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ABSTRACT: A cluster is a gathering of similar objects which can exhibit dissimilarity to the objects of other 

clusters. Clustering algorithms may be classified as: Exclusive, Overlapping, Hierarchical, and Probabilistic; 

and several algorithms have been formulated for classification and found useful in different areas of application. 

The K-means, Fuzzy C-means, Hierarchical clustering, and Mixture of Gaussians are the most prominent of 

them. Our interest on this work is on the web search engines. In this paper, we examined the fuzzy c-

means clustering algorithm in anticipation to improving upon its application area. On the Web, 

classification of page content is essential to focused crawling. Focused crawling supports the development of 

web directories, to topic-specific web link analysis, and to analysis of the topical structure of the Web. Web 

page classification can also help improve the quality of web search. Page classification is the process of 

assigning a page to one or more predefined category label. In all, the tendency for a web page to contain the 

qualities of two or more clusters could exist. Thus exclusive clustering would not be very useful in our case; so 

the need for overlapping clustering using Fuzzy C-means. It is worthy of note that the Fuzzy C-mean being an 

optimization problem, converges to a local minimum or a saddle point. The iteration in some cases becomes 

recurring. At such a point, one would assume the saddle point is reached and if the iteration is not terminated, 

the loop may continue to a stack-grab that may fault (increase running time, etc) the algorithm. In this work, we 

developed a modified fuzzy C-mean clustering algorithm with a sharp stopping condition which was tested on a 

demo data to ascertain its convergence and comparatively test its efficiency. Corel Q-pro optimizer was used on 

a timing macro. Our result(s) are quite interesting and challenging as they clearly show the presence of inter-

lapping documents along the spectrum of two different clusters. © JASEM 

 

http://dx.doi.org/10.4314/jasem.v17i4.11 

 

Clustering can be considered the most important 

unsupervised learning problem; so, as every other 

problem of this kind, it deals with finding a structure 

in a collection of unlabeled data. A loose definition 

of clustering could be “the process of organizing 

objects into groups whose members are similar in 

some way”. A cluster is therefore a collection of 

objects which are “similar” between them and are 

“dissimilar” to the objects belonging to other clusters. 

Figure 1 shows clustering as a kind of similarity 

measures 

 

 

 

Fig. 1: Clustering as a kind of Similarity measures 
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Source:  (Tariq, 2002). In this case, we easily 

identify the 4 clusters into which the data can be 

divided; the similarity criterion is distance: two or 

more objects belong to the same cluster if they are 

“close” according to a given distance (in this case 

geometrical distance). This is called distance-based 

clustering. Another kind of clustering is conceptual 

clustering: two or more objects belong to the same 

cluster if this one defines a concept common to all 

that objects. In other words, objects are grouped 

according to their fit to descriptive concepts, not 

according to simple similarity measures. Page 

classification also known as web page classification 

is the process of assigning a page to one or more 

predefined category label. The field is often posed 

as a supervised learning problem. In all, the 

tendency for a web page to contain the qualities of 

two or more clusters could exist. Thus exclusive 

clustering would not be very useful in our case; so 

the need for overlapping clustering using Fuzzy C-

means. In this work, a modified fuzzy C-mean 

clustering algorithm with a sharp stopping condition 

was introduced and tested on a demo data to 

ascertain its convergence and comparatively test its 

efficiency. Corel Q-pro optimizer was used on a 

timing macro. 

 

The Goals Of Clustering: The goal of clustering is to 

determine the intrinsic grouping in a set of unlabeled 

data. But how to decide what constitutes a good 

clustering? It can be shown that there is no absolute 

“best” criterion which would be independent of the 

final aim of the clustering. Consequently, it is the 

user which must supply this criterion, in such a way 

that the result of the clustering will suit their needs. 

For instance, we could be interested in finding 

representatives for homogeneous groups (data 

reduction), in finding “natural clusters” and describe 

their unknown properties (“natural” data types), in 

finding useful and suitable groupings (“useful” data 

classes) or in finding unusual data objects (outlier 

detection). 

