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A neural network (NN) was trained on amino and
nucleic acid sequences to test the NN’s ability to predict
a nucleic acid sequence given only an amino acid
sequence. A multi-layer backpropagation network of
one hidden layer with 5 to 9 neurons was used.
Different network configurations were used with
varying numbers of input neurons to represent amino
acids, while a constant representation was used for the
output layer representing nucleic acids. In the best-
trained network, 93% of the overall bases, 85% of the
degenerate bases, and 100% of the fixed bases were
correctly predicted from randomly selected test
sequences.  The training set was composed of 60 human
sequences in a window of 10 to 25 codons at the coding
sequence start site.  Different NN configurations
involving the encoding of amino acids under increasing
window sizes were evaluated to predict the behavior of
the NN with a significantly larger training set.  This
genetic data analysis effort will assist in understanding
human gene structure.  Benefits include computational
tools that could predict more reliably the
backtranslation of amino acid sequences useful for
Degenerate PCR cloning, and may assist the
identification of human gene coding sequences (CDS)
from open reading frames in DNA databases.

Degenerate primers or probes, usually designed from
partially sequenced peptides or conserved regions on the
basis of comparison of several proteins, have been widely
used in the polymerase chain reaction (PCR), DNA library
screening, or Southern blot analysis.  The degenerate nature
of the genetic code prevents backtranslation of amino acids
into codons with certainty.  Numerous statistical studies

have established that codon frequencies are not random
(Karlin and Brendel, 1993).  Many cDNA sequences have
been mapped onto a "DNA-walk" and long-range power
law correlations were found (Peng et.al., 1992).  In
consideration of the long-range correlations in DNA, a
neural network approach may identify sequence patterns in
coding regions that could be used to improve the accuracy
of backtranslation.

Neural networks are able to form generalizations and can
identify patterns with noisy data sets.  To list just a few
biological applications, neural networks have been used
successfully to identify coding regions in genomic DNA
(Snyder and Stormo, 1993), to detect mRNA splice sites
(Ogura et. al., 1997), and to predict the secondary structure
of proteins (Holley and Karplus, 1989, Chandonia and
Karplus, 1996).  Neural networks have also been used to
study the structure of the genetic code.  One such network
was trained to classify the 61 nucleotide triplets of the
genetic code into 20 amino acid categories (Tolstrup et.al.,
1994).  This network was able to correlate the structure of
the genetic code to measures of amino acid hydrophobicity.
Most neural network methods for identifying patterns in
sequences can be classified as a search by signal or a search
by content (Granjeon and Tarroux, 1995).  Search by signal
consists in identifying specific sites, such as splice sites.
This method suffers from a lack of reliability when variable
signals delimit the regions of interest.  Search-by-content
algorithms use local constraints, such as compositional bias,
to characterize regions of DNA.    The goal of the research
reported here is to utilize the successful NN techniques to
analyze and generalize codon usage in mRNA sequences
beginning at the CDS start site.  Local and global patterns
of codon usage in genes may be identifiable by neural
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networks of suitable architecture.  This paper reports on
some initial trials of altering the encoding of amino acids
for the input neural layer.  Future studies will address the
architecture of the hidden layer to optimize for the NN
ability to detect codon usage patterns in genes.

Materials and Methods

Training set. Human mRNA sequences were obtained
from GenBank on the basis of several criteria.  The coding
sequences were relatively short in order to avoid splicing
and other variants of the mRNA.  The sequences were
identified by keywords that would indicate a complete
mRNA could be reconstructed.  Such words would be
complete coding sequence (CDS), 5’ and 3’ untranslated
regions (UTR), and poly(A) site.  Multiple members from
gene families were excluded to prevent overtraining of
those sequences.  The sequences were downloaded from
Entrez at the NIH web site
(http://www.ncbi.nlm.nih.gov/Entrez/) and the coding
sequence was saved from each into a file.  Up to the first 75
nucleotides of the CDS were selected for this study in a
window starting at the methionine ATG start site.

