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Active inference and the two‑step 
task
Sam Gijsen1,2*, Miro Grundei1,2 & Felix Blankenburg1,2

Sequential decision problems distill important challenges frequently faced by humans. Through 
repeated interactions with an uncertain world, unknown statistics need to be learned while balancing 
exploration and exploitation. Reinforcement learning is a prominent method for modeling such 
behaviour, with a prevalent application being the two‑step task. However, recent studies indicate that 
the standard reinforcement learning model sometimes describes features of human task behaviour 
inaccurately and incompletely. We investigated whether active inference, a framework proposing a 
trade‑off to the exploration‑exploitation dilemma, could better describe human behaviour. Therefore, 
we re‑analysed four publicly available datasets of the two‑step task, performed Bayesian model 
selection, and compared behavioural model predictions. Two datasets, which revealed more model‑
based inference and behaviour indicative of directed exploration, were better described by active 
inference, while the models scored similarly for the remaining datasets. Learning using probability 
distributions appears to contribute to the improved model fits. Further, approximately half of all 
participants showed sensitivity to information gain as formulated under active inference, although 
behavioural exploration effects were not fully captured. These results contribute to the empirical 
validation of active inference as a model of human behaviour and the study of alternative models for 
the influential two‑step task.

Sequential decision problems capture an important essence of the challenges regularly encountered by humans. 
Although the environmental structure and statistics often cannot be observed directly, they may be inferred 
through repeated interactions. Especially in case of a dynamically changing environment, a host of strategies have 
been proposed to underlie human decision making. Reinforcement learning is eminently cast as pursuing the 
long-term maximization of scalar  reward1. This approach can either be model-free or model-based. A model-free 
approach states that action-selection proceeds based on the extent to which an action has been reinforced in the 
past. However, such a strategy ignores available knowledge about the environmental structure and is difficult to 
reconcile with goal-directed actions, consequently failing to capture important aspects of human  behaviour2. 
In contrast, a model-based strategy is able to exploit structural knowledge in pursuit of goals and is therefore 
capable of predicting action outcomes.

The two-step task provides a prominent example of the application of reinforcement learning to the study of 
human decision-making3. The task requires the sequential traversal of two stages via binary action selection to 
accumulate rewards or avoid punishment. Specifically, the task was designed to disambiguate between model-free 
and model-based strategies. Model-based inference uses the probabilistic transition between the stages to steer 
itself towards lucrative states, while a model-free approach foregoes such transition-based planning and instead 
only relies on observed stimulus-action mapping. The two-step task has been highly influential and has seen 
widespread adoption, including the study of pathology such as obsessive-compulsive  disorder4 and gambling 
 disorder5. This research has generally used the hybrid reinforcement learning model as introduced by Daw et al.3, 
which combines independent model-free and model-based strategies. However, it has been shown that not all 
aspects of human behaviour on the two-step task are captured by this commonly-used reinforcement learning 
 model6. Furthermore, it has been argued that the hybrid model may mischaracterise model-free behaviour as 
model-based7, or vice  versa6,8.

Sequential decision problems additionally invoke the exploration-exploitation trade-off. Do we choose an 
option that is well-understood and known to be rewarding? Or should we risk foregoing this immediate reward so 
as to learn more about alternatives and in doing so potentially find an even more rewarding option? This conflict 
has been a prominent area of research in  psychology9,  neuroscience10,11, and computer  science1,12. Exploration 
behaviour can result from stochasticity in action selection, randomizing choice rather than deterministically 
choosing the most rewarding action (random exploration). Additionally, action-values may not be purely reward-
based but can receive an additional information bonus, biasing actions toward uncertain options (directed 
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exploration). Directed exploration therefore describes an intentional process to minimize information discrep-
ancies between options, which has so far only been observed in a subset of studies on human  behaviour11,13–15. 
It has been a particularly powerful descriptor of behaviour in the domain of visual sensing, in which efficient 
exploration is likely the primary  goal16–18. However, as directed exploration is not part of the hybrid reinforce-
ment learning model, its potential role in the two-step task has not received much attention. Given that the 
two-step task features outcome-probabilities that drift over time, a model-based approach may benefit from an 
information gathering mechanism to promote exploration and discover rewarding actions. This begs the ques-
tion whether further variance in behavioural data may be explained by modeling directed exploration dynamics.

Active inference has been proposed in neuroscience as a framework for describing the exploration-exploita-
tion trade-off19. Derived from the free energy  principle20, active inference leverages the concept of a generative 
model that is iteratively optimized and allows for planning and decision  making21. By taking a probabilistic infer-
ence approach, it is closely related to the Bayesian-brain  hypothesis22,23. Action selection is cast as a minimization 
of expected free energy, which combines terms for both the realization of an agent’s preferences and exploration. 
Under active inference, exploration results from seeking information gain, for which the generative model is 
used to infer the degree to which actions and their resulting observations may change belief distributions. Such 
a choice bias promotes directed exploration until the agent gains confidence in its understanding of its environ-
ment. At that point, further observations have a diminished impact on beliefs and the realization of preferences 
becomes a more dominant determinant of behaviour.

Active inference has a body of theoretical  work24,25 and has been studied in-silico26–28. However, empirical 
validation based on human-behaviour has only recently started to emerge. For example, active inference was 
used to characterise atypical choice behaviour in individuals with substance use  disorder29,30 and various other 
 psychopathology31,32. Furthermore, model parameters fitted to human behaviour have been shown to correlate 
across  time33 and to potentially hold predictive power of future  symptomatology30. Congruent with active infer-
ence predictions, human choice behaviour has also been shown to not merely be a function of reward or utility, 
but also entropy  maximization34,35. Nevertheless, it is unclear whether a central feature of the framework, namely 
its proposed resolution to the exploration-exploitation dilemma, is able to capture human behaviour better than 
existing models in a variety of task settings. This is an important aspect of the framework, given that without the 
information-gain incentive, especially on simpler tasks, active inference can reduce to generate highly similar 
behaviour as a purely reward-maximizing reinforcement learning agent.

In the current study, we leverage the widely studied two-step task to investigate the suitability of active 
inference as a description of human choice behaviour. To this end, we use four publicly available datasets. We 
compare the behavioural predictions of active inference to those of the hybrid reinforcement learning model 
and perform Bayesian model selection analyses. By doing so, we contribute to the emerging, empirical study of 
active inference as well as investigate an alternative model for behaviour on the two-step task.

Methods
Participants and behavioural task. We studied human behavioural data in the two-step task originally 
designed by Daw et al.3. In this paradigm, participants first choose from two available initial-stage actions, each 
of which is uniquely associated with a likely (p = 0.7) and unlikely (p = 0.3) state transition to one of two final-
stage states. There, another decision needs to be made between two final-stage actions, which yields a binary 
outcome. The outcome probability for each second-stage action follows an independent Gaussian random walk 
(Fig. 1).