 

 

Possible Applications 

Clustering algorithms can be applied in many fields, 

such as:  

Marketing: finding groups of customers with similar 

behavior given a large database of customer data 

containing their properties and past buying records; 

Biology: classification of plants and animals given 

their features; 

 

Libraries: book ordering; 

Insurance: identifying groups of motor insurance 

policy holders with a high average claim cost; 

identifying frauds; 

City-planning: identifying groups of houses 

according to their house type, value and geographical 

location; 

Earthquake studies: clustering observed earthquake 

epicenters to identify dangerous zones; 

WWW: document classification; clustering web 

log data to discover groups of similar access 

patterns. 

 

Requirements 

The fundamental requirements that a clustering 

algorithm should satisfy are:  scalability; 

dealing with different types of attributes; 

discovering clusters with arbitrary shape; 

minimal requirements for domain knowledge to 

determine input parameters; ability to deal with 

noise and outliers; insensitivity to order of input 

records; high dimensionality; interpretability 

and usability. 

 

Problems 
There are a number of problems with 

clustering; some of them are: current clustering 

techniques do not address all the requirements 

adequately (and concurrently); dealing with 

large number of dimensions and large number 

of data items can be problematic because of 

time complexity; the effectiveness of the 

method depends on the definition of “distance” 

(for distance-based clustering); if an obvious 

distance measure doesn’t exist we must 

“define” it, which is not always easy, especially 

in multi-dimensional spaces; 

The result of the clustering algorithm (that in many 

cases can be arbitrary itself) can be interpreted in 

different ways. 
 
 

Clustering Algorithms: Classification; Clustering 

algorithms may be classified as: Exclusive, 

Overlapping, Hierarchical, or Probabilistic. 

 

 

Exclusive Clustering: In Exclusive Clustering, the 

first case data are grouped in an exclusive way, so 

that if a certain datum belongs to a definite cluster 

then it could not be included in another cluster. 

Figure 2 shows a Bi-dimensional plane in exclusive 

clustering, where the separation of points is achieved 

by a straight line on a bi-dimensional plane. 
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Fig. 2: A Bi-dimensional plane in exclusive 

clustering 

Source:  (Tariq, 2002) 

 

Overlapping Clustering: On the contrary the second 

type, the overlapping clustering, uses fuzzy sets to 

cluster data, so that each point may belong to two or 

more clusters with different degrees of membership. 

In this case, data will be associated to an appropriate 

membership value. 

 

Hierarchical Clustering: Instead, a hierarchical 

clustering algorithm is based on the union between 

the two nearest clusters. The beginning condition is 

realized by setting every datum as a cluster. After a 

few iterations it reaches the final clusters 

wanted.(Hans-Joachim and Hizir; 2007). 

 

 

Probabilistic Clustering : Finally, the last kind 

of clustering uses a completely probabilistic 

approach. Here a probability distribution 

function is used to assign to each data of a 

cluster depending in its closeness.   

 

Several algorithms have been formulated (for 

each of the above highlighted clustering 

classification) and found useful in different 

areas of application. Most common of them all 

are: K-means, Fuzzy C-means. Hierarchical 

clustering, Mixture of Gaussians 

 
 
 

Each of these algorithms belongs to one of the 

clustering types listed above. So that, K-means 

is an exclusive clustering algorithm, Fuzzy C-

means is an overlapping clustering algorithm, 

Hierarchical clustering is obvious and lastly 

Mixture of Gaussian is a probabilistic 

clustering algorithm (Tariq; 2002). In this work, 

we considered the Fuzzy C-means because 

recent clustering applications pose the 

characteristics of their data elements, exhibiting 

the tendencies of belonging to two or more 

clusters at the same context if well considered.  
 

Distance Measure: An important component of 

a clustering algorithm is the distance measure 

between data points (Osmar; 2006). If the 

components of the data instance vectors are all 

in the same physical units then it is possible that 

the simple Euclidean distance metric is 

sufficient to successfully group similar data 

instances. However, even in this case the 

Euclidean distance can sometimes be 

misleading. Figure 3 shows the scaling of the 

width and height measurements of an object. 

Despite both measurements being taken in the 

same physical units, an informed decision has 

to be made as to the relative scaling. Different 

scaling can lead to different clusters.

