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Abstract: This paper uncovers and exploits a link between a central object in harmonic
analysis, the so-called Schur functions, and the very hot topic of symmetry protected
topological phases of quantummatter. This connection is found in the setting of quantum
walks, i.e. quantum analogs of classical randomwalks.We prove that topological indices
classifying symmetry protected topological phases of quantum walks are encoded by
matrix Schur functions built out of the walk. This main result of the paper reduces
the calculation of these topological indices to a linear algebra problem: calculating
symmetry indices of finite-dimensional unitaries obtained by evaluating such matrix
Schur functions at the symmetry protected points ±1. The Schur representation fully
covers the complete set of symmetry indices for 1D quantum walks with a group of
symmetries realizing any of the symmetry types of the tenfold way. The main advantage
of the Schur approach is its validity in the absence of translation invariance, which
allows us to go beyond standard Fourier methods, leading to the complete classification
of non-translation invariant phases for typical examples.

1. Introduction

Topological phases of matter are currently one of the most stimulating topics in quan-
tum physics [15,19,27,29,30,32,33,42,43,45,46], leading to the Nobel prize in 2016.
Theoretically predicted decades earlier, their experimental realization had to wait until
2007 [37]. Since then, the impact of the potential applications, ranging from spintronics
to topological superconductivity or quantum computation [31,33,34,38], has fueled the
race towards the discovery of new forms of topological matter, fostering a spectacular
symbiosis between the theoretical and experimental efforts. The key feature of these new
states of matter is their exceptional stability against perturbations, which is of topologi-
cal origin. The archetype here is the so called bulk-edge principle: the interface between
systems in different phases supports robust bound states, regardless of how the phases
are joined.
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The precise meaning of such statements depends crucially on the specific framework.
In this paper the physical systems are discrete-time evolutions of single particles with
internal degrees of freedom, so-called “quantum walks” [1,2,4,11,14,23,44]. They are
described by a unitary operator W on a lattice satisfying a locality condition which
reflects the decay of the interactions as a function of the distance. Their simplicity and
versatility make them ideal platforms for creating and studying new symmetry protected
topological phases [5,6,9,10,12,35,36,53].

In one spatial dimension, the mathematical description of these phases involves a set
U of unitaries with some common symmetries –giving a representation of any one of
the symmetry types of the tenfold way [3]– and satisfying some locality and spectral
gap conditions [12], [9, Sect. 1.1]. These constraints divide U into homotopy classes
(topological phases), so that a perturbation t �→ W (t) ∈ U cannot change the homotopy
class unless a discontinuity (phase transition) arises. Stated in another way, if a sym-
metry preserving continuous path W (t) of walks –i.e. unitaries satisfying the locality
conditions– connects walksW1,W2 in different homotopy classes, thenW (t) closes the
spectral gap for some t . The bulk-edge principle sketched above becomes a stability
result on eigenvalues and eigenvectors of crossovers W acting as W1 ∈ U or W2 ∈ U on
different regions of the lattice: if W1,W2 are in different homotopy classes, the walk W
exhibits eigenvalues in the gapswith eigenvectors localized around the interface between
W1 and W2 which cannot be eliminated by perturbing the system continuously.

A central problem in this context is to find a complete set of labels for these topological
phases. In the purely translation invariant case Fourier analysis iswidely used to represent
an infinite-dimensional quantum walk as a finite-dimensional matrix valued function
providing simple expressions for such homotopy invariants [10]. A more sophisticated
machinery which applies also in the disordered case is provided by K-theory [24,32,41,
47,48,54], but its complexity makes it difficult to apply this in practice.

One of the novel ideas in this work is the proposal of new tools for the analysis
of symmetry protected topological indices in quantum walks which combine both, the
simplicity of Fourier and the universality of K-theory. Known by the name of Schur
functions, they constitute one of the gems resulting from the interplay between harmonic
analysis and complex variables, which go back to the early XXth century in the hands
of Issai Schur [49,50] (quick introductions to scalar and matrix valued Schur functions
can be found in [51, Sect. 1.3] and [16, Chap. 1 and 3], for a more general and detailed
treatment see for instance [18]). The flexibility of Schur functions is evidenced by a
wide variety of applications such as interpolation problems, orthogonal polynomials,
operator theory, system and control theory, stochastic processes, electrical engineering,
signal processing or geophysics (see [16,21,28,39,51] and references therein).

Regarding their quantum significance, Schur functions play a crucial role in describ-
ing recurrence properties of quantum walks –more generally, discrete-time unitary evo-
lutions [7,26]–, in the spirit of Pólya’s recurrence theory for classical random walks
[20,40]. The main message of this paper is that, once again, Schur functions are a
very useful tool as they provide a bridge between harmonic analysis and the study of
symmetry protected topological phases of quantum walks. This Schur approach to sym-
metry protected topological phases is based on a recent theory [9,12] which avoids any
translation invariance assumption and gives a complete set of topological indices for
one-dimensional quantum walks in U.

As we shall see, matrix valued Schur functions do a similar job for non-translation
invariant quantum walks as Fourier transform does in the periodic case, reducing the
calculation of topological indices to finite-dimensional linear algebra problems. In a
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sense, one can even think of Schur functions as nonlinear versions of Fourier tools. This
is illustrated by their relation to orthogonal polynomials on the unit circle [16,51], which
generalize standard Fourier expansions beyond the Lebesgue measure on the unit circle.
Moreover, the continuous version of Schur functions, which plays a prominent role in
Dirac’s and Krein’s systems [17], appears in connection with appropriate “scattering
transforms”, regarded as nonlinear versions of the Fourier transform, a situation similar
to that in the study of many integrable systems.

Therefore, the relevance of the Schur approach relies on the capability to go beyond
translation invariance, which is important for several reasons:

• It is required by a rigorous treatment of the bulk-edge principle [12], [9, Sect. 4.3],
because joining different phases breaks translation invariance.
• The bulk-edge principle guarantees the emergence of symmetry protected eigen-
vectors even when joining non-translation invariant bulks (see the end of Sect. 6).
• Although the general theory states that every phase includes a crossover W of
translation invariant walks W1 and W2 [9], changing Wi by a translation invariant
walk in the same phase may change the phase of the crossover. Hence, the knowledge
of the translation invariant phases of amodel is of little help to surmise its total number
of phases (see the examples in Sects. 6 and 7).
• Dealing with non-translation invariant walks unifies the treatment of all translation
invariant cases, i.e. periodic situations with arbitrary period, something which seems
hard to tackle with Fourier methods.

Finally, we have to remark that the Schur bridge between harmonic analysis and
quantum walks goes both ways. This has been already the case for quantum recur-
rence which has spurred new results on Schur and Nevanlinna functions, as well as in
related areas such as orthogonal polynomials [13,25]. Regarding possible payoffs of the
Schur approach to topological phases, it could open new ways of thinking about homo-
topy groups of operator spaces, the general stability problem of isolated eigenvalues, or
extensions of the Gohberg-Krein formula for Fredholm indices, closely related to the
topological indices of quantum walks [9, Sect. 5.3], [10, Sect. 3.3].

The paper is structured as follows: Sect. 2 summarizes the general theory of symmetry
protected topological phases for 1D quantumwalks given in [9,12]. A selection of results
on Schur functions of interest for our purpose is given in Sect. 3. This section contains a
new result for matrix valued Schur functions, Theorem 3.1, which is the cornerstone of
the Schur approach to topological indices developed in Sects. 4 and 5, see Theorems 4.5,
4.6, 5.4 and Corollary 5.5. Sections 6 and 7 apply the Schur machinery to the complete
classification of symmetry protected topological phases in examples of non-translation
invariant quantum walks: the split-step walk, coined walks with coins of arbitrary size
and some unitary equivalent transformations thereof.

2. Symmetry Protected Topological Phases of 1D Quantum Walks

Let us summarize the main results on the topological classification of 1D symmet-
ric quantum walks, first announced in [12], and fully developed in [9]. Unlike other
approaches, this provides an explicit set of indiceswhich completely classifies the phases
without any translation invariance assumption –concerning the special features of the
translation invariant case see [10]–, getting such indices close to the Schur representation
that we will develop.
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We will deal with unitary operators W on the line, i.e. on a Hilbert space (H, 〈 | 〉)
with cell structure

H =
⊕

x∈Z
Hx ,

where the cells Hx are finite-dimensional subspaces, but not necessarily with the same
dimension since no assumption about translation invariance shall be made. Actually, no
bound on dimHx will be assumed. The index x ∈ Z labels the sites of a 1D lattice,
while the cells Hx describe internal degrees of freedom. The identification of certain
symmetry indices will require to deal also with unitaries on a left/right half-line, i.e. on
a sum of cells to the left/right of a given one. Due to this reason, for convenience we
will use the abbreviations

H>a =
⊕

x>a

Hx , H≥a =
⊕

x≥a
Hx , H<a =

⊕

x<a

Hx , H≤a =
⊕

x≤a
Hx .

Besides, Px and P>a will denote the orthogonal projections of H onto Hx and H>a ,
respectively, and analogously for the remaining cases.

To study properly symmetry protected topological phases in 1D quantum walks we
need to consider unitariesW on a (finite or infinite) sum of cellsHx under the following
setting:

(a) The unitary W has a discrete group of symmetries providing a concrete represen-
tation of one of the symmetry types of the tenfold way [3]. Every symmetry σ acts
locally in each cell, i.e. σ = ⊕xσx where σx acts on Hx . Besides, the representa-
tion of the symmetry type in each cell is balanced, i.e. every σx has a symmetry
invariant unitary with spectral gaps around the symmetry protected points±1. This
requirement guarantees that what we will call left and right indices are well defined.

(b) The essential spectrum of W has gaps around ±1, i.e. the spectrum of W around
±1 consists only of isolated eigenvalues of finite multiplicity. This, instead of a
strict gap, gives room for the presence of symmetry protected eigenvectors with
eigenvalues ±1. We will refer to a (strictly) gapped or essentially gapped unitary
to distinguish both situations.

(c) A mild locality assumption will be made, namely, that [W, P≥a] = WP≥a− P≥aW
is compact, a property which is independent of a and we call this essential locality.
This condition is equivalent to the compactness of P<aW P≥a and P≥aW P<a , as
follows from [W, P≥a] = P<aW P≥a − P≥aW P<a .

A unitaryW satisfying (a) and (b) will be called an admissible unitary for the given
representation of a symmetry type. Under the additional restriction (c), we will refer
to such a unitary as an admissible walk. When PyW Px = 0 for |y − x | greater than
some x-independent length L , a walk W will be called (strictly) local. Nevertheless,
assumption (c) leaves room for non-local walks on the line, e.g. all those with decay
‖PyW Px‖ ≤ c|y − x |−α for some c > 0 and α > 1 [10, Sect. 2.3].

A walk W on the line is called translation invariant if [W, Sa] = 0 for some shift
operator Sa , a ∈ Z, which refers to a unitary operator onH such that SaHx = Hx+a . No
translation invariant assumption is made in the characterization of symmetry protected
topological phases described below, which holds for arbitrary admissible walks. For
a translation invariant admissible walk W the essential gap and strict gap conditions
coincide because then no eigenspace of W may be finite-dimensional. Therefore, any
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discussion of symmetry protected eigenvectors with eigenvalues ±1 requires breaking
translation invariance.

Every symmetry σ of any of the alluded to symmetry types is represented, up to a
phase, by an involution on the Hilbert state spaceH acting on operators as X �→ σ Xσ ∗,
where σ ∗ stands for the adjoint of σ . These involutions are of one of the following three
types:

particle-hole time-reversal chiral
antiunitary antiunitary unitary
ηWη∗ = W τWτ ∗ = W ∗ γWγ ∗ = W ∗

The anitiunitary involutions necessarily satisfy1 σ 2 = ±1 because σ 2σ = σσ 2, while
it is possible to adjust the phase convention for the symmetries so that γ 2 = 1 or
γ = ητ and the three involutions commute whenever all of them are present, in which
case γ 2 = η2τ 2. Therefore, each symmetry type S of the tenfold way is determined by
a commutative group of order 1, 2 or 4 constituted by unitary/antiunitary involutions,
together with a choice for the signs of the squared antiunitary involutions whenever they
are present. The particle-hole and chiral symmetries make the spectrum of a unitary W
invariant under complex conjugation, which distinguishes the ±1-eigenspaces H± as
the only ones invariant under any of the symmetries.

In this setting, the symmetry protected topological phases are the homotopy classes
of admissible walks under the norm topology. It has been proved in [9, Sect. 8] that these
homotopy classes are labelled by three indices taking values in a group isomorphic to {0},
Z2 orZ, given in terms of a symmetry index si(ρ) classifying –up to unitary equivalence
and orthogonal sum of balanced representations– the representations ρ of a symmetry
type S on a finite-dimensional Hilbert space H [12], [9, Sect. 2.4]. A group theoretical
analysis yields [12], [9, Sect. 2.5]

si(ρ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dimH (mod 2) for S = {1, η}, η2 = 1, (I)

dimH (mod 4) for S = {1, η, τ, γ }, η2 = 1, τ 2 = −1, (II)

trγ for S = {1, γ } or {1, η, τ, γ }, η2 = τ 2 (i.e. γ 2 = 1), (III)

0, otherwise,

(1)

showing that si(ρ ⊕ ρ′) = si(ρ) + si(ρ′), si(VρV−1) = si(ρ) and |si(ρ)| ≤ dimH.
Given an admissible unitary W for a representation ρ of a symmetry type, consider

the representations ρ± induced by ρ on the ±1-eigenspacesH± of W . Any continuous
perturbation of W by admissible unitaries changes ρ± by adding/subtracting balanced
representations, hence the following indices –which make sense since dimH± <∞ by
the essential gap condition– are homotopy invariants in the set of admissible unitaries,

si(W ) = si+(W ) + si−(W ), si±(W ) = si(ρ±).

Also, |si±(W )| ≤ dimH± so that si(W ) �= 0 guarantees the existence of an eigenvector
with eigenvalue 1 or −1. In the finite-dimensional situation si(W ) = si(ρ) and si±(W )

admit the following direct expressions [9],

(−1)si±(W ) = det(∓W ), (I)

si±(W ) = 1

2
trγ (1±W ). (III)

(2)

1 Here and in what follows1 stands for the identity on the whole Hilbert spaceH, while we use the notation
1HC

for the identity on a subspace HC ⊂ H.
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For an admissible walk W on the line, another pair of indices arise, which make the
cell structure to come into play. They are given by

↼sı(W ) = si(WL),
⇀sı(W ) = si(WR), (3)

with WL/R a walk on a left/right half-lineH<b/H≥b, such that WL ⊕WR is admissible
and “coincides with W far to the left/right”, i.e.

lim
a→−∞‖P<a(W − (WL ⊕WR))P<a‖ = lim

a→∞‖P>a(W − (WL ⊕WR))P>a‖ = 0.

(4)

Due to essential locality, (4) is equivalent to the compactness of W − (WL ⊕ WR).
The existence of such a compact decoupling is a non-trivial result of the theory [9,
Theorem 7.4]. In the case of usual local walks the decoupling is typically performed by
a local perturbation, i.e. acting non-trivially only on a finite number of cells.

