplicial arrangements over C with infinite moduli space.

Definition 3.4 Let L be a matroid of rank three, for instance the intersection lattice of
an arrangement of rank three. Let us call the one-dimensional elements points and the
two-dimensional elements (hyperplanes) lines. We say that the lines H1, . . . , Hn of L
generate L if there is a sequence of points and lines U1, . . . ,Um of L such that:

(1) Ui = Hi for i = 1, . . . , n.
(2) For all i > n there exist j, k < i such that Ui ∈ {Uj ∩Uk,Uj +Uk}.
(3) Every line of L is in {U1, . . . ,Um}.
We write

g(L) := min {n ∈ N | L is generated by n lines}.
In other words, an intersection lattice is generated by lines H1, . . . , Hn if all the lines
in L are obtained by inductively adding intersection points of two lines or lines through
two points.

Example 3.5 Let B be the reflection arrangement of type B3. Then g(L(B)) = 4. Let
A be the reflection arrangement of type H3. Then g(L(A)) = 5.

Lemma 3.6 Let L be a matroid of rank three generated by at most 4 lines in general
position. Then |VK (L)| ≤ 1 for any field K .

Proof Let H1, . . . , Hn , n ≤ 4, be lines generating L . Since these lines generate L ,
any realization of L is uniquely determined by a choice of n hyperplanes and by the
matroid structure L . But all realizations are equivalent up to projectivities because
H1, . . . , Hn are in general position. ��
Corollary 3.7 Let L be a matroid of rank three. If g(L) ≤ 4 and L is realizable overC,
then L is realizable over Q.
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Open Problem 3.8 What is the relation between g(L) and |VK (L)| for arbitrary
matroids L of rank three?

For most experiments with arrangements of hyperplanes, it is useful to have an algo-
rithm which computes realizations of matroids. Although it is known that this is a
difficult problem (see for example [3, 8]), in practice (and in rank three), using gen-
erating sets of lines one can compute the moduli space for sufficiently large matroids
(compare [5] or [6]):

Algorithm 3.9 ModuliSpace (L, K )
Compute the moduli space of a matroid of rank three

Input: A matroid L of rank three, a field K .
Output: A pair of algebraic varieties V , E such that VK (L) ∼= V \ E .

1. Choose a set of generating lines G := {H1, . . . , Hn} of L .
2. For a largest subset S := {Hi1 , . . . , Hik } of G in general position, choose
basis elements of K 3 as coordinate vectors. For the remaining d = |G\S| lines
in G \ S, choose coordinate vectors consisting of variables in a polynomial
ring K [X1, . . . , X3d ].
3. Every triple of lines in L gives a conditions on the determinant of the corre-
sponding coordinate vectors, yielding varieties V and E as required depending
on whether the determinant has to be zero or not.

Remark 3.10 There are many possible technical improvements to Algorithm
ModuliSpace but they are not relevant for the goals of this article.

4 Greedy Algorithms

4.1 The Prototype

We begin with a naive version of a greedy algorithm to compute arrangements with
a given property P . In practice, P will be a map assigning a number to each matroid
L(A) in such a way that P is satisfied if and only if this number is 0. For example, A
is simplicial if and only if σ(A) = 0.

The very first step is to find an arrangement over a finite field:

Algorithm 4.1 GreedyArrFiniteField (P, n, q)
Greedy search for arrangements of hyperplanes over a finite field

Input: n ∈ N, a field Fq , a property P .
Output: An arrangement with n lines in PG(2, q) with P if the algorithm termi-
nates.

1. Choose a random set of lines A ⊆ PG(2, q), |A| = n.
2. While A does not satisfy P:

• Choose two random points p1 
= p2 in L2(A), such that the line � through
p1 and p2 is not in A.
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• Let �′ 
= � be a random line of A and A′ := (A ∪ {�}) \ {�′}.
• If A′ “is closer to satisfying P” than A, then A ← A′.

3. Print A.

Remark 4.2 There are several reasons why finite fields are useful in this context.

• The most important reason is that the above algorithm may produce matroids
requiring interesting relations with the “same” algebraic equations in realizations
over any other fields. For example, if one chooses F241, then the algorithm will
automatically considermatroids enforcing certain n-th roots of unity for n a divisor
of 240.

• The second reason is of technical nature: an implementation is much faster over a
finite field than over some rational number field.

• A third reason is that the random set of lines at the beginning is “less random” if
the underlying field has few elements. With a small field, the probability of finding
an interesting intersection lattice by chance is higher.

Algorithm GreedyArrFiniteField produces an arrangement over Fq . But since
we are interested in real (or complex) arrangements, we still need to compute real-
izations of its intersection lattice in characteristic 0, for instance with Algorithm
ModuliSpace.

Example 4.3 Choose a finite field Fq with large q, for example q = 14639. Algorithm
GreedyArrFiniteField with P =“simplicial”, n = 6, . . . , 37 and q = 14639
recovers all known rational simplicial arrangements within a few minutes.