The two-step task was initially designed to disambiguate between model-free and model-based strategies. A 
pure model-free strategy solely relies on learning from observed stimulus-action mapping. In contrast, model-
based reasoning may use the known latent structure of transitions between initial-stage actions and final-stage 
states. The two-step task allows for the distinction between these two strategies by means of model comparison 
as well as analyses of averaged responses. The latter relies on the insight that model-free inference will lead to 
a greater probability to repeat an initial-stage action if it lead to the preferred outcome on the previous trial, 
independent of transition type. Model-based inference, in contrast, exploits the knowledge of state transitions 
and tends to repeat this initial-stage action only following a common transition. In case of a rare transition, the 
agent becomes more likely to switch to the other initial-stage action so as to increase its probability to access the 
promising, final-stage action.

The data was obtained from four publicly available datasets. These datasets were selected due to their similar 
task structure. First, 197 subjects participated in the online ’Daw two-step task’ by Kool et al.36. Two further 
datasets were made available by da Silva and  Hare6. These “Magic Carpet” (n = 24) and “Spaceship” (n = 21) 
experiments focused on providing intuitive and thorough instructions regarding all aspects of the task. Finally, 
the “Shock” dataset by Lockwood et al.37 consists of 36 participants and differs from the aforementioned three 
experiments by using future electric shocks (or their absence) as the binary outcome rather than a monetary 
reward (or its absence). In addition, this study features two conditions in which participants are told the electric 
shocks will either be delivered to themselves (’self ’ condition) or another, anonymous participant (’other’ condi-
tion). Finally, it used different parameters for the Gaussian random walk ( µ = 0 , σ = 0.2 , reflecting boundaries 
at [0, 1]) than the other datasets ( µ = 0 , σ = 0.025 , reflecting boundaries at [0.25, 0.75]). All participants were 
explicitly told about the task structure and received training on the task prior to data-collection. Please refer to 
the original manuscripts for full experimental descriptions.

Logistic regression analyses. Miller et al.38 introduced and verified a logistic regression analysis of ini-
tial-stage choice behaviour based on behaviour, transitions, and outcomes on multiple preceding trials in the 
two-step task. The method thereby allows for insight into how the local history of these factors influences deci-
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sion making without relying on a computational model. Here we adopt this analysis to describe behaviour across 
datasets and to validate model predictions of behaviour. The analysis was shown to alleviate issues of the original 
regression analyses introduced by Daw et al.3,38, which only considered the previous trial, by providing more 
accurate descriptions of behaviour and being less sensitive to learning rates. da Silva and  Hare6 used a variation 
of this method to describe aspects of behaviour that are not visible in case only the previous trial is considered 
and showed the shortcoming of the hybrid reinforcement learning model in capturing this behaviour. Specifi-
cally, da Silva and  Hare6 model the final-stage outcome in trial t as ot = +1 for positive outcomes (monetary 
rewards or absence of shocks) and ot = −1 otherwise (shocks or absence of monetary rewards), while transi-
tions are coded as τt = +1 for common transitions and τt = −1 for rare transitions. The dependent variable y is 
the initial-stage action (i.e., which of the two stimuli was chosen) on trial t ′ , coded as −1 and +1. Then, for each 
trial t of the T = 4 preceding trials, xt denotes the initial-stage choice made on that trial. This yields the follow-
ing regression model:

where the β-coefficients indicate the influence of variables in trial t ′ − t on the initial-stage choice in trial t ′ : βt′−t
0  

quantifies the influence of the initial-stage choice, βt′−t
o  quantifies the effect of observation, βt′−t

τ  quantifies the 
effect of transition, and βt′−t

o×τ  quantifies the interaction between observation and interaction. The model was fit for 
each participant separately using Scikit-learn39. To apply the analysis to the computational models and mitigate 
the randomness of choice selection, each participant’s maximum likelihood parameters were used to simulate 
model behaviour 20 times. The resulting regression coefficients were averaged across iterations.

Computational modeling. In order to investigate the role of directed exploration on the two-step task, 
two families of models were implemented. A description of transition probability learning is followed by the 
common reinforcement learning approach and by a probabilistic framework implementing active inference with 
information-gain incentives. Parameters of both models are fit to participant behaviour and relative model per-
formance is analysed via Bayesian model comparison. The initial-stage had only one state sA (green in Fig. 1), 
while the final-stage had two possible states: sB and sC (pink and blue in Fig. 1). Each state had two actions, 
denoted aA and aB . On trial t, the initial-stage state is denoted by s1,t and the final-stage state s2,t , and similarly 
actions by a1,t in the initial-stage and a2,t in the final-stage. Outcomes ot refer to the binary, final-stage observa-
tions, consisting of the absence or presence of a monetary reward or a future electric shock depending on the 
dataset. As these only occur in the final-stage, they are always zero in the initial-stage.

Transition learning. The transition structure p(s2,t |s1,t , a1,t) specifies how the two available initial-stage actions 
may transition the agent from s1,t to s2,t . As each dataset included a familiarization and training phase prior 
to the start of the experiment, participants were aware that the transition probabilities of initial-stage actions 
were mirrored and could either be p(sB|sA, aA) = p(sC |sA, aB) = 0.7 or p(sB|sA, aA) = p(sC |sA, aB) = 0.3 (with 
p(sB|sA, aA) = 1− p(sC |sA, aA) and p(sB|sA, aB) = 1− p(sC |sA, aB) ). Consequently, which initial-stage action 
commonly led to which final-stage state was unknown at the start of the task and thus had to be inferred. Here, 
we model this transition learning similar to previous studies, by having agents count transitions and on each 
trial choose the most likely transition structure based on the observed frequencies. The three options included 

(1)log

(
p(yt = +1)

p(yt = −1)

)
=

T∑

t=1

βt′−t
0 xt′−t + βt′−t

o ot′−txt′−t + βt′−t
τ τt′−txt′−t + βt′−t

o×τ ot′−tτt′−txt′−t

Figure 1.  A graphical abstraction of the two-step task. Each trial always starts in the same (here, green) initial 
state sA where participants choose between two green options. Each option is associated with a common and 
rare transition to one of two final-stage states. The green option aA here has a 0.7 probability to move the 
participant to the pink sB final state (common transition), and a 0.3 probability to transition to the blue sC 
final stage (rare transition). The transition probabilities for the green option aB are the opposite of those of aA . 
Both final-stage states have two further options to choose from (pink aA vs. aB and blue aA vs. aB ), which are 
associated with a binary outcome probability, each drifting independently over time The exact stimuli vary 
between studies.
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the two possible true structures described above as well as flat (p = 0.5) transition  probabilities3,6,36. This simple 
strategy settles on the correct solution after only a few trials and allows for the use of identical transition learn-
ing between the active inference and model-based reinforcement learning models. More sophisticated methods 
would have a limited contribution as the correct solution is found quickly and does not change across the experi-
ment. As the identity of the states could be directly observed in all studies, the agents also have access to this 
information without the need for inference.

