
First PACS-integrated artificial intelligence-based
software tool for rapid and fully automatic analysis of
body composition from CT in clinical routine

Nick Lasse Beetz1,2* , Christoph Maier1, Laura Segger1, Seyd Shnayien1, Tobias Daniel Trippel2,3, Norbert Lindow4,
Khaled Bousabarah4, Malte Westerhoff4, Uli Fehrenbach1 & Dominik Geisel1

1Department of Radiology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; 2DZHK
(German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany; 3Department of Internal Medicine – Cardiology, Charité – Universitätsmedizin Berlin,
corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; 4Visage Imaging GmbH, Berlin, Germany

Abstract

Background To externally evaluate the first picture archiving communications system (PACS)-integrated artificial in-
telligence (AI)-based workflow, trained to automatically detect a predefined computed tomography (CT) slice at the
third lumbar vertebra (L3) and automatically perform complete image segmentation for analysis of CT body composi-
tion and to compare its performance with that of an established semi-automatic segmentation tool regarding speed and
accuracy of tissue area calculation.
Methods For fully automatic analysis of body composition with L3 recognition, U-Nets were trained (Visage) and com-
pared with a conventional image segmentation software (TomoVision). Tissue was differentiated into psoas muscle,
skeletal muscle, visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT). Mid-L3 level images from ran-
domly selected DICOM slice files of 20 CT scans acquired with various imaging protocols were segmented with both
methods.
Results Success rate of AI-based L3 recognition was 100%. Compared with semi-automatic, fully automatic AI-based
image segmentation yielded relative differences of 0.22% and 0.16% for skeletal muscle, 0.47% and 0.49% for psoas
muscle, 0.42% and 0.42% for VAT and 0.18% and 0.18% for SAT. AI-based fully automatic segmentation was signifi-
cantly faster than semi-automatic segmentation (3 ± 0 s vs. 170 ± 40 s, P < 0.001, for User 1 and 152 ± 40 s,
P < 0.001, for User 2).
Conclusion Rapid fully automatic AI-based, PACS-integrated assessment of body composition yields identical results
without transfer of critical patient data. Additional metabolic information can be inserted into the patient’s image re-
port and offered to the referring clinicians.
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Introduction

Body composition describes the percentages of muscle, bone
and water in the human body and has long been used as a
measure of physical fitness.1,2 The reason why body composi-
tion is widely considered to be a better indicator of physical fit-
ness than body mass index (BMI) or body weight is obvious:
Both BMI and body weight reflect the combined weight of all
body tissues but do not measure the relative proportions of
the different tissue types contributing to a person’s overall
weight. Thus, two patients of the same sex and age may have
the same weight, whereas their body composition and relative
amounts of different tissues such as fat and muscle might be
different.3 In terms of body composition, a basic distinction
is made between body fat and lean mass including muscle,
organs and bones.4,5

For initial assessment of obesity in clinical routine, anthro-
pometric measures such as BMI and waist circumference are
often sufficient.6 However, more sophisticated measurement
techniques are required if a discordance between BMI and
adiposity is suspected (e.g. in body builders or patients with
sarcopenia and normal BMI) or if analysis of the relative pro-
portions of body fat and lean mass in the body is desired.

Increasingly, analysis of body composition has been used
to identify and monitor patients at risk for sarcopenia and/
or obesity, which have been identified to be important indica-
tors of outcome in several diseases.7–9 In diseases, the psoas
muscle area at the level of the third lumbar vertebra (L3)
might predict outcome of patients undergoing transcatheter
aortic valve replacement (TAVR), and abdominal obesity ap-
pears to be highly predictive of coronary heart disease.10,11

More recently, the focus has shifted to oncologic patients as
several studies suggest that pre-therapeutic sarcopenia is
associated with poorer overall outcome.12–14

A conventional method to determine a patient’s body
composition is the compartment model in which the density
and proportion of fat, muscle, bone and water are calculated
by underwater weighing and chemical dilution.15,16 More
commonly used methods for determining body composition
are dual-energy x-ray absorptiometry (DEXA), which uses a
very low dose of radiation and provides an accurate estima-
tion of body fat percentage, and bioelectrical impedance
analysis measurement, which estimates the body fat percent-
age from water impedance.17–19

Modern imaging techniques allow reliable analysis of body
composition from a single axial image acquired at the L3 level
with either computed tomography (CT) or magnetic reso-
nance imaging (MRI). Patients prone to obesity and
sarcopenia often undergo CT examinations for various rea-
sons: Cardiovascular patients need CT angiography for pre-
treatment evaluation of aortic stenosis, and cancer patients
need CT for staging and monitoring of the treatment re-
sponse. In these settings, CT allows straightforward analysis
of body composition and quantification of sarcopenia with-

out additional radiation dose or examination time for the
patient.20,21

As manual segmentation of CT datasets is time consuming,
CT-based analysis of body composition has not yet been used
in larger patient populations. In the medical and scientific
community, there is a growing need for artificial intelligence
(AI)-based automated tissue segmentation in order to dra-
matically decrease post-processing time of these datasets.22