4.2 Number Fields

Remark 4.4 Now there is another problem with GreedyArrFiniteField. Since
lines are repeatedly replaced with lines through existing intersection points, this algo-
rithm tends to replace the original random arrangement by an arrangement whose
intersection lattice has a small number of generators in the sense of Definition 3.4. But
then inmost cases, a set of generators with four elements is attained and thus the result-
ing matroid is realizable over Q by Corollary 3.7 (if it is realizable in characteristic
zero).

This is why the above algorithm will mostly find matroids with rational realizations
and thusmiss most of the interesting examples. To address this problemwe just choose
a subset F of the lines which should never be removed. This way the algorithm will
regularly add lines generated by F , hence if F contains some “irrational” entries, they
will remain all the time and it is more likely that these “irrationalities” are enforced
by the resulting matroid structure:

Algorithm 4.5 GreedyArrFiniteFieldAlgebraic (P, n, q, w, g)
Greedy search for arrangements of hyperplanes over a finite field with given alge-

braic elements

Input: n ∈ N, a field Fq , a property P , an element w ∈ Fq which is a root of a
given polynomial g.
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Output: An arrangement with n lines in PG(2, q) with P if the algorithm termi-
nates, possibly such that the field of definition of its moduli space in characteristic
zero contains roots of the polynomial g.

1. Choose a random set of linesA ⊆ PG(2, q), |A| = n such that the first five
lines are defined by the coordinate vectors F = {(0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0),
(1 : 1 : 1), (1 : 0 : w)} and such that the other lines have “small” coefficients (e.g.
in {±a ± bw | a, b ∈ {0, 1, 2}}).
2. While A does not satisfy P:

• Choose two random points p1 
= p2 in L2(A), such that the line � through
p1 and p2 is not in A.

• Let �′ 
= � be a random line of A which is not one of the first five lines
and A′ := (A ∪ {�}) \ {�′}.

• If A′ “is closer to satisfying P” than A, then A ← A′.
3. Print A.

Example 4.6 Let w0 ∈ R be a root of X2 − X − 1 ∈ Q[X ], i.e., the golden ratio
or its conjugate. Choose a finite field Fq with large q, for example q = 14639 and
w := 9420 ∈ Fq . Then w2 − w − 1 = 0 and we may view w as a golden ratio
for Fq . Algorithm GreedyArrFiniteFieldAlgebraic with P =“simplicial”,
n = 15, q = 14639, and w = 9420 will produce an arrangement with the same
intersection lattice as the reflection arrangement of type H3. This matroid is almost
impossible to obtain with the first version of the algorithm since it mostly finds rational
arrangements and Q(w0) is the field of definition of the arrangement of type H3.

Remark 4.7 Of course, the ideas for GreedyArrFiniteFieldAlgebraic only
increase the chance of finding interesting examples, the algorithm fails in many cases.
In particular, if q is too small then often the resulting matroid will not be realizable in
characteristic zero or the coordinate corresponding to the entry “w” will be rational
in a realization over C. If we choose q large enough, then it is important to choose
an original random arrangement with “small coordinates” since otherwise the greedy
search fails to improve the property.

As an example, a good choice is q = 55441. Then all minimal polynomials of
cos(π/(2n)) for n = 4, . . . , 12 have roots in Fq . Since these algebraic numbers
appear in the arrangements which form infinite families and in most of the known
sporadic simplicial arrangements, this Fq is a good choice to recover known examples
with up to say 40 lines.

One is tempted to increase the size of the set F in such a way that every realization
of its matroid requires the desired irrationalities. However in practice it turns out
that this is too restrictive in most cases (because it predetermines too much from the
arrangement) and that the greedy search then fails to reach the property P .

Remark 4.8 SinceGreedyArrFiniteFieldAlgebraic is restricted to arrange-
ments with the particular algebraic root w, it is necessary to call this procedure with
many different values of w. To obtain evidence that possibly all known arrangements
with a certain number of lines and property P were found, it is not reasonable to
“guess” the algebraic numbers a priori.

123



116 Discrete & Computational Geometry (2022) 68:107–124

A good solution to this problem is to take many primes, for example all primes
from 53 to 5987, and for each prime q to consider every possible value w ∈ Fq . Most
of these choices will find arrangements whose matroid is realizable over Q, but since
these primes are not so large (compared to 55441), the considered w will often satisfy
algebraic equations with small coefficients.

Note that the first prime we consider is 53 because for arrangements with at most
50 lines, primes greater than or equal to 53 will almost only produce arrangements
whose matroids are realizable in characteristic zero (which is not the case at all if one
chooses for example q = 11). This comes from the fact that there are q2 + q + 1
hyperplanes in F3

q and this number has to be much larger than 50 (see [8] for examples
of simplicial arrangements over Fq with A = 3q).

Remark 4.9 (symmetry) It may seem surprising that the algorithm, depending on the
property P , produces so many highly symmetric arrangements, i.e., whose matroids
have large automorphism groups, although the set of lines is completely random at
the beginning. In the case of simpliciality, this could be regarded as a strong hint that
simplicial arrangements are built together using smaller symmetric pieces like the
arrangements from the infinite series. Another explanation is that arrangements with
few double points only exist with symmetry: if an arrangement has a large symmetry
group and contains a point which is not a double point, then its orbit consists of several
points which will neither be double points.

