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ABSTRACT

Background: 3-Ketosteroid-A'-dehydrogenase (KSDD), a flavoprotein enzyme, catalyzes the bioconversion of
4-androstene-3,17-dione (AD) to androst-1,4-diene-3,17-dione (ADD). To date, there has been no report
about characterization of KSDD from Mycobacterium neoaurum strains, which were usually employed to
produce AD or ADD by fermentation.

Results: In this work, Corynebacterium crenatum was chosen as a new host for heterologous expression of KSDD
from M. neoaurum JC-12 after codon optimization of the KSDD gene. SDS-PAGE and western blotting results
indicated that the recombinant C. crenatum harboring the optimized ksdd (ksdd") gene showed significantly
improved ability to express KSDD. The expression level of KSDD was about 1.6-fold increased C. crenatum after
codon optimization. After purification of the protein, we first characterized KSDD from M. neoaurum JC-12, and
the results showed that the optimum temperature and pH for KSDD activity were 30°C and pH 7.0,
respectively. The K, and V.« values of purified KSDD were 8.91 pM and 6.43 mM/min. In this work,
C. crenatum as a novel whole-cell catalyst was also employed and validated for bioconversion of AD to ADD.
The highest transformation rate of AD to ADD by recombinant C. crenatum was about 83.87% after 10 h
reaction time, which was more efficient than M. neoaurum JC-12 (only 3.56% at 10 h).

Conclusions: In this work, basing on the codon optimization, overexpression, purification and characterization of
KSDD, we constructed a novel system, the recombinant C. crenatum SYPA 5-5 expressing KSDD, to accumulate
ADD from AD efficiently. This work provided new insights into strengthening sterol catabolism by
overexpressing the key enzyme KSDD, for efficient ADD production.

© 2016 Pontificia Universidad Catélica de Valparaiso. Production and hosting by Elsevier B.V. All rights reserved.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

acknowledged to be a worthwhile precursor in the synthesis of steroid
pharmaceuticals such as oestrogens, contraceptive agents and

Steroid drug intermediates are widely used for the commercial
production of pharmaceutical steroid drugs. Compared with the
chemical synthesis process, bioprocess of transforming sterols to
steroid drug intermediates has its obvious advantage and has been
widely used as a common and economical alternative method in the
pharmaceutical industry [1]. The microbial transformation of steroids
has long prevailed in the pharmaceutical industry since the 1950s [2,3].
Degradation of steroids can yield much valuable steroidal derivatives,
such as 4-androstene-3,17-dione (AD), androst-1,4-diene-3,17-dione
(ADD), 9a-OH-AD, and 9a-OH-ADD [4,5,6,7,8]. ADD has been
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progestogens [2]. Chemical synthesis has been the main method of ADD
production in the pharmaceutical industry for a long time [2,6,7,9].
Nevertheless, the substantial consumption of organic chemicals and the
production of chemical waste, make it an environmentally unfriendly
approach. As an alternative and modest synthesis method, biocatalytic
production of ADD has become a good alternative, mainly because it
provides a superb combination of cost-effectiveness, sustainability and
scalability [10,11,12,13].

3-Ketosteroid-A'-dehydrogenase (KSDD) [EC 1.3.99.4] catalyzes
the insertion of a double bond between the C1 and C2 atoms of
the chemically stable 3-ketosteroid A-ring (Fig. 1) [14]. Several
steroid-degrading bacteria with KSDD activity have been reported,
including Mycobacterium, Rhodococcus, Comamonas, and Arthrobacter
[15,16,17]. The constructive N-terminal flavin adenine dinucleotide
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Fig. 1. Bioconversion of AD to ADD by 3-ketosteroid-A'-dehydrogenase.

(FAD)-binding site was coincided with the sequence G-S-G-(A/G)-(A/
G)-(A/G)-X47-E [18,19]. According to the crystal structure of the
KSDD from Rhodococcus erythropolis, the enzyme does not have any
trans-membrane helices, and the protein behaves as a soluble protein
[20].