While si±(W ) make sense for any admissible unitary W , the left and right indices,
↼sı(W ) and ⇀sı(W ), are well defined only for admissible walks since essential locality
guarantees their invariance under compact perturbations. Essential locality is also behind
the identity [12], [9, Theorem 4.2],

si(W ) = ↼sı(W ) + ⇀sı(W ),

which shows that ↼sı(W ), ⇀sı(W ) and si±(W ) are not independent. Instead, any three of
these indices are independent and can be used to label the homotopy classes of admissible
walks. Omiting some of these three indices yields a less fine classification, either by
weakening the homotopy equivalence relation, or by enlarging the set of unitaries which
may be used along a homotopy deformation [9, Sect. 8]:

Indices Unitaries Equivalence relation
↼sı(W ), ⇀sı(W ), si−(W ) admissible walks homotopies

↼sı(W ), ⇀sı(W ) admissible walks homotopies & compact perturbations
si+(W ), si−(W ) admissible unitaries homotopies

(5)

The indices ↼sı, ⇀sı and si± are also invariant under the map W �→ W ∗. Besides, si±
are invariant under unitary equivalence of the walk W �→ UWU∗ and the symmetries
σ �→ UσU∗. However, this is not the case for ↼sı and ⇀sı, unless the unitary U acts
locally in each cell so that it preserves the cell structure. Also, due to the additivity of the
finite-dimensional index si with respect to direct sums, the same holds for the symmetry
indices of a direct sum of infinite-dimensional unitaries when its symmetries also split
as direct sums.

The above classification of topological phases is not a mere intellectual challenge,
but hasmeasurable physical consequences which follow from the bulk-edge correspon-
dence [12], [9, Sect. 4.3]: Let W be a crossover between admissible walks W1, W2 on
the line, i.e. an admissible walk which coincides with W1/2 far to the left/right,

lim
a→−∞‖P<a(W −W1)P<a‖ = lim

a→∞‖P>a(W −W2)P>a‖ = 0.

Assuming si±(Wi ) = 0 –a condition guaranteed by translation invariance, or more
generally for strictly gapped walks, but satisfied in more general situations–, then
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↼sı(Wi ) = −⇀sı(Wi ), thus the single index
⇀sı(Wi ) identifies the topological phase towhich

Wi belongs. In this case, ↼sı(W ) = ↼sı(W1),
⇀sı(W ) = ⇀sı(W2), si(W ) = ⇀sı(W2)−⇀sı(W1)

and the ±1-eigenspaces H± of W satisfy

|⇀sı(W2)−⇀sı(W1)| ≤ dimH+ + dimH−.

Hence,W has an eigenvector with eigenvalue 1 or−1whenever⇀sı(W1) �= ⇀sı(W2). These
results hold in the absence of any translation invariance assumption forWi . We conclude
that any crossover between gapped admissible walks from different topological phases
breaks the gap by creating protected eigenvectors with eigenvalue 1 or−1, regardless of
the way the crossover is engineered. These eigenvectors are typically localized around
the crossover, a phenomenon that can be precisely proved whenW interpolates between
translation invariant walks due to the exponential decay of its eigenvectors [10, Sect. 4].

3. Schur Functions

Obtaining the symmetry indices of a walk W involves two ingredients: the decoupling
of W into left/right walks WL/R and the calculation –according to (1)– of the sym-
metry indices si(ρ±) for the finite-dimensional representations ρ± induced on the ±1-
eigenspaces of W and WL/R . However, getting information about eigenspaces of oper-
ators in infinite dimension is not an easy task, especially for non-translation invariant
walks, whose treatment is among the most significant virtues of the theory previously
summarized.

Under translation invariance this problem may be circumvented by the Fourier
transform, which represents a walk as a matrix valued function on the unit circle
T = {z ∈ C : |z| = 1}. The main contribution of this paper is the discovery that
certain matrix valued functions on the unit disk D = {z ∈ C : |z| < 1}, known as Schur
functions [49,50] (for a modern approach see [18], or the summaries in [51, Sect. 1.3]
and [16, Chap. 1 and 3]), do a similar job when translation invariance is broken. We will
summarize here some of the special properties of these functions which are of interest
for us.

Scalar Schur functions are the analytic maps of D into its closure D = D ∪ T.
Among their most remarkable features is their characterization by a finite or infinite
sequence of complex numbers αn –the Schur parameters– arising from the so called
Schur algorithm

f0 = f ; fn+1(z) = Tαn fn(z):=
1

z

fn(z)− αn

1− αn fn(z)
, αn = fn(0), n ≥ 0, (6)

which generates iteratively new Schur functions fn –the Schur iterates– starting from a
given one f . This yields an infinite sequence of iterates unless some αn lies in T, which
stops the algorithm, establishing a one-to-one correspondence between Schur functions
and elements of D

∞ ∪ (∪k≥0Dk × T). If f is a Schur function with Schur parameters
(αn)n≥0, obviously its k-th iterate fk has Schur parameters (αn)n≥k .

The Schur algorithm itself gives the following relations between transformations of
Schur functions and Schur parameters:

(αn)n≥0 �→ (λαn)n≥0 ⇒ f (z) �→ λ f (z), λ ∈ T,

(αn)n≥0 �→ (α0, 0, α1, 0, . . . ) ⇒ f (z) �→ f (z2),

(αn)n≥0 �→ (0, α0, 0, α1, . . . ) ⇒ f (z) �→ z f (z2).

(7)
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Therefore, a change in the sign in all the Schur parameters changes the sign in the
Schur function, while even/odd Schur functions are characterized by sequences of Schur
parameters which are null at even/odd places in the sequence.

A Schur algorithm also exists for matrix Schur functions, the contractive matrix
valued analytic functions on D. Another fruitful property of these functions is their one-
to-one correspondence with matrix measures μ on T normalized by μ(T) = 1. The
matrix Schur function f related to any such a measure is given by

F(z) =
∫

t + z

t − z
dμ(t), f (z) = z−1(F(z)− 1)(F(z) + 1)−1, (8)

where F , known as theCarathéodory function ofμ, is amatrix valued analytic function
on D with positive real part �eF(z) = (F(z) + F(z)∗)/2. The radial limits

f (eiθ ) = lim
r↑1 f (reiθ ), F(eiθ ) = lim

r↑1 F(reiθ ),

exist a.e. on T, and the asymptotic behaviour of Schur and Carathéodory functions at
the boundary T yields information about the measure μ. For instance, the absolutely
continuous part of μ is given by �eF(eiθ ) dθ

2π , and its singular part is concentrated on
the points eiθ such that limr↑1 tr�eF(reiθ ) = ∞.

Concerning the boundary behaviour, Schur functions have better analyticity proper-
ties than Carathéodory functions. The later ones are analytic on the gaps of the support
of the measure, but have simple poles at the isolated mass points. In contrast, Schur
functions have an analytic continuation through the gaps of the limit points of the sup-
port, including the isolated mass points. For scalar Schur functions, this follows from
the fact that a quotient of meromorphic functions with the same poles, and of the same
order, is necessarily analytic. This pole cancellation does not generalize to matrix valued
functions, thus the analyticity of Schur functions at the isolated mass points is less trivial
in the matrix valued case. A proof for matrix Schur functions is given in the following
theorem which, for a matrix measure on T, provides a Schur characterization for the
isolated mass points and the gaps of the limit points of the support. Some partial results
in the theorem below follow from known relations between matrix measures and matrix
Carathéodory functions which are straight forward extensions of similar results for the
scalar case [22], and whose succinct proof is included for completeness. Nevertheless,
the final characterization in terms of matrix Schur functions is new and the proof is
deliberately more explicit concerning those aspects which need a much more delicate
treatment than in the scalar case. The relevance of this characterization for our pur-
poses lies in the connection between eigenvalues/essential gaps of unitary operators and
mass points/gaps of the limit points of the support for the related spectral measures (see
Sect. 4).

Theorem 3.1. Let μ be a matrix measure with support suppμ ⊂ T and μ(T) = 1, and
denote by (suppμ)′ the set of limit points of suppμ. If f is the matrix Schur function of
μ, then:

(i) T \ (suppμ)′ is constituted by the arcs of T through which f has an analytic contin-
uation which is unitary on these arcs.

(ii) The isolated mass points λ ofμ are the zeros of det(1− z f (z)) lying on T\ (suppμ)′,
and

ranμ({λ}) = ker(1− λ f (λ)). (9)
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Proof. (i) Let us prove first that f extends analytically through T \ (suppμ)′ and takes
unitary values there.

The Carathéodory function F of μ is obviously analytic on C \ suppμ. Moreover,
given an isolated mass point λ of μ, for some ε > 0 we have the splitting

F(z) = λ + z

λ− z
μ({λ}) +

∫

|t−λ|>ε

t + z

t − z
dμ(t) = F0(z) + F1(z), (10)

with F1 analytic, not only on C \ suppμ, but also at λ. Therefore, F is a meromorphic
function on C \ (suppμ)′ whose singularities are simple poles located at every isolated
mass point λ with residue −2λμ({λ}).

Let us see that f has an analytic continuation through T\ (suppμ)′. The positivity of
�eF guarantees the invertibility of F + 1 on D and, by analyticity, also in a neighbour-
hood ofT\suppμ, implying the analyticity of f in such a neighbourhood. It only remains
to see that f is also analytic in a neighbourhood of each isolated mass point λ of μ. For
this purpose, consider the orthogonal projection P onto ranμ({λ}) and its complemen-
tary P⊥ = 1 − P , which is the orthogonal projection onto ranμ({λ})⊥ = kerμ({λ})
because μ({λ}) is self-adjoint. They lead to the following block decomposition of the
Carathéodory function,

F(z) =
(

PF(z)P PF(z)P⊥
P⊥F(z)P P⊥F(z)P⊥

)
=
(

PF(z)P PF1(z)P⊥
P⊥F1(z)P P⊥F1(z)P⊥

)
=
( 1

z−λ
A(z) B(z)

C(z) D(z)

)
,

with A, B,C, D analytic at λ. The block (z − λ)−1A(z) has a simple pole at λ with
residue A(λ) = −2λPμ({λ})P , which is an automorphism of ranμ({λ}). Besides, D is
the Carathéodory function of themeasure P⊥μP⊥ –the projection ofμ onto kerμ({λ})–
, whose support lies in suppμ \ {λ}. Therefore, D is analytic on C \ suppμ ∪ {λ} and
D+1kerμ({λ}) is invertible in a neighbourhood ofT\suppμ∪{λ}, so that D(λ)+1kerμ({λ})
is an automorphism of kerμ({λ}). These results ensure the invertibility of F + 1 in a
punctured neighbourhood of λ because the block representation of F yields around λ

F(z) + 1 =
(

1
z−λ

(A(λ) + O(z − λ)) B(λ) + O(z − λ)

C(λ) + O(z − λ) D(λ) + 1kerμ({λ}) + O(z − λ)

)
,

so that det(F(z) + 1) �= 0 for z �= λ close enough to λ because

det(F(z) + 1) = (z − λ)−rankμ({λ}) det
(
A(λ) + O(z − λ) B(λ) + O(z − λ)

O(z − λ) D(λ) + 1kerμ({λ}) + O(z − λ)

)

= (z − λ)−rankμ({λ}) [det A(λ) det(D(λ) + 1kerμ({λ})) + O(z − λ)
]
.

(11)

Thus, (8) defines an analytic function f in a punctured neighbourhood of λ. This function
has indeed a removable singularity atλ, as follows from (11),which shows that 1/ det(F+
1) has a zero of order rankμ({λ}) at λ, while any cofactor of F + 1 has a pole of order
at most rankμ({λ}) at λ. Thus, rewriting the relation between f and F in (8) as

f (z) = z−1
[
1− 2(F(z) + 1)−1

]
, (12)

we conclude that f has an analytic extension to a neighbourhood of λ.
We have seen that F and f are analytic around the gaps of suppμ and (suppμ)′

respectively. Since the absolutely continuous part of μ vanishes in the gaps of suppμ,
we conclude that �eF(eiθ ) = 0 for every eiθ ∈ T \ suppμ, which in view of (8) is
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equivalent to the unitarity of f (eiθ ). Hence, f is unitary in the gaps of suppμ and, by
analyticity, also in the gaps of (suppμ)′.

Let us see now the converse, i.e. that the analyticity and unitarity of f in a closed arc
� ⊂ T guarantee that � ⊂ T \ (suppμ)′. It suffices to show that, in �, the measure μ

has no absolutely continuous part�eF(eiθ ) dθ
2π , while the singular part is constituted by

at most a finite number of mass points. The statement about the absolutely continuous
part is a consequence of the unitarity of f in �. As for the singular part of μ, it is
concentrated on the points eiθ such that limr↑1 tr�eF(reiθ ) = ∞. The analyticity of f
in� implies that det(1−z f (z)) has a finite number of zeros in a neighbourhood of�. As
a consequence, there is a neighbourhood of � where F(z) = (1 + z f (z))(1− z f (z))−1
is meromorphic with a finite number of poles. Then, the singular part of μ in � is
concentrated on the finitely many poles of F in such an arc, which only may lead to a
finite number of mass points in �.
(ii)We know that the isolated mass points ofμ are the poles of F in the gaps of (suppμ)′,
which, as follows from (11), are characterized as the poles of det(F + 1) in these gaps.
Expressing (12) as

1

2
(1− z f (z))(F(z) + 1) = 1 = 1

2
(F(z) + 1)(1− z f (z)), (13)

we see that the poles of det(F + 1) are the zeros of det(1 − z f (z)), which proves the
first statement of (ii). Therefore, we have the following expansions around an isolated
mass point λ of μ,

1− z f (z) = X0 + X1(z − λ) + O(z − λ)2, X0 = 1− λ f (λ),

1

2
(F(z) + 1) = Y−1

z − λ
+ Y0 + O(z − λ), Y−1 = −λμ({λ}).

Inserting them into (13) yields, among other equations, X0Y−1 = 0 and Y0X0+Y−1X1 =
1. The first of these equations means that ran Y−1 ⊂ ker X0. The second one leads
to Y−1X1 ker X0 = ker X0, which implies that ker X0 ⊂ ran Y−1. We conclude that
ker X0 = ran Y−1, which is the last statement of (ii). ��

Schur functions may be defined in the abstract setting of operators on Hilbert spaces,
as the contractive operator valued analytic functions on D. They are related to operator
valued measures via Carathéodory functions as in (8). When the underlying Hilbert
space is finite-dimensional, the representation of operator valued Schur functions with
respect to an orthonormal basis identifies them as matrix Schur functions.

Operator valued Schur functions are naturally connected to unitary operators on
Hilbert spaces. A unitary operator W on a Hilbert space H defines for each subspace2

HC ⊂ H an operator valued measure on T, called the spectral measure of HC . If
W = ∫

t dE(t) is the spectral decomposition of W , the spectral measure of HC is the
projection PC EPC of E on operators on HC , where PC is the orthogonal projection of
H ontoHC . This associates toHC the Schur function f of its spectral measure –which
we call the Schur function of the subspace HC with respect to the unitary W–, which
according to (8) is givenby

2 The subscript C is chosen to denote a subspace which will eventually play the role of a central part
supporting a perturbation of W leading to its decoupling into left and right parts, see Sect. 5 (see also [13,
Sect. 2], where this notation was previously introduced).
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z f (z) = (F(z)− 1)(F(z) + 1)−1,

F(z) =
∫

t + z

t − z
d(PC E(t)PC ) = PC (W + z1)(W − z1)−1PC ,

and whose values are considered as operators onHC . In other words, f (z) is obtained by
performing a z-dependent Möbius transformation of W –which for z ∈ D maps unitary
operators into operators with positive real part– followed by a projection and another
Möbius transformation mapping operators with positive real part into contractions. The
Schur function f also admits the representation

f (z) = PC (1− zW ∗P⊥C )−1W ∗PC = PC (W − zP⊥C )−1PC , P⊥C = 1− PC . (14)

Indeed, every operator valued Schur function may be represented in this way for some
unitary operator W and subspace HC [25, Sect. 1.1]. The representation (14) of Schur
functionswill be key for our purposes. Itwas uncovered in [7,26],where the development
of the quantum version of Pólya’s renewal theory for random walks [20,40] identified
the Schur function z f (z)∗ as the generating function of first returns to the subspaceHC
for the quantum walk driven by W .