Semi-automatic image segmentation techniques have already
been established; however, these solutions demand extra ex-
ternal software and require an expert reader for correct
segmentation.23,24 A commonly used software tool for
semi-automatic image segmentation is sliceOmatic, which
uses pixel thresholding with region growing and has been
shown to allow reliable assessment of body composition in
studies.25

The purpose of this study is to externally evaluate a new
AI-based workflow, which we trained to automatically detect
a predefined CT slice at the third lumbar vertebra (L3) and au-
tomatically perform complete image segmentation for analy-
sis of body composition, and to compare its performance
with that of an established threshold-based semi-automatic
segmentation method in terms of speed and accuracy of tis-
sue area calculation. The new AI-based software tool for as-
sessment of body composition is fully integrated into the
interface of a widely used picture archiving and communica-
tions system (PACS).

Material and methods

Study design

In this single-centre study, we analysed body composition
twice with a semi-automatic software tool and a fully auto-
matic, PACS-integrated software tool using a retrospective
dataset of patients who underwent a full abdominal CT scan.
The study was approved by the institutional review board.

Patient population and patient characteristics

The first and randomly selected patients diagnosed with
acute abdomen at the Emergency Department of the Charité
University Hospital who were referred to the Department of
Radiology between 15 December 2020 and 15 January 2021
were considered for inclusion in this study, if they underwent
abdominal CT imaging. Patients with additional CT scans of
non-abdominal body regions were not included. Another ex-
clusion criterion was foreign material at the third vertebral
level causing relevant beam-hardening artefacts.
Pre-existing conditions or a history of surgery were no exclu-
sion criteria to this real-world patient population.
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Image acquisition

All patients referred to the Department of Radiology were
examined on one of two 64-row CT scanners (Revolution
EVO or GSI, General Electric, Milwaukee, USA). Two patients
underwent unenhanced CT. All other patients were adminis-
tered an intravenous bolus injection of iodinated contrast
medium, followed by a full abdominal helical scan in the por-
tal venous phase in 14 cases and in the venous phase in four
cases. Adequate opacification was ensured by bolus tracking
using SmartPrep (General Electric, Milwaukee, USA).

Semi-automatic analysis of body composition

First, the 5-mm-thick DICOM slice files at the mid-L3 level of
the randomly selected CT scans were extracted from the de-
partment’s PACS. After anonymization, the mid-L3 level data
files were transferred to a conventional image segmentation
software for semi-automatic analysis of body composition
(sliceOmatic v5.0, TomoVision, Canada). Semi-automatic im-
age segmentation was performed twice by two experienced
radiologists (L.S. and N.L.B.). In all cases, semi-automatic im-
age segmentation was manually adjusted to ensure correct
differentiation of psoas muscle, skeletal muscle, visceral adi-
pose tissue (VAT) and subcutaneous adipose tissue (SAT).
Random presentation and the anonymization of the datasets
ensured blinding of the users to clinical data and patient
information.

Fully automatic AI-based analysis of body
composition with L3 recognition

After a 6-week interval, the two users were instructed to in-
dependently repeat tissue segmentation with the AI-based
image segmentation software using the same CT datasets.
Again, users were blinded to clinical data and patient infor-
mation. The results of the first round of image segmentation
were not revealed.

A PACS-integrated, fully automatic software tool (Visage
Imaging GmbH, Berlin, Germany) was used for AI-based anal-
ysis of body composition. A neural network with U-Net archi-
tecture was trained using 200 axial CT images from the L3
level. Thirty CT datasets were withheld for validation. The
neural network consists of nine blocks: four downsampling
blocks, four upsampling blocks and one in between. A
softmax layer returns the segmentation as five-channel out-
put, one channel per tissue plus background. Each block con-
sists of two convolutional layers using the same number of
3 × 3 kernels in combination with batch normalization for
each layer. For the nine blocks, we used 32, 64, 128, 256,
256, 256, 128, 64 and 32 kernels per layer. All convolutional
layers applied leaky rectified linear unit activations. For

downsampling, max pooling was used, which halved the im-
age resolution in each dimension. For upsampling, bilinear in-
terpolation was applied. Each downsampling block was
concatenated to the corresponding upsampling block of the
same image dimensions. To improve the generalization of
the neural network, image augmentations, including transla-
tions, rotations and brightness shifts, were applied during
the training. The neural network was optimized with the
Adam optimizer and categorical cross entropy as loss func-
tion. In case of false tissue segmentation, for example, when
hypodense stool in the intestine was misinterpreted as body
fat, the software tool allowed manual correction. An illustra-
tion of the U-Net is shown in Figure 1.