4.3 Infinite Moduli Space

Another interesting variation of GreedyArrFiniteFieldAlgebraic is to
choose aw ∈ Fq which is not a root of a polynomial with small coefficients. Ifw only
satisfies algebraic relations with large coefficients, then a realization of the resulting
matroid over C is likely to replace w by a transcendental number. But if a realization
has a transcendental coordinate, then the matroid has less linear dependencies, i.e., its
moduli space will possibly be infinite.

Algorithm 4.10 GreedyArrFiniteFieldTranscend (P, n, q, (w1, . . . , wk))

Greedy search for arrangements of hyperplanes over a finite field whose matroid
has infinite moduli space in characteristic zero

Input: n ∈ N, a field Fq , a property P , elements w1, . . . , wk ∈ Fq which do not
satisfy algebraic relations with small coefficients.
Output: An arrangement with n lines in PG(2, q) with P if the algorithm termi-
nates, possibly such that the moduli space in characteristic zero has dimension up
to k.

1. Choose a random set of lines A ⊆ PG(2, q), |A| = n, such that the
first four lines are defined by the coordinate vectors (0 : 0 : 1), (0 : 1 : 0),
(1 : 0 : 0), (1 :1 : 1), such that the next m lines have coordinates including
w1, . . . , wk , and such that the other lines have “small” coefficients (e.g. in
{−2,−1, 0, 1, 2}).
2. While A does not satisfy P:
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• Choose two random points p1 
= p2 in L2(A), such that the line � through
p1 and p2 is not in A.

• Let �′ 
= � be a random line ofA which is not one of the first m + 4 lines
and A′ := (A ∪ {�}) \ {�′}.

• If A′ “is closer to satisfying P” than A, then A ← A′.
3. Print A.

Example 4.11 For example, if q = 55441 and w = 31816 ∈ Fq , then w is “quite
transcendental” because it is not a root of any polynomial of degree less than 10 with
coefficients in {−2, . . . , 2}.

5 Results and Examples

5.1 Simpliciality

Using the method proposed in Remark 4.8 we obtain a large database of simplicial
arrangements. Notice that we have to call the algorithm with all these primes from 53
to 5987 and all possible values w many times before no further matroids are found
any more. More precisely, even with a highly optimized and parallelized program in
C++ running on a cluster with 1024 cores, the algorithm still finds new examples after
a week of computations.

In the following sections, we exhibit some of the most interesting arrangements
found within this experiment.

5.2 A Simplicial Arrangement with 35 Lines

Let ω ∈ R be a (real) root of X4 − 3X3 + 3X2 − 3X + 1 and

R := {
(1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 1), (1, 0, ω), (1, ω3 − 2ω2 + ω − 1, 0),

(0, 1,−ω + 1), (1, 1,−ω + 1), (1,−ω + 1,−ω + 1), (1, ω2 − ω + 1, ω),

(1,−ω + 1, 0), (1,−ω + 1, ω2 − 2ω + 1),

(1,−ω3 + 3ω2 − 3ω + 2,−ω3 + 3ω2 − 2ω + 1),

(1, 1,−ω2 + 2ω), (1,−ω3 + 2ω2 − 2ω + 2, 1),

(1,−ω3 + 2ω2 − 2ω + 2,−ω3 + 2ω2 − ω + 1),

(1, ω2 − ω + 1,−ω3 + 2ω2 − ω + 1),

(1, ω2 − ω + 1,−ω3 + 3ω2 − 2ω + 1),

(3,−ω3 + 2ω2 − 2ω + 3,−ω2 + 2ω + 1),

(1,−ω3 + 2ω2 − ω + 1,−ω2 + 2ω),

(0, 1, ω3 − 2ω2), (1,−ω3 + 3ω2 − 2ω + 1,−ω3 + ω2 + 3ω − 1),

(1, 0,−ω2 + 2ω − 1), (1,−ω3 + 2ω2 − 2ω + 2, ω),
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(1,−ω3 + ω2 − ω + 1, ω),

(1,−ω3 + 2ω2 − 2ω + 2, 0), (1,−ω3 + 2ω2 − ω + 1,−ω2 + 3ω − 1),

(1, 0,−ω2 + 3ω − 1), (0, 1, ω3 − 2ω2 − ω + 1),

(1,−ω + 1,−ω3 + 3ω2 − 2ω + 1),

(1,−ω3 + 2ω2 − 3ω + 2,−ω3 + 3ω2 − 2ω + 1), (1, ω2 + 1,−ω2 + 2ω),

(1,−ω3 + 3ω2 − 3ω + 2,−2ω3 + 5ω2 − 2ω + 1),

(1,−ω3 + 2ω2 − ω + 1,−ω3 + ω2 + 3ω − 1),

(1,−ω3 + ω2 − ω + 1,−ω2 + 2ω)
}
.