Hybrid reinforcement learning. The hybrid reinforcement learning model combines the action evaluations of 
model-free and model-based algorithms. The model was introduced by Daw et  al.3, who used it to quantify 
the relative contributions of these two strategies to behaviour. Both strategies map state-action pairs to their 
expected discounted future return, captured by Q(s, a). The model-free strategy corresponds to the State-action-
reward-state-action (SARSA(� ))  algorithm40, which updates the value of state-action pairs s, a at stage p = {1, 2} 
as follows:

where δ is the outcome prediction error, α ( α1 or α2 depending on the stage) is the learning rate, and � is the eli-
gibility parameter, modulating the effect of the final-stage prediction error on the values of initial-stage actions. 
Due to there not being an outcome on the initial-stage, the prediction error for this stage depends on the value 
of the selected final-stage action. The final-stage prediction error depends on the outcome ot and thus the  
Q− values for both stages are updated at the final stage, using the following errors:

The model-based algorithm differs from the model-free approach by using knowledge about the transitions 
between initial-stage actions and final-stage states. Final-stage actions are evaluated directly from prediction 
errors as in model-free learning, however, the value of each initial-stage action aj depends on its probabilistic 
mapping to final-stage states (and thereby to final-stage actions).

where AB and AC are the sets of available actions in the respective final-stage states ( sB and sC respectively).
The Q-values of the model-free and model-based algorithms are combined according to the weighting para 

meter w:

Note that there is no need to weigh model-free and model-based estimates for final-stage choices as the algo-
rithms do not differ there. Furthermore, the hybrid model includes pure model-free and model-based inference 
as special cases for w = 0 and w = 1 , respectively. Next, an action is selected using a softmax operator:

where ρ is a commonly included parameter modeling initial-stage response stickiness and rep(a′) is 1 if a is the 
initial-stage action that was chosen in the last trial and 0  otherwise36, and β is the inverse temperature parameter 
that controls the randomness of the action selection. Separate β1 and β2 parameters are fitted for each stage to 
allow for different levels of choice randomness.

Active inference. Active inference agents rely on a generative model of the task. The estimated transition prob-
abilities (denoted by θ1 ) and outcome probabilities ( θ2 ; please see below) are together denoted as θ , with the 
generative model taking the following form:

In the current study we focus on information-gain incentives of final-stage outcome probabilities θ2 and omit 
state inference incentives from active inference due to the static transition probabilities θ1 and observable state 
identity. Note that if it is assumed for participants following training to be aware that the transition structure is 
one of two mirrored options (p = [0.3 0.7] or p = [0.7 0.3]), then both initial-stage actions provide equal amounts 
of information about transition probabilities. As a result, action-selection will only be sensitive to information 
discrepancies about outcome probabilities.

Under active inference, agents resolve the exploration-exploitation dilemma by basing action selection on 
a single expression. Actions are more probable to be selected if they minimise expected surprise about future 
 observations21, that is, if they minimise expected free energy. This quantity can be expressed in variety of ways, 
with an intuitive decomposition featuring extrinsic and intrinsic value  terms21:

(2)QMF(s, a) = QMF(s, a)+ αpδp,t�p,t(s, a)

(3)δp,t = ot + QMF

(
sp+1,t , ap+1,t

)
− QMF(sp,t , ap,t)

(4)δ1,t = QMF(s2,t , a2,t)− QMF(s1,t , a1,t)

(5)δ2,t = ot − QMF(s2,t , a2,t)

(6)QMB(sA, aj) = p(sB|sA, aj) max
a2∈AB

QMF(sB, a2)+ p(sC |sA, aj) max
a2∈AC

QMF(sC , a2)

(7)Qnet(sA, aj) = wQMB(sA, aj)+ (1− w)QMF(sA, aj)

(8)p(ap,t = a|sp,t) =
exp(βpQnet(sp,t , a)+ ρ × rep(a))∑
a′ exp(βpQnet(sp,t , a′)+ ρ × rep(a′))

(9)p(ot , s2,t |s1,t , θ) = p(ot |s2,t , θ)p(s2,t |s1,t , θ)p(θ)
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where p(ot |C) denote the prior preferences over outcomes and DKL is the Kullback-Leibler divergence, here 
between beliefs πt(θ2) about final-stage outcome probabilities θ2 before (prior) and after (posterior) hypotheti-
cally observing an outcome resulting from action selection. p(ot;πt(θ2)|a) can be understood as the distribution 
obtained from p(ot |θ2, a)πt(θ2) once θ2 has been marginalised out, noting that πt(θ2|a) = πt(θ2) by construction. 
For a given action, the extrinsic value term is a measure of how likely prior preferences are to be attained, while 
the intrinsic value term quantifies the expected information gain. The formulation above suffices for final-stage 
action selection, however, for the initial-stage the action-dependent state transitions need to be accounted for. 
As state inference was not included, this leads to the simplified setting wherein both prior preference realization 
and information-gain is limited to the final-stage actions. For a multi-step policy, we formulate the computation 
of the expected free energy for an initial-stage action aj . G(aj) depends on the probabilistic mapping of the action 
to final-stage states s2 and, by extension, the final-stage actions that are available in these states. Specifically, the 
estimated action-specific transition probabilities are multiplied by the expected free energy of the associated 
final-stage actions:

where AB and AC are the sets of available actions in the corresponding final-stage states ( sB and sC respectively).
The prior preferences capture the relative attractiveness of the different outcomes, with desired outcomes 

being assigned higher probabilities. Here we constrain the prior preferences regarding action outcomes to a 
Bernoulli distribution implying ot = 1 is preferred over ot = 0 following Marković et al.27:

The �-parameter specifies the precision of the prior preferences. For � = 0 (i.e., zero precision), the outcomes 
are valued equally and the agent will thus only maximize intrinsic value, corresponding to pure information gath-
ering about the outcome probabilities encoded by πt(θ2) . As � increases, the agent will value information-gain 
less and focus more on realizing prior preferences, thereby becoming increasingly risk-seeking. This precision 
parameter thus balances exploratory and exploitative behaviour.

Previous studies have modeled a tendency for participants to repeat initial-stage actions independent of the 
 outcome36. Such behaviour may be modelled under active inference as a habit, which we here assume to be static 
across the experiment for simplicity, again constrained to a Bernoulli distribution:

with precision parameter κ and Ea(a) always set to zero for final-stage actions. Action selection at stage p = {1, 2} 
may then proceed by applying a softmax operation ( σ ) to the expected free energies, together with the habitual 
bias:

with γp functioning as an inverse temperature parameter, controlling the stochasticity of action selection. As in 
the hybrid model, two separate γ parameters are fit to participant data, allowing for different levels of random-
ness in initial- and final-stage action selection.