 

Fig. 3: Scaling of the width and height measurements of an object

Notice however that this is not only a graphic issue: 

the problem arises from the mathematical formula 

used to combine the distances between the single 

components of the data feature vectors into a unique 

distance measure that can be used for clustering 

purposes: different formulas leads to different 

clustering(s). Again, domain knowledge must be used 

to guide the formulation of a suitable distance 

measure for each particular application. 
 
Minkowski Metric :  For higher dimensional data, a 

popular measure is the Minkowski metric,  

d
p
( x

i
,x

j
)=(∑

k=1

d

∣x
i,k

− x
j,k
∣p)

1

p

 (1) 

where d is the dimensionality of the data. The 

Euclidean distance is a special case where p=2, while 

Manhattan metric has p=1. However, there are no 

general theoretical guidelines for selecting a measure 

for any given application. It is often the case that the 

components of the data feature vectors are not 

immediately comparable. It can be that the 

components are not continuous variables, like length, 
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but nominal categories, such as the days of the week. 

In these cases again, domain knowledge must be used 

to formulate an appropriate measure. 
 

The Algorithm: Fuzzy c-means (FCM) is a method 

of clustering which allows one piece of data to  elong 

to two or more clusters. This method (developed by 

Dunn in 1973 and improved by Bezdek in 1981) is 

frequently used in pattern recognition. It is based on 

minimization of the following objective function: 

 J
m
=∑

i=1

N

∑
j=1

C

u
ij

m
�x

i
− c

j
�

2
 ,

 1≤ m<∞    (2) 

where m is any real number greater than 1,  

uij is the degree of membership of xi in the cluster j, xi 

is the ith of d-dimensional measured data, cj is the d-

dimension center of the cluster, and  ||*|| is any norm 

expressing the similarity between any measured data 

and the center. 

 

Fuzzy partitioning is carried out through an iterative 

optimization of the objective function shown above, 

with the update of membership uij and the cluster 

centers cj by

: 

    ,                 (3) 

     (4) 

This iteration will stop when 

,   (5) 

where  is a termination criterion between 0 and 1, 

whereas k are the iteration steps. 

This procedure converges to a local minimum or a saddle point of Jm. The Fuzzy c-means (FCM) clustering 

algorithm is shown in Figure 4. 

 

1. Initialize U=[uij] matrix, U
(0)

 

2. At k-step: calculate the centers vectors C
(k)

=[cj] with U
(k) 

 
3. Update U

(k)
, U

(k+1)  

 
4. If || U

(k+1)
 - U

(k)
||<  then STOP; otherwise return to step 2. 

Fig.4: The Fuzzy c-means (FCM) clustering algorithm 
 
Fuzzy Representation Of Data Sets: Data are bound 

to each cluster by means of a Membership Function, 

which represents the fuzzy behavior of this 

algorithm. To do that, we simply have to build an 

appropriate matrix named U whose factors are 

numbers between 0 and 1, and represent the degree of 

membership between data and centers of clusters. 

For a better understanding, we may consider this 
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simple mono-dimensional example. Given a certain 

data set, suppose to represent it as distributed on an 

axis. Figure 4 shows (Fig. 4) axis representation of 

data sets.

 

Fig. 5: Axis representation of data sets 

 

Looking at the picture, we may identify two clusters 

in proximity of the two data concentrations. We will 

refer to them using ‘A’ and ‘B’as in Figure 6. In the 

first approach shown in this work - the k-means 

algorithm - we associated each datum to a specific 

centroid, with membership function described in 

Figure 6 - Centroid representation of the data sets

. 

 

Fig. 6: Centroid representation of the data sets 

 

In the FCM approach, instead, the same given datum 

does not belong exclusively to a well defined cluster, 

but it can be placed in a middle way. In this case, the 

membership function follows a smoother line to 

indicate that every datum may belong to several 

clusters with different values of the membership 

coefficient. Figure 7 shows the fuzzy c-means 

approach of centroid representation

. 

 

Fig. 7: The fuzzy c-means approach of centroid representation 

 

In fig. 7, the datum shown as a red marked spot 

(pointed to by an arrow) belongs more to the B 

cluster rather than the A cluster. The value 0.2 of ‘m’ 

indicates the degree of membership to A for such 

datum. Now, instead of using a graphical 

representation, we introduce a matrix U whose 

factors are the ones taken from the membership 

functions as described in Figure 8.  