Notice that the golden ratio is one of ω3 − 3ω2 + 2ω − 1 or −ω3 + 3ω2 − 2ω + 2
depending on the choice of ω. Then viewed as linear forms the coordinate vectors
in R define an arrangement A with 35 hyperplanes which is real and simplicial. The
two possible real values for ω give arrangements with isomorphic oriented matroids;
Fig. 1 is a picture of A. The automorphism group of the intersection lattice of A
is the dihedral group with 20 elements. The characteristic polynomial of L(A) is
(t − 1)(t2 − 34t + 305), hence it is not free.

This arrangement is related to the reflection arrangement of type H3 (which is
contained in A). However, despite the appearance, it is substantially different in the
sense that there is no easy way to construct A starting from the arrangement of type
H3, because the required field extension is larger; it is not clear whetherω has a natural
interpretation in mathematics (like the golden ratio).

5.3 Simplicial Arrangements with 1-Dimensional Moduli Space

Apart from the newly found real simplicial arrangement with 35 lines, the biggest sur-
prise from this computation is the existence of combinatorially simplicial arrangements
overCwhosematroids have an infinitemoduli space. Simpliciality is an extremal prop-
erty (in the real case, every chamber has the least number of walls), so a simplicial
arrangement should be quite rigid and should not allow small modifications preserving
thematroid.We still conjecture that themoduli space of thematroid of a real simplicial
arrangement is always finite. With our greedy algorithm, we have found 11 pairwise
non isomorphic combinatorially simplicial matroids with 1-dimensional moduli space
over C. There is one with 16 lines, four of them have 21 lines, and six of them have
23 lines (see Sect. A.1 in the appendix for the explicit matroids).

Let us consider the smallest example L in detail. It has 16 lines and 38 points. The
lines 1, . . . , 16 contain the points

{1, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38}, {2, 5, 12, 15, 26, 2, 35}, {2, 11, 21, 22, 23, 25, 36},
{3, 4, 5, 6, 9, 23, 33}, {3, 7, 10, 11, 16, 26, 30}, {2, 6, 13, 16, 17, 24, 38},
{2, 8, 9, 10, 18, 19, 31}, {2, 4, 7, 14, 20, 27, 37}, {3, 12, 19, 20, 21, 24, 29},
{3, 8, 13, 14, 15, 22, 34}, {3, 17, 18, 25, 27, 28, 32}, {1, 6, 8, 21, 26, 27},
{1, 5, 10, 17, 20, 22}, {1, 7, 12, 13, 18, 23}, {1, 4, 15, 16, 19, 25}, {1, 9, 11, 14, 24, 28},
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Fig. 2 Numbers of found combinatorially simplicial matroids up to isomorphisms which are realizable over
C

respectively; this completely determines the matroid L . This matroid is generated by 5
lines, g(L) = 5 and Algorithm ModuliSpace yields a 1-dimensional variety V \ E
defined by the ideal generated by X4

1 − 3X3
1X2 + 4X2

1X
2
2 − 2X1X3

2 + X4
2 and some

equations for E . It is easy to see that every solution (X1, X2) ∈ (C×)2 is such that
the quotient X1/X2 lies in C \R. On the other hand, the cases X1 = 0 or X2 = 0 are
excluded by the equations for E , thus there is no point in the moduli space with real
coordinates and there are no real realizations of L .

We can proceed similarly for the other examplematroidswith 1-dimensionalmoduli
space. None of them admits a real realization.

5.4 Simplicial Arrangements Over the Complex Numbers

The large part of the matroids found in the experiment have no apparent interesting
properties. Since we have found 1318 simplicial arrangements over C with up to 50
lines, we content ourselves with some statistics instead of a complete enumeration.

5.4.1 Number of Lines

Figure 2 displays the numbers of combinatorially simplicial arrangements over C
that we found with the greedy algorithm.

Remark 5.1 • The picture suggests that there will be a maximum for 24 lines and
that the set of simplicial arrangements could be finite when excluding the infinite
series. However, we have to be careful with such a conjecture: for most of the
choices of primes and of values w, the algorithm does not terminate in a short
time (perhaps because there is no such arrangement). This is why we have to add a
bound for the number of passes through the loop. Since this bound is the same for
all numbers of lines, it is conceivable that this bound was too small for the higher
numbers of lines and that we therefore missed many examples with more than 25
lines. On the other hand, the classification of crystallographic arrangements sets
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a precedent for a finite class of simplicial arrangements. I still conjecture that the
set of non-supersolvable arrangementsAwith fixed σ(A) is finite in characteristic
zero. In this case, Fig. 2 could be quite close to the actual picture.

• We did not find all the arrangements from the infinite series, probably because the
required algebraic numbers are difficult to obtain in “small” finite fields. Thus it is
very likely that we missed several other examples which require further algebraic
relations.

• It is unclear why the number of found arrangements with 23, 26, and 28 lines is
so small. A possible explanation is that these numbers do not allow matroids with
many symmetries.