Finally, previous studies on multi-armed bandit tasks have found evidence for a bias in prior outcome 
 probabilities41. To capture any such biases and their effects on action selection, the mean ( E[π0(θ2)] = α0

α0+β0
 ) 

of the prior Beta distribution is included as a free parameter in the model fitting procedure (please see below).
Next, we describe the learning rule of observations for the active inference models. This necessarily deviates 

from the hybrid reinforcement learning model as the aforementioned computations require probability distribu-
tions, rather than point estimates. Note that this only concerns the learning of final-stage outcome probabilities, 
as transition learning is shared across all models as detailed above. Liakoni et al.42 introduced surprise-based 
learning algorithms for changepoint paradigms that feature occasional resampling of the environmental statistics. 
We will briefly describe one such algorithm and subsequently modify it to better suit the current environment 
with drifting parameters.

For brevity, references to s and a have their subscripts dropped as they will generally refer to the final-stage. 
Wherever the initial-stage state or actions are concerned, these will be explicitly denoted by s1 and a1 . This process 
of observation emission corresponds to sampling from a Bernoulli distribution parameterized by an expectation 
θ2,a for each final-stage action, encoding the probability of observing ot = 0 or ot = 1 . A Bayesian agent requires 
a prior distribution over the estimated θ2 probabilities, for which conjugate Beta priors are appropriate:

In such a setting, Bayesian inference corresponds to the following simple update rules for the parameters of 
the Beta distributions:

(10)
Gt(a) = − Ep(ot ;πt (θ2)|at=a)

[
ln p(ot |C)

]
︸ ︷︷ ︸

Extrinsic Value

−Ep(ot ;πt (θ2)|at=a)[DKL(πt(θ2)|ot , at = a�πt(θ2))]︸ ︷︷ ︸
Intrinsic Value

(11)G(aj) = p(sB|sA, aj , θ1)
∑

a2∈AB

G(a2)+ p(sC |sA, aj , θ1)
∑

a2∈AC

G(a2)

(12)P(ot |C) =
1

Z(�)
eot�e−(1−ot )�.

(13)Ea(aj) =
1

Z(κ)
e
δat−1,aj κe

−(1−δat−1,aj )κ

(14)p(ap,t) = σ
[
−γpG(ap,t)+ Ea

]

(15)p(θ2) =

2∏

s=1

2∏

a=1

Be(αs,a,βs,a)
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with δ being the Kronecker delta, which is 1 if both variables are equal, and 0 otherwise. However, such updat-
ing will quickly lead to inflexible beliefs, making it unsuited for dynamic environments. Liakoni et al.42 propose 
an updating scheme based on the Bayes-factor surprise SBF≥ 0 , a ratio between the subjective probability of an 
observation under the current beliefs and prior beliefs. Together with a prior belief of the volatility of the envi-
ronment, ν∈ [0, 1] , this surprise quantity enables a simple learning rule that moves the current belief distribution 
over final-stage outcome probabilities πt(θ2) closer to the uninformed prior beliefs π0(θ2) (here: Be(α0,β0) ) based 
on the degree to which current observations are more likely under these prior parameters. This is achieved by 
scaling concentration parameters with a surprise-modulated adaptation rate χ∈ [0, 1] . The rate for the current 
trial χt may be computed as follows:

where m ≥ 0 depends on volatility v and modulates the effect of surprise on learning and p(ot;π(θ2)) refers to the 
subjective probability of observing ot under the belief π(θ2) , which is easily computed using the Beta-parameters 
α and β . Liakoni et al.42 continue to derive the following update rules for the Beta-distributions:

Effectively, surprising events shrink the concentration parameters of πt(θ2) towards those of π0(θ2) , caus-
ing previous observations to be forgotten and thereby increasing the effect current observations have on the 
belief distribution, enabling flexible learning. In the current drift paradigm we are not interested in weighing 
between a changepoint or continuation, but rather the degree to which the generative probability has diffused 
and is thereby incompatible with currently held beliefs. This discrepancy between beliefs and the world can be 
quantified by predictive surprise ( PS(ot)≥ 0 ), which has a significant relevance in behavioural and imaging 
 neuroscience43–46 as well as active  inference19. The influence of surprise on beliefs may then be mediated by a 
prior volatility parameter νPS∈ [0, 1]:

The update rules for the parameters corresponding to sampled actions then remain similar:

where l indicates a learning rate that may be fitted per participant and thus does not have to equate to 1. As 
probabilistic learning models are understudied in the context of the current paradigm, we also consider the 
possibility that beliefs decay independent of observations, akin to static forgetting. This may apply to beliefs of 
sampled actions, instead of or in addition to surprise-based learning, and unsampled actions, where it signals a 
gradual loss of confidence in beliefs about unexplored options, independently of PS(ot):

(16)αs,a = αs,a + δat ,aot

(17)βs,a = βs,a + δat ,a(1− ot)

(18)χt = χ(SBF ,m)

(19)χ(S,m) =
mS

1+mS

(20)
SBF =

p(ot;π0(θ2))

p(ot;πt(θ2))

m =
ν

1− ν

(21)p(ot;πt(θ2)) =

{
αs,a,t

αs,a,t+βs,a,t
if ot = 0

βs,a,t
αs,a,t+βs,a,t

if ot = 1

(22)αs,a,t = (1− χt)αs,a,t−1 + χtα0 + δat ,aot

(23)βs,a,t = (1− χt)βs,a,t−1 + χtβ0 + δat ,a(1− ot)

(24)χt = χ(PS,m)

(25)χ(S,m) =
mS

1+mS

(26)PS = − ln p(ot;πt(θ2))

(27)m =
νPS

1− νPS

(28)αs,a,t = (1− χt)αs,a,t−1 + δat ,aot l

(29)βs,a,t = (1− χt)βs,a,t−1 + δat ,a(1− ot)l
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where ν indicates a prior volatility parameter, with separate parameters ν = {νSD , νUD} for sampled and unsam-
pled actions respectively. Here, beliefs are assumed to decay back to the prior distributions over time rather than 
shrinking to zero, as very small concentration parameters may lead to computational instability.

We formulate variations of the learning model that allow for surprise-based learning, static forgetting imple-
mented as decay of concentration parameters, or both (Fig. 2). The rates of these mechanisms are governed by 
free volatility parameters. The resulting model-based hypotheses may be compared via model-comparison. Many 
further model variants may be hypothesized, including the possibility of ’shared’ parameters between forgetting 
and surprise-learning. We limit the analysis to a smaller amount of models for two reasons. First, the binary 
reward structure of the task was deemed likely to provide insufficiently detailed behavioural data to dissociate 
large numbers of highly similar models. Second, the current work aims to understand the explanatory power 
of active inference in the two-step task, rather than an exhaustive study of underlying learning dynamics. A 
comparison between potential key features of learning (decay and surprise-based learning) was performed to 
approximate an adequate level of flexibility to enable inference on the action-selection level. Hereby we intend 
to ameliorate the impact of potential complex interactions between learning dynamics and action-selection on 
model fitting.