Much work has been done on strain amelioration, enhancing
or limiting KSDD expression by molecular or mutagenesis methods [21,
22]. In our previous research, we isolated and identified Mycobacterium
neoaurum JC-12 with the capacity of converting phytosterol to the
product ADD in our laboratory. The ksdd gene was amplified and
expressed in Bacillus subtilis 168 using plasmid pMA5. Regrettably, the
expression level of KSDD was very low for purification and no high
yields of ADD were obtained [18]. Nevertheless KSDD is a key enzyme
for producing and accumulating ADD during steroid degradation. So far,
there was no detail report that the KSDD from M. neoaurum has been
successfully characterized. This lack of knowledge limits, both, the
knowledge on the properties of KSDD and the optimum use of this
enzyme for converting AD to ADD.

In this work, Corynebacterium crenatum was chosen as a new host for
heterologous expression of KSDD. As the native gene ksdd' showed a poor
codon usage bias for C. crenatum, we suspected that it should be one of the
limiting factors leading to the inefficient expression. In order to improve
the expression of KSDD, we designed and constructed a full-length
synthetic gene by optimizing the codon usage without changing its
amino acid sequence. We also investigated the purification and
characterization of the KSDD from M. neoaurum JC-12. Under optimal
conditions, the efficient transformation of AD to ADD by the whole-cell
of the recombinant C. crenatum SYPA 5-5 was achieved.

2. Materials and methods
2.1. Bacterial strains, plasmids and culture conditions
C. crenatum strain SYPA 5-5 was screened and stored in our

laboratory. It is an aerobic, Gram-positive, non-sporulating coryneform
bacterium and a high-yield strain of amino acids in the industry [23].

Table 1
Bacterial strains, plasmids, and primers.

M. neoaurum JC-12 and the vector pXMJ]19 were preserved in our
laboratory (Table 1). The strains C. crenatum SYPA 5-5/pXMJ]19,
M. neoaurum JC-12 and the recombinant C. crenatum SYPA 5-5
were cultivated at 30°C and 160 rpm in Luria-Bertani broth containing
0.5% glucose(LBG). Chloroamphenicol (50 mg/mL) was added to
the growth medium if necessary. 4-Androstene-3,17-dione (AD)
and androst-1,4-diene-3,17-dione (ADD) were supplied by the
Sigma-Aldrich Chemical Co. Inc. (USA). Hydroxypropyl-3-cyclodextrin
(HP-B-CD) was purchased from Zhiyuan Bio-Technology Co., Ltd.
(Binzhou, China). All other chemicals with the analytical grade could
be purchased.

2.2. General cloning techniques

T4 DNA ligase, Mini Plasmid Rapid Isolation Kit and Mini DNA Rapid
Purification kit were purchased from Sangon Biotech Co., Ltd. (Shanghai,
China). Restriction enzymes were bought from TaKaRa Co. (Dalian,
China).

2.3. Codon optimization of ksdd gene

According to the sequence of ksdd gene from M. neoaurum JC-12,
the optimization of its codon was subjected to the Codon Adaptation
Tool (http://www.jcat.de/) on the basis of codon preference of
Corynebacterium glutamicum ATCC13032. The high GC content which
did not favor for gene expressing was reduced. The modified gene was
synthesized by Sangon Biotech Co., Ltd., (Shanghai, China).