5.4.2 Number Fields

We list here the number fields that appear as minimal fields of definition for the
simplicial matroids in the database (except for those with infinite moduli space):

(i) Cyclotomic fields: Q(ζ ) for ζ a primitive e-th root of unity, e ∈ {3, 4, 5, 7, 8}.
(ii) Quadratic fields: Q(

√
a) for a ∈ {2, 3, 5,−2,−7}.

(iii) The fields Q(ζ + ζ−1) for ζ an e-th root of unity, e ∈ {7, 9, 11}.
(iv) The fields

K1 := Q[X ]/(X3 − X + 1), K2 := Q[X ]/(X4 − 3X3 + 3X2 − 3X + 1)

which have embeddings into R.
(v) The fields Q[X ]/( f ) for f in

{4X4 + 8X2 + 1, X4 − 4X3 + 8X2 − 5X + 1,

X4 − 5X3 + 11X2 − 10X + 4, X4 − X3 + 2X + 1}.

Remark 5.2 • The fields Q(ζe + ζ−1
e ) for ζe a primitive e-th root of unity are also

the minimal fields of definition of the arrangements of the infinite series (see
[5, Thm. 3.6]). Moreover, Q(

√
2) = Q(ζ8 + ζ−1

8 ), Q(
√
3) = Q(ζ12 + ζ−1

12 ),
Q(

√
5) = Q(ζ10 + ζ−1

10 ), so one could move these fields from (ii) to (iii).
• The field K1 is the minimal field of definition for A(15, 5) and A(21, 7)
in the numbering by Grünbaum [16]. Note that this field was defined as
Q[X ]/(X3 − 3X + 25) in [5] (which is isomorphic to K1), but the polynomial
given here looks somewhat more natural.

• The field K2 is the minimal field of definition for the newly found arrangement
with 35 lines.

• I have no good explanation for the four fields in (v).
• None of the extensions K1/Q nor K2/Q is Galois.

5.4.3 Automorphism Groups

We find 47 different groups of automorphisms of matroids up to isomorphisms. Their
orders are
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1, 2, 3, 4, 6, 8, 12, 16, 18, 20, 24, 32, 36, 40, 42, 48, 54, 64,

84, 96, 108, 110, 120, 128, 192, 200, 432, 600, 1536, 1764.

Since some of the (complex) reflection arrangements are combinatorially simplicial3

(see [8]), as for example the series of imprimitive reflection groups G(e, 1, r), these
large groups appear in the list. Some of the other complex examples are probably
related to reflection groups and inherit the symmetries.

5.5 Free Arrangements

We would like to use our greedy algorithm with the property “counterexample to
Terao’s conjecture” (see [18] for details). Since such a counterexample should be a
matroid which has at least one free realization, we need a matroid whose characteristic
polynomial has only integral roots [18, Thm. 4.137]. The degrees of a free arrangement
are the roots 1, e, f of its characteristic polynomial. For an arbitrary arrangement,
if 1, e, f are the roots of the characteristic polynomial, then the number m(L) :=
( f −e)2 ∈ Z (possibly negative if e, f ∈ C\R) is easy to compute from the intersection
lattice. We can call our greedy algorithm with the goal to optimize m(L) ≥ 0, m(L)

a square. This way we obtain many matroids which may be filtered using several
conditions (see for example [19] for a good overview). As a result we recover all the
presently known examples of free but not inductively and free but not recursively free
arrangements over C including those with infinite moduli space (see [1,11]). We skip
the details here because the experiment gave no new insight in this direction.

5.6 (nk)-Configurations

An (n, k)-configuration of lines and points consists of a set of n lines and a set of n
points such that k of the points are on each line and k of the lines go through each point
(see [4] for previous results).We have tried to find some interesting (nk)-configurations
with the greedy algorithm. It is in particular still open, whether a (234)-configuration
exists. Although our algorithm comes very close to such a configuration (we find
configurations with 23 lines and points such that only one or two points lie on less than
four lines), the method presented in [7] seems to be more adequate for this problem: it
finds several complex arrangements whichwe do not obtain with the greedy algorithm.

5.7 Few Double Points

Of course one can run the greedy algorithm with the goal to minimize the number
of double points. A short experiment in this direction produced exactly the known
examples, amongst others the reflection arrangements of imprimitive reflection groups
(including the Hesse configuration) and some of the simplicial arrangements from the
infinite series.

3 More precisely, except the reflection arrangement of the group G31, the reflection arrangement of a finite
irreducible complex reflection group is combinatorially simplicial if and only if it is inductively free.
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Appendix A

A.1 Simplicial Arrangements with 1-Dimensional Moduli Space

We collect here the matroids of rank three that are simplicial and have 1-dimensional
moduli space and that were found in the computation. To reduce the amount of data
we have chosen the following format:

Let M be a matroid of rank three with n lines. Let T = [t1, t2, . . .] be the lex-
icographically ordered sequence of all triples (a, b, c) with 1 ≤ a < b < c ≤ n,
e.g. n = 4 and T = [(1, 2, 3), (1, 2, 4), (1, 3, 4), (2, 3, 4)]. We represent M by the
sequence of indices i such that the lines labeled by a, b, c for (a, b, c) = ti are linearly
dependent.