Model fitting and model comparison. In order to fit the free parameters of the computational models to the 
participant choice data we used a constrained minimization algorithm (’L-BFGS-B’ as implemented in  Scipy47). 
To mediate the problem of local optima, the optimization was ran 25 times for each participant with different 
(uniformly) randomized initializations for all parameters. The iteration that yielded the highest log likelihood 
was used for the model comparison procedures.

Fixed-effects model comparisons were performed using the Akaike’s Information Critria (AIC) and Bayesian 
Information Criteria (BIC).

with k being the number of free parameters in the model, n the amount of trials, and L̂ denoting the maximized 
value of the subject- and model-specific log likelihood function. These approximations of log model evidence 
were then subjected to random-effects Bayesian model selection as implemented in SPM ( spm_BMS.m ; Wellcome 
Trust Centre for Neuroimaging, Institute for Neurology, University College London, London, UK). This algorithm 
yields model-specific exceedance probabilities, representing the probability that the model has a higher frequency 
than the other included models on the group-level. The method additionally provides protected exceedance 
probabilities, which are more conservative by accounting for the possibility that apparent differences in model 
frequencies arise due to  chance48. Models that share certain characteristics may be grouped into ’families’, and 
the subsequent comparison of families rather than individual models allows for inference on the contribution 
of these characteristics to the model  fit49. This analysis is implemented in SPM’s spm_compare_families.m , for 
which we set priors to be equal across families rather than models (“F-unity” priors). As protected exceedance 
probabilities are not available for family-level inference, we present exceedance probabilities for these analyses.

To investigate the strengths and shortcomings of models in their ability to describe participant data, the 
models were used to simulate behaviour on the two-step task. The subject-specific parameters that maximized 
the log likelihood, as described above, were used to simulate action selection on the two-step task for 20 inde-
pendent runs. Identical logistic regression analyses were then applied to this synthetic choice data, of which the 
resulting beta-coefficients allow for a comparison to the participant-derived coefficients. For �-parameter reli-
ability analyses, these synthethic datasets were subsequently subjected to the parameter-fitting procedure. The 
recovered �-parameters were then compared with the parameter values fitted to the subject’s actual choice data.

(30)αs,a,t = (1− ν)αs,a,t−1 + να0

(31)βs,a,t = (1− ν)βs,a,t−1 + νβ0

(32)BIC := k ln(n)− 2 ln(L̂)

(33)AIC := 2k − 2 ln(L̂)

Figure 2.  Graphic summary of learning models. Four variants of the learning model are compared, 
differentiated by their forgetting kinetics with associated prior volatility parameters ν . The NUD and NSD 
models omit decay of concentration parameters of beliefs for unsampled and sampled actions respectively 
(corresponding to νUD = 0 and νSD = 0 ), while the NPS model excludes surprise-based learning ( νPS = 0 ). The 
more complex Full model incorporates all three learning dynamics.
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Results
Logistic regression analyses. By inspecting the regression coefficients resulting from the logistic regres-
sion analyses, considerable differences in participant behaviour were observed across the datasets (Fig. 3). Most 
notably, behaviour in the Magic Carpet and Spaceship paradigms showed a greater outcome-transition interac-
tion, a proxy of model-based inference. They additionally showed larger main effects of transition: small positive 
coefficients for the previous trial, with larger negative coefficients for behaviour two and three trials back. This 
indicates that common transitions lead participants to actively switch to the other initial-stage action independ-
ent of trial outcomes, potentially indicating information-seeking  behaviour6. These effects were largely absent in 
the remaining datasets. Main effects of outcome were relatively small in the Magic Carpet and Spaceship tasks, 
while the intercept terms were comparable across all included datasets.

Comparing hybrid reinforcement learning and active inference. The hybrid reinforcement learn-
ing (Hybrid-RL) model and the active inference model were compared in their ability to explain participant 
choice data via Bayesian model selection. To do so independently of the variations of the probabilistic learning 
model displayed in Fig. 2, these were clustered into a family and compared against a family containing only the 
Hybrid-RL model. The active inference family was found to describe single-trial participant behaviour better 
for the Magic Carpet and Spaceship datasets (both exceedance probabilities φ > 0.99 ), with consistent results 
between AIC (expected posterior probabilities of �rAI � = [0.86, 0.89] respectively) and BIC ( �rAI � = [0.82, 0.87] 
respectively) (Fig. 4A,C). For the other datasets, the metrics did not agree on the best performing family. Using 
AIC, the Online and Shock datasets slightly favoured Hybrid-RL ( �rRL� = [0.57, 0.50, 0.59] ), while the active 
inference family scored better using BIC ( �rAI � = [0.68, 0.66, 0.65]).

The different learning models were subsequently compared against one another (Fig. 4B,D). In multiple 
cases, there was ambiguity about the best scoring model. For the Magic Carpet and Spaceship datasets, only 
AIC provided strong evidence for a model: the “Full”-variant with both belief decay and surprise-based learn-
ing (protected exceedance probabilities φ̃ = [0.98, 0.98] respectively). Using BIC, model scores were distributed 
across the Full, NSD, and NPS model variants. For the Online and Shock datasets, the simpler ’NSD’-model which 
omits decay of concentration parameters for the sampled action tended to score highest. However, this was only 
clearly the case for the Online dataset, with φ̃ > 0.99 using both AIC and BIC. Expected posterior probabilities 
were quite widely distributed over the Full, NSD, and NPS variants. This was also found for the Shock dataset, 
indicating that the best fitting learning model differed across subjects. As the Online dataset contained more 
subjects, exceedance probabilities were still high due to greater confidence a majority of subjects used the NSD 
variant. The NUD variant, omitting decay of concentration parameters of unsampled actions, scored poorly 
across all datasets and metrics. This indicates the importance for a decay of concentration parameters of beliefs 
about unsampled actions, likely to appropriately capture the behavioural flexibility observed in participants. 
Overall, a dissociation between learning models was incomplete.

Simulation analysis. To gain insight into the extent to which the models capture participant behaviour, we 
simulated model behaviour on the two-step task. The maximum likelihood parameter estimates were used and 
the resulting synthetic datasets were submitted to the logistic regression analyses (Fig. 5A). The Full model was 
used for the Magic Carpet and Spaceship datasets, while the NSD variant was chosen for the Online and Shock 

Figure 3.  Logistic regression analyses. Regression analysis of first-stage actions based on the previous four 
trials. (A) Regression coefficients for the intercept, main effects of outcome and transition, and outcome-
transition interaction only on the preceding trial across the different datasets. (B–F) Each subplot shows the 
coefficients for one dataset on all four preceding trials.
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datasets. On the Magic Carpet and Spaceship datasets, the active inference model appears to better capture the 
strong interaction between outcome and transition type, while it is underestimated by the Hybrid-RL model. 
The active inference model displays minor main effects of transition, although not to the extent that they are pre-
sent in the participant data, while being absent in the Hybrid-RL model. For the Online and Shock datasets, the 
smaller interaction terms and close-to-zero interaction terms are reproduced by both models. The main-effects 
of outcome are reproduced by the Hybrid-RL model, but not by active inference.