The Schur function of the whole spaceH isW ∗. At the other end, the Schur function
of a vectorφ ∈ Hmust be understood as the scalar Schur function of the one-dimensional
subspace span{φ}. A remarkable instance of this arises when considering unitary oper-
ators given by CMV matrices [8,55], [51, Chap. 4], which provide the canonical form
of the unitaries on Hilbert spaces and, not surprisingly, are behind widely used quantum
walk models (see Sect. 6). A CMV matrix has the general form

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

α0 ρ0α1 ρ0ρ1 0 0 0 . . .

ρ0 −α0α1 −α0ρ1 0 0 0 . . .

0 ρ1α2 −α1α2 ρ2α3 ρ2ρ3 0 . . .

0 ρ1ρ2 −α1ρ2 −α2α3 −α2ρ3 0 . . .

0 0 0 ρ3α4 −α3α4 ρ4α5 . . .

0 0 0 ρ3ρ4 −α3ρ4 −α4α5 . . .

. . . . . . . . . . . . . . . . . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,
αn ∈ D,

ρn =
√
1− |αn|2,

(15)

or its transpose. In both cases, it is a matrix representation of the unitary operator
h(z) �→ zh(z) on L2

μ for some probability measure μ on T. It turns out that μ is
the spectral measure of the first canonical vector (1, 0, 0, 0, . . . ), representing h(z) = 1,
whose Schur function f is related to the measure μ by (8). A key result, known as
Geronimus’ theorem, states that the coefficients αn defining the CMV matrix are the
Schur parameters of f . The CMV matrix (15) factorizes as

[�(α0)⊕�(α2)⊕�(α4)⊕ · · · ] [1⊕�(α1)⊕�(α3)⊕ · · · ] ,
�(α) =

(
α

√
1− |α|2√

1− |α|2 −α

)
, (16)

while the transposed one is given by the same factors but in reverse order. The doubly
infinite version of CMV matrices may be written as

[
⊕

n∈Z
�(α2k−1)

][
⊕

n∈Z
�(α2k)

]
, (17)
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where the block �(αn) acts on span{en, en+1} if en = (δ j,n) j∈Z stands for the canonical
basis of �2(Z).

The above results will help to the classification of topological phases in the examples
of Sects. 6 and 7 because the Schur functions of finite-dimensional subspaces HC with
respect to unitary operatorsW are particularly useful for the study of symmetry protected
topological phases in quantum walks due to these reasons:

(A) Every such a Schur function f has an analytic continuation through the essential
gaps ofW which is unitary on these gaps. Hence, f is unitary at the protected points
±1 of an admissible unitary W .

(B) For an admissible unitary W , the finite-dimensional unitaries f (±1) inherit the
symmetries of W whenever the subspace HC is a sum of cells –more generally,
if HC is symmetry invariant. If this finite sum of cells is large enough, then the
representations of the symmetry type in the ±1-eigenspaces of W and f (±1) are
similar and, in consequence,

si±(W ) = si±( f (±1)).

The virtue of this relation is that it rewrites the symmetry indices si± of infinite-
dimensional unitaries as symmetry indices of finite-dimensional unitaries, for which
simple explicit expressions are available.

(C) Every perturbation W → VW by a unitary V = VC ⊕ 1H⊥
C
acting trivially onH⊥C

induces a perturbation f → f V ∗C on the Schur function ofHC . In particular, forHC
a large enough sum of cells, ifW , VW are admissible walks and VW = WL ⊕WR
decouples into walks WL/R on a left/right half-line, then f V ∗C = fL ⊕ fR also
decouples and si±(WL/R) = si±( fL/R(±1)), so that

↼sı(W ) = si+( fL(1)) + si−( fL(−1)), ⇀sı(W ) = si+( fR(1)) + si−( fR(−1)).

The above relations may be used to obtain the left/right indices from the decoupling
of the original Schur function f , but also to obtain this Schur function –and thus
si±(W )– by combining the left/right ones fL/R when these later ones are easier
to obtain than f , or with the purpose of uncovering the constraints among ↼sı(W ),
⇀sı(W ) and si−(W ) for a specific model.

The aim of the paper is to prove the above results and to use them to classify the sym-
metry protected topological phases of 1D quantum walks of current interest, especially
in non-translation invariant situations.

The Schur approachmay be useful also in higher dimensions. In contrast to↼sı(W ) and
⇀sı(W ), the symmetry indices si±(W )make sense for walks in any dimension, indeed for
arbitrary admissible unitaries. Although si±(W ) are not complete for admissible walks –
even in 1D–, they completely classify homotopically the admissible unitaries regardless
of the dimension of the lattice. Actually, this classification is not sensible to the cell
structure of the Hilbert space, which is only necessary to introduce locality conditions
and, in 1D, to define left and right indices, ↼sı(W ) and ⇀sı(W ). As we will see, the Schur
representation of the symmetry indices si±(W ) remains valid in the general setting of
admissible unitaries.
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4. Schur Representation of Symmetry Indices si±(W)

In this section we will address items (A) and (B) stated at the end of the previous section
–the discussion of (C) will wait until the next section–, i.e. we will translate to Schur
functions the properties of admissible unitaries. Some of these properties are equally
translated to all the related Schur functions, but others require for the associated subspace
to enclose enough information about the unitary operator. In this respect, a key role will
be played by the notion of the cyclic subspace generated by a subspace HC ⊂ H with
respect to a unitary operator W on a Hilbert space H, which is the minimal subspace
including the whole evolution of HC driven by W , i.e.

∑
n∈Z WnHC = (WZHC )⊥⊥.

We say thatHC is cyclic for W if its cyclic subspace is the whole Hilbert spaceH. The
following proposition connects cyclic subspaces and eigenspaces of unitary operators,
a result of interest for the discussion of topological phases.

Proposition 4.1. Let W be a unitary operator on a Hilbert space H with a cyclic sub-
space HC ⊂ H, and PC the orthogonal projection of H onto HC . If λ is an eigenvalue
of W and Eλ is the orthogonal projection of H onto the λ-eigenspace H(λ), then:

(i) The λ-eigenspace and the cyclic subspace are related by H(λ) = EλHC and the
orthogonal decomposition HC = PCH(λ) ⊕ (HC ∩H(λ)⊥).

(ii) The projections PC and Eλ induce the isomorphisms

P̂λ : H(λ) → PCH(λ)

φ �−−→ PCφ
Êλ : PCH(λ) → H(λ)

φ �−−→ Eλφ

(iii) dimH(λ) ≤ dimHC .

Proof. (i) The equality H(λ) = EλHC follows from EλHC = WnEλHC = EλWnHC
and the cyclicity of HC , while HC � PCH(λ) = {φ ∈ HC : φ⊥PCH(λ)} = {φ ∈ HC :
φ⊥H(λ)} gives the remaining identity in (i).

(ii) The linear map P̂λ is obviously onto. To show that its kernel is trivial, assume
that Wφ = λφ and PCφ = 0. This last condition means that φ⊥HC , hence λnφ =
Wnφ⊥WnHC for every n ∈ Z. Due to the cyclicity ofHC we conclude that φ⊥H, thus
φ = 0.

We know that HC � PCH(λ) = {φ ∈ HC : φ⊥EλH} = {φ ∈ HC : Eλφ = 0},
which shows that ker Êλ = {0}. Since H(λ) � ran Êλ = {φ ∈ H(λ) : φ⊥EλPCH(λ)} =
{φ ∈ H(λ) : PCφ⊥H(λ)}, the orthogonal decomposition in (i) yields H(λ) � ran Êλ =
{φ ∈ H(λ) : PCφ = 0} = ker(P̂λ) = {0}, hence Êλ is onto.

The inequality (iii) is a direct consequence of the previous results. ��
The theory of symmetry protected topological phases summarized in Sect. 2 assigns

a major role to the (essential) gaps of a unitary operator, i.e. the gaps of its (essential)
spectrum. In parallel, given an operator valuedmeasure, we define its essential support as
the support with the isolated mass points of finite rank mass removed, and we refer to the
gaps of its (essential) support as the (essential) gaps of the measure. Then, the (essential)
gaps of a unitary operator with spectral decomposition W = ∫

t dE(t) coincide with
the (essential) gaps of the spectral measure E .

Our first important result relates the essential gaps of a unitary operator to a condition
for associated Schur functions. It also gives a Schur characterization of the isolated eigen-
values, identifying the projection on a cyclic subspace of the corresponding eigenspace.
This will be key to establish a Schur representation of the symmetry indices si± for
admissible unitaries.



44 C. Cedzich, T. Geib, F. A. Grünbaum, L. Velázquez, A. H. Werner, R. F. Werner

Theorem 4.2. Let W be a unitary operator on a Hilbert spaceH and PC the orthogonal
projection ofH onto a a finite-dimensional subspaceHC ⊂ H. If f is the Schur function
of HC , then:

(i) f has an analytic continuation through the essential gaps of W which is unitary on
such gaps.

(ii) If HC is cyclic for W, the condition (i) characterizes the essential gaps of W, the
isolated eigenvalues of W are the zeros of det(1HC − z f (z)) lying on these gaps and
the eigenspace H(λ) of an isolated eigenvalue λ satisfies

PCH(λ) = ker(1HC − λ f (λ)). (18)

Proof. If W = ∫
t dE(t) is the spectral decomposition of W , the essential spectrum of

W coincides with the essential support of E , which includes the essential support of the
spectral measure μ = PC EPC associated with HC . Besides, the essential support of
μ is simply (suppμ)′ –the set of limit points of suppμ– because its mass points have a
finite rank mass since HC is finite-dimensional. Therefore, the spectral gaps of W lie
on T \ (suppμ)′. Bearing in mind that f is the Schur function of μ, the statement (i)
follows from Theorem 3.1.(i).

Assuming HC cyclic for W , we find that ranμ({λ}) = PC E({λ})HC = PCH(λ),
where the last equality is due to Proposition 4.1.(i). Then, (ii)would be a consequence of
Theorem 3.1 if we prove that μ and E have the same isolated mass points and essential
support under the cyclicity of HC . For this it is enough to argue that these measures
share strict gaps, mass points and the rank of their masses.

The mass points of μ are obviously mass points of E . Regarding the converse, from
Proposition 4.1.(ii) we know that, for any mass point λ of E , ranμ({λ}) = PCHλ is
isomorphic to H(λ). Thus λ is also a mass point of μ with rankμ({λ}) = dimH(λ) =
rank E({λ}), and (18) follows from (9).

On the other hand, the gaps of E are also gaps of μ. To prove the converse, consider
� ⊂ T such that μ(�) = 0. This implies that the orthogonal projection E(�) satisfies
‖E(�)Wnφ‖2 = 〈Wnφ|E(�)Wnφ〉 = 〈φ|μ(�)φ〉 = 0 for every φ ∈ HC and n ∈ Z.
Due to the cyclicity of HC , this yields E(�) = 0. Therefore, every gap of μ is also a
gap of E . ��

The previous theorem shows how the information about the essential spectrum and
the isolated mass points of a unitary operator is codified by Schur functions. A Schur
representation of symmetry indices requires also to understand how Schur functions
inherit the symmetries of a unitary operator. The answer is given by the next theorem,
which uses the following terminology and notation.

Definition 4.3. Let ρ be a representation of a symmetry type S on a Hilbert space H.
We say that a subspace HC ⊂ H is ρ-invariant –or simply symmetry invariant– if it
is invariant under every symmetry in ρ. Then, we denote by ρC = ρ � HC the repre-
sentation of the symmetry type S induced by ρ on HC , constituted by the symmetries
σC = σ � HC .

Now we can state the result alluded to above.

Theorem 4.4. Let W be an admissible unitary for a representation ρ of a symmetry type
S, andHC a finite-dimensional ρ-invariant subspace. If f is the Schur function ofHC ,
then f (±1) are finite-dimensional unitaries satisfying the symmetries in the induced
representation ρC = ρ � HC .
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Proof. That f (±1) are unitary follows from the essential gap condition of admissible
unitaries and Theorem 4.2. Since HC is finite-dimensional, its ρ-invariance means that
every unitary/antiunitary in ρ commutes with the projection PC ofH ontoHC , and thus
with P⊥C = 1− PC . Then, any symmetry σ of W induces a similar one σC = σ � HC
on the unitaries f (±1), as follows by using (14) and taking limits r →±1 on

σC f (r)σ ∗C = σC PC (W − r P⊥C )−1PCσ ∗C = PCσ(W − r P⊥C )−1σ ∗PC
= PC (σWσ ∗ − r P⊥C )−1PC , r ∈ (−1, 1),

the last term being equal to f (r) or f (r)∗ depending on the symmetry at hand. ��
We are assuming that the symmetries act locally in each cell. Therefore, a finite sum

of cells is an example –actually, the prime example– of a symmetry invariant finite-
dimensional subspace. This will be a recurrent choice in the examples discussed in
Sects. 6 and 7.

Although the induced representation on a symmetry invariant subspace belongs to
the same symmetry type as the original representation, their symmetry indices may be
different. However, this is not the case when the subspace is cyclic, a result which is
the basis for the Schur representation of symmetry indices given by the theorem below.
This is the central result of the paper.

Theorem 4.5. Let W be an admissible unitary for a representation ρ of a symmetry type
S, and HC a finite-dimensional ρ-invariant cyclic subspace. If f is the Schur function
of HC , then:

(i) ±1 is an eigenvalue of W ⇔ ±1 is an eigenvalue of f (±1).
(ii) f (±1) are unitaries with a group of symmetries belonging to the same symmetry type

S such that

si+(W ) = si+( f (1)), si−(W ) = si−( f (−1)),
abbreviated as si±(W ) = si±( f (±1)).

Proof. Since ±1 lie in the essential gaps of an admissible unitary, Theorem 4.2.(ii)
implies that ±1 is an eigenvalue of W exactly when det(1HC ∓ f (±1)) = 0, which
means that ±1 is an eigenvalue of f (±1).

Theorem 4.4 states that f (±1) are unitaries satisfying the symmetries in the repre-
sentation ρC = ρ � HC , which belongs to the same symmetry type S as ρ. Besides,
using the notation

H± = ±1-eigenspace of W, E± = orthogonal projection onto H±,

Ĥ± = ±1-eigenspace of f (±1),
we find from Theorem 4.2.(ii) that Ĥ± = ker(1HC ∓ f (±1)) = PCH±. Therefore,
Proposition 4.1 yields the isomorphisms

P̂± : H± → Ĥ±
φ �−→ PCφ

Ê± : Ĥ± → H±
φ �−→ E±φ

where PC is the orthogonal projection onto HC . Let ρ± and ρ̂± be the representations
of the symmetries induced on the eigenspaces H± and Ĥ± respectively. Given any
symmetry σ in ρ, since it commutes with PC , we conclude that σC P̂±φ = P̂±σφ

for σC = σ � HC and every φ ∈ H±. Thus, the isomorphism P̂± connects these
representations through ρ̂± = P̂±ρ± P̂−1± , which leads to si±(W ) = si(ρ±) = si(ρ̂±) =
si±( f (±1)). ��
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The cyclicity hypothesis is a limitation of the above result because not every admis-
sible unitary has a finite-dimensional cyclic subspace. Fortunately, this condition on the
subspace can be relaxed to another one which, as we will see, imposes no constraint on
admissible unitaries.

Theorem 4.6. The results of Theorems 4.5 hold if the cyclicity of HC is substituted by
any of the following equivalent conditions:

(i) The cyclic subspace generated by HC includes the ±1-eigenspaces of W.
(ii) H⊥C contains no ±1-eigenvector of W.

Proof. The cyclic subspace T0 generated by HC , as well as T1 = T ⊥0 , are always W -
invariant and inherit theρ-invariance ofHC . This leads to the orthogonal decompositions
W = W0 ⊕ W1 and ρ = ρ0 ⊕ ρ1, with Wi a unitary on Ti which is admissible for the
representation ρi of the symmetry type S. Condition (i) is equivalent to the statement
that W1 is gapped around ±1, so that si±(W ) = si±(W0). Besides, W and W0 yield the
same Schur function for HC because this subspace lies in T0. Then, the application of
Theorem 4.5 to W0 proves that condition (i) has the same consequences as the cyclicity
ofHC concerning such a theorem.

