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Background: Ethylene is capable of promoting seed germination in some plant species. Mobilization of metals
such as Fe, Cu, Mn, and Zn in mature seeds takes place when seeds are germinating. However, whether
ethylene is involved in the regulation of soybean seed germination and metal element mobilization during
early seed germination stage remains unknown. In the present study, seeds were treated with ethylene
synthesis inhibitor aminoethoxyvinylglycine (AVG) and ethylene precursor 1-aminocyclopropane-1-carboxylic
acid (ACC), and double distilled H2O (ddH20) treatment was used as control. Ethylene emission, ACC synthase
(ACS) expression, ACS enzyme activity and Ca, Zn, Mn, Cu and Fe content in hypocotyls were qualified to
analyze the relationship between ethylene and mobilization of these elements.
Results: The results showed that ACS expression, ACS enzyme activity and ethylene emission peaked at 1 and 7 d
after sowing. AVG inhibited ethylene production, promoted the hypocotyls length, ACS expression and its
activity, concentrations of total and HCl-extractable Zn, and HCl-extractable Fe in hypocotyls, while ACC

caused opposite effects. AVG and ACC treatment had no significantly effects on total and HCl-extractable Ca,
Cu and HCl-extractable Mn. Total Mn concentration was promoted by AVG at 1, 3, and 5 d significantly, while
ACC treatment tended to have no significantly effects on Mn concentration.
Conclusion: These findings suggested that ethylene is at least partly involved in the regulation of soybean seed
germination. Remobilization of Zn and Fe may be negatively regulated by ethylene.
© 2015 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Seed germination involves regulation of a series of metabolic
processes by plant hormones [1]. In some plant species, including
soybean (Glycine max (L.) Merr.), it has been shown that detectable
ethylene production begins with the onset of germination, i.e., with
radicle emergence [2]. Moreover, many reports indicate that ethylene
promotes seed germination [3,4]. The triple response, as described by
Neljubov [5], indicates the plant sensitivity to ethylene. Understanding
the mechanisms underlying the control of seed germination and its
regulation by ethylene is not only of academic interest, but is also
important for improving crop production and yield [6].

Minerals accumulated during seed development constitute less
than 3% of the seed dry mass, yet they form an important pool of
essential nutrients [7]. These mineral reserves are mobilized during
germination and are a source of cofactors for enzymes, which are
required for rapid growth [8]. The cotyledon of a soybean seed is
very important for seed germination, seedling establishment, as well
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as growth and survival because it serves as the main nutrient
resource for young seedlings [1]. Large seed reserves of mineral
nutrients may be of importance in order to support plant adaptation
in micronutrient-deficient soils. Mobilization of metals such as Fe, Cu,
Mn, and Zn in mature seeds takes place during germination and early
seedling development. However, there is limited knowledge regarding
the transport mechanisms of these immobile metal elements during
the process of seed germination.

A large number of solutions have been used for metal extraction
in order to assess the bioavailability of trace elements [8]. Single
extractants may broadly be divided into three main classes:
(1) weak replacement ion salts: MgCl2, CaCl2 and NH4NO3, (2) dilute
solutions of either weak acids: acetic acid, or strong acids: HCl
and HNO3; and (3) chelating agents: pentetic acid (DTPA) and
ethylenediaminetetraacetic acid (EDTA) [9]. The chelating agents
DTPA and EDTA reduce the activity of the free metal ions in solution
by forming complexes with the free metal ions. The second type, acid
extractants are able to release into solution and can be considered as
bioavailability [10,11]. Input of total and extractable metals in the
growing hypocotyls is vital for enhancing seed germination and
seedling growth. The transport and bioavailability of immobile metal
element are dependent on a number of factors in addition to plant
sevier B.V. All rights reserved.
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Table 1
The primers used for RT-PCR and qRT-PCR amplification of GMACS gene.

Target gene Primer Primer sequence (5′–3′) Length (bp) GC % Amplification length (bp)

Actin Actin-F 5′-ACCTCGACATACTGGTGTTATGGTT-3′ 25 44.00
Actin-R 5′-ATACCTCTTTTGGATTGGGCTTC-3′ 23 43.40 81

ACS ACC-F 5′-CACCTCAAATCCCGGTCAA-3′ 19 54.55
ACC-R 5′-AGCAACTGGAGCACACGAAG-3′ 20 40.00 105
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growth regulators [12,13]. Little information is available regarding the
ethylene regulation of immobile metal element transport during
soybean seed imbibition and germination by far. The current study
was carried out to examine ethylene metabolism, and its influence on
the mobilization and bioavailability of immobile metal element during
soybean seed germination, as well as to determine the dynamics of Fe,
Mn, Zn, Ca, and Cu mobilization in hypocotyls.