Correlation analyses. To follow up on the differences between the model families, we inspected potential 
contributions to differences in model fit. Specifically, as regression analyses suggest that behavioural datasets 
which are better explained by active inference show both greater model-based inference as well as potential 
directed exploration, we investigated which of these correlated with relative model fit. We additionally compute 
correlations between the �-parameter and the main-effects of transition to understand whether this averaged-
based metric indeed tends to be greater for subjects sensitive to information-gain as identified by a low �-param-
eter.

The correlation analyses between single-subject relative model fits and the interaction term between out-
come and transition type (as a proxy for model-based inference) were positive and larger for the Magic Carpet 
(Pearson’s r = 0.71 , p < 0.001 ) and the Spaceship ( r = 0.63 , p = 0.002 ) datasets (Table 1). For the Online and 
Shock (Other, Self) datasets, correlation coefficients were lower ( r = [0.19, 0.18, 0.08] , p = [0.009, 0.29, 0.63] 
respectively). As the �-parameter was not normally distributed, we adopt two common approaches. First, we 
offset the data such that the lowest value was 1, allowing for a log-transformation of the data and computing 
Pearson’s r ( rp ). Second, we used the data without transformation to compute the non-parametric, rank-based 
correlation measure Spearman’s r ( rs ). Repeating the aforementioned analyses for the �-parameter and relative 
model fit, a similar contrast between datasets appeared. Modest correlations were observed in the Magic Car-
pet ( rp = −0.35, p = 0.09 , rs = −0.14, p = 0.51 ) and Spaceship ( rp = −0.45, p = 0.04 , rs = −0.40, p = 0.07 ) 
datasets. Meanwhile, the correlations were smaller for the Online and Shock datasets ( rp = [0.10, 0.18, 0.08] , 
p = [0.16, 0.29, 0.66] and rs = [0.09, 0.11,−0.10] , p = [0.26, 0.53, 0.56] , respectively). The correlations between the 
�-parameter and the transition-coefficients were again somewhat larger for the Magic Carpet ( rp = 0.29, p = 0.16 , 
rs = 0.26, p = 0.23 ) and Spaceship ( rp = 0.55, p = 0.01 , rs = 0.34, p = 0.13 ) tasks, compared to the Online and 
Shock datasets ( rp = [0.14,−0.08,−0.07] , p = [0.06, 0.63, 0.70] and rs = [0.09, 0.07,−0.17] , p = [0.23, 0.70, 0.33] , 
respectively).

Figure 4.  Bayesian model comparison. (A,C) Expected posterior probabilities resulting from the Bayesian 
Model Comparison between the RLf  family containing the hybrid-reinforcement learning model and the AIf  
family, containing the active inference models with varying learning dynamics (see Fig. 2) using AIC (A) and 
BIC (C). φ indicates the exceedance probability in favour of the best-scoring family. (B,D) Expected posterior 
probabilities for the different learning models contained within the AIf  family. φ̃  indicates the protected 
exceedance probability of the best-scoring model.
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Evidence for directed exploration. Next, the role of the �-parameter was further investigated. The distri-
bution of parameter values resulting from the maximum-likelihood procedure is displayed in Fig. 5C. In every 
dataset, a bimodal distribution was found, with a majority of participants having a �-parameter of smaller than 
one or close to the upper bound of ten (Fig. 5C). To analyse the effect of the �-parameter on the main-effect of 
transition in the regression analysis directly, participants were stratified into two groups: a low � group ( � < 1.5 ) 
and a high � group ( � > 1.5 ). The associated model parameters were subsequently used to simulate group-
specific behaviour on the two-step task. The low � group displayed moderately stronger transition effects than 
the high � group (Fig. 5B). Nevertheless, even this low � group did not exhibit transition effects to the extent that 
these were observed in behavioural participant data.

In an exploratory analysis, we compared whether task performance in terms of average obtained 
reward differed between the low and high � groups. A Welch’s t-test was used due to unequal 

Figure 5.  Simulation analyses. (A) The Hybrid-RL (Left) and active inference (Right) models were used to 
simulate behaviour on the two-step task using the maximum-likelihood parameters for each participant. The 
resulting data were subjected to the same logistic regression analyses as the participant data of Fig. 3. (B) Data 
was simulated for participants with low (Left) and high (Right) values of � separately. The coefficients resulting 
from the logistic regression are plotted per group. (C) The recovered values of the �-parameter per dataset, 
displaying highly bimodal distributions. (D) A comparison of true but unknown �-parameter values and the 
recovered values. Each datapoint depicts one participant.
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variances and sample sizes for some datasets. The high � group obtained slightly more reward on most data-
sets ([+ 11.9%, + 4.0%, + 1.3%, − 0.5%, + 3.3%] for the Magic Carpet, Spaceship, Online, Shock (Self ) 
and Shock (Other) datasets respectively), with uncorrected p < 0.05 for the Magic Carpet dataset 
( t(p) = [−2.28(0.03),−0.49(0.47),−1.04(0.29), 0.12(0.91),−0.94(0.35)]).

Finally, we verified that the �-parameter could be accurately recovered given the constellation of model 
parameters as identified in the participant sample. Synthetic choice data was repeatedly generated using the 
set of parameters of every subject, which subsequently underwent parameter fitting. The results of this recov-
ery analysis for the �-parameter is displayed in Fig. 5D. Correlations between true and recovered parameter 
values were high for both the Magic Carpet ( rp = 0.85, p < 0.0001, rs = 0.90, p < 0.0001 ) and Spaceship tasks 
( rp = 0.74, p = 0.0001, rs = 0.60, p = 0.004 ). Parameter values were often recovered accurately for low values 
of � , although especially in the Spaceship dataset this was not successful for all participants. Many of the high �
-parameter values were underestimated, which likely stems from increases in � having diminished effects. As � 
increases past values of approximately 3, the expected free energy is already heavily biased towards preference 
maximization. For example, due to the linear scaling an increase in � from 0.1 to 0.5 is comparable in size to 
an increase from 2 to 10. The large upper bound on � of 10 was to ensure a pure preference-realization strategy 
could be captured by the model-fitting procedure and not due to the idea that variations in large � values would 
meaningfully change behaviour. Overall, for most participants, the �-parameter could be recovered successfully, 
although with considerably noise and inaccuracy for multiple subjects.

Discussion
In this paper, we collected and analysed datasets of human participants performing the two-step task and com-
pared the explanatory power of the active inference framework to that of the standard hybrid reinforcement 
learning (Hybrid-RL) model. Logistic regression analyses revealed marked differences in initial-stage choice 
behaviour of participants between datasets, with two datasets exhibiting markedly greater model-based inference. 
Bayesian model comparison indicated that only these two datasets were significantly better described by active 
inference. The degree to which participants used model-based inference was found to strongly correlate with 
the relative performance of the models, while the exploration-exploitation parameter � showed only a small to 
moderate relationship. Model simulations indicated that the probabilistic learning underlying active inference 
likely contributed to the better model fits and that exploration behaviour of subjects was better captured by active 
inference, albeit only partially. This was the case even when analysing only those subjects who were classified as 
most strongly pursuing directed exploration.