A second U-Net was trained to identify the L3 vertebra
along the sagittal direction of the images. The workflow
was also embedded into the PACS-based Visage 7 platform
(Visage Imaging GmbH, Germany). For evaluation of correct
identification of the L3 vertebra, the execution of the
workflow was supervised by a radiologist to permit correction
in case the algorithm would not select the appropriate CT
slice.

External evaluation and comparison of AI-based
fully automatic image segmentation with L3
recognition with semi-automatic segmentation

For external evaluation of the workflow, the AI-based soft-
ware was embedded into the PACS-based Visage 7.1 platform
at Charité – University Hospital Berlin. The same image series
with 5-mm-thick CT slices, used for the extraction of the
datasets for semi-automatic image segmentation, was loaded
into the Visage viewer.

After automatic L3 recognition, tissue was fully automati-
cally differentiated into psoas muscle, skeletal muscle, VAT
and SAT and coded with different colours. Organ tissues in-
cluding pancreas, spleen, kidney, liver and intestine were
not segmented. Manual image correction for false image seg-
mentation was not necessary. The area in square centimetres
(cm2) of each segmented tissue class was automatically
calculated by the software. The following parameters were
derived from L3 body composition analysis: area (in cm2) of
skeletal muscle, psoas muscle, SAT and VAT.

Accuracy of measurements was compared using the
relative difference between the tissue areas calculated with
the AI-based workflow and the areas determined by each of
the two users. The difference was calculated as (200|
A_s � A_v|)/((A_s + A_v)), where A_s is an area of a tissue
segmented by a user in sliceOmatic and A_v is the corre-
sponding tissue area segmented by the U-Net in Visage. For
both methods, the time needed for image segmentation
was measured in seconds. An example of semi-automatic
and fully automatic AI-based analysis of L3 body composition
is shown in Image 1.

First PACS-integrated AI-based software tool for rapid and fully automatic analysis of body composition 5
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Statistical analysis

Statistical significance for time differences between the seg-
mentation methods was evaluated using Mann–Whitney U
test, and a P-value ≤ 0.05 was considered significant. Relative
differences for areas and the corresponding mean values for
each tissue class were calculated. Data analysis was per-
formed using IBM SPSS Statistics Version 27 (IBM, Armonk,
New York, U.S.A) and Python Version 3.9.2 (Python Software
Foundation, Delaware, USA).

Results

Baseline data

The study included randomly selected patients with acute ab-
domen referred for CT imaging by the Emergency Depart-
ment. A total of 20 patients with a mean age of 51 years
ranging from 21 to 90 years were included. The mean
dose-length product (DLP) was 546 mGy*cm.

Image 1 Example illustrating results of fully automatic and semi-automatic image segmentation. Each segmented tissue is coded with a different col-
our: psoas muscle, purple; skeletal muscle (except psoas muscle), green; visceral fat, dark green; subcutaneous fat, blue. Tissue density and area were
automatically calculated. (A) Fully automatic AI-based analysis of L3 body composition using Visage. (B) Semi-automatic and manually corrected anal-
ysis of L3 body composition using sliceOmatic (User 1). (C) Semi-automatic and manually corrected analysis of L3 body composition using sliceOmatic
(User 2).

Figure 1 Structure of the U-Net used for fully automatic analysis of the body composition.
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Quality of semi-automatic versus fully automatic
AI-based image segmentation

Compared with the semi-automatic segmentation performed
by the first user, fully automatic AI-based segmentation of the
four tissue areas yielded a relative difference of 0.22% for
skeletal muscle, 0.47% for psoas muscle, 0.42% for VAT and
0.18% for SAT. Compared with the second user, the relative
differences between the two image segmentation methods
were 0.16% for skeletal muscle, 0.49% for psoas muscle,
0.42% for VAT and 0.18% for SAT. The results are illustrated
in Figure 2.

Speed of semi-automatic and fully automatic
AI-based image segmentation

Fully automatic AI-based segmentation was significantly
faster than semi-automatic segmentation compared with
both User 1 (3 ± 0 s vs. 170 ± 40 sec; P < 0.001) and User
2 (3 ± 0 s vs. 152 ± 40 s; P < 0.001). There was no significant
time difference between User 1 and User 2 (P = 0.80). The re-
sults are illustrated in Figure 3.

AI-based recognition of the third lumbar vertebra
level

The second neural network, trained for AI-based recognition
of the third lumbar vertebra level, had a success rate of L3 rec-
ognition of 100%. There was no case in which the supervising
radiologist needed to intervene to select the correct slice.