2.4. Construction of recombinant plasmid pXM]19-ksdd and transformation
of C. crenatum SYPA 5-5

The modified gene ksdd" and native ksdd' were amplified with
the primers ksdd" R/ksdd" F and ksdd' R/ksdd' F (Table 1). Both the
modified and native genes were cloned into the plasmid pXMJ19
by designed primers with Hind Il and BamH 1 restriction sites
(underline). Then the recombinant plasmids were transformed into

Strains/plasmids/primers Characteristics

Source

Strains
C. crenatum SYPA 5-5
M. neoaurum JC-12

C. crenatum SYPA 5-5/pXMJ19 Cm®

C. crenatum SYPA 5-5/pXMJ19- ksdd' CmR

C. crenatum SYPA 5-5/pXM]J19- ksdd" Cm®
Plasmid

pXMJ19

Primers
Optimal ksdd" F
Optimal ksdd" R
Native ksdd' F
Native ksdd' R

An industrial microorganism for production of amino acids
producing ADD from phytosterol

Expression vector, ptac, lacl9, Cm®, Capable of replication in Corynebacterium Glutamicum
CGCAAGCTTAAAGGAGGGAAATCATGTTCTACATGACC GCTCAGG
GACGGATCCTTAGTGGTGGTGGTGGTGGTGAGCCTTGCCAGCCAGGTG
CGCAAGCTTAAAGGAGGGAAATCATGTTCTACATGACTGCCCAGG
GACGGATCCTTAGTGGTGGTGGTGGTGGTGGGCCTTTCCAGCGAGATG

Laboratory stock
Laboratory stock
This study
This study
This study

Laboratory stock

CmR Chloroamphenicol-resistant, the restriction enzyme sites were underlined, and the His-Taq coding region were bold typed.


http://www.jcat.de
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C. crenatum SYPA 5-5 to obtain engineered C. crenatum strains
by the electroporation methods described by Tauch et al. [24].
Chloramphenicol was chosen as the selectable marker to screen the
recombinant C. crenatum, and then verified by DNA sequencing.

2.5. Expression of ksdd" and ksdd' in C. crenatum SYPA 5-5 with pXMJ19
and preparation of cell extracts

The recombinant plasmids pXM]J19-ksdd" and pXM]J19-ksdd"' were
introduced into C. crenatum SYPA 5-5. Transformants were obtained
after growing 72 h on selective LBG agar plate added with
chloroamphenicol. The recombinant cells were grown in 50 mL LBG
medium for 14 h with 50 pL IPTG (200 mg/mL) to induce the enzyme
expression. Cell pellets (8000 g; 10 min; 4°C) were washed with
10 mL 50 mM Tris-HCI buffer (pH 7.0). The supernatant of culture
was used for KSDD enzyme activity assay. Pellets were suspended in
5 mL Tris-HCl buffer and sonicated for 15 min. 0.1 mM dithiothreitol
(DTT) was added to protect the enzyme. In order to remove the cell
fragments, cell extracts were centrifuged for 30 min at 10,000 x g in
an SIGMA 3K-15 centrifuge. The supernatant of cell extraction was
used for KSDD enzyme activity assay, SDS-PAGE (12% acrylamide)
analysis or storage at -20°C with 10% glycerol.

2.6. SDS-PAGE analysis and determination of protein concentration

The samples used for SDS-PAGE were mixed with 2 x SDS loading
buffer (100 mM Tris-HCl, pH 6.8, 200 mM DTT, 0.4 g/L SDS, 0.02 g/L
bromophenol blue, and 20% (v/v) glycerol) with ratio 1:1 (v/v). The
mixture was then boiled in water for 10 min, and centrifuged for
30 min at 10,000 x g. The samples were run on a SDS-PAGE as
described by Laemmli [25]. Expression of KSDD was also detected by
western blotting with a mouse monoclonal anti-His6 antibody. The
samples were treated as described by Bao et al. [26], and the bands
were detected by chemiluminescence with luminol and peroxide with
the help of a Bio-Rad Chemidoc XRS. Bradford method was employed
to determine the protein concentration by using BSA as standard
protein [27].