The Magic Carpet and Spaceship datasets featured comparatively small effects of outcome yet stronger effects 
of both transition type and the interaction of outcome and transition type. This replicates the results reported 
by da Silva and  Hare6, suggesting a greater degree of model-based inference in these datasets compared to the 
Online and Shock tasks. The Shock  study37 provided thorough instructions to participants, as did the Online 
 study36. However, neither provided detailed explanations for all aspects of the task, such as transition type. da 
Silva and  Hare6 argued that providing intuitive reasons for task dynamics aided participants in adopting a more 
accurate model of the task. This is plausible as task knowledge is known to be able to influence the task  model50, 
with direct comparisons having been performed for the two-step task  specifically51. Although the current work 
does not aim to explain why behaviour differed between tasks, we recover a similar behavioural discrepancy.

By partitioning model space, we were able to compare the Hybrid-RL model to active inference independent 
of the specific learning model. The discrepancy between datasets also persisted on this level, as we showed strong 
evidence in favour of active inference for the Magic Carpet and Spaceship datasets, yet there was no consensus 
between AIC and BIC for the Shock and Online datasets. As BIC penalizes models for their complexity more 
than AIC does, a lack of consensus implies that the additional parameters in the active inference models did not 
sufficiently increase the fit of the model. As such, additional caution is warranted when inspecting the comparison 
of the individual active inference models for the Shock and Online datasets.

Overall, we were unable to convincingly dissociate between learning models, indicated by the lack of con-
sensus between metrics. Nevertheless, on the Magic Carpet and Spaceship tasks, the more complex, full model 
scored well using AIC, combining both decay and surprise-based learning for chosen actions. A trend was 
observed where a simpler model without decay of concentration parameters for sampled actions scored best for 

Table 1.  Correlation analyses. Correlation coefficients and uncorrected, associated p values. Due to � not 
being normally distributed, both Pearson’s r using log-transformed data (left) and Spearman’s r (right) using 
untransformed data are presented for its analyses. βt′−1

o×τ  : regression beta-coefficient for the interaction between 
outcome and transition type for the preceding trial, �L̂ : difference in values of maximized log likelihood 
function for the Hybrid-RL and best fitting active inference model, βt′−2,3

τ  : beta-coefficient encoding the main 
effect of transition type at the second and third previous trials. Significant values are in [bold].

Paradigm corr(βt
′−1
o×τ  , �L̂ ), (p) corr(� , �L̂ ), (p) corr(� , βt

′−2,3
τ  ), (p)

Magic Carpet 0.71 (< 0.001) − 0.35 (0.09)/− 0.14 (0.51) 0.29 (0.16)/0.26 (0.23)

Spaceship 0.63 (0.002) − 0.45 (0.04)/− 0.40 (0.07) 0.55 (0.01)/0.34 (0.13)

Online 0.19 (0.009) 0.10 (0.16)/0.09 (0.26) 0.14 (0.06)/0.09 (0.23)

Shock (Self) 0.18 (0.29) 0.18 (0.29)/0.11 (0.53) − 0.08 (0.63)/0.07 (0.70)

Shock (Other) 0.08 (0.63) 0.08 (0.66)/− 0.10 (0.56) − 0.07 (0.70)/− 0.17 (0.33)
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the Online and Shock datasets. This model only uses surprise-based learning to update beliefs about outcomes 
of chosen actions, although a model with only decay and without surprise-based learning scored similarly. These 
results suggest that learning dynamics are the result of only decay or surprise-based learning, but not both. The 
high protected exceedance probabilities but low posterior probabilities for the Online dataset likely result from 
the large amount of participants. This combination suggests a very high probability that a model without decay is 
most prevalent in the sample, yet behaviour of many participants is best described by other models. A consistent 
finding, however, is the very low scoring of the model without decay of beliefs about unsampled actions. This 
may highlight an important distinction between the learning rule based on probability distributions and the 
Hybrid-RL model. Using probabilistic learning, sampling an action increases the concentration parameters of 
a belief distribution, often equated to increases in  confidence52. In absence of a decay or forgetting mechanism, 
these higher concentration parameters impede flexible behaviour when an action is revisited at a later time and 
appears rewarding. Thus, the poor scores of this model imply the use of such a decay mechanism by participants 
in the Magic Carpet and Spaceship tasks. Due to the lower scoring of active inference in the remaining datasets, 
it could alternatively indicate that rather than using belief distributions, participant behaviour on the Online and 
Shock datasets is best described as learning point estimates (such as Q-values in reinforcement learning), which 
intrinsically allow for continued flexible behaviour. Nevertheless, forgetting mechanisms are commonplace in 
cognitive and  neuroscience46,53,54 and have been previously shown to improve model fits on the two-step  task55,56.

To gain insight into what drives the relative model scores, we simulated behaviour using the Hybrid-RL 
and best fitting active inference models. The strong positive interactions between outcome and transition type 
observed with the Magic Carpet and Spaceship tasks were reproduced by the active inference model, but not the 
Hybrid-RL model. This interaction has generally been interpreted to show model-based  inference3, but using 
the current analyses by Miller et al.38 shows the progression of this term over trials and thereby reveals further 
information about the learning dynamics. Besides the strength of the interaction, its relative and diminished 
influence on preceding trials shows the sensitivity of beliefs to the history of observed outcomes. As such, it is 
mainly interpreted as a reflection of underlying learning dynamics rather than a function of action selection. 
The ability to capture this interaction term accurately thus further shows promise for the role of probability 
distributions to model learning on the two-step task, displaying a better description of behaviour than the 
Q-value learning strategy of the Hybrid-RL model. This finding fits with the general idea underlying the Bayes-
ian brain  hypothesis23. However, this advantage does not extend to the Online and Shock datasets, as the weaker 
interaction-terms are reproduced by both models.

The main effects of outcome have been interpreted as a proxy of model-free  inference3. These effects, which 
are especially prevalent on the Online and Shock datasets, are not captured by the active inference model as 
the underlying learning rule we used is purely model-based. This discrepancy between human behaviour and 
active inference simulations likely contributes to the lower active inference scores on the model comparison 
analyses for these two datasets. Although active inference often receives a (generative) model-based treatment 
in the  literature21,57,58 and is therefore the focus of the current work, the framework is not incompatible with 
multi-system theories (such as the co-existence of separate model-free and model-based inference under the 
Hybrid-RL model). For example, active inference as implemented here could be used in conjunction with algo-
rithms more similar to the model-free part of the Hybrid-RL model, which may be implemented as a form of 
habitual  behaviour19. This could form the basis of interesting future extensions and may lead to a model better 
able to account for the distinct behaviour observed across datasets. Nevertheless, such an approach may only 
yield marginal improvements for the datasets investigated here. First, behaviour in the Online and Shock datasets 
does not reveal strong main effects of transition type and are thus unlikely to benefit from modelling directed 
exploration via expected free energy. Second, main effects of outcome are minor on the Magic Carpet and Space-
ship tasks, which are thus unlikely to feature significant model-free behavioural components. Taken together, the 
simulation analyses thus far appear to confirm the model comparison analyses which indicated only the Magic 
Carpet and Spaceship datasets to be better described by active inference.