 

         

(a)                                  (b) 

Fig: 8: A matrix U whose factors are taken from the membership functions 
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The number of rows and columns depends on how 

many data and clusters we are considering. More 

exactly we have C = 2 columns (C = 2 clusters) and 

N rows, where C is the total number of clusters and N 

is the total number of data. The generic element is so 

indicated: uij. In Figure 8, we have considered the k-

means (a) and FCM (b) cases. We can notice that in 

the first case (a) the coefficients are always unitary. It 

is so to indicate the fact that each datum can belong 

only to one cluster. Other properties of k-means, is 

shown in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 
Fig. 9: Other properties of k-means 

 

 
The Modification/Improvement Of The Fuzzy C-

Means Clustering Algorithm: It must be noted the 

Fuzzy C-mean being an optimization problem, 

converges to a local minimum or a saddle point of Jm 

as spelled out in Equation 2 above. The iteration in 

some cases becomes recurring. At such a point, one 

would assume the saddle point is reached and if the 

iteration is not terminated, the loop may continues to 

a stack-grab that may fault (increase running time, 

etc) the algorithm. Note also that for every center 

vector [Cj], we do not only consider the center 

membership function of the datum but also its 

associative properties that should make the same 

datum in consideration acceptable in another cluster 

(overlap). With these and other problem not 

discussed here. A modified Fuzzy C-mean algorithm 

is shown in Figure 10. 
  

1. Initialize U=[uij] matrix, U
(0)

 

2. At k-step: calculate the centers 

vectors C
(k)

=[cj] with U
(k) 

 
 

3. Update U
(k)

, U
(k+1)  

 
 

4. If || U
(k+1)

 - U
(k)

||<  then STOP;  

 

5. else   If || U
(k+1)

 - U
(k)

||new  =  || 

U
(k+1)

 - U
(k)

||old  then STOP else 

return to step 2. 

Fig. 10: A modified Fuzzy C-mean 

algorithm  
 
Increasing the STOP conditions would help reduce 

memory consumption in the execution frame of the 

optimization problem.

A case Study Result and discussion.: Here, we 

considered the simple case of a mono-dimensional 

application of the FCM. Forty by ten array data as 

shown in Table 1 below. Three clusters were used to 

initialize the algorithm and to compute the U matrix

•   

•  

•  
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.  

Table 1: A Mono-Dimensional Collection of Forty by Ten Array Data 

 

1 32.97296 33.78795 33.07803 34.07537 34.75031 32.11693 33.22848 34.43884 33.83738 32.69207 

2 33.96386 33.49916 33.04058 34.60142 32.31941 33.96008 33.65453 32.13929 33.84962 33.86212 

3 33.27152 34.48831 33.41839 32.00967 33.80071 32.86538 34.11624 33.09643 32.71353 33.16603 

4 33.91233 34.18517 32.31239 33.15703 34.59071 34.70568 34.68988 33.64537 34.19484 32.70432 

5 33.50952 32.64731 34.49717 34.38035 32.58036 34.16499 33.68805 34.41882 33.68195 34.54783 

6 33.00637 33.65958 33.80495 32.85256 33.03735 32.86458 32.7068 32.01511 34.09383 33.78251 

7 34.54749 34.59438 33.6421 33.46564 33.59221 34.28203 33.84567 34.7824 34.18129 32.08487 

8 34.64431 33.999 33.66636 33.19013 33.73534 34.77561 33.80945 34.48363 33.45283 33.46029 

9 32.1483 33.85409 33.16394 34.33249 32.0625 32.85894 33.89253 33.42307 32.00949 32.79355 

10 32.56908 34.08601 32.00809 33.97171 34.18223 33.14778 34.06555 32.7857 32.99277 32.17334 

11 33.53474 32.93372 32.82803 32.60112 34.85034 32.40954 32.58042 32.55856 32.3268 33.06373 

12 33.28613 33.87954 34.69329 34.63844 32.86184 33.89364 32.96245 34.29576 32.34776 32.77397 

13 33.65951 33.43536 33.18406 34.41067 32.87307 33.5014 32.08486 33.34898 34.06129 34.17026 