2.7. KSDD enzyme activity assay

Enzyme activity of KSDD was determined spectrophotometrically at
30°C using 2,6-dichlorophenolindophenol (DCPIP) and phenazine
methosulphate (PMS). The reaction mixture (1 mL) consisted of
50 mM Tris-HCl buffer (pH 7.0), 1.5 mM PMS, 40 uM DCPIP,
appropriate concentration of the supernatant or cell extract, and
500 pM AD in methanol (2%). Cofactor (FAD) was added when
necessary. Activity was expressed as units per milligram of protein;
1 U is defined as the reduction of 1 umol/min DCPIP (€500 nm =
18.7 x 10°> cm™ M™) [21,28]. No activity was found in reaction
mixtures without 4-androstene-3,17-dione (AD).

2.8. Purification and characterization of the recombinant KSDD

The recombinant KSDD with histidine-tag was expressed in
C. crenatum and purified by affinity chromatography on a Ni-NTA
sepharose prepacked column His Trap HP (GE Healthcare Life
Sciences, USA). Purification was performed according to the
instructions of His Trap TM HP column [29]. The purified enzymes
were subsequently assayed by SDS-PAGE. Bradford method was
employed to determine the protein concentration. The eluted fractions
containing the target protein were collected and assayed for KSDD
activity. The purified enzyme can be stored at -20°C about half of
month with 10% glycerol, 0.01 mM FAD and 0.1 mM DTT to maintain
its stability.

To determine the optimal temperature for KSDD activity, the
purified KSDD was assayed at pH 7.0 for 15 min at different

(a)
1

Fig. 2. SDS-PAGE analysis of cell-free extract and purified KSDD. (a) Western blot result of
KSDD expressed in C. crenatum. Lane 1: C. crenatum SYPA 5-5/pXM]J19; lane 2: C. crenatum
SYPA 5-5/pXM]J19-ksdd"; lane 3: C. crenatum SYPA 5-5/pXM]19-ksdd". (b) SDS-PAGE
analysis of KSDD expressed in C. crenatum. Lane 1: cell-free extract of control
C. crenatum SYPA 5-5/pXM]19; lane 2: cell-free extract of C. crenatum SYPA 5-5/
PXMJ19-ksdd"; lane 3: cell-free extract of C. crenatum SYPA 5-5/pXMJ19-ksdd"; lane M:
protein marker (Takara Biotechnology Co., Ltd., Dalian, China). (c) SDS-PAGE analysis of
purified KSDD. Lane 1, 2: 10 pL of purified mature His6-KSDD treated; lane M: protein
marker (Takara Biotechnology Co., Ltd., Dalian, China).

temperatures (0°C-60°C). The thermal stability was assayed by
incubating the purified enzyme at temperatures from 0°C to 60°C for
2 h. The residual enzyme activities were measured under standard
assay conditions. The pH optimum of KSDD was examined at 30°C for
15 min at pH range from 3.0 to 10.0 (pH 3.0-pH 6.0, 0.05 M
citrate-sodium citrate buffer; pH 6.0-pH 9.0, 0.05 M Tris-HCI buffer;
pH 9.0-pH 10.0, 0.05 M borax-sodium hydroxide buffer). The pH
stability was determined by incubating the enzyme in different buffers
at 0°C for 2 h and the residual activity was measured at pH 7.0 and 30°C.

The influence of selected metal ions (K™, Na*, Ag™, Ca®*, Mg+,
Mn?7, Cu®>T, Fe*T) and ethylenediaminetetraacetic acid (EDTA) at
1 mM final concentration on the activity of the purified KSDD was
investigated. Most chemicals are chloric compounds except AgNOs.
Thus, we used NaNOs as a control experiment to investigate whether
NO3" affect the results. Relative activity was assayed as a percentage
of the activity without agents. Under different concentration of AD,
Kinetic parameters were investigated with PMS as electron acceptor
at a fixed concentration of 1.5 mM. The K, and V.« values were
determined from Lineweaver-Burk plots.