To prove the equivalence between (i) and (ii), we rewrite (i) by stating that T1 has
no ±1-eigenvector of W . Then, the alluded equivalence follows from the fact that, for
every eigenvector φ of W ,

φ⊥WZHC ⇔ WZφ⊥HC ⇔ φ⊥HC .

��
Rather than the knowledge of the ±1-eigenspaces of W , the condition given by the

above proposition only needs to guarantee that some subspace –namely, H⊥C– is free
of ±1-eigenvectors. This condition is not only less restrictive than the cyclicity of HC
imposed in Theorem 4.5, but every admissible unitary has a subspace HC satisfying it
which is constituted by a finite sum of cells, as the next proposition shows.

Proposition 4.7. Given any admissible unitary W, there exists a finite sum of cells HC
which generates a cyclic subspace including the ±1-eigenspaces of W.

Proof. LetH =⊕
x Hx be the cell structure of theHilbert spacewhereW acts. Consider

the cyclic subspace Tn generated by the sum of cells Sn =⊕
|x |≤n Hx . Since Tn and T ⊥n

are bothW -invariant, every eigenspaceH(λ) ofW splits asH(λ) = H(λ)
n ⊕K(λ)

n into the
eigenspaces H(λ)

n and K(λ)
n of W � Tn and W � T ⊥n respectively. Besides, K(λ)

n ⊃ K(λ)
n+1

because Tn ⊂ Tn+1. If {0} �= K(λ)
n = K(λ)

n+1 for n ≥ n0, then there exists a non-null
vector φ ∈ H(λ) which is orthogonal to Sn for n ≥ n0, in contradiction with the fact that
{Sn}n≥0 spans H. Therefore, either K(λ)

n = {0} for big enough n, or K(λ)
n � K(λ)

n+1 for
infinitely many values of n. The second option requires dimH(λ) = ∞, thus in the case
dimH(λ) < ∞ only the first option is available, which means that H(λ) = H(λ)

n ⊂ Tn
for big enough n.

SinceW is admissible, its±1-eigenspacesH± are finite-dimensional, thusH± ⊂ Tn
for big enough n. For any such a value of n, the finite sum of cells HC = Sn satisfies
the requirement of the proposition. ��
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This last result guarantees that, at least theoretically, it is always possible to calculate
the symmetry indices si±(W ) of a 1D admissible walkW by applying Theorem 4.5 to the
Schur function of a finite sum of cells. The proof of Proposition 4.7 generalizes trivially
to quantum walks in arbitrary dimension k, just by considering Sn = ⊕

‖x‖≤n Hx

for a Hilbert space with cell structure labelled by vector indices x ∈ Z
k . Moreover, the

hypothesis of Theorem 4.5make no assumption on the cell structure of the Hilbert space.
Therefore, the Schur approach to the symmetry indices si± based on the application of
Theorem 4.5 to Schur functions of finite sums of cells also works for higher dimensional
quantum walks.

For walks on the line, the results of this section can be used to obtain the indices↼sı and
⇀sı because they are given in terms of si± for decoupledwalks on a half-line. Nevertheless,
some decoupling properties of Schur functions are useful for the calculation of left and
right indices, and they are discussed in the next section.

5. Decoupling and Schur Representation of Left/Right Indices

Left and right indices are related to compact decouplings, i.e. compact perturbations
W �→ W̃ = WL ⊕WR which split a walk W on the line into walks WL/R on a left/right
half-line. To deal with such perturbations, we introduce the following terminology.

Definition 5.1. We say that V = W̃W ∗ is the perturbation that connects two unitariesW
and W̃ = VW on the same Hilbert spaceH. We refer toHV = (V −1)H = (V ∗−1)H
as the perturbation subspace. Since V − 1 is null on H⊥V and leaves HV invariant, we
can write V = V0 ⊕ 1H⊥

V
with V0 = V � HV .

A perturbation is called:

• Local ifHV is included in a finite sum of cells.
• Symmetry preserving if VW shares the symmetries of W .
• Decoupling if VW = WL⊕WR splits into unitariesWL/R on orthogonal subspaces
HL/R (then, we refer toHV as the decoupling subspace).Wewill refer to a symmetry
preserving decoupling when HL = H<a , HR = H≥a for some a ∈ Z, and the
perturbation is symmetry preserving.

Local perturbations are particular cases of compact ones W �→ W̃ = VW , i.e. those
such that W̃ − W , or equivalently V − 1, is compact. Compact perturbations preserve
both, essential gaps and essential locality. Therefore, symmetry preserving compact
perturbations transform admissible walks (unitaries) into admissible walks (unitaries).
In this case we know that↼sı(VW ) = ↼sı(W ) and⇀sı(VW ) = ⇀sı(W ). Symmetry preserving
compact decouplings VW = WL ⊕ WR of an admissible walk W are used for the
calculation of its left and right indices since WL/R is then an admissible walk for the
restriction of the symmetries of W toHL/R , and

↼sı(W ) = si(WL), ⇀sı(W ) = si(WR).
The following result paves the way towards a Schur translation of decouplings since

it translates the effect of a perturbation into the Schur function of a subspace including
the perturbation subspace.

Proposition 5.2. Given a unitary perturbation W̃ = VW of a unitary W, if a subspace
HC includes the perturbation subspace HV , the Schur functions f and f̃ of HC with
respect to W and W̃ are related by

f̃ = f V ∗C , VC = V � HC .
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Proof. The restriction VC = V � HC makes sense becauseHC is V -invariant whenever
HV ⊂ HC . Actually, we canwrite V = VC⊕1H⊥

C
, thus V commutes with the projection

PC onto HC and V P⊥C = P⊥C for P⊥C = 1− PC . Using (14), this leads to

f̃ (z) = PC (VW − zP⊥C )−1PC = PC (W − zP⊥C )−1V ∗PC
= PC (W − zP⊥C )−1PCV ∗C = f (z)V ∗C .

��
Decouplings also have Schur translations which help to study left and right indices.

This calls for dealing with subspacesHC which respect the decompositionH = HL ⊕
HR behind a decoupling, i.e. such that

HC = HLC ⊕HCR, HLC/CR ⊂ HL/R . (19)

This requirement is equivalent to any of the equivalent conditions PLHC ⊂ HC or
PRHC ⊂ HC , where PL/R is the orthogonal projection ofH ontoHL/R . For symmetry
preserving decouplings, this is the case when HC is a sum of cells.

Bearing in mind the role of cyclicity in the Schur representation of symmetry indices,
a couple of questions about a subspaceHC should be answered before stating any result
about decouplings in terms of Schur functions: Which perturbations leave invariant the
cyclic subspace generated by HC? Also, in view of Theorem 4.6, which perturbations
leave invariant the eigenvectors orthogonal to HC and their eigenvalues? We will see
that a sufficient condition for both is that HC contains the perturbation subspace.

Proposition 5.3. Given a unitary perturbation VW of a unitary W, if a subspace HC
includes the perturbation subspace HV , then:

(i) W and VW have the same eigenvectors inH⊥C and they have the same eigenvalues.
(ii) HC generates the same cyclic subspace for W and VW.

Proof. If φ ∈ H⊥C then Vφ = φ because V is the identity on H⊥V ⊃ H⊥C . Hence,
Wφ = λφ is equivalent to VWφ = λφ, which proves (i).

To prove (ii) we will show instead that the orthogonal complement to the cyclic
subspace generated byHC is the same forW and VW , i.e. (WZHC )⊥ = ((VW )ZHC )⊥.
Indeed, it is enough to see that (WZHC )⊥ ⊂ ((VW )ZHC )⊥ because W is also a
perturbation of VW with the same perturbation subspace. Due to the equivalence

φ⊥WZHC ⇔ WZφ⊥HC ,

the inclusion to prove becomes the implication

WZφ⊥HC ⇒ (VW )Zφ⊥HC .

We will prove this by showing that

WZφ⊥HC ⇒ (VW )Zφ = WZφ.

Suppose that WZφ⊥HC . Bearing in mind that V and V−1 are the identity on H⊥C , we
find that

Wnφ⊥HC ⇒ VWnφ = Wnφ = V−1Wnφ, n ∈ Z.

Therefore, assuming (VW )nφ = Wnφ yields (VW )n+1φ = VWn+1φ = Wn+1φ and
(VW )n−1φ = W−1V−1Wnφ = Wn−1φ. Since Vφ = φ, this proves by induction that
(VW )nφ = Wnφ for n ∈ Z. ��
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The previous results combine to give the following theorem, which states the main
result of this section. It relates the decouplings of a walk with decouplings of Schur
functions, and takes advantage of this to get a Schur representation of left and right
indices.

Theorem 5.4. Let VW = WL ⊕ WR be a decoupling of a unitary W and HC ⊃ HV
a subspace such that HLC :=PLHC ⊂ HC (equivalently, HCR :=PRHC ⊂ HC). Then
the Schur function f of HC with respect to W is related to the Schur functions fL/R of
HLC/CR with respect to WL/R by

f = ( fL ⊕ fR)VC , VC = V � HC .

If, besides, W is an admissible walk, the decoupling is symmetry preserving and HC
is a finite-dimensional symmetry invariant subspace such that H⊥C contains no ±1-
eigenvectors of W , then

↼sı(W ) = si+( fL(1)) + si−( fL(−1)), ⇀sı(W ) = si+( fR(1)) + si−( fR(−1)).
Proof. Under the initial hypothesis of the theorem, we find from Proposition 5.2 that
f V ∗C = fL ⊕ fR .

If, besides, dimHC <∞, thenV−1 is finite rank becauseHV ⊂ HC . Hence,VW =
WL ⊕WR is a compact decoupling ofW . Since this decoupling is symmetry preserving,
WL ⊕ WR is an admissible walk such that ↼sı(W ) = si(WL) = si+(WL) + si−(WL)

and ⇀sı(W ) = si(WR) = si+(WR) + si−(WR). Then, according to Theorem 4.5.(ii),
si±(WL/R) = si±( fL/R(±1)) ifHL/R�HLC/CR contains no±1-eigenvectors ofWL/R ,
which, in view of Proposition 5.3.(i), means thatH⊥C has no±1-eigenvectors of VW . ��

The hypothesis in the above theorem can be considerably simplified ifHC is a finite
sum of cells, which requires a local decoupling. Then, the condition PLHC ⊂ HC ,
as well as the symmetry invariance and finite-dimensionality of HC , are automatic.
Furthermore, Proposition 4.7 shows that a finite sum of cellsHC can be always enlarged
enough to guarantee that H⊥C has no ±1-eigenvectors of W . For convenience, we state
separately the practical consequence of Theorem 5.4 derived from these remarks.

Corollary 5.5. Let VW = WL ⊕WR be a decoupling of a unitary W andHC ⊃ HV a
sum of cells. Then the Schur function f ofHC with respect to W is related to the Schur
functions fL/R of HLC/CR with respect to WL/R by

f = ( fL ⊕ fR)VC , VC = V � HC .

If, besides, W is an admissiblewalk and the decoupling is local and symmetry preserving,
thenHC can be chosen as a finite sum of cells such thatH⊥C contains no±1-eigenvectors
of W and, hence,

↼sı(W ) = si+( fL(1)) + si−( fL(−1)), ⇀sı(W ) = si+( fR(1)) + si−( fR(−1)).
Eventually, an admissible walk may have a cyclic subspace constituted by a finite

sum of cells. This cyclic sum of cells –enlarged to include the decoupling subspaceHV
if necessary– is an ideal candidate to play the role of HC in the above corollary. This
will be our choice in the examples of Sects. 6 and 7.

All the previous comments refer to what we could call left perturbationsW �→ VW .
One can also consider right perturbations W �→ WV ′, and the previous results have
obvious extensions to this case. The easiest way to see this is by noting that such a right
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perturbation is equivalent to a left perturbationW ∗ �→ V ′∗W ∗, while the transformation
W �→ W ∗ induces the mapping f (z) �→ f (z)∗ on Schur functions. Nevertheless, left
and right perturbations have the same effect if V ′ = W ∗VW , hence it seems that there
is no need to consider right perturbations. However, the corresponding perturbation
subspacesHV = (V − 1)H andHV ′ = (V ′ − 1)H = W ∗HV could be quite different,
so that, in practice, to perform a decoupling may be simpler sometimes to use right
perturbations than left ones. Actually, unless the walk is strictly local, the locality of a
right perturbation is not inherited by the corresponding left one and viceversa. In the
following examples we will use the freedom in the choice of left/right perturbations to
make the calculations as simple as possible, resorting to the version of the above results
for right perturbations when necessary.

6. Split-Step Representatives of Topological Phases

The experimental realization of quantumwalks typically resorts to combinations of shift
type operators and unitaries acting independently on each cell, known as coin operators.
These constructions also provide examples of walks with non-trivial symmetry protected
topological phases and, in addition, give rise to fruitful interplayswithmathematical tools
such as CMV matrices or Schur functions. In this section, we are going to characterize
the topological phases that are realizable inside a particularmodel of symmetric quantum
walks, the so called split-stepwalks, which have been studied extensively in the literature
[36].

They describe the time-discrete dynamics of a single particle with a two-dimensional
internal degree of freedom in one spatial dimension. Accordingly, the Hilbert space is
H = �2(Z)⊗ C

2 and the class of evolution operators in split-step form,

W = S↓C2S↑C1, (20)

is given by the consecutive application of two partial shift operators,

S↑ =
∑

x∈Z
|x + 1 ↑〉〈x ↑| + |x ↓〉〈x ↓|, S↓ =

∑

x∈Z
|x ↑〉〈x ↑| + |x − 1 ↓〉〈x ↓|, (21)

interspersed with two coin operators Ci = ⊕
x∈Z Ci,x acting locally in each cell Hx

as an x-dependent rotation Ci,x , which we identify with its matrix representation with
respect to {|x ↑〉, |x ↓〉},

Ci,x = R(θi,x ), R(θ) =
(
cos θ − sin θ

sin θ cos θ

)
, θi,x ∈ (−π

2 , π
2 ). (22)

This model contains coined walks, which arise when θ2,x = 0 for every x ∈ Z, so that
W = SC1 with S = S↓S↑ the standard conditional shift whichmoves the up/down states
to the right/left respectively.

Split-step walks are the most widely used models to illustrate the topological phases
in quantum walks. Their phase diagram has been identified in the translation invari-
ant case corresponding to constant angles θ1,x , θ2,x [12], [9, Sect. 5.4] (an interactive
demonstration is provided at [52]), but few results are known in the general situation [9,
Sect. 5.5]. The Schur approach will go beyond this, giving a complete classification of
topological phases for non-translation invariant split-step walks. The following theorem
summarizes our results, which will be proven in the subsequent subsections.
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Theorem 6.1. The split-stepwalks (20)with essential gaps around±1 exhibit 15 symme-
try protected topological phases, i.e. homotopy classes of admissible walks belonging
to the symmetry type S = {1, η, τ, γ }, η2 = τ 2 = 1, which are summarized in the
following table.