2. Materials and methods

2.1. Materials and treatments

Soybean seeds of Tiefeng-31 were imbibed in 100 mg/L of
aminoethoxyvinylglycine (AVG), 75 μmoL/L of 1-aminocyclopropane-
1-carboxylic acid (ACC) and double-distilled H2O (ddH2O),
respectively for 4 h and sowed in vermiculite. After thorough
watering, the seeds were incubated in an illumination incubator at
25°C and 65% relative humidity for 7 d. Each treatment was
performed in triplicates (100 seeds). At 1, 3, 5 and 7 d after sowing,
hypocotyls of three treatments were sampled for further analysis.

2.2. Ethylene qualification

Fresh hypocotyls (0.5 g fresh weight) were sealed in an 8 mL vial
and incubated for 4 h in darkness at 30°C. Then, the accumulated
ethylene was quantified by gas chromatography with a glass column
(2 mm × 2 m) of Porapak N (Waters, Milford, MA, USA) at 80°C [14].
Peak areas were determined with a Chromatopak C-R6A system
(Shimadzu, Kyoto, Japan).

2.3. Quantification of ACC synthase (ACS) activity

ACS was extracted and assayed using high performance liquid
chromatography (HPLC) as previously described [15].

2.4. Quantification of ACS expression by RT-PCR and qRT-PCR

Total RNA was extracted from 100 mg hypocotyls using TRIZOL
Reagent method (Invitrogen, Carlsbad, CA). The first strand cDNA
synthesis and RT-PCR were performed using One Step RNA PCR kit
(Takara Biochemicals, Kyoto, Japan) using oligo-dT and random
Table 2
Changes of hypocotyls growth, ACS expression by qRT-PCR, ACS activity, ethylene production

Treatment Time (d) Hypocotyls length (cm) Hypocotyls dry weight (g

AVG 1 0.22 ± 0.01 g 0.0075 ± 0.0002 d
3 1.06 ± 0.03 f 0.0097 ± 0.0003 cd
5 4.57 ± 0.176 b 0.0142 ± 0.0019 b
7 8.49 ± 0.15 a 0.0211 ± 0.0013 a

Control 1 0.22 ± 0.02 g 0.0076 ± 0.0005 cd
3 1.02 ± 0.02 f 0.0095 ± 0.0004 cd
5 2.57 ± 0.19 d 0.0141 ± 0.0033 b
7 4.50 ± 0.24 b 0.0208 ± 0.0015 a
1 0.22 ± 0.02 g 0.0081 ± 0.0003 cd

ACC 3 1.01 ± 0.02 f 0.0099 ± 0.0012 c
5 1.75 ± 0.25 e 0.0149 ± 0.0007 b
7 2.850 ± 0.19 c 0.0211 ± 0.001 a

Data represent the mean ± SD. Different letters within the same column indicated significant
oligonucleotide primers, followed by amplification of the resulting
DNA using polymerase chain reaction. The reaction was performed in
an Eppendorf master cycler, which began with an initial denaturation
step at 95°C for 3 min, followed by 35 cycles of 15 s at 94°C, 30 s at
45°C, 1.5 min at 72°C, and a final 7 min extension at 72°C. qRT-PCR
analysis was performed following the method described by Cheng
[14]. Primers used for RT-PCR and real-time amplification of GMACS
cDNA were designed according to the sequences of soybean ACC
(GMACS) gene. The primer sets are listed in Table 1.

2.5. Quantification of total and HCl-extracted Ca, Zn, Mn, Cu and Fe

Ca, Zn,Mn, Cu and Fe in hypocotyls were quantified using dry ashing
and atomic absorption spectrometry method described by Altundag
[16]. Ca, Zn, Mn, Cu and Fe were extracted with 0.03 M HCl solution
described by Maki [17]. Then, their concentration was determined
with atomic absorption spectrometry [16].

2.6. Data collection and statistical analysis

All experiments were conducted in triplicates. Statistical analysis
was carried out with ANOVA process of SAS version 8.01 (SAS Institute,
Inc., Cary, NC, USA). Means were compared using least significant
difference (LSD) t-test at the 5% level of significance.

3. Results

3.1. Effects of ACC and AVG treatment on hypocotyls growth

Dry weights and lengths of hypocotyls in germination seeds were
measured during the various stages of seed germination (Table 2).
In the control, the hypocotyls length increased from 0.22 ± 0.02 cm at
1 d to 4.50 ± 0.24 cm at 7 d, and their dry weight increased from
0.0076 ± 0.0005 g at 1 d to 0.0208 ± 0.0015 g at 7 d. The results
obtained from AVG and ACC treatments indicated that: a) AVG
treatment strongly promoted hypocotyl length; b) the growth of
hypocotyl length appeared to be more sensitive to AVG treatment
after 5 to 7 d of incubation (the hypocotyl elongation stage); c) the
effects of ACC on hypocotyls length were opposite to that caused by
AVG, and d) in contrast to hypocotyl lengths, hypocotyl dry weight
appeared to be insensitive to AVG or ACC treatments.
during seed germination stage.