2.9. Bioconversion of AD by recombinant strains C. crenatum/pXM]J19-ksdd

The bioconversion of AD was carried out in 250 Ml shake flasks
with the recombinants C. crenatum and M. neoaurum ]JC-12. The
cultural conditions of C. crenatum recombinants and M. neoaurum
JC-12 were described previously. Cells were collected by an
SIGMA 3K-15 centrifuge at late exponential phase (ODggo 4-6).
Cell pellets were washed twice with 100 mL 50 mM Tris-HCI
buffer (pH 7.0). After the pellets were resuspended in 50 mL Tris-HCl
buffer (added with 1 mM K*, Na™ and Ca®™), AD (1% (w/v)) and

Table 2
The enzyme activities of KSDD from M. neoaurum JC-12 and recombinant C. crenatum.

Strains Enzyme activity (U/mg total protein)
Extracellular Intracellular
enzyme enzyme

M. neoaurum JC-12 NT 0.32 + 0.06

C. crenatum SYPA 5-5/pXMJ19 NT 0.09 + 0.03

C. crenatum SYPA 5-5/pXM]J19- ksdd" 0.03 + 0.01 1.56 + 0.03

C. crenatum SYPA 5-5/pXM]J19- ksdd" 0.04 + 0.03 2.58 + 0.05

NT, undetectable enzyme activity. All assays were performed with triplicate cultures.
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Table 3
Purification of recombinant KSDD from C. crenatum SYPA 5-5/pXM]J19-ksdd".
Purification stage Total protein (mg) Total activity (U) Specific activity (U/mg total protein) Fold purification Yield (%)
Crude cell extract 214.67 £ 0.06 553.84 £+ 0.03 2.58 + 0.05 1.00 100
Purified enzyme 3.15 4+ 0.04 40.82 + 0.06 12.96 4+ 0.02 5.02 737

hydroxypropyl-p-cyclodextrin (HP-B3-CD, 3% (w/v)) were added into
the biotransformation system, which was carried out for 24 h. The
extraction of steroids from the medium (1 mL) by ethyl acetate was
analyzed by high-performance liquid chromatography (HPLC) and
thin-layer chromatography (TLC). Steroids were analyzed by HPLC
(column: reversed phase Diamonsil C18, UV254 nm detection, liquid
phase: methanol: water (7:3), column temperature: 30°C, flowrate:
1 mL min™!) and TLC (F254 10 x 10 cm in petroleum ether/ethyl
acetate (6:4), staining fluid: 20% sulfuric acid) [30].

3. Results
3.1. Construction of the recombinant C. crenatum SYPA 5-5

The native ksdd' gene sequence was codon optimized for efficient
translation. The synthesized gene ksdd" and native gene ksdd'
were cloned onto an expression vector to generate two recombinant
plasmids pXM]19-ksdd" and pXMJ19-ksdd'. They were verified by
digestion with Hind IIl and BamH I into two DNA fragments. In order
to generate the recombinant strain C. crenatum SYPA 5-5, the
two recombinant plasmids were subsequently transformed into
C. crenatum SYPA 5-5. The recombinant strains were selected with
chloramphenicol and verified by DNA sequencing.

3.2. Overexpression and purification of KSDD

The possible expression of KSDD in C. crenatum SYPA 5-5 was
investigated as follows. Crude cell extract was assayed by SDS-PAGE
and western blotting; the molecular weight of the expressed protein
was about 60 kDa (Fig. 2a, b). The intracellular and extracellular
KSDD activity from C. crenatum SYPA 5-5 was assayed (Table 2). In
the recombinant strains C. crenatum SYPA 5-5/pXM]19-ksdd", the
intracellular KSDD had much higher specific activity than M. neoaurum
JC-12 and C. crenatum SYPA 5-5/pXMJ19-ksdd'. From this we
concluded that, compared with the wild type strain, the KSDD
expression level of the mutant strain had been increased by about
1.6 fold (Table 2). It was also observed that there was no secretion of
KSDD in M. neoaurum JC-12, C. crenatum SYPA 5-5/pXM]J19 and the
recombinant strains. In conclusion, a high activity of KSDD has

achieved in C. crenatum SYPA 5-5. The expression of KSDD has been
significantly improved by codon optimization. Purification of the
recombinant KSDD was carried out by using the Ni-NTA affinity
chromatography. The result of SDS-PAGE analysis of the purified
enzyme is given (Fig. 2c). The recombinant enzyme showed one band
consistent with a molecular mass of about 60 kDa. The purification
resulted in a yield of 7.37% and a purification of 5.02-fold (Table 3).