(
↼sı(W ),

⇀sı(W ), si−(W )) fR(±1) = ±1 fR(±1) = ∓1 fR(±1) = 1 fR(±1) = −1
fL (±1) = ±1 (1, 1, 1)

θ1,L<0 θ1,R>0
θ2,L=0 θ2,R=0

(1,−1, 0)
θ1,L<0 θ1,R<0
θ2,L=0 θ2,R=0

(1, 0, 0)
θ1,L<0 θ1,R=0
θ2,L=0 θ2,R>0

(1, 0, 1)
θ1,L<0 θ1,R=0
θ2,L=0 θ2,R<0

fL (±1) = ∓1 (−1, 1, 0)
θ1,L>0 θ1,R>0
θ2,L=0 θ2,R=0

(−1,−1,−1)
θ1,L>0 θ1,R<0
θ2,L=0 θ2,R=0

(−1, 0,−1)
θ1,L>0 θ1,R=0
θ2,L=0 θ2,R>0

(−1, 0, 0)
θ1,L>0 θ1,R=0
θ2,L=0 θ2,R<0

fL (±1) = 1
(0, 1, 0)

θ1,L=0 θ1,R>0
θ2,L<0 θ2,R=0

(0,−1,−1)
θ1,L=0 θ1,R<0
θ2,L<0 θ2,R=0

(0, 0,−1)
θ1,L=0 θ1,R=0
θ2,L<0 θ2,R>0

(0, 0, 0)
θ1,L=0 θ1,R=0
θ2,L<0 θ2,R<0

fL (±1) = −1 (0, 1, 1)
θ1,L=0 θ1,R>0
θ2,L>0 θ2,R=0

(0,−1, 0)
θ1,L=0 θ1,R<0
θ2,L>0 θ2,R=0

(0, 0, 0)
θ1,L=0 θ1,R=0
θ2,L>0 θ2,R>0

(0, 0, 1)
θ1,L=0 θ1,R=0
θ2,L>0 θ2,R<0

(23)

Here, fL = f x↑L and fR = f x↓R are Schur functions corresponding to the left or right part
of a decoupling of the walk respectively, which are defined in (40). The x-independent
values fL(±1), fR(±1) ∈ {1,−1} determine the topological invariants characterizing
the different phases via (36) and (38). As indicated in the above table, any of these
phases has a split-step representative given by a crossover of two translation invariant
split-step walks with constant angles θi,x = θi,L/R , which is shown to be admissible
and, in particular, gapped in Lemma 6.4.

Before starting with the proof of the theorem, let us first give some perspective on
the result. First, according to table (5), if we identify, not only homotopic admissible
walks, but also admissible walks related by compact perturbations, the above table also
gives information about the corresponding equivalence classes, which are characterized
by the indices ↼sı(W ), ⇀sı(W ). Omitting the index si−(W ) in the above table we find that,
under this weaker relation, the set of essentially gapped split-step walks splits into 9
classes.

On the other hand, keeping the homotopy equivalence relation but forgetting the
essential locality condition enlarges the set of unitaries to consider along the homotopy
deformations, leading again to a possible reduction of the number of classes. As table
(5) shows, the homotopy classes of the set of admissible unitaries are labelled by the
indices si±(W ), which, for essentially gapped split-step walks, are separately given in
the table below. We find again that only 9 of such homotopy classes are present for split-
step walks, although not all of them coincide with those induced by the identification of
homotopic admissible walks and compact perturbations. The reduction of classes makes
evident that some split-step walks sharing one of these 9 classes cannot be connected
by admissible walks, thus the corresponding homotopy necessarily violates essential
locality and, hence, escapes from the split-step model.

(si+(W ), si−(W )) fR(±1) = ±1 fR(±1) = ∓1 fR(±1) = 1 fR(±1) = −1
fL (±1) = ±1 (1, 1) (0, 0) (1, 0) (0, 1)

fL (±1) = ∓1 (0, 0) (−1,−1) (0,−1) (−1, 0)
fL (±1) = 1 (1, 0) (0,−1) (1,−1) (0, 0)

fL (±1) = −1 (0, 1) (−1, 0) (0, 0) (−1, 1)
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Besides, if we enforce translation invariance, we know that si±(W ) = 0 because
the essential gaps become strict gaps, hence ↼sı(W ) + ⇀sı(W ) = si(W ) = 0. The only
cases in table (23) which are compatible with these conditions are those corresponding
to the indices (−1, 1, 0), (1,−1, 0) and (0, 0, 0). Furthermore, all these phases have
translation invariant split-step representatives given in table (23), namely

(1,−1, 0) →
{

θ1,L = θ1,R < 0,
θ2,L = θ2,R = 0,

(−1, 1, 0) →
{

θ1,L = θ1,R > 0,
θ2,L = θ2,R = 0,

(0, 0, 0) →
{

θ1,L = θ1,R = 0,
θ2,L = θ2,R �= 0.

Hence, translation invariant split-stepwalks exhibit only 3 phases. Since in the translation
invariant case the single index ⇀sı(W ) labels the phases, we can refer to these 3 phases
in short as (1,−1, 0) ≡ −1, (−1, 1, 0) ≡ 1 and (0, 0, 0) ≡ 0. This result was already
known for the case of constant angles θi,x = θi [12], [9, Sect. 5.4]. Note however that the
previous arguments go further: They prove that the same classification holds for general
translation invariant split-step walks, i.e. for any periodic sequences θ1,x , θ2,x with an
arbitrary common period.

Regarding the phase (0, 0, 0), there should be a homotopy of admissible walks
connecting the related split-step representatives with different signs for θ2,L = θ2,R ,
although this homotopy cannot be the trivial deformation of this angle because the gaps
close when θ2,L = θ2,R = 0. An example of such an homotopy –which escapes from
the split-step model– is explicitly given in [10, Sect. 3.1.3].

That every phase has a representative which is a crossover of translation invariant
ones is a general result in the theory of symmetry protected topological phases for
1D walks [9, Theorem 8.1]. Nevertheless, the fact that for the split-step phases these
representatives may be chosen as split-step walks, although maybe not surprising, is
non-trivial. In other words, prior to our previous analysis, there was no indication that
the crossovers of translation invariant split-step walks should exhaust all the split-step
phases.

Furthermore, the fact that every phase may be realized by a crossover of translation
invariant ones does not mean that the translation invariant situation is the end of the
story. First, a rigorous mathematical treatment of the bulk-edge correspondence needs
to include such crossovers in the theory, breaking translation invariance.

Second, one cannot naively guess the phases for a non-translation invariant model
by just combining those of the translation invariant case. For instance, the existence of
3 phases for translation invariant split-step walks would suggest that the 9 crossovers
among them yield the same amount of phases for non-translation invariant split-step
walks, a faulty line of reasoning which does not predict the 15 phases that actually
exist. The extra 6 phases arise because in a crossover between two translation invariant
split-step walks, changing the left or right one by another in the same phase may change
the phase of the crossover. A direct inspection of table (23) reveals that this is the case
when comparing the three phases (0, 0, 0) ↔ (0, 0,±1), but also the pairs of phases
(1, 0, 0) ↔ (1, 0, 1), (−1, 0, 0) ↔ (−1, 0,−1), (0, 1, 0) ↔ (0, 1, 1) and (0,−1, 0) ↔
(0,−1,−1). These comparisons account for the extra 6 phases.

Third, the non-translation invariant general theory has physical implications con-
cerning the bulk-edge principle which cannot be predicted in the standard translation
invariant framework. To illustrate this, let us take a result from [9, Sect. 5.5] which
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provides highly non-translation invariant instances of strictly gapped split-step walks
belonging to the phases (1,−1, 0) and (−1, 1, 0): the correspondence

−1 ≡ (1,−1, 0) →
{

θ1,x ∈ [−π
2 − ε,−π

2 + ε],
θ2,x ∈ [−ε′, ε′],

1 ≡ (−1, 1, 0) →
{

θ1,x ∈ [π2 − ε, π
2 + ε],

θ2,x ∈ [−ε′, ε′],
holds only subject to the restriction

sin
ε

2
+ sin

ε′

2
<

1√
2
.

The bulk-edge correspondence described at the end of Sect. 2 implies that any crossover
W between awalkW1 from the phase (1,−1, 0) and awalkW2 from the phase (−1, 1, 0)
has indices ↼sı(W ) = ↼sı(W1) = 1,⇀sı(W ) = ⇀sı(W2) = 1 and si(W ) = ⇀sı(W2)−⇀sı(W1) =
2, so that the ±1-eigenspaces H± of W satisfy dimH+ + dimH− ≥ 2. An instance of
this kind of crossover is any split-step walk W such that, for large |x |,
{

θ1,x ∈ [−π
2 − ε1,−π

2 + ε1], θ2,x ∈ [−ε′1, ε′1], x < 0,
θ1,x ∈ [π2 − ε2,

π
2 + ε2], θ2,x ∈ [−ε′2, ε′2], x > 0,

sin
εi

2
+ sin

ε′i
2

<
1√
2
.

(24)

The fact that, for such a crossover, the dimension of the combined ±1-eigenspaces is
bounded below by 2, is already a result beyond the scope of the translation invariant set-
ting. In addition, the classification (23) of topological phases for non-translation invariant
split-step walks permits to go even further. Any split-step crossover W satisfying (24)
for large |x |must belong to the phase (1, 1, 1), the only split-step phase consistent with
↼sı(W ) = ⇀sı(W ) = 1. Therefore, si±(W ) = 1, which implies that actually dimH± ≥ 1.
Since the 2-dimensional cells are cyclic, using Proposition 4.1.(iii) we conclude that
1 ≤ dimH± ≤ 2. This is illustrated in Fig. 1.

The rest of this section is devoted to the proof of Theorem 6.1.

6.1. A class of symmetric quantum walks in 1D. The first important question to consider
is to understand which split-step walks actually correspond to admissible unitaries for
some symmetry class. Instead of looking exclusively at the split-step model, we will
consider a slightly generalized model, which in particular allows for higher dimensional
coins, a question previously not much discussed in the literature. This will give us the
chance to test the Schur machinery in highly non-trivial examples whose phase diagram
was unknown so far even in the translation invariant case (see Sect. 7). More precisely,
the examples which we are going to consider will still be generated by partial shifts and
coin operators, but we allow for cells of arbitrary even dimension 2d,

Hx = span{|x ↑ r〉, |x ↓ r〉 : r = 1, 2, . . . , d}. (25)

The quantum walks are then assumed to take the form (20), but now the partial shifts
S↑/↓,

S↑ =
∑

n∈Z
r∈{1,...,d}

|x + 1 ↑ r〉〈x ↑ r | + |x ↓ r〉〈x ↓ r |,
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n = 4 n = 8 n = 16 n = 32

−π

0

π

−π 0 π

θ1

θ2

1−1

0

0

n = 1000

Fig. 1. Finite dimensional approximations of a highly non-translation invariant split-step walk (20). The walk
is defined on a circle of n cells. On the right side of the circle the coin angles are picked randomly from the +1
phase (blue), whereas on the left side the coin angles are picked from the−1 phase (red) according to (24). The
bottom mid and bottom right graph visualize the randomly chosen coin angles for n = 1000 and the geometry
of the system. The green dots represent the spectrum for the given values of n. These approximations provide
a sequence of unitaries converging in the strong sense to a split-step walk in the phase (1, 1, 1), hence they
exhibit eigenvalues approaching to ±1 (in general, in complex conjugated pairs due to the symmetries)

S↓ =
∑

n∈Z
r∈{1,...,d}

|x ↑ r〉〈x ↑ r | + |x − 1 ↓ r〉〈x ↓ r |, (26)

move forward or backward the “half-cells”H↑/↓
x given by

H↑x = span{|x ↑ r〉 : r = 1, 2, . . . , d}, H↓x = span{|x ↓ r〉 : r = 1, 2, . . . , d}. (27)
Also, the coin operatorsCi =⊕

x∈Z Ci,x are given by 2d×2d matricesCi,x representing
the action of Ci onHx with respect to the orthonormal basis {|x ↑ 1〉, . . . , |x ↑ d〉, |x ↓
1〉, . . . , |x ↓ d〉}. Apart from their unitarity, we will only assume a few conditions on
Ci,x guaranteeing a chiral symmetry for W .

Proposition 6.2. The operator W = S↓C2S↑C1 given by the partial shifts (26) is a
unitary with a chiral symmetry γ such that γ 2 = 1 whenever the 2d × 2d matrices Ci,x
have a d × d-block structure satisfying

Ci,x =
(
Ai,x B̂i,x
Bi,x A∗i,x

)
,

det Ai,x �= 0, B̂i,x = −Ai,x Bi,x A
−1
i,x ,

B∗i,x = Bi,x , A∗i,x Ai,x + B2
i,x = 1d ,

(28)

where 1d stands for the d × d identity matrix. Then, W = γ̃ γ with

γ =
⊕

x∈Z
γx =

⊕

x∈Z

(
B1,x A∗1,x
A1,x B̂1,x

)
, γ̃ =

⊕

x∈Z
γ̃x =

⊕

x∈Z

(
B2,x A∗2,x
A2,x B̂2,x

)
,

where γx acts onHx while γ̃x acts on H̃x = H↓x−1 ⊕H↑x .
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Proof. If T is the spin-flip involution

T =
∑

x∈Z
r=1,...,d

|x ↓ r〉〈x ↑ r | + |x ↑ r〉〈x ↓ r |, (29)

the operators γ (i) = TCi yield the factorization

W = Sbγ
(2)S f γ

(1), Sb = S↓T, S f = S↑T . (30)

From the block structure of Ci,x we find that γ (1) = γ , while Sbγ (2)S f = γ̃ . To see the
later identity, let us denote φ2dx+r = |x ↑ r〉 and φ2dx+d+r = |x ↓ r〉. Then, Sb and S f
are the backward and forward shifts

Sbφn = φn−d , S f φn = φn+d ,

thus they are inverses of each other. We conclude that the matrix representation of
Sbγ (2)S−1b with respect to {φn}n∈Z is the result of translating that of γ (2) half a cell
backward.

It only remains to prove that γ and γ̃ are unitary and self-adjoint. Then, W =
γ̃ γ is unitary, γ 2 = 1 and γWγ ∗ = γ γ̃ = W ∗, thus γ is a chiral symmetry for
W since γ acts locally in each cell Hx via γx , which is balanced because trγx =
trB1,x − tr(A1,x B1,x A

−1
1,x ) = 0. Assuming Ai,x non-singular, the rest of the conditions

on the blocks of γx and γ̃x are necessary for their unitarity and self-adjointness since
B̂i,x = −Ai,x Bi,x A

−1
i,x is equivalent to Ai,x Bi,x + B̂i,x Ai,x = 0. Such conditions also

imply that

B̂∗i,x = B̂i,x ⇔ Bi,x A
∗
i,x Ai,x = A∗i,x Ai,x Bi,x ⇔ Bi,x (1d − B2

i,x ) = (1d − B2
i,x )Bi,x ,

proving the self-adjointness of γ and γ̃ , while the remaining unitarity conditions follow
by taking adjoints in Ai,x Bi,x + B̂i,x Ai,x = 0 and from

Ai,x A
∗
i,x + B̂2

i,x = 1d ⇔ Ai,x A
∗
i,x + Ai,x B

2
i,x A

−1
i,x = 1d ⇔ A∗i,x Ai,x + B2

i,x = 1d .

��
We will classify the topological phases of walks with the form given by the previous

proposition, which belong to the symmetry type S = {1, γ }, γ 2 = 1. A particular case
of these walks arises when taking arbitrary non-singular d × d matrices Ai,x satisfying
‖Ai,x‖ ≤ 1, together with

Bi,x = ±(1d − A∗i,x Ai,x )
1/2, B̂i,x = ∓(1d − Ai,x A

∗
i,x )

1/2. (31)

We should point out that not all the walks given by Proposition 6.2 will enter into our
consideration, but only those with essential gaps around ±1. Although it is not easy to
translate this condition into a simple one for the blocks Ai,x , Bi,x , this assumption will
have strong consequences later on which will be central to tackle the Schur approach to
the symmetry indices, leading to a complete classification of topological phases for the
families of walks that we will analyze.