• n = 16 [96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 108, 109, 110, 127, 137, 142, 143, 152, 173, 180, 186, 206, 219,
220, 221, 230, 249, 256, 263, 278, 279, 280, 291, 304, 311, 313, 314, 320, 349, 356, 365, 368, 369, 375,

396, 419, 423, 427, 454, 457, 464, 480, 489, 490, 505, 551, 552, 553, 554, 555, 556, 557, 558, 559, 560],
• n = 21 [188, 189, 190, 194, 199, 213, 223, 231, 235, 251, 253, 261, 279, 293, 310, 332, 340, 348, 394, 403, 414, 428,

431, 441, 444, 449, 458, 468, 481, 489, 509, 525, 541, 546, 559, 572, 582, 587, 592, 596, 619, 623, 628, 634,

652, 658, 671, 685, 695, 711, 713, 719, 762, 766, 782, 790, 808, 811, 820, 822, 839, 862, 888, 889, 914, 948,

952, 955, 959, 975, 983, 997, 1007, 1011, 1060, 1076, 1082, 1085, 1095, 1119, 1129, 1134, 1139, 1157,

1201, 1204, 1207, 1214, 1222, 1226, 1229, 1234, 1251, 1259, 1279, 1298, 1313, 1323, 1330],
• n = 21 [188, 189, 190, 201, 209, 225, 241, 246, 259, 269, 271, 279, 291, 305, 319, 330, 349, 368, 374, 386, 393, 409,

410, 445, 453, 457, 465, 473, 485, 497, 530, 536, 543, 552, 556, 561, 579, 601, 612, 626, 634, 658, 661, 670,

687, 693, 719, 741, 745, 765, 772, 778, 803, 812, 837, 850, 862, 864, 871, 894, 910, 913, 916, 933, 942, 958,

974, 990, 998, 1007, 1009, 1014, 1021, 1026, 1029, 1041, 1063, 1066, 1074, 1082, 1088, 1117, 1122,

1148, 1151, 1155, 1159, 1173, 1177, 1189, 1218, 1237, 1251, 1255, 1275, 1307, 1314, 1316, 1330],
• n = 21 [188, 189, 190, 195, 196, 211, 239, 248, 250, 271, 301, 306, 313, 318, 327, 351, 354, 374, 387, 388, 420, 421,

424, 451, 469, 473, 477, 487, 503, 509, 518, 520, 538, 544, 567, 574, 586, 592, 611, 620, 628, 635, 651, 683,

694, 714, 739, 742, 743, 756, 767, 793, 794, 798, 825, 828, 839, 841, 853, 863, 866, 888, 899, 901, 904, 914,

922, 926, 934, 946, 961, 983, 991, 998, 1015, 1021, 1035, 1068, 1072, 1085, 1089, 1093, 1097, 1104, 1113,

1126, 1155, 1157, 1181, 1191, 1198, 1214, 1229, 1235, 1248, 1271, 1289, 1306, 1330],
• n = 21 [188, 189, 190, 221, 223, 234, 251, 253, 261, 269, 283, 284, 308, 310, 324, 327, 348, 353, 371, 377, 386, 389,

396, 405, 412, 413, 432, 439, 449, 481, 492, 497, 511, 518, 527, 536, 546, 581, 589, 595, 600, 628, 635, 642,

664, 677, 683, 686, 701, 711, 725, 728, 737, 772, 784, 793, 809, 812, 828, 848, 862, 900, 901, 929, 935, 940,
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947, 970, 976, 984, 988, 992, 1002, 1014, 1033, 1064, 1080, 1085, 1090, 1141, 1142, 1150, 1154, 1160,

1170, 1171, 1176, 1201, 1211, 1218, 1225, 1234, 1237, 1253, 1267, 1290, 1306, 1314, 1330],
• n = 23 [185, 186, 231, 366, 370, 375, 382, 383, 384, 400, 405, 406, 407, 412, 414, 419, 425, 431, 432, 433, 436, 456,

460, 462, 473, 485, 506, 513, 520, 533, 537, 547, 557, 567, 607, 625, 629, 639, 647, 653, 658, 667, 702, 710,

716, 733, 741, 755, 765, 776, 796, 815, 818, 830, 843, 850, 851, 878, 908, 911, 934, 937, 948, 957, 959, 977,

983, 988, 1005, 1029, 1052, 1071, 1084, 1090, 1108, 1123, 1148, 1156, 1169, 1173, 1183, 1186, 1194, 1207,

1214, 1215, 1232, 1249, 1251, 1277, 1286, 1295, 1302, 1342, 1370, 1375, 1383, 1392, 1395, 1412, 1417,

1425, 1429, 1445, 1462, 1474, 1482, 1500, 1502, 1510, 1515, 1528, 1532, 1541, 1578, 1595, 1597,