3.3. Characterization of KSDD

The purified KSDD was assayed at pH 7.0 for 15 min at different
temperatures (0-60°C) to determine the optimal temperature for its
reaction. It revealed that the optimal temperature of KSDD was 30°C
(Fig. 3a). However, thermal stability profiles of the purified KSDD
revealed that it was unstable at temperatures exceeding 30°C. The
enzyme lost more than half of its activity after incubation at 30°C for
2 h (Fig. 3b), which corroborated previous report (KSDD from
Nocardia corallina) [31]. The purified enzyme was also assayed at 30°C
for 15 min at different pH (ranging from pH 3.0 to pH 10.0) to
determine its pH optimum. The result showed that the optimal pH of
KSDD was 7.0 (Fig. 4a). Furthermore, the profile of pH stability
revealed that KSDD was fairly stable within a broad pH range for it
retained more than 75% of its activity in pH ranging from 4.0-10.0
(Fig. 4b).

The effect of selected metal ions and EDTA on KSDD activity was also
discussed in this study (Fig. 5). The results showed that KSDD activity
was strongly stimulated by 1 mM K™, Na™ and Ca? ™, which had been
revealed about other A'-dehydrogenation reaction [32]. However,
in the presence of 1 mM Ag™, KSDD activity decreased to 28.05%
compared to the control experiment. While subjected to the preferred
reaction conditions, using AD as substrate, the purified KSDD
exhibited typical Michaelis—-Menten kinetics. The K, and V.« values
were 8.91 uM and 6.43 mM/min, respectively.

3.4. Efficient production of ADD by the recombinant C. crenatum
When using the whole-cell of the recombinant C. crenatum

pXMJ19-ksdd' and C. crenatum pXMJ19-ksdd" as biocatalysts, the
transformation from AD to ADD was assayed by HPLC (Fig. S1a) and
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Fig. 3. Effect of temperature on KSDD activity (a) and stability (b).
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Fig. 4. Effect of pH on KSDD activity (a) and stability (b).

TLC (Fig. S1b). The results showed that the recombinant C. crenatum
strains, which could over-express KSDD, were surely identified to
have the capability to produce ADD when using AD as substrate. As a
control, there was no ADD accumulated by the strain C. crenatum
SYPA 5-5 harboring pXMJ19. By using recombinant C. crenatum
pXMJ19-ksdd" as biocatalyst, the production of ADD was improved to
8.39 g/L (Fig. 6). The overexpressed KSDD stimulated a shortened
reaction duration about 13-fold, from 132 h to 10 h. As shown in
Table 4, the recombinant strains C. crenatum pXM]19-ksdd" and
C. crenatum pXM]J19-ksdd' showed the maximum conversion rates
from AD to ADD about 83.87% and 58.72% at 10 h. However,
M. neoaurum JC-12 showed the conversion rate from AD to ADD
only 3.56% at 10 h, and the maximum conversion rate of 23% at
132 h (Table 4 and Fig. 6). The results proved that the recombinant
C. crenatum pXMJ19-ksdd" cells could efficiently catalyze the
transformation from AD to ADD.