A critical component of active inference is its formulation of the exploration-exploitation trade-off. The 
studies by da Silva and  Hare6 included post-hoc reports of subjects, which included descriptions of intentionally 
visiting a specific final-stage state multiple times, before actively aiming for the other state. These reports are 
congruent with the observed transition effects and the authors proposed this may indicate directed exploration 
behaviour. The main effects of transition type observed on the Magic Carpet and Spaceship datasets are con-
siderably weaker in the active inference simulations. For the active inference model to provide a behavioural 
description that is incompatible with a pure reward driven strategy, sufficient weight needs to be assigned to the 
information gathering term. This was found for approximately half of all subjects, suggesting that sensitivity to 
information gain was common. Although necessary, it is not a sufficient condition to produce significant effects 
of transition-type. For example, small learning rates, as well as small decay rates, diminish the effect of new 
observations on beliefs and thereby also decrease the information gain term of the expected free energy. Thus, 
noticeable transition-type effects also require observations to be able to significantly impact beliefs under cur-
rent model assumptions. By performing the simulation analyses for subjects assigned a low or high �-parameter 
separately, we show that this parameter does contribute to the main-effects of transition when using participant 
parameters, although the stratification of the datasets leads to small sample sizes. The correlation analyses sup-
port this, as participants with greater transition effects tend to be assigned lower � values. In addition, these 
lower parameter values appear associated with relatively better model fits for active inference. However, the 
correlations are small-to-moderate in strength and even the simulations for the low �-parameter group still do 
not fully capture the transition effects seen in the behavioural data. It is important to note that the two-step task 
was not specifically designed to disambiguate directed exploration strategies. Participants in the low � group did 
not obtain more reward, probably due to the little influence agents have on the obtained rewards as shown by 
Kool et al.36. Ultimately, as per the exploration-exploitation trade-off, exploration is only worthwhile if sacrificed 
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short-term reward can be recouped by utilizing obtained information via different action selection strategies. 
In sum, active inference as implemented here likely does not provide a full description of observed exploration 
behaviour, although surrogate tasks should be considered.

Alternative specifications for an information-bonus have been considered by previous research. Compared 
to computing the expected Kullback-Leibler divergence, simpler accounts include an ’all-or-nothing’ bonus, in 
which the least-explored option receives a fixed information  bonus59. Others have modelled directed exploration 
by scaling the information-bonus linearly by using a count of the number of times an option has been  selected15. 
More sophisticated strategies are time-horizon  dependent60, a further possible extension to the current active 
inference implementation already discussed in the  literature61. Another possibility altogether is the existence of 
distinct exploration and exploitation states, rather than a weighted trade-off that is computed on a single-trial 
 basis11.

An important issue for studying exploration is the coupling of reward and information. In many paradigms, 
including the two-step task, participants receive only outcome information about the selected action. To the 
extent that participants act to obtain rewards, more rewarding actions naturally tend to be sampled more often, 
thus correlating how much information participants have about an option and how rewarding it  is59. Research-
ers have attempted to manipulate the value of either strategy using ideas such as forced  sampling15 and periodic 
introductions of novel  options62. Additionally, Horvath et al.63 modeled a bandit-task using an approach similar 
to active inference, but withheld reward-information on a subset of trials. This allowed for a demonstration 
of human sensitivity to an information-bonus computed as the expected Kullback-Leibler divergence. As the 
two-step task was designed for the disambiguation of model-free and model-based inference, the resulting lack 
of decoupling between reward and information may have interfered with identifying a directed exploration 
strategy due to its correlation with a reward-maximization strategy. The level of noise in the parameter recovery 
supports this interpretation.

Some considerations of the current work deserve mention. First, due to interactions between learning and 
action selection processes, it is possible active inference would explain exploration behaviour better when com-
bined with a different learning algorithm than ours. This may be the case directly with respect to the employed 
learning rule, for example by using a hierarchical model that estimates environmental volatility. It could, however, 
also be a function of the (misconstrued) task model, on which directed exploration relies to predict informa-
tion gain. Secondly, the current study implements active inference by specifying expected free energy as the loss 
function for action selection. Over time, the scope of active inference in the literature has been extended to also 
include learning and inference schemes, often based on message-passing  implementations64. Although we focused 
on final-stage outcomes to stay close to the two-step task literature, the exploration of more expansive applications 
of the framework may be considered in the future, including potential information-gain incentives for inference 
about the transition structure. Future research might also extend its scope beyond directed exploration incen-
tives to explore dynamic habitual control via learned, rather than static, habits, which might allow for an active 
inference-based analogue to model-free inference. Moreover, the Hybrid-RL model learns point estimates and 
active inference uses probability distributions, preventing direct comparisons of action selection strategies on 
this task. This complicates the interpretation of relative model fits as these may result from differences in either 
learning or action selection. Nevertheless, we aimed to mediate this issue by using additional logistic regression 
analyses instead of relying only on model comparisons. Overall, the aim to investigate the applicability of active 
inference in describing data not specifically recorded for this purpose using diverse datasets did complicate 
drawing certain conclusions. As such, the heterogeneity of the datasets is difficult to fully account in part due 
to considerable differences in sample sizes. The analyses presented here should thus be regarded as a proof-of-
principle to steer future work testing the empirical validation of active inference.

To conclude, we replicated results by da Silva and  Hare6 and extended on behavioural discrepancies between 
datasets of the two-step task. Participants in the Magic Carpet and Spaceship datasets not only appeared to 
perform more model-based inference, but also showed more volatile learning dynamics and greater transi-
tion effects, which indicate the use of directed exploration strategies. These two datasets were better described 
by an active inference model than a Hybrid-RL model, while the models scored similarly for the Online and 
Shock datasets. For the Magic Carpet and Spaceship datasets, the use of a learning model based on probability 
distributions appeared to contribute to the better model fits and captured behaviour better than the Hybrid-RL 
model. For such a model, a decay mechanism for beliefs about unsampled options was found to be important. 
Model parameters indicated that approximately half of all subjects were sensitive to information gain of actions. 
However, active inference was only partly able to capture the observed transition effects, and thus likely did not 
provide a full account of exploration behaviour.

Data availability
The datasets analysed during the current study were previously made available by Kool et al.36 (github.com/wkool/
tradeoffs), Lockwood et al.37 (osf.io/3stp9/files), and da Silva and  Hare6 (github.com/carolfs/muddled_models).

Code availability
The modeling code used in this work is available at github.com/SamGijsen/AI2step.
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