1598, 1601, 1608, 1618, 1620, 1632, 1638, 1651, 1670, 1677, 1688, 1693, 1699, 1702, 1720, 1762],
• n = 23 [185, 186, 231, 368, 369, 371, 377, 384, 385, 403, 404, 408, 410, 413, 414, 416, 422, 428, 431, 438, 439, 450,

470, 471, 482, 489, 496, 509, 524, 537, 539, 547, 556, 571, 596, 625, 627, 636, 644, 651, 668, 682, 711, 719,

728, 734, 740, 760, 763, 772, 784, 795, 803, 840, 841, 853, 860, 872, 886, 896, 901, 920, 939, 954, 988, 990,

1007, 1015, 1033, 1048, 1055, 1062, 1070, 1077, 1079, 1083, 1104, 1120, 1126, 1132, 1134, 1162, 1163,

1170, 1177, 1189, 1202, 1212, 1245, 1249, 1255, 1261, 1262, 1284, 1292, 1301, 1305, 1331, 1348, 1363,

1384, 1387, 1403, 1419, 1420, 1422, 1432, 1445, 1463, 1480, 1521, 1524, 1526, 1532, 1540, 1553, 1568,

1569, 1591, 1604, 1625, 1634, 1642, 1651, 1666, 1669, 1685, 1702, 1705, 1712, 1717, 1753, 1758],
• n = 23 [175, 176, 231, 366, 367, 370, 389, 392, 396, 397, 400, 408, 416, 420, 423, 424, 425, 435, 436, 437, 439, 445,

451, 467, 475, 487, 491, 497, 517, 546, 547, 564, 573, 581, 599, 604, 630, 636, 650, 666, 682, 688, 707, 709,

726, 739, 741, 768, 778, 791, 794, 805, 818, 820, 863, 883, 889, 897, 901, 908, 917, 920, 940, 941, 971, 975,

999, 1008, 1011, 1018, 1043, 1049, 1059, 1079, 1122, 1123, 1141, 1142, 1146, 1168, 1174, 1181, 1189,

1191, 1202, 1212, 1213, 1226, 1263, 1270, 1287, 1293, 1297, 1303, 1306, 1313, 1317, 1345, 1347, 1356,

1368, 1379, 1381, 1399, 1420, 1449, 1454, 1458, 1473, 1478, 1494, 1507, 1510, 1518, 1536, 1542, 1566,

1572, 1580, 1606, 1613, 1622, 1626, 1630, 1645, 1654, 1665, 1730, 1746, 1747, 1749, 1758, 1768],
• n = 23 [200, 202, 227, 340, 344, 350, 354, 356, 361, 364, 370, 371, 381, 382, 390, 396, 398, 403, 418, 426, 427, 458,

460, 466, 477, 485, 490, 508, 517, 518, 529, 547, 564, 581, 587, 606, 630, 641, 653, 655, 678, 681, 683, 694,

708, 713, 730, 750, 761, 795, 801, 813, 816, 822, 825, 845, 848, 860, 867, 888, 893, 919, 937, 943, 963, 964,

985, 991, 1002, 1023, 1041, 1056, 1073, 1085, 1095, 1106, 1118, 1123, 1136, 1156, 1176, 1191, 1204,

1222, 1234, 1240, 1261, 1272, 1289, 1304, 1317, 1321, 1333, 1356, 1362, 1381, 1385, 1392, 1396, 1411,

1442, 1447, 1462, 1472, 1485, 1491, 1492, 1527, 1530, 1537, 1548, 1553, 1564, 1569, 1590, 1592, 1601,

1611, 1612, 1636, 1642, 1649, 1664, 1671, 1678, 1696, 1698, 1705, 1707, 1711, 1725, 1733, 1743],
• n = 23 [138, 139, 229, 351, 352, 356, 364, 368, 379, 392, 393, 396, 397, 399, 400, 407, 408, 421, 432, 435, 438, 457,

459, 462, 481, 486, 518, 519, 531, 553, 555, 563, 570, 584, 596, 617, 627, 638, 647, 651, 670, 676, 701, 703,

720, 730, 745, 749, 759, 792, 798, 818, 836, 837, 851, 880, 885, 898, 904, 915, 927, 929, 931, 942, 966, 969,

991, 1007, 1010, 1025, 1028, 1032, 1039, 1059, 1073, 1079, 1102, 1105, 1113, 1120, 1125, 1139, 1146,

1172, 1190, 1199, 1204, 1212, 1245, 1258, 1262, 1281, 1299, 1301, 1309, 1315, 1338, 1347, 1354, 1386,

1388, 1405, 1408, 1412, 1423, 1435, 1439, 1447, 1467, 1474, 1489, 1504, 1511, 1522, 1569, 1570, 1574,

1606, 1640, 1642, 1645, 1648, 1653, 1654, 1667, 1687, 1695, 1710, 1720, 1723, 1728, 1750, 1764],
• n = 23 [18, 19, 20, 21, 226, 227, 228, 229, 230, 231, 398, 399, 408, 409, 414, 427, 436, 437, 438, 439, 440, 441, 442,

449, 467, 490, 492, 502, 507, 519, 528, 543, 552, 585, 591, 603, 614, 618, 638, 658, 659, 679, 687, 702, 711,