4. Discussion

It has been reported that genes encoding KSDD1, KSDD2 and
KSDD3 were found in the genome of M. neoaurum. However, KSDD3
performed the main function in steroid pathway and showed specific
activities toward to the substrate AD [33]. Studies have tried to
clone and heterologous express of KSDD from M. neoaurum in
R. erythropolis, Escherichia coli and Streptomyces lividans [21,30,34,35,36].
Unfortunately, the low expression level of recombinant KSDD made it
difficult using biocatalyst to transform AD to ADD. On the other hand,
missing of the characterization of KSDD restricted the use of this
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Fig. 5. Effects of metal ions and EDTA (1 mM) on KSDD activity. CK represents control
experiment: no metal ion or EDTA added.

enzyme, although it had been purified [21]. In this work, we
successfully cloned and overexpressed KSDD from M. neoaurum in
C. crenatum after codon adaption and optimization. The results of
SDS-PAGE and western blotting indicated that a high expression level of
recombinant KSDD (C. crenatum pXM]19-ksdd") was achieved. The
expression level of KSDD was improved approximately 1.65-fold in
C. crenatum after codon optimization. After purification of KSDD, this
work first characterized this enzyme and made the recombinant
C. crenatum pXM]J19-ksdd" as a biocatalyst for transforming AD to ADD.
After characterization of KSDD, there was a huge loss of activity, with
only 7.37% activity remaining for a 5-fold purification, because this
enzyme was not very stable. It has been reported that this enzyme was
not sensitive to carbonyl reagents and little sensitive to metal chelating
agents [37]. Till now, no useful protectant has been reported.
As reported that ions such as K*, Na*, Ca?*, Fe?* and Mg?* could
stimulate the A'-dehydrogenation, we investigated the effect of mental
ions on KSDD activity [32]. The results showed that KSDD activity was
strongly stimulated by 1 mM K™, Na™ and Ca?*". The redox-active ions
such as Ag™, Mn?*, Cu?* and Fe? " might interfere with KSDD activity
assay, and that was why they appeared inhibition effect on KSDD
catalyzed reaction. On account of KSDD was very unstable above 30°C,
in the following whole-cell biocatalysis, the strains were cultivated at
30°C and pH 7.0, which is favorable to maintain the integrity of cell and
KSDD activity. Because of the low solubility of AD, HP-3-CD was added
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Fig. 6. Time course of ADD accumulation from AD by C. crenatum SYPA 5-5/pXMJ19-ksddII,
C. crenatum SYPA 5-5/pXM]J19-ksddl, C. crenatum SYPA 5-5/pXM]J19 and M. neoaurum
JC-12. (All assays were performed by three independent biological experiments, and the
standard deviations of the biological replicates were represented by error bars).
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Table 4
The whole-cell transformation from AD to ADD.

Strain Time for culture (h) Time for transformation (h) The maximum transformation rate (%)
M. neoaurum JC-12 72 132 23.0

C. crenatum SYPA 5-5/pXM]J19 24 10 NT

C. crenatum SYPA 5-5/pXM]J19-ksdd" 24 10 58.72

C. crenatum SYPA 5-5/pXMJ19-ksdd" 24 10 83.87

NT, undetectable ADD. All assays were performed with triplicate cultures.

as an accessory solvent to increase the concentration of substrate. In order
to further increase the conversion rate of AD to ADD, the stimulating
metal ions for KSDD activity were also added.

In this work, C. crenatum, which has been widely employed as a safe
microorganism in the industry, was employed as a novel whole-cell
catalyst for bioconversion of AD to ADD. E. coli and B. subtilis have
been employed for heterologous expression of KSDD [18]. Compared
to E. coli and B. subtilis expression systems, C. crenatum produced more
soluble protein after code optimization of ksdd gene, and this feature
made it easy to purify and study the characterization of KSDD. The
recombinant C. crenatum pXM]J19-ksdd" showed a good performance
of bioconversion from AD to ADD, and might be a promising strain in
steroid industry. In the further work, site-specific mutagenesis of ksdd
gene will be taken into consideration to improve the thermostability
and the specific activity of recombinant KSDD. The protectants for
maintaining KSDD activity will be selected and their mixture will
be optimized on the ration. On the other hand, the optimization of
the transformation system, including two-phase system, aqueous
two-phase system and cloud point system will be applied to further
improve ADD production.
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