14 33.0233 34.60829 33.02689 32.55454 34.62432 33.36989 32.1489 32.31745 33.04703 32.40374 

15 32.05233 32.35248 33.6414 33.7746 34.45659 33.7651 32.88112 34.33268 32.7706 32.19736 

16 34.29613 33.96899 34.54854 32.05482 33.45477 33.04382 32.5758 33.56375 32.76699 34.85529 

17 32.0605 32.77672 33.5286 34.3666 33.81987 32.2003 34.50204 32.59049 34.65484 32.29228 

18 32.32145 33.61892 34.76016 32.5682 34.19747 32.20205 32.37206 34.62855 34.53784 33.12991 

19 33.40782 32.22161 34.79025 32.87887 33.07182 34.73985 34.19144 34.06873 34.40285 33.04145 

20 34.54701 32.28655 34.0565 33.83879 34.2818 32.46039 33.26662 32.28309 33.27674 32.02704 

21 34.72519 34.65895 33.02943 33.17186 32.11079 32.7641 34.71571 33.46454 32.60655 33.39804 

22 32.02967 32.81181 34.30236 34.03204 33.52733 34.72273 32.91775 34.66782 32.69412 33.7677 

23 34.31911 33.76428 34.67156 32.09482 34.28079 34.11194 32.04546 34.28645 32.90106 33.4313 

24 33.55697 34.56007 33.26597 34.13749 33.65167 34.11824 32.11721 32.36122 32.10935 32.99197 

25 32.80313 33.63632 32.65289 33.71991 32.67939 33.63679 32.56294 32.55312 32.70141 33.41859 

26 34.79298 34.57014 32.28917 33.36858 33.95753 33.10856 34.63351 34.15661 33.40306 32.09283 

27 32.09964 33.09115 33.81552 32.48291 34.45099 34.59562 32.63445 32.92449 33.70428 33.96793 

28 34.72298 34.48836 32.33593 34.62298 34.60524 33.54802 33.52339 32.69709 34.57655 33.39925 

29 32.58929 32.31046 33.63343 32.9276 32.68875 34.19878 34.38683 33.35236 33.43921 32.45056 

30 33.56502 33.43993 33.43106 32.54614 34.37222 32.68002 33.58226 32.90943 34.74113 32.2553 

31 33.95145 33.10304 34.479 33.32884 32.3377 34.2761 32.31347 33.87546 32.21338 32.62849 

32 33.25879 32.07693 34.3814 32.97501 34.59179 33.02479 34.64224 33.35917 34.78824 34.5066 

33 32.09965 33.33743 32.00494 32.63502 33.32741 33.63716 34.81987 32.57341 32.40354 34.39045 

34 32.19698 34.41841 32.15092 33.98183 34.85793 34.05626 32.43139 32.9717 32.66223 32.50512 

35 34.40447 34.27864 34.1603 34.00547 33.37514 32.82413 34.10963 33.92888 33.4428 33.37078 

36 33.10042 34.70814 32.2737 32.13653 33.80763 33.7185 33.59849 32.79778 32.69246 32.85419 

37 32.6211 34.01806 34.67419 33.61038 33.26409 33.51044 33.59493 34.67088 33.57289 34.18296 

38 34.15606 34.14808 32.04185 32.8152 33.99701 32.81871 32.21059 32.32754 32.05499 33.91762 

39 33.66072 33.56452 32.42005 32.48916 34.69157 33.77032 32.20812 32.64933 34.61506 34.45302 

40 34.41031 33.99937 33.64607 34.21778 32.63836 32.45162 32.56493 33.71947 34.67022 34.06824 

 

Calculating the centers vectors C
(k)

=[cj], which is given by equation 4 above, will produce our table 2 shown 

below. Table 2 could be represented in a matrix format to aid the computation of the different Uij iteratively. 