Discussion

In this retrospective study, we analysed CT body composition
of randomly selected patients for evaluation of a new
AI-based workflow, which we trained to automatically detect
a predefined CT slice at the L3 level and automatically per-
form complete image segmentation. Performance of the
AI-based tool in terms of speed and segmentation was com-
pared with that of an established semi-automatic segmenta-
tion software. Fully automatic AI-based analysis of body
composition with integrated L3 recognition yielded the same
results for the body composition parameters investigated and
was significantly faster than semi-automatic image segmenta-
tion with manual correction.

Body composition analysis can be a useful tool to evaluate
undernourishment in cancer patients and detect increased
visceral fat as an important risk factor for cardiovascular dis-
ease and diabetes mellitus.3,26–28 Moreover, body composi-
tion can identify frail patients, for example, in sarcopenic
obesity with normal BMI but reduced muscle mass and

severe adiposity.29,30 As sarcopenia and sarcopenic obesity
are associated with a poorer outcome in cancer and cardio-
vascular patients, knowledge of body composition may make
an important contribution to therapy planning in these
patients.11,31–33 As analysis of body composition from CT
scans is easily feasible and does not require additional
radiation exposure, the tool presented here may be of great
interest in many research and clinical settings.

In this study, AI-based fully automatic analysis of body com-
position was up to 82 times faster than semi-automatic image
segmentation. Because the PACS-integrated solution also
turned out to allow stable automatic L3 recognition, it elimi-
nates the need for prior extraction of the DICOM slice at the
correct level, further shortening processing time
tremendously.

The already available semi-automatic software tool
sliceOmatic has proven to correctly perform image segmenta-
tion in many studies and is widely used. Recently, Feliciano
et al. used the same ‘manual’ threshold-based semi-auto-
matic method to validate a commercially available automatic
image segmentation solution. Both methods showed similar
associations of body composition parameters and mortality
in patients with non-metastatic cancer, demonstrating that
automatic image segmentation methods are appropriate
and acceptable for outcome analysis in large patient
populations.34

Although image segmentation of cross-sectional CT for
body composition analysis is an accepted reference standard,
it is time consuming and therefore often used in small patient
populations only.22,35 The most widely investigated tech-
niques for semi-automatic body composition analysis, such
as sliceOmatic, Horos (Horos Project, Horosproject.org) or
OsiriX (Pixmeo, Geneva, Switzerland), use pixel thresholding
with region growing.36 Bridge et al.37 have shown that
AI-based segmentation on a single CT slice is feasible with a
high level of accuracy. Just recently, Koitka et al.38 have dem-
onstrated that body composition analysis in routine CT imag-
ing using three-dimensional semantic segmentation
convolutional neural networks is possible. However, to our
knowledge, we are the first to show that an already PACS-
integrated, fully automatic AI-based software tool with
automatic L3 recognition can extract valuable metabolic in-
formation in addition to providing traditional imaging re-
ports. The areas and radiodensities of psoas muscle,
skeletal muscle, VAT and SAT can automatically be measured
in the background from abdominal CT scans regardless of the
imaging protocol used for acquisition and the patient’s clini-
cal indication for CT (e.g. TAVR planning in aortic stenosis
or staging in cancer patients).39,40 Body composition parame-
ters can be inserted into a reporting system and thus provide
referring clinicians with additional relevant information. The
new AI-based fully automatic and PACS-integrated workflow
solution investigated here is very fast and accurate and has
great potential to further facilitate and accelerate body
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Figure 2 Accuracy of the new fully automated AI-based image segmentation tool with L3 recognition in measuring the different tissue areas compared
with semi-manual image segmentation by Reader 1 and Reader 2.
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composition analysis. As no external software is required for
body composition analysis, there is no need for additional
protection of patient data, and valuable metabolic informa-
tion can simply be added to the standard image report.

Limitations

Even though already available, semi-automatic image analy-
sis and the new fully automatic AI-based tool are very rep-
resentative segmentation methods, there is a small and
insignificant proportion of each tissue class that is not
completely segmented compared with the real body slice
as a hypothetical gold standard. Accuracy of body
composition analysis might also be limited in patients with
foreign material or severe skeletal deformation. In some
cases, severe ascites, oedema and mesenterial fat stranding
with altered tissue radiodensity might reduce the capacity
of the workflow tool to correctly differentiate tissue
classes.

Conclusion

Fully automatic AI-based, PACS-integrated analysis of body
composition with L3 recognition is feasible and easily avail-
able from CT imaging. Fully automatic AI-based assessment
of body composition using Visage yields almost the same re-
sults for body composition parameters as conventional

semi-automatic image segmentation. This AI-based software
solution eliminates the need for external software and does
not require any transfer of critical patient data. Without fur-
ther examinations, it provides valuable metabolic information
in addition to traditional imaging reports. Rapid and accurate
fully automatic AI-based analysis of body composition may
improve risk stratification and patient care.
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