There is a further issue to clarify regarding this classification. The alluded walks all
belong to the same symmetry type but, strictly speaking, they do not share the same rep-
resentation of this symmetry type because γ depends on the doubly infinite sequences of
blocks A1,x , B1,x . However, this is not a serious drawback since, as balanced unitaries,
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all the γx are unitarily equivalent to a diagonal one with d 1s and −1s in the diagonal.
Therefore, up to a change of basis in each cell, all the walks that we are considering
correspond to the same representation of the symmetry type. Symmetry protected topo-
logical phases for these walks make about as much sense as for these unitarily equivalent
pictures. Once we know this, we can work with the original matrix form of the walks
which is simpler. This also holds for the Schur representation of the indices which cannot
depend on the basis chosen for the matrix representation of the operator valued Schur
function of a subspace.

Finally, the application of the Schur representation of the indices requires the identifi-
cation of a subspace which generates a cyclic subspace containing the ±1-eigenspaces.
Actually, the following proposition proves that any cell is cyclic for the walks under
study.

Proposition 6.3. For any x ∈ Z, the subspacesHx and H̃x are cyclic for every walk W
with the form given in Proposition 6.2.

Proof. Taking without loss the cell H0, to prove its cyclicity it suffices to see that

Sn :=
⊕

|x |≤n
Hx ⊂

∑

|k|≤n
WkH0,

an inclusion which is obvious for n = 0. Assuming it for an index n, we will show that
H±n±1 ⊂ ∑

|k|≤n+1 WkH0, which proves the result. The induction hypothesis implies
that

WH±n, W ∗H±n, Sn ⊂
∑

|k|≤n+1
WkH0.

Hence, if P⊥n is the orthogonal projection ofH onto S⊥n , then

P⊥n WH±n, P⊥n W ∗H±n ⊂
∑

|k|≤n+1
WkH0.

From the definition of the walk and the fact that Ai,x are non-singular, we find that

P⊥n W (H↑n +H↓−n) = H↑n+1 +H↓−n−1,
P⊥n W ∗(H↓n +H↑−n) +H↑n+1 +H↓−n−1 = Hn+1 +H−n−1,

so that Hn+1 +H−n−1 ⊂ (P⊥n W + P⊥n W ∗)(Hn +H−n) ⊂∑
|k|≤n+1 WkH0.

This proves that any cellHx is cyclic forW . Similar arguments hold for any subspace
H̃x . ��

The previous result allows us to represent the symmetry indices of any walk given in
Proposition 6.2 in terms ofmatrix Schur functions of cells. Along the previous discussion
we have not distinguished between Schur functions for states –i.e. for one-dimensional
subspaces– or higher-dimensional subspaces. However, in practice, the reduction of
higher-dimensionalmatrix Schur functions to lower-dimensional or even scalar oneswill
be crucial. For convenience, in the following examples we make explicit the distinction
between similar matrix Schur functions of different size by using boldface notation for
the Schur functions of one or more full cell Hilbert spaces.
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6.2. Split-step indices si±(W ). Let us first connect the general class of quantum walks
introduced in the preceding subsection back to the original split-step model defined in
(20): Setting d = 1, Proposition 6.2 yields a family of walks in a Hilbert space with
2-dimensional cellsHx = span{|x ↑〉, |x ↓〉}, given in terms of coin operators with the
form

Ci,x = R(θi,x , ξi,x ),

R(θ, ξ) =
(
eiξ cos θ − sin θ

sin θ e−iξ cos θ

)
, ξi,x ∈ [0, 2π), θi,x ∈ (−π

2 , π
2 ).

The factors e±iξi,x are the phases of the diagonal elements of Ci,x , hence we consider
only angles θi,x giving a non-negative cosine. The constraint |θi,x | �= π

2 avoiding a null
diagonal is the translation of the non-singularity of the blocks Ai,x in Proposition 6.2,
which ensures the cyclicity of every cell. A change of phases |x ↑〉 �→ eiνx |x ↑〉, |x ↓
〉 �→ eiωx |x ↓〉 transforms R(θ, ξ) into the real rotation R(θ):=R(θ, 0) ifωx−νx = ξ1,x
and νx − ωx−1 = ξ2,x , thus we can assume without loss that ξi,x = 0 for all x ∈ Z,
which brings us back exactly to the split-step model from (20) as previously claimed.

As a consequence of the general discussion in the previous subsection and Proposi-
tion 6.2, split-step walks may be alternatively expressed as

W = γ̃ γ,

γ =
⊕

x∈Z
γx , γx = �(sin θ1,x ),

γ̃ =
⊕

x∈Z
γ̃x , γ̃x = �(sin θ2,x ),

�(s) =
(

s
√
1− s2√

1− s2 −s
)

,

(32)

with γx/γ̃x acting on Hx/H̃x , so that γ is a chiral symmetry of W for the chosen cell
structure.

When θ1,x (θ2,x ) is±π
2 , the walk (32) decouples trivially because γx (γ̃x ) becomes a

diagonal matrix, so that both involutions, γ̃ and γ , and thusW , split at a common place.
Although we will not consider such values of θi,x in our model, the related decouplings
will be used later on to obtain left and right indices, as well as to express some matrix
Schur functions in terms of scalar ones.

From the factorization (32) of W into a couple of 2 × 2-block diagonal orthogonal
matrices whose block structures do not match,W is recognized as a doubly infinite CMV
matrix (17) with real Schur parameters

α2x = sin θ2,x , α2x+1 = sin θ1,x . (33)

In otherwords, split-stepwalksmaybe identifiedwith doubly infinite realCMVmatrices,
a fact that will have useful consequences.

Thematrix representation ofW in the basis {|x ↑〉, |x ↓〉}x∈Z is real, thus the complex
conjugation η with respect to this basis plays the role of a particle-hole symmetry for
W , while τ = ηγ is the corresponding time-reversal symmetry. Hence, split-step walks
belong to the symmetry type S = {1, η, τ, γ }, η2 = τ 2 = 1. Changing the cells to
H̃x = {|x − 1 ↓〉, |x ↑〉}, then γ̃ would be a chiral symmetry for W , which together
with η̃ = η and τ̃ = ηγ̃ constitute another representation of the same symmetry type.
We will pay attention only to the symmetries η, τ, γ which act locally in each cell Hx .

We will analyze the indices si±(W ) of an arbitrary split-step walk W by using the
Schur function f of the cell H0, which according to Proposition 6.3 is cyclic for W .
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To uncover the structure of the matrix Schur function f we will perform a local right
decoupling W �→ WV with decoupling subspace HV = H0, given by

V = γ ∗0 ⊕ 1H⊥
0
.

WV is the result of substituting γ0 by 12 in the factor γ of W = γ̃ γ . Thus, WV =
WL ⊕ WR with WL = γ̃LγL and WR = γ̃RγR walks on HL = H<0 ⊕ span{|0 ↑〉} and
HR = span{|0 ↓〉} ⊕H>0 respectively, where

γ̃L = · · · ⊕ γ̃−2 ⊕ γ̃−1 ⊕ γ̃0, γL = · · · ⊕ γ−2 ⊕ γ−1 ⊕ 1,

γ̃R = γ̃1 ⊕ γ̃2 ⊕ γ̃3 ⊕ · · · , γR = 1⊕ γ1 ⊕ γ2 ⊕ · · · .

The walk WR is given by a CMV matrix (16) with Schur parameters (αn)n≥2, where αn
is as in (33). Also, ordering the basis of HL as {|0 ↑〉, | − 1 ↓〉, | − 1 ↑〉, . . . }, we may
write

γ̃L = �(− sin θ2,0)⊕�(− sin θ2,−1)⊕�(− sin θ2,−2)⊕ · · · ,

γL = 1⊕�(− sin θ1,−1)⊕�(− sin θ1,−2)⊕ · · · ,

identifying WL as a CMV matrix with Schur parameters (−α−n)n≥0, with αn given by
(33). These identifications help in the classification of topological phases of split-step
walks.

Because of the broken cell H0, the above decoupling is not symmetry preserving,
the only surviving symmetry being particle-hole since the invariance under conjugation
with respect to the basis {|x ↑〉, |x ↓〉}x∈Z does not depend on the cell structure but
only on the compatibility of the decoupling with such a basis. However, this decoupling
yields information about the 2 × 2 matrix Schur function f of H0. Applying the right
decoupling version of Theorem 5.4 to this decoupling withHV = HC = H0, we get

f = γ ∗0 ( fL ⊕ fR), (34)

with fL the Schur function of |0 ↑〉 with respect to WL and fR the Schur function of
|0 ↓〉 with respect toWR . According to (2) and Theorem 4.5, f (±1) belong to the same
symmetry type S as W and

si±(W ) = si±( f (±1)) = 1

2
trγ0(12 ± f (±1)) = ±1

2
( fL(±1) + fR(±1)), (35)

where we have taken into account that γ0 is traceless.
Although explicit expressions for fL/R are not available, their properties make it

possible to estimate the possible values of fL/R(±1), and thus of si±(W ). Theorem 4.4
states that the chiral symmetry γ of W induces the chiral symmetry γ0 on the 2 × 2
unitaries f (±1). This means that γ0 f (±1) are involutions, hence their eigenvalues can
be only 1 or −1. On the other hand, (34) shows that γ0 f (±1) are indeed diagonal with
diagonal entries fL/R(±1), which thus must lie on {1,−1}. We conclude that

si±(W ) = ±1

2
( fL(±1) + fR(±1)) ∈ {−1, 0, 1}. (36)

To complete the classification of topological phases for split-step walks we should know
if all these possibilities are actually present, and their connection with the possible
values of left and right indices. The second question will be answered in the following
subsection, while the first one will wait until Sect. 6.4.
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6.3. Split-step left and right indices. The previous right decoupling is not appropriate
for the calculation of left and right indices because it is not symmetry preserving. Instead,
we can perform a left decoupling W �→ VW with perturbation subspace HV = H̃0 =
span{| − 1 ↓〉, |0 ↑〉}, where

V = γ̃ ∗0 ⊕ 1H̃⊥
0
.

This amounts to substituting γ̃0 by 12 in the left factor of W = γ̃ γ . Since this pertur-
bation only modifies the factor γ̃ changing it by another orthogonal involution, apart
from particle-hole, the decoupling preserves the chiral symmetry γ and the composition
of both, i.e. time-reversal. We find that VW = WL ⊕ WR is a symmetry preserving
decoupling which splits into left and right walks on HL = H<0 and HR = H≥0. They
are given again by CMV matrices WL = γ̃LγL and WR = γ̃RγR , where

γ̃L = · · · ⊕ γ̃−2 ⊕ γ̃−1 ⊕ 1, γL = · · · ⊕ γ−3 ⊕ γ−2 ⊕ γ−1,
γ̃R = 1⊕ γ̃1 ⊕ γ̃1 ⊕ · · · , γR = γ0 ⊕ γ1 ⊕ γ2 ⊕ · · · .

From Proposition 6.3 we know that H̃0 is cyclic for W . Hence, as a consequence of
Proposition 5.3.(ii), | − 1 ↓〉 and |0 ↑〉 are cyclic vectors for WL and WR respectively.
However, the corresponding Schur functions are not useful for the calculation of left and
right indices because the subspaces spanned by these vectors are not symmetry invariant.
We can take the cells containing the above vectors, i.e. H−1 and H0, as symmetry
invariant subspaces which are cyclic for WL and WR respectively. The corresponding
Schur functions, f L and f R , will provide the left and right indices of W . To uncover
the structure of these 2× 2 matrix Schur functions, we can perform right perturbations
WLVL = W ′

L ⊕ 1 and WRVR = 1 ⊕ W ′
R to decouple the states | − 1 ↓〉 and |0 ↑

〉 respectively, analogously to the right decoupling performed on W in the previous
subsection. This leads to the following expressions for the alluded Schur functions,

fL = γ ∗−1( fL ⊕ 1), fR = γ ∗0 (1⊕ fR), (37)

with fL/R the Schur function of | − 1 ↑〉/|0 ↓〉 with respect to W ′
L/R .

Since the decoupling is symmetry invariant, γ−1/γ0 is a chiral symmetry for
f L/R(±1). Therefore, as in the previous subsection, the only possible values of
fL/R(±1) are 1 and −1. From (2) and Corollary 5.5 we know that the left and right
indices can be calculated as

↼sı(W ) = si+( fL(1)) + si−( fL(−1)) = 1

2
trγ−1( fL(1)− fL(−1))

= 1

2
( fL(1)− fL(−1)) ∈ {−1, 0, 1},

⇀sı(W ) = si+( fR(1)) + si−( fR(−1)) = 1

2
trγ0( fR(1)− fR(−1))

= 1

2
( fR(1)− fR(−1)) ∈ {−1, 0, 1}.

(38)

This result allows us to reobtain the expression (36) for the symmetry indices si±(W )

with no additional effort. Consider the previous decoupling VW = WL ⊕ WR with
V = γ̃ ∗0 ⊕1H̃⊥

0
and perturbation subspaceHV = H̃0. Applying Corollary 5.5 and using
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(37) we find that the 4 × 4 matrix Schur function f of HC = H−1 ⊕H0 with respect
to W is given by

f = ( fL ⊕ fR)(1⊕ γ̃ ∗0 ⊕ 1) = (γ ∗−1 ⊕ γ ∗0 )( fL ⊕ γ̃ ∗0 ⊕ fR).

The sum of cells H1 ⊕H0 is obviously cyclic for W , hence from (2) and Theorem 4.5
we obtain

si±(W ) = si±( f (±1)) = 1

2
tr(γ−1 ⊕ γ0)(14 ± f (±1)) = ±1

2
( fL(±1) + fR(±1)).

(39)

The above identity may appear to be the same as (36). There is, however, a slight
difference between (39) and (36). Tomake clear this difference, let us consider in general
the right decouplingWVx = WL ,x⊕WR,x atHVx = Hx givenbyVx = γ ∗x ⊕1H⊥

x
, so that

WL ,x andWR,x arewalks onHL ,x = H<x⊕span{|x ↑〉} andHR,x = span{|x ↓〉}⊕H>x
respectively. Then, we introduce the notation

f x↑L = Schur function of |x ↑〉
with respect to WL ,x

f x↓R = Schur function of |x ↓〉
with respect to WR,x

(40)

With this notation, (36) reads as

si±(W ) = ±1

2
( f 0↑L (±1) + f 0↓R (±1)),

while (39) becomes

si±(W ) = ±1

2
( f −1↑L (±1) + f 0↓R (±1)).

Furthermore, the relation (36), obtained using the referred right decoupling atHV = H0,
may be generalized to the decouplingW �→ WVx at an arbitrary cellHVx = Hx because
all of them are cyclic for W . This yields,

si±(W ) = ±1

2
( f x↑L (±1) + f x↓R (±1)), x ∈ Z.

On the other hand, (39) follows from a left decoupling at HV = H̃0 = span{| − 1 ↓
〉, |0 ↑〉}. Its generalization to a similar decoupling with decoupling subspace H̃x =
span{|x − 1 ↓〉, |x ↑〉} leads to

si±(W ) = ±1

2
( f x−1↑L (±1) + f x↓R (±1)), x ∈ Z.

These two generalized relations imply that the quantities f x↑L (±1), f x↓R (±1) are inde-
pendent of the site x , so that (39) and (36) can be considered as the same identity.
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6.4. Split-step topological phases and proof of Theorem 6.1. According to (36) and (38),
the x-independent quantities

fL(±1):= f x↑L (±1), fR(±1):= f x↓R (±1) ∈ {−1, 1},

account for all the possibilities of the three indices ↼sı(W ), ⇀sı(W ), si−(W ) in the case of
split-step walks, which can be summarized in the single formula

(
↼sı(W ),

⇀sı(W ), si−(W )) = 1

2
( fL(1)− fL(−1), fR(1)

− fR(−1),−( fL (−1) + fR(−1))).
All such possibilities are outlined in table (23), concluding that in the set of split-step
walks with essential gaps around ±1 there are representatives of at most 15 different
topological phases, i.e. homotopy classes of admissible walks. This does not mean
necessarily that two such split-step walks with the same indices are connected by a
continuous curve of essentially gapped split-step walks, but by a continuous curve of
admissible walks. Also, there is no guarantee yet that all the above 15 possibilities really
occur among the set of essentially gapped split-step walks. We will answer affirmatively
this question by finding explicit representatives for each of the possibilities listed in table
(23). As indicated there, these representatives will be particular cases of the split-step
walks provided by the following lemma.