Binary representations. In order to train the neural
network (NN) it is necessary to formulate a decoding
scheme because the architecture of the NN is binary and
does not allow a direct representation of nucleic or amino
acid sequences.  Therefore, a binary numeric representation
was used to encode the amino acid data. Several Microsoft
Word 97 macros were recorded to convert amino acids and
nucleic acids into numerical values. The macros used the
find and replace commands in Microsoft Word 97 for each
of the twenty amino acids and for the four nucleotides.  The
individual numeric-encoded sequence files were then joined
together into groups.  For this study a total of sixty mRNAs
were examined with different window sequence lengths
which changed the total size of the training set (White,
1998).  The nomenclature for each group identifies the
number of sequences used and the number of codons taken
from each sequence.  For example, in Training Set 60S-10C
there are sixty sequences with a window of ten codons
taken from each sequence.  Since ten codons were taken
from each sequence, there are 600 codons in this set.  A
related study of predicting bases in tRNA sequences used a
window size of 15 bases (Sun et.al., 1995), while this study
used a window of 10 codons or 30 bases.

Neural network. All work with the NN was performed on
a Sun SPARCstation 20 computer.  The NN used was a
utility of Partek 2.0b4, called a multi-layer perceptron
(MLP).  A MLP is a NN, which has at least three layers (the
input, output and the hidden layer(s)).  Each layer is
attached to the next layer by connection weights that are
changed during the training process to reduce the overall
error.  This allows the network to “learn” patterns in the
mRNA sequences.  Training was stopped when the change
in the total output error became less than 0.1% from the

previous iteration.  This usually occurred after 500 - 1200
iterations using the backpropagation learning method.  Test
sets were assembled to assess the predictive accuracy of the
trained NN.  The test sets consisted of 3 randomly selected
human gene sequences from the same group of sequences
from which the training set was selected.  The predicted
output was measured in 3 categories: the overall percent
correct, percent correct for degenerate bases, and percent
correct for fixed bases.  These measures allow the
assessment of the various schemes used to encode the
amino acids.

Results

Encoding the amino acids

Different amino acid decoding schemes were examined to
determine how the input configuration would affect
prediction accuracy of the networks in backtranslating
amino acids into nucleic acids.  The simplest and most
direct scheme, called "Simple", is a 20-bit representation
where each amino acid is represented by a one and nineteen
zeros (Figure 1).  Alanine would be
10000000000000000000 and the one would shift to the
right alphabetically based on the one letter abbreviation of
the amino acids.  Another scheme called "Simple-Shuffle"
is a rearrangement or shuffling of the amino acids in the
previous scheme.  This is to test if the order of amino acids
in the input layer is important, since the composition can be
quite different between abundant and rare amino acids.
This scheme uses an alphabetical listing based on their
codon representations using degeneracy codes (Table 1).
Therefore, Lysine with AAR is first, and Leucine with YTX
is last (00000000000000000001).

Adding degeneracy information

 The "simple" representation ignores the nucleic acid bases
already known from the genetic code.  For example, all
three bases are known for Methionine (ATG).  IUPAC
representations utilize degeneracy codes (Table 1) to denote
which possible bases can be used for a particular amino
acid at the first, second, or third position of a codon. An
example of this would be GGX, the degeneracy code for
Glycine, where four nucleotide endings are possible.
Degeneracy codes can then be utilized for the input layer
similar to the multiple sensor approach taken by
Uberbacher and Mural (1991).  Some input neurons could
then convey processed information about limited codon
choices.  Thus by using these degeneracy codes we come
closer to the actual nucleic acid sequence that encodes the
amino acid.  This results in a 33-bit unit in a scheme called
"All-Degeneracy" (Figure 2).  This scheme has a greater
number of input neurons than the simple schemes, yet the
fixed part of the genetic code is effectively preprocessed for
the NN.  As pointed out by Lapedes et.al. (1990), there is a
trade-off between putting processing power into the
network versus putting it into a pre-processing stage that
changes the representation of the input data.  In Figure 2 the
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hidden layer is not shown between the input and output
layers to highlight the representation of known or non-

degenerate bases to the output layer.

Table 1. Degeneracy codes for nucleic acids.