720, 730, 735, 766, 767, 786, 790, 813, 822, 845, 850, 854, 862, 880, 881, 908, 911, 933, 945, 946, 971, 972,

973, 987, 1021, 1023, 1026, 1054, 1056, 1078, 1083, 1098, 1105, 1114, 1115, 1135, 1149, 1154, 1171,

1182, 1188, 1191, 1212, 1247, 1255, 1257, 1278, 1287, 1297, 1306, 1344, 1360, 1371, 1383, 1387, 1400,

1412, 1414, 1421, 1427, 1439, 1446, 1455, 1459, 1470, 1496, 1507, 1525, 1535, 1543, 1567, 1583, 1587,

1595, 1610, 1617, 1620, 1626, 1630, 1633, 1645, 1660, 1697, 1701, 1730, 1768, 1769, 1770, 1771],

123



124 Discrete & Computational Geometry (2022) 68:107–124

References

1. Abe, T., Cuntz,M., Kawanoue, H., Nozawa, T.: Non-recursive freeness and non-rigidity. Discret.Math.
339(5), 1430–1449 (2016)

2. Alexanderson, G.L., Wetzel, J.E.: A simplicial 3-arrangement of 21 planes. Discret. Math. 60, 67–73
(1986)

3. Björner, A., LasVergnas,M., Sturmfels, B.,White, N., Ziegler, G.M.: OrientedMatroids. Encyclopedia
of Mathematics and its Applications, vol. 46. Cambridge University Press, Cambridge (1993)

4. Bokowski, J., Pilaud, V.: On topological and geometric (194) configurations. Eur. J. Comb. 50, 4–17
(2015)

5. Cuntz, M.: Minimal fields of definition for simplicial arrangements in the real projective plane. Innov.
Incidence Geom. 12, 49–60 (2011)

6. Cuntz,M.: Simplicial arrangementswith up to 27 lines. Discret. Comput. Geom. 48(3), 682–701 (2012)
7. Cuntz, M.J.: (224) and (264) configurations of lines. Ars Math. Contemp. 14(1), 157–163 (2018)
8. Cuntz,M., Geis, D.: Combinatorial simpliciality of arrangements of hyperplanes. Beitr. AlgebraGeom.

56(2), 439–458 (2015)
9. Cuntz, M., Heckenberger, I.: Finite Weyl groupoids of rank three. Trans. Am. Math. Soc. 364(3),

1369–1393 (2012)
10. Cuntz, M., Heckenberger, I.: Finite Weyl groupoids. J. Reine Angew. Math. 702, 77–108 (2015)
11. Cuntz, M., Hoge, T.: Free but not recursively free arrangements. Proc. Am. Math. Soc. 143(1), 35–40

(2015)
12. Cuntz, M., Mücksch, P.: Supersolvable simplicial arrangements. Adv. Appl. Math. 107, 32–73 (2019)
13. Deligne, P.: Les immeubles des groupes de tresses généralisés. Invent. Math. 17, 273–302 (1972)
14. Green, B., Tao, T.: On sets defining few ordinary lines. Discret. Comput. Geom. 50(2), 409–468 (2013)
15. Grünbaum, B.: Arrangements and Spreads. Conference Board of the Mathematical Sciences Regional

Conference Series in Mathematics, vol. 10. American Mathematical Society, Providence (1972)
16. Grünbaum, B.: A catalogue of simplicial arrangements in the real projective plane. ArsMath. Contemp.

2(1), 1–25 (2009)
17. Melchior, E.: Über Vielseite der projektiven Ebene. Deutsche Math. 5, 461–475 (1941)
18. Orlik, P., Terao, H.: Arrangements of Hyperplanes. Grundlehren der MathematischenWissenschaften,

vol. 300. Springer, Berlin (1992)
19. Yoshinaga, M.: Freeness of hyperplane arrangements and related topics. Ann. Fac. Sci. ToulouseMath.

23(2), 483–512 (2014)
20. Yuzvinsky, S.: Free and locally free arrangements with a given intersection lattice. Proc. Am. Math.

Soc. 118(3), 745–752 (1993)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	A Greedy Algorithm to Compute Arrangements of Lines in the Projective Plane
	Abstract
	1 Introduction
	2 Simplicial Arrangements
	3 Matroids and Moduli Spaces
	4 Greedy Algorithms
	4.1 The Prototype
	4.2 Number Fields
	4.3 Infinite Moduli Space

	5 Results and Examples
	5.1 Simpliciality
	5.2 A Simplicial Arrangement with 35 Lines
	5.3 Simplicial Arrangements with 1-Dimensional Moduli Space
	5.4 Simplicial Arrangements Over the Complex Numbers
	5.4.1 Number of Lines
	5.4.2 Number Fields
	5.4.3 Automorphism Groups

	5.5 Free Arrangements
	5.6 (nk)-Configurations
	5.7 Few Double Points

	Acknowledgements
	Appendix A
	A.1 Simplicial Arrangements with 1-Dimensional Moduli Space

	References