Equation 3 is an expression of Uij. The number of iterations with respect to the stopping rule of equation 5, 

could cause the function to converge. 
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 Table 2:  Calculated centers vectors C
(k)

=[cj]for the forty by ten data of table 1 
0.029521 0.031021 0.029425 0.028693 0.029879 0.029496 0.029578 0.030058 0.029839 0.029023 

0.030665 0.03109 0.031244 0.031086 0.028933 0.029216 0.030978 0.029377 0.029757 0.029496 

0.031137 0.031056 0.030373 0.029304 0.030766 0.031119 0.029351 0.029112 0.030985 0.030586 

0.030573 0.029628 0.029641 0.029181 0.029468 0.02945 0.029178 0.031112 0.029156 0.029487 

0.029142 0.029155 0.030212 0.029558 0.029943 0.028955 0.02932 0.029212 0.029678 0.030956 

0.029139 0.029891 0.028793 0.028826 0.029453 0.030405 0.03054 0.030209 0.029935 0.031233 

0.031089 0.031102 0.031029 0.031042 0.030719 0.030291 0.028777 0.03063 0.030043 0.030197 

0.029459 0.030795 0.029128 0.029519 0.029107 0.030841 0.029655 0.028976 0.029932 0.028815 

0.028751 0.029335 0.029726 0.030865 0.030183 0.029832 0.031114 0.02884 0.029673 0.028906 

0.030393 0.030332 0.030208 0.029538 0.028824 0.029281 0.028786 0.028866 0.028709 0.030137 

0.03112 0.030839 0.029163 0.030271 0.03067 0.030286 0.028686 0.028673 0.030625 0.029381 

0.03076 0.031101 0.030121 0.029821 0.02902 0.029635 0.030888 0.029114 0.030274 0.028786 

0.029118 0.029268 0.031013 0.028931 0.028691 0.03064 0.03014 0.030428 0.030595 0.031201 

0.03125 0.028695 0.029206 0.028682 0.028697 0.029523 0.029848 0.030679 0.02988 0.030358 

0.031242 0.029258 0.029547 0.029821 0.03057 0.028837 0.029651 0.02963 0.030639 0.029383 

0.030282 0.03115 0.030921 0.031046 0.029907 0.029637 0.029014 0.030598 0.02998 0.029532 

0.028843 0.029485 0.029406 0.030516 0.030874 0.029163 0.02914 0.030769 0.030416 0.028805 

0.02943 0.028904 0.029985 0.030467 0.030196 0.029727 0.030919 0.029059 0.029856 0.028826 

0.030666 0.029648 0.029107 0.030035 0.030058 0.029952 0.030302 0.030367 0.029463 0.030203 

0.03003 0.029874 0.028676 0.029285 0.029657 0.029746 0.029014 0.030458 0.030181 0.030248 

0.029714 0.029816 0.029116 0.029308 0.028786 0.029666 0.029691 0.029554 0.029494 0.030432 

0.029504 0.028846 0.030684 0.030111 0.02886 0.030676 0.030315 0.029988 0.031186 0.029794 

0.028989 0.030766 0.02921 0.029378 0.028831 0.03037 0.02981 0.029186 0.030052 0.031171 

0.030083 0.029884 0.029325 0.029877 0.030806 0.029384 0.030742 0.030374 0.03116 0.029891 

0.029253 0.030111 0.02897 0.030604 0.029873 0.031162 0.029171 0.028792 0.030912 0.029987 

0.029218 0.029702 0.030145 0.030651 0.02936 0.029694 0.031176 0.029447 0.03096 0.02972 

0.028925 0.029941 0.029915 0.028777 0.029772 0.031106 0.02907 0.030012 0.028961 0.029029 

0.030022 0.029052 0.03093 0.030806 0.030388 0.029943 0.030916 0.029507 0.030826 0.029813 

0.030779 0.030213 0.028732 0.02963 0.03035 0.02933 0.029734 0.030066 0.028817 0.029173 

0.028696 0.030641 0.030794 0.028731 0.031206 0.031 0.031176 0.031147 0.029174 0.030527 

0.028702 0.030232 0.029847 0.031005 0.029782 0.030683 0.02918 0.029575 0.030085 0.030302 

0.029089 0.029886 0.031221 0.030897 0.0305 0.030914 0.02985 0.031002 0.028856 0.029221 

0.030847 0.029013 0.030239 0.02919 0.030628 0.030921 0.030541 0.028699 0.030481 0.030351 

0.030468 0.031198 0.030616 0.030063 0.030065 0.030485 0.030498 0.029368 0.03022 0.029194 