Lemma 6.4. The split-step walks given by

θ1,x =
{

θ1,R, x > 0,
θ1,L , x ≤ 0,

θ2,x =
{

θ2,R, x > 0,
θ2,L , x ≤ 0,

θi,L/R ∈ (−π
2 , π

2 ), (41)

are essentially gapped around ±1 iff θ2,L/R ± θ1,L/R �= 0, thus they are admissible iff

|θ2,L/R | �= |θ1,L/R |. In this case, if f x↑L and f x↓R are the Schur functions defined in (40),

fL(±1) = f x↑L (±1) = −sgn(θ2,L ± θ1,L), fR(±1) = f x↓R (±1) = sgn(θ2,R ± θ1,R).

Proof. Using the notation behind (40), it was shown in Sect. 6.2 that WL = WL ,0
and WR = WR,0 are CMV matrices with Schur parameters (−α−n)n≥0 and (αn)n≥2
respectively, with αn as in (33). In our case,

(−α−n)n≥0 = (−s̃L ,−sL ,−s̃L ,−sL , . . . ), (αn)n≥2 = (s̃R, sR, s̃R, sR, . . . ),

sL/R = sin θ1,L/R,

s̃L/R = sin θ2,L/R .

These are respectively the Schur parameters of fL = f 0↑L and fR = f 0↓R , the Schur
functions of the first vector in the basis ofHL = HL ,0 andHR = HR,0, as follows from
the results about CMV matrices and Schur functions pointed out in Sect. 3.

According to (34), the Schur function of the cell H0 is f = γ ∗0 ( fL ⊕ fR). In view
of Theorem 4.2 and the cyclicity ofH0, the essential gaps ofW are characterized by the
analyticity and unitarity of f , i.e. of fL/R . Both, fL and fR are Schur functions with 2-
periodic sequences of Schur parameters. A Schur function f with a 2-periodic sequence
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of Schur parameters (s̃, s, s̃, s, . . . ) coincides with its second Schur iterate f2 = TsTs̃ f
coming from the Schur algorithm (6). This leads to the equation Ts̃ f = T−1s f , i.e.

1

z

f (z)− s̃

1− s̃ f (z)
= z f (z) + s

1 + sz f (z)
,

which yields

f (z) = z2 − 1 +
√

�

2z(s + s̃z)
, � = (1− z2)2 + 4z(s + s̃z)(sz + s̃), (42)

the branch of the square root being determined by
√

�
z→0−−→ 1 due to the analyticity of

f on D. Denoting

θ = arcsin s, θ̃ = arcsin s̃,

the proof ends by showing that, except for θ̃ = ∓θ , f is analytic and unitary on T in a
neighbourhood of ±1, and in this case f (±1) = sgn(θ̃ ± θ).

Concerning the value of f at ±1, the requirement for the branch of
√

� implies that
f must be evaluated on (−1, 1) using the positive value of

√
� because � > 0 on

(−1, 1). Therefore, (42) gives

f (±1) = |s̃ ± s|
s̃ ± s

= sgn(θ̃ ± θ), θ̃ ± θ �= 0. (43)

As for the analyticity of f on T, the apparent singularity at −s/s̃ lies on T only when
s̃ = ±s, but then it is removable. Thus the only singularities of f on T come from the
branch points of

√
�, i.e. the zeros of �. The expression of f on T,

f (eiω) = i sinω +
√

δ

s + s̃eiω
, δ = (cosω + cos(θ̃ − θ))(cosω − cos(θ̃ + θ)), (44)

shows that the branch points eiω ∈ T are characterized by cosω = cos(θ̃ + θ) or
cosω = − cos(θ̃ − θ). None of them is ±1 as long as θ̃ �= ∓θ , hence this condition is
equivalent to the analyticity of f around ±1. The branch points also determine the arcs
of T where f is unitary. Since δ = |s + s̃eiω|2 − (sinω)2, we find that | f (eiω)| = 1 iff
δ ≥ 0. On the other hand, the expression of δ in (44) shows that, when θ̃ �= ±θ , there
are four branch points which split T into four arcs where δ has constant sign, which is
positive in the left and right arcs and negative in the upper and lower arcs. The right
arc degenerates into the point 1 when θ̃ = −θ , and the left one into the point −1 when
θ̃ = θ . We conclude that the arc containing ±1, where f is analytic and unitary, only
closes for θ̃ = ∓θ . ��

The split-step representatives of the potential split-step phases in table (23) of The-
orem 6.1 may now be obtained from the walks of the previous lemma having Schur
functions fL/R with definite parity. This completes the classification of topological
phases for non-translation invariant split-step walks and we are hence ready to complete
the proof of Theorem 6.1.
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Proof of Theorem 6.1. It only remains to prove the last statement, i.e., that any of the
alluded phases has a representative given by a crossover of two split-step walks with
constant angles. We will use the notation of Lemma 6.4 and its proof. From (7) we
know that fL/R is an odd or even function whenever θ2,L/R = 0 or θ1,L/R = 0 respec-
tively. According to Lemma 6.4, the following four situations yield admissible split-step
crossovers:

θ1,R �= 0
θ2,R = 0

θ1,R = 0
θ2,R �= 0

θ1,L �= 0
θ2,L = 0

θ1,L �=0 θ1,R �=0
θ2,L=0 θ2,R=0

θ1,L �=0 θ1,R=0
θ2,L=0 θ2,R �=0

θ1,L = 0
θ2,L �= 0

θ1,L=0 θ1,R �=0
θ2,L �=0 θ2,R=0

θ1,L=0 θ1,R=0
θ2,L �=0 θ2,R �=0

(45)

Consider the upper-left option of (45). Then, fL and fR are odd Schur functions with
Schur parameters (0,−sL , 0,−sL , . . . ) and (0, sR, 0, sR, . . . ) respectively. Lemma 6.4
also provides the explicit values fL(±1) = ∓sgn(θ1,L) and fR(±1) = ±sgn(θ1,R). In
consequence, playing with the signs of θ1,L and θ1,R , this crossover gives representatives
for 4 of the possibilities in table (23), all those satisfying fL/R(−1) = − fL/R(1), which
correspond to the 4 options in the upper-left corner of (23).

In the lower-right case of (45) fL and fR are even Schur functions with Schur
parameters (−s̃L , 0,−s̃L , 0, . . . ) and (s̃R, 0, s̃R, 0, . . . ) respectively. This implies that
fL/R(−1) = fL/R(1), while Lemma 6.4 states that fL(±1) = −sgn(θ2,L) and
fR(±1) = sgn(θ2,R). Different choices for the signs of θ2,L and θ2,R lead to repre-
sentatives of the 4 possibilities in the lower-right corner of table (23).

A similar analysis shows that the upper-right option of (45) yields odd/even Schur
functions fL/R , giving representatives of the 4 cases in the upper-right corner of (23),
while the 4 possibilities in the lower-left corner of (23) have representatives with
even/odd Schur functions fL/R arising from the lower-left case of (45). ��

Finally, let us comment on the changes in the split-step phases when reducing the
number of symmetries that must be preserved by the homotopies. Forgetting some sym-
metries of the split-step walk gives in general a coarser classification of topological
phases. However, a closer look at the discussion giving rise to the split-step phases
(23) reveals that the same classification holds even if we do not take into account the
particle-hole and time-reversal symmetries. In contrast, if we just keep time-reversal
or particle-hole, the phases landscape changes. The triviality of the symmetry type
S = {1, τ }, τ 2 = 1, implies that split-step walks have a single phase when assuming
only time reversal. Also, if we consider the split-step walks as instances of the symmetry
type S = {1, η}, η2 = 1, there are at most 8 phases that come from the possible combi-
nations of the indices ↼sı(W ),

⇀sı(W ), si−(W ) ∈ Z2. Actually, these 8 phases are present
for split-step walks. To see this, note that the discussions of Sects. 6.2 and 6.3 remain
unchanged in this situation, except for the formulas giving the symmetry indices of the
finite-dimensional unitaries f (±1), which should use now the first line of (2) instead of
the second one. Then, (36) becomes

(−1)si±(W ) = (−1)si±( f (±1)) = det(∓ f (±1)) = det(∓γ ∗0 ( fL(±1)⊕ fR(±1)))
= − fL(±1) fR(±1),
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while (38) translates as

(−1)
↼
sı(W ) = (−1)si+( f L (1))(−1)si−( f L (−1)) = det(− f L(1)) det( f L(−1))

= det(−γ ∗−1( fL(1)⊕ 1)) det(γ ∗−1( fL(−1)⊕ 1)) = fL(1) fL(−1),
(−1)

⇀
sı(W ) = (−1)si+( f R(1))(−1)si−( f R(−1)) = det(− f R(1)) det( f R(−1))

= det(−γ ∗0 (1⊕ fR(1))) det(γ ∗0 (1⊕ fR(−1))) = fR(1) fR(−1).
The analogue of table (23) for this setting

(
↼sı(W ),

⇀sı(W ), si−(W )) fR(±1) = ±1 fR(±1) = ∓1 fR(±1) = 1 fR(±1) = −1
fL (±1) = ±1 (1, 1, 1) (1, 1, 0) (1, 0, 0) (1, 0, 1)

fL (±1) = ∓1 (1, 1, 0) (1, 1, 1) (1, 0, 1) (1, 0, 0)

fL (±1) = 1 (0, 1, 0) (0, 1, 1) (0, 0, 1) (0, 0, 0)

fL (±1) = −1 (0, 1, 1) (0, 1, 0) (0, 0, 0) (0, 0, 1)

is the result of applying to (23) the “forget homomorphism” Z
mod 2−−−→ Z2 [9, Sect. 2.5.3]

between the index groups of the symmetry types S = {1, η, τ, γ }, η2 = τ 2 = γ 2 = 1
and S = {1, η}, η2 = 1. The above table shows that the crossovers of translation
invariant split-step walks given in (23) cover the alluded 8 phases, which, except for
the phase (0, 0, 0), follow by combining in pairs the 15 phases corresponding to the
symmetry type S = {1, η, τ, γ }, η2 = τ 2 = 1. This means that split-step walks from
different components of such pairs may be continuously connected preserving essential
locality, essential gaps and particle-hole, but paying the price of violating the chiral
symmetry along the path.

7. Further Examples

Starting from the general model of walks with an arbitrary even number of internal
degrees of freedom introduced in Sect. 6.1, in this section we will explore the phase
diagram of coined quantum walks with chiral symmetry.

7.1. Chiral coined walks with higher-dimensional coins. We will consider 1D coined
walks with a chiral symmetry, but with cells of arbitrary even dimension 2d (25). They
are the specialization of the walks given in Proposition 6.2 for a trivial coin operator
C2 = 1, i.e.

W = SC1, S = S↓S↑ =
∑

x∈Z
r=1,...,d

|x + 1 ↑ r〉〈x ↑ r | + |x − 1 ↓ r〉〈x ↓ r |, (46)

with S the conditional shift whichmoves forward/backward the “half-cells”H↑/↓
x .When

the coin C1 has the form (28), W = γ̃ γ where

γ̃ =
⊕

x∈Z
γ̃x =

⊕

x∈Z

(
0 1d
1d 0

)
, (47)
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with γ̃x acting on H̃x , and γ being a chiral symmetry of W . Thus, we refer to these
walks as chiral coined walks. We will classify the topological phases of the essentially
gapped chiral coined walks with 2d × 2d coins.

The phase structure for d = 1 follows from the previous results on split-step walks.
For coined walks, the Schur functions fL/R in Theorem 6.1 are odd because their
sequences of Schur parameters have null Schur parameters at odd places. This cor-
responds to the 4 phases (1, 1, 1), (1,−1, 0), (−1, 1, 0), (−1,−1,−1) in the upper-left
corner of table (23), from which only (1,−1, 0) and (−1, 1, 0) survive in the translation
invariant case because then the essential gaps become strict gaps and thus si±(W ) = 0.
For d > 1, the topological phases of coined walks appear not to have been discussed
elsewhere, even in the translation invariant case.

7.1.1. Chiral coined walk indices si±(W ) According to Theorem 4.5, the cyclicity of
any cell allows us to obtain the symmetry indices si±(W ) out of the 2d × 2d matrix
Schur function f for the cell H0. Using (2) we find that

si±(W ) = si±( f (±1)) = 1

2
trγ0(12d ± f (±1))

= ±1

2
trγ0 f (±1) ∈ {−d,−d + 1, . . . ,−1, 0, 1, . . . , d − 1, d},

because γ0 is traceless and γ0 f (±1) is a 2d × 2d unitary involution since, due to
Theorem 4.4, γ0 is a chiral symmetry of f (±1). As in the split-step case, we can
say something extra about the Schur function f by using the local right decoupling
WV = WL ⊕WR with decoupling subspace H0 given by

V = γ ∗0 ⊕ 1H⊥
0
.

The left part WL of the decoupled walk acts on HL = H<0 ⊕H↑0 , while the right part
WR is a walk on HR = H↓0 ⊕H>0. The version of Theorem 5.4 for right decouplings
implies that

f = γ ∗0 ( fL ⊕ fR), (48)

where fL/R is the d×d matrix Schur function ofH↑/↓
0 with respect toWL/R . Therefore,

si±(W ) = ±1

2
(tr fL(±1) + tr fR(±1)). (49)

Since fL/R(±1) are d × d matrix unitary involutions in which γ0 f (±1) splits,

tr fL(±1), tr fR(±1) ∈ {−d,−d + 2, . . . , d − 2, d}. (50)

We will see that these traces also yield the left and right indices of the walk.
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7.1.2. Chiral coined walk left and right indices To discuss the left and right indices we
will perform the symmetry preserving left decoupling W �→ VW = WL ⊕ WR with
decoupling subspace H̃0, given by

V = γ̃ ∗0 ⊕ 1H̃⊥
0
.

The walks WL and WR act onHL = H<0 andHR = H≥0 respectively. Proposition 6.3
states that H̃0 = H↓−1⊕H↑0 is cyclic forW , thus Proposition 5.3.(ii) implies thatH↓−1 and
H↑0 are cyclic for WL and WR respectively. Taking H−1 and H0 as symmetry invariant
subspaces which are cyclic for WL and WR , the corresponding Schur functions, fL and
fR , will provide the left and right indices of W .

The structure of these 2d×2d matrix Schur functions follows from right perturbations
of WL/R which are analogous to those performed on W in the previous subsection.
The right perturbations WLVL = W ′

L ⊕ 1d and WRVR = 1d ⊕ W ′
R which decouple

respectively the subspacesH↓−1 andH
↑
0 , yield the following expressions for such Schur

functions,

fL = γ ∗−1( fL ⊕ 1d), fR = γ ∗0 (1d ⊕ fR),

where fL/R is the d × d matrix Schur function of H↑/↓
−1/0 with respect to W ′

L/R . From
(2) and Corollary 5.5,

↼sı(W ) = si+( fL (1)) + si−( fL (−1)) = 1

2
trγ−1( f L (1)− f L (−1)) = 1

2
(tr fL (1)− tr fL (−1)),

⇀sı(W ) = si+( fR(1))− si−( fR(−1)) = 1

2
trγ0( f R(1)− f R(−1)) = 1

2
(tr fR(1)− tr fR(−1)).

(51)

The initial left decoupling preserves the chiral symmetry γ , hence WL and WR have
respectively the chiral symmetries γL = ⊕x<0γx and γR = ⊕x≥0γx . Therefore, γ−1/0
is a chiral symmetry for the unitary fL/R(±1), which means that γ−1 f L(±1) and
γ0 f R(±1) are involutions. In consequence, the d× d unitaries fL/R(±1) are also invo-
lutions, leading once again to the constraint (50).