Code A C G T
M * *
R * *
S * *
Y * *
W * *
H * * *
X * * * *
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Binary encoding

  Another way of encoding amino acids is to form groups
that are based on some ordering and to identify the amino
acids within the groups. The scheme called "Binary-5-bit",
is based on all the possible ways that ones and zeros can be
combined in a five-bit group (Figure 3).  There are 32
possible ways these numbers can be arranged.  When the
representations with no or all ones, and those with 1 or 4
ones are removed, there are exactly twenty representations
left.  This leaves just enough representations to code for the
20 amino acids.  Other similar ways of grouping the amino
acids were tried with results typical of the Binary-5-bit
scheme (data not shown).

 Comparing the schemes

 These four NN schemes were used to predict the correct
codons given an amino acid sequence.  The percent correct
in predicting degenerate bases was used to test the
network's ability to backtranslate from amino acid
sequences to nucleic acid sequences.  The networks were
trained and test sets were used to assess the accuracy for
each scheme.  The change in predictive accuracy of the
schemes was analyzed as the window size was increased to
determine which scheme or schemes would be most
efficient with larger training sets.  The best scheme in
predicting correctly the degenerate bases was Simple,

which predicted 85% of the degenerate bases in Training
Set 60S-10C (Table 2). All of the schemes were predicting
100% of the fixed bases for all window sizes.  The largest
scheme, which has 33 input neurons per amino acid, shows
a consistently better performance compared to the smallest
scheme with 5 input neurons per amino acid (Table 2).
There is little difference between Simple and Simple-
Shuffle, so that the order of amino acids in the input layer is
not important. The binary scheme for the smaller window
size does not perform as well as the unitary schemes, a
result also found by other researchers (O’Neill, 1991,
Demeler and Zhou, 1991).  However, with the largest
window there is very little difference between the schemes.
This may be due to more amino acids being present in the
training set, allowing for a more complete representation of
the genetic code.  For the smaller windows not all the
codons are represented in the training sets and may explain
why Simple's accuracy did not exceed 85%.  A codon usage
table calculated from training Set 60S-10C found two
codons for tyrosine and histidine missing, and one other
codon was represented only once.  All other codons had
multiple occurrences in the 60S-10C training set.  Therefore
the genetic code was incompletely represented in the
smaller training sets.  The accuracy decreased as the
window size increased for Simple, possibly due to the
increased complexity or size of the input layer of the NN
and the minimal increase of the hidden layer.  The size of
the hidden layer did not increase as fast as the input layer
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for increased window sizes due to the default settings of the
NN.  Overall the four schemes are capable of

backtranslating with high accuracy for the degenerate bases
from a relatively small training set.

Table 2. Accuracy of NN encoding schemes.

Simple Simple-
Shuffle

All-
Degeneracy

Binary
5-bit

Bits/amino
acid

20 20 33 5

Training set
60S-10C

85% 72% 80% 74%

Training set
60S-15C

72% 77% 77% 74%

Training set
60S-20C

80% 80% 80% 69%

Training set
60S-25C

74% 72% 74% 77%

Shown are the percent of correctly predicted degenerate bases in a test set composed of three sequences selected randomly
from the same group of sequences from which the training set was assembled.
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Discussion

 One of the possible uses of this research is to improve the
design of oligonucleotide probes (Eberhardt, 1992).  One
primer-design study found an overall homology greater
than 82% between the predicted probe and the target
sequence when codon utilization and dinucleotide
frequencies were taken into account (Lathe, 1985).  When
sequence stretches lacking Serine, Arginine, and Leucine
are selected the overall homology became 85.7% in Lathe's
study. Our best network predicted 85% of the degenerate
bases, and 93% of the overall bases.  The data set used
Lathe's study contained 13,000 nucleotides and our largest
training set had 4500 nucleotides.  Therefore, an increase in
our network or training set size could lead to even greater
accuracy by detecting patterns of codon choice within the
mRNA sequences.  The architecture of the amino acid
encoding method apparently does not have a large impact
on predictive accuracy as found in this study.  Therefore
other factors, such as computational time or memory size
may be a criteria used to select an encoding scheme for a
larger training set.  It is also interesting to note that the
network that predicted the highest percentage of correct
overall bases did so on a test set that had eight Leucines,
one Arginine, and two Serines.  These amino acids present
difficulties for algorithms based on codon lookup tables,
such as Lathe's work or common primer selection programs
(such as Nash, 1993).  The work reported here demonstrates
that a NN approach may yield improvements in predictive
accuracy for PCR primer selection.
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