0.031075 0.030145 0.0295 0.030991 0.030528 0.030278 0.029605 0.029808 0.030447 0.029515 

0.031243 0.029991 0.030587 0.028727 0.030665 0.030877 0.030397 0.030109 0.030623 0.030449 

0.029415 0.030968 0.030277 0.029091 0.029456 0.029741 0.030147 0.030623 0.030376 0.03035 

0.030078 0.029875 0.031134 0.029131 0.030018 0.029696 0.03084 0.028988 0.029784 0.029427 

0.028854 0.028837 0.03119 0.030997 0.029945 0.030272 0.030052 0.03073 0.028889 0.030028 

0.029431 0.028943 0.030831 0.028977 0.028788 0.029688 0.030169 0.029153 0.029858 0.028844 

 

Figure 11 shows the indicator of the fuzziness of data elements. Figure 12 shows the better indicator at higher 

iteration - 8 steps, and Figure 13 shows better indicator at higher iteration-37 steps. Figures 11, 12 and 13 (taken 

from our interactive test) show the membership value for each datum and for each cluster. The color of the data 

is that of the nearest cluster according to the membership function. 
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bubble chart for ten by 40 clusters
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Fig. 11: Indicator of the fuzziness of data elements 

 

In the simulation shown in Fig. 11 we have used a fuzziness coefficient m = 2 and we have also imposed to 

terminate the algorithm when 

 

  
 

The picture shows the initial condition where the fuzzy distribution depends on the particular position of the 

clusters. No step is performed yet so that clusters are not identified very well. Now we can run the algorithm 

until the stop condition is verified. The fig. 12 shows the final condition reached at the 8th step with m=2 and 

 = 0.3 using the smoothened values of table 2: Note that series 14 and 16 intersect at a point, indicating the 

line of fuzziness. However, series 20 did not at all intersect with that of 14 and 16, showing that no data element 

in series 20 has any link with that of 14 and 16. 
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Fig.12: Better indicator at higher iteration -8 steps 

 

Is it possible to do better? Certainly, we could use a 

higher accuracy but we would have also to pay for a 

bigger computational effort. In Figure 13 we can see 

a better result having used the same initial conditions 
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and  = 0.01, but we needed 37 steps of iterations. 

Note that series 14, 16 and 20 now intersect at a 

point, indicating the line of fuzziness for the three 

selected series. Therefore, as the iteration increases 

and the stopping rule not reached, series 20’s center 

value converges towards a value in the cluster of 

series 14 and 16. Showing that, the computation of 

the center vector value causes the mining of new data 

elements in series 20

. 
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Fig. 13 Better indicator at higher iteration -37 steps 

 

It is also important to notice that different 

initializations cause different evolutions of the 

algorithm. In fact it could converge to the same result 

but probably with a different number of iteration 

steps or alternatively converges to a new result and 

with a different number of iteration as shown in 

Figure 14, where series 14, 16 and 20 took new 

different trend at initial conditions of m = 2, and  = 

0.01 for -77 iterations

.  
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Fig. 14: Yet a Better indicator at higher iteration -77 steps 
  

 
Conclusion: In this work, we developed a modified 

fuzzy C-mean clustering algorithm with a sharp 

stopping condition which was tested on a demo data 

to ascertain its convergence and comparatively test its 

efficiency

. 
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Corel Q-pro optimizer was used on a timing macro 

and micro soft excel graphs used to present the result. 

Our result(s) are quite interesting and challenging as 

they clearly show the presence of inter-lapping 

documents along the spectrum of two different 

clusters (inter and intra-cluster), indicating the 

usefulness of the fuzzy algorithm. As shown in 

Figures 11, 12, 13 and 14, the adjustment elasticity of 

the different constraints surrounding the convergence 

of the objective function can generate different 

results thus exposing the fuzziness of the data within 

and without the cluster. Out of forty trends of data 

links, only clusters 6 and 8 are fuzzy enough to link 

others. It is worthy of note that the Fuzzy C-mean 

being an optimization problem, converges to a local 

minimum or a saddle point. The iteration in some 

cases becomes recurring. At such a point, one would 

assume the saddle point is reached and if the iteration 

is not terminated, the loop may continue to a stack-

grab that may fault (increase running time, etc) the 

algorithm. 
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