Analogously to the split-step case, we can use the above result to reobtain the expres-
sion (49) for the symmetry indices si±(W ). Applying Corollary 5.5 to the previous left
decoupling VW = WL ⊕ WR we find that the 4d × 4d matrix Schur function f of
H−1 ⊕H0 with respect to W is given by

f = ( fL ⊕ fR)(1d ⊕ γ̃ ∗0 ⊕ 1d) = (γ ∗−1 ⊕ γ ∗0 )( fL ⊕ γ̃ ∗0 ⊕ fR).

Since H1 ⊕H0 is cyclic for W , Theorem 4.5 and (2) yield

si±(W ) = si±( f (±1)) = 1

2
tr(γ−1 ⊕ γ0)(14d ± f (±1)) = ±1

2
(tr fL (±1) + tr fR(±1)). (52)

Nevertheless, there is an apparent difference between (52) and (49). Let WVx =
WL ,x ⊕ WR,x be the right decoupling at HVx = Hx given by Vx = γ ∗x ⊕ 1H⊥

x
, so that

WL ,x and WR,x are walks onHL ,x = H<x ⊕H↑x andHR,x = H↓x ⊕H>x respectively.
Then, using the notation

f x↑L = Schur function of H↑x
with respect to WL ,x

f x↓R = Schur function of H↓x
with respect to WR,x

(53)
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(49) becomes

si±(W ) = ±1

2
(tr f 0↑L (±1) + tr f 0↓R (±1)),

while (52) reads as

si±(W ) = ±1

2
(tr f −1↑L (±1) + tr f 0↓R (±1)).

Generalizing (49) to the decoupling W �→ WVx at an arbitrary cell HVx = Hx gives

si±(W ) = ±1

2
(tr f x↑L (±1) + tr f x↓R (±1)), x ∈ Z.

Also, (52), which follows from a left decoupling at H̃0 = H↓−1⊕H↑0 , may be generalized

to a similar decoupling at H̃x = H↓x−1 ⊕H↑x , leading to

si±(W ) = ±1

2
(tr f x−1↑L (±1) + tr f x↓R (±1)), x ∈ Z.

As a consequence, tr f x↑L (±1) and tr f x↓R (±1) are independent of x ∈ Z, which shows
that (49) and (52) are actually the same identity.

7.1.3. Chiral coined walk topological phases The identities (49) and (51) show that,
for any even dimension 2d of the coins (28), the topological phases of the chiral coined
walks are characterized by the x-independent traces

tr fL(±1):=tr f x↑L (±1), tr fR(±1):=tr f x↓R (±1) ∈ {−d,−d + 2, . . . , d − 2, d},
(54)

which determine the three indices ↼sı(W ), ⇀sı(W ), si−(W ). However, a special property of
coined walks yields an additional constraint on tr fL/R(±1) which reduces the number
of possible phases.

Proposition 7.1. The Schur function of a cell with respect to a coined walk (46) is an
odd function.

Proof. The even and odd subspaces

He =
⊕

a∈Z
H2a, Ho =

⊕

a∈Z
H2a+1,

are exchanged by a coined walk W = SC , i.e. WHe = Ho and WHo = He. Besides,
these subspaces are invariant for the orthogonal projection Px onto a cell Hx , and also
for the complementary projection P⊥x = 1 − Px . On the other hand, (14) yields the
following power expansion for the Schur function f of Hx ,

f (z) =
∑

n≥0
Px (W

∗P⊥x )nW ∗Px zn, z ∈ D. (55)

The proposition follows from the fact that (W ∗P⊥x )nW ∗ exchangesHe andHo when n
is even. ��
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With the help of the previous result we can finally classify the topological phases of
the chiral coined walks.

Theorem 7.2. The coinedwalks (46)with2d×2d coinsC1,x satisfying (28) and essential
gaps around ±1 exhibit (d + 1)2 symmetry protected topological phases, i.e. homotopy
classes of admissible walks belonging to the symmetry type S = {1, γ }, γ 2 = 1. If
fL = f x↑L and fR = f x↓R are the Schur functions defined in (53), these phases are
characterized by the x-independent traces (54) according to

↼sı(W ) = tr fL(1), ⇀sı(W ) = tr fR(1) ∈ {−d,−d + 2, . . . , d − 2, d},
si−(W ) = 1

2
(
↼sı(W ) + ⇀sı(W )).

Any of these phases has a representative which is an orthogonal sum of split-step walks.
Translation invariance reduces the number of phases to d + 1, which arise by imposing
tr fL(1) = −tr fR(1).

Proof. Proposition 7.1 implies that the Schur functions fL/R in (48) are odd, hence
fL/R(−1) = − fL/R(1). Bearing in mind (49) and (51), this yields the expressions of
the symmetry indices given in the theorem, giving rise to at most (d + 1)2 phases. To
prove that chiral coined walks with 2d × 2d coins actually exhibit all these (d + 1)2

phases, we need to find a representative for each of the possible values of tr fL/R(1).
For this purpose we consider a diagonal choice for the d × d blocks of the coin C1,x ,
namely

A1,x =

⎛

⎜⎜⎝

cos θ
(1)
x

cos θ
(2)
x

. . .

cos θ
(d)
x

⎞

⎟⎟⎠ , B1,x =

⎛

⎜⎜⎝

sin θ
(1)
x

sin θ
(2)
x

. . .

sin θ
(d)
x

⎞

⎟⎟⎠ , θ(r)
x ∈ (−π

2 , π
2 ). (56)

This choice only links states |x ↑ r〉, |x ↓ r〉with the same index r , thusW = ⊕d
r=1W (r)

decouples into coined walks W (r) of split-step type with coin angles θ
(r)
1,x = θ

(r)
x and

θ
(r)
2,x = 0. The essential gap around ±1 for W obviously translates into similar ones

for W (r), while the chiral symmetry of W is orthogonal sum of those of W (r). Due to
the additivity with respect to direct sums, the symmetry indices of W are the sum of
those for the walks W (r). These last ones may be obtained from the Schur functions
f (r) of span{|0 ↑ r〉, |0 ↓ r〉} with respect to W (r), and the Schur functions f (r)

L/R of

|0 ↑ r〉/|0 ↓ r〉 with respect to the corresponding decouplings W (r)
L/R . As for any coined

walk, the functions f (r)
L/R are odd, and the split-step example shows that their possible

values at 1 are±1. Therefore, we can get any of the values of tr fL/R(1) =∑d
r=1 f (r)

L/R(1)

in (54) just by choosing properly the split-step walks W (r).
Under translation invariance the essential gaps become strict gaps, thus si±(W ) =

0 and ↼sı(W ) = −⇀sı(W ). Hence tr fL(1) = −tr fR(1), as follows from the previous
results. Moreover, there is a chiral coined walk with tr fR(1) = −tr fL(1) being any
integer in {−d,−d + 2, . . . , d − 2, d}. Just choose A1,x and B1,x as in (56) with site
independent angles θ

(r)
x = θ(r) ∈ (−π/2, π/2) \ {0}. According to Theorem 6.1, this

makes f (r)
R (1) = − f (r)

L (1) = sgnθ(r). Hence, we get any of the alluded values of of
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tr fL/R(1) =∑d
r=1 f (r)

L/R(1) by a suitable choice of the number of positive and negative

angles θ(r). ��
For d = 1, the above theorem gives the 4 phases already observed for the coined walk

specialization of the split-step walk (upper-left corner of table (23) in Theorem 6.1). As
for d > 1, for instance, in the case d = 2, chiral coined walks present 9 phases whose
symmetry indices are given in the table below,whose principal anti-diagonal corresponds
to the 3 phases of the translation invariant case.

(
↼sı(W ),

⇀sı(W ), si−(W )) tr fR(±1) = 2 tr fR(±1) = 0 tr fR(±1) = −2
tr fL(±1) = 2 (2, 2, 2) (2, 0, 1) (2,−2, 0)
tr fL(±1) = 0 (0, 2, 1) (0, 0, 0) (0,−2,−1)
tr fL(±1) = −2 (−2, 2, 0) (−2, 0,−1) (−2,−2,−2)

Wehave found that chiral coinedwalkswith 2d×2d coins exhibit (d+1)2 topological
phases, among which only d + 1 arise in the translation invariant case. The later result is
valid, not only for x-independent coins C1,x , but also for periodic ones with an arbitrary
period. Combining the arguments given in Theorem 7.2 with the results of the split-
step example we can see that every phase has a representative which is a crossover of
translation invariant chiral coinedwalks. This agreeswith the fact that the total number of
phases coincides with the possible combinations of translation invariant ones. However,
this naive counting, already proved to be misleading in the split-step case, will change
even more dramatically in the following example.

7.2. Walks unitarily equivalent to chiral coined walks. We will consider now the spe-
cialization of the walks in Proposition 6.2 for a trivial coin C1 = 1. They have the
form

W = S↓C2S↑ = S∗↑(SC2)S↑, (57)

where S = S↓S↑ = S↑S↓ is the conditional shift given in (46). We will assume that
the coins C2,x satisfy (28), so that W has a chiral symmetry. Although these walks are
unitarily equivalent to chiral coined walks, we cannot infer their topological phases from
those obtained in the previous example because the equivalence is given by the unitary
operator S↑, which does not preserve the cell structure. Indeed, the topological phases
of this model turn out to be quite different from those of chiral coined walks.

According to Proposition 6.2, W = γ̃ γ where

γ =
⊕

x∈Z
γx =

⊕

x∈Z

(
0 1d
1d 0

)

is the chiral symmetry of W . Comparing with the previous example, we see that W ∗ =
γ γ̃ is a chiral coinedwalk, butwith respect to the cell structureH = ⊕x∈ZH̃x . Therefore,
analyzing the topological phases of chiral walks of the form (57) is the same as studying
the topological phases of chiral coined walks (46) with respect to the modified cells H̃x
and the corresponding chiral symmetry γ̃ (47). This alternative view of the walks (57)
allows us to translate to them most of the results from the previous example. Actually,
the only –but key– difference comes from the parity of the the Schur function of a cell.
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Proposition 7.3. The Schur function of a cell with respect awalk (57) is an even function.

Proof. Without loss, we can consider the Schur function f ofH0. We need to show that
the coefficients P0(W ∗P⊥0 )nW ∗P0 = (P0W (P⊥0 W )n P0)∗ of its power expansion (55)
vanish for odd n. This is a direct consequence of the following inclusion

W (P⊥0 W )nH0 ⊂ (H̃−n ⊕ · · · ⊕ H̃−3 ⊕ H̃−1)⊕ (H̃2 ⊕ H̃4 ⊕ · · · ⊕ H̃n+1), odd n,

(58)

which we will prove by induction. From the definition (57) of the walk we find that

WH↑x ⊂ H̃x+1, WH↓x ⊂ H̃x , WHx ⊂ H̃x ⊕ H̃x+1, W H̃x ⊂ H̃x−1 ⊕ H̃x+1.

(59)

For n = 1, (59) yields

WP⊥0 WH0 ⊂ WP⊥0 (H̃0 ⊕ H̃1) = W (H↓−1 ⊕H↑1 ) ⊂ H̃−1 ⊕ H̃2.

Assuming (58) for a given odd index n, using again (59) we obtain

W (P⊥0 W )n+2H0 ⊂ WP⊥0 W
(
(H̃−n ⊕ · · · ⊕ H̃−3 ⊕ H̃−1)⊕ (H̃2 ⊕ H̃4 ⊕ · · · ⊕ H̃n+1)

)

⊂ WP⊥0
(
(H̃−n−1 ⊕ · · · ⊕ H̃−2 ⊕ H̃0)⊕ (H̃1 ⊕ H̃3 ⊕ · · · ⊕ H̃n+2)

)

= W
(
(H̃−n−1 ⊕ · · · ⊕ H̃−2 ⊕H↓

−1)⊕ (H↑
1 ⊕ H̃3 ⊕ · · · ⊕ H̃n+2)

)

= (H̃−n−2 ⊕ · · · ⊕ H̃−3 ⊕ H̃−1)⊕ (H̃2 ⊕ H̃4 ⊕ · · · ⊕ H̃n+3).

��
Compared with chiral coined walks, the change in the parity of the Schur function of

a cell for the walks (57) is the origin of a very different structure of topological phases
for these walks with a chiral symmetry.

Theorem 7.4. The walks (57) with 2d×2d coins C2,x satisfying (28) and essential gaps
around±1 exhibit 2d + 1 symmetry protected topological phases, i.e. homotopy classes
of admissible walks belonging to the symmetry type S = {1, γ }, γ 2 = 1. If fL = f x↑L
and fR = f x↓R are the Schur functions defined in (53), these phases are characterized
by the x-independent traces (54) according to

↼sı(W ) = ⇀sı(W ) = 0, si−(W ) = −1

2
(tr fL (1) + tr fR(1)) ∈ {−d,−d + 1, . . . , d − 1, d}.

Any of these phases has a representative which is an orthogonal sum of split-step walks.
Translation invariance reduces the phases to a single one with ↼sı(W ) = ⇀sı(W ) =
si−(W ) = 0.

Proof. The parity of f is also inherited by the functions fL/R appearing in the decom-
position f = γ ∗0 ( fL ⊕ fR) generated by the right decoupling of W at H0. As in the
coined walk case, the conclusion is that the phases of the walks (57) are controlled by
the values of the even functions fL/R at±1, which are d × d unitary involutions related
by fL/R(−1) = fL/R(1). Their traces have the possible values

tr fL(1), tr fR(1) ∈ {−d,−d + 1, . . . , d − 1, d},
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giving rise to the symmetry indices

↼sı(W ) = 1

2
(tr fL(1)− tr fL(−1)) = 0, ⇀sı(W ) = 1

2
(tr fR(1)− tr fR(−1)) = 0,

si−(W ) = −1

2
(tr fL(−1) + tr fR(−1)) = −1

2
(tr fL(1) + tr fR(1)).

Since the left and right indices are null, the phases of this model are characterized by a
single symmetry index, si−(W ) ∈ {−d,−d + 1, . . . , d − 1, d}. Therefore, these walks
have at most 2d+1 phases. Just as in the case of chiral coinedwalks, we can build explicit
examples for all the alluded 2d + 1 potential phases by taking orthogonal sums of split-
step walksW (r), in this case with θ

(r)
1,x = 0. Therefore, all the alluded phases are present

in this model. Among these 2d+1 phases, only (0, 0, 0) is compatible with the strict gaps
around ±1 imposed by translation invariance, and indeed any orthogonal sum of split-
stepwalksW (r) with x-independent angles θ

(r)
1,x = 0 and θ

(r)
2,x = θ(r) ∈ (−π/2, π/2)\{0}

is a translation invariant representative of such a phase. ��
For d = 1, the 3 phases given by the previous theorem are those already observed

for the split-step walks with θ1,x = 0 (lower-right corner of table 23). As an example
for d > 1, the following table relates the symmetry indices with the possible values of
tr fL/R(±1) for the 5 phases in the case d = 2.

(
↼sı(W ),

⇀sı(W ), si−(W )) tr fR(±1) = 2 tr fR(±1) = 0 tr fR(±1) = −2
tr fL (±1) = 2 (0, 0,−2) (0, 0,−1) (0, 0, 0)

tr fL (±1) = 0 (0, 0,−1) (0, 0, 0) (0, 0, 1)

tr fL (±1) = −2 (0, 0, 0) (0, 0, 1) (0, 0, 2)

The anti-diagonals yield the same phase, the principal one corresponding to the only
phase present under translation invariance.

Despite exhibiting a single phase in the translation invariant case –i.e. periodic coins
C2,x with any period–, the number 2d + 1 of non-translation invariant phases of this
model grows linearly with d. This example clearly shows that the number of topological
phases of a model cannot be inferred from the number of its translation invariant phases.
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