) ACS expression ACS activity (nmoL/g·h) Ethylene (ppm/h·g)

0.180 ± 0.042 g 206.88 ± 10.20 fg 4.21 ± 0.23 e
0.120 ± 0.004 g 144.41 ± 5.11 hg 1.90 ± 0.15 f
0.112 ± 0.022 g 35.59 ± 2.15 i 0.85 ± 0.07 f
0.890 ± 0.039 e 254.60 ± 2.67 ef 11.85 ± 0.28 d
1.003 ± 0.006 d 355.20 ± 27.43 e 12.41 ± 0.57 d
0.333 ± 0.007 f 53.46 ± 1.11 hi 2.74 ± 0.28 ef
0.147 ± 0.009 g 34.72 ± 1.80 i 1.86 ± 0.13 f
1.523 ± 0.058 c 785.23 ± 7.40 d 20.75 ± 0.91 b
1.776 ± 0.106 b 1234.68 ± 195.38 b 21.59 ± 0.66 b
0.943 ± 0.022 de 871.27 ± 22.06 cd 11.60 ± 0.75 d
1.458 ± 0.028 c 946.31 ± 29.13 c 16.95 ± 2.30 c
2.807 ± 0.055 a 1436.97 ± 71.45 a 39.12 ± 3.08 a

difference at 5% level by LSD.



Fig. 1. ACS expression changes during seed germination stage by RT-PCR analysis.
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3.2. Effects of ACC and AVG treatments on ethylene emission

To analyze the effects of ACC and AVG treatments on ethylene
emission, GMACS expression, ACS activity and ethylene emission
were determined. Maximum of GMACS mRNA, ACS activity and
ethylene production were observed from 1 d to 7 d (Fig. 1, Table 2).
High value of ethylene emission exhibited an early onset at 24 h,
followed by a 5-fold and 10-fold decline respectively at 3 d and 5 d,
and subsequently reached the maximum level at 7 d. In agreement
Fig. 2. The effect of AVG and ACC treatments on total Zn, Ca, Fe, Mn and Cu concentration
hypocotyls after AVG and ACC treatments; b: Total Ca concentration in the hypocotyls after A
treatments; d: Total Mn concentration in the hypocotyls after AVG and ACC treatments, and e
the mean ± SD. Different letters within the same figure indicated significant difference at 5% l
with ethylene changes, GMACS expression peaked at 1 d and 7 d
(Fig. 1, Table 2). Similarly, ACS activity showed maximum activity at
7 d in the control. GMACS expression, ACS activity, as well as ethylene
production were detectable in the hypocotyls from 1 d to 7 d in AVG
treatment, and the levels of these peaked at 7 d. The levels of ACS
activity and ethylene were respectively 3-fold and 2-fold lower than
those obtained in the control (Table 2). On the other hand, in
comparison to the control, ACC treatment led to a 2-fold increase in
ACS activity and ethylene production after 7 d (Table 2). GMACS
expression was in accordance with the initial stimulation of ACS
activity and ethylene production.

3.3. Total and HCl-extractable Ca, Zn, Mn, Cu and Fe in hypocotyls

In the AVG, ACC and control treatments, Ca, Zn, Mn, Cu and Fe
concentrations differed from each other in different degrees (Fig. 2).
In general, total Zn concentration increased with time, and it was
significantly promoted and deduced by AVG and ACC treatments
respectively at 5 d and 7 d compared with the control (Fig. 2). At the
same sampling day, AVG and ACC treatments had no significant
effects on total Ca and Cu (Fig. 2). AVG treatment significantly
in the hypocotyls during soybean seed germination. a: Total Zn concentration in the
VG and ACC treatments; c: Total Fe concentration in the hypocotyls after AVG and ACC
: Total Cu concentration in the hypocotyls after AVG and ACC treatments. Data represent
evel by LSD.
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promoted total Fe concentrations at 7 d comparedwith the control, while
ACC treatment had no significant effects on total Fe concentration (Fig. 2).
Compared with the control, AVG treatment promoted Mn concentration
at 1, 3, and 5 d significantly, while ACC treatment tended to have no
significant effects on Mn concentration (Fig. 2). The AVG treatment
promoted HCl-extractable Zn and Fe concentration in hypocotyls,
while ACC treatment showed opposite effects (Fig. 3). HCl-extractable
Zn and Fe in AVG treatment were significantly higher than the control
at 7 d (Fig. 3). In contrast, those in ACC were significantly lower than
the control at 7 d (Fig. 3). Compared with the control at the same
sampling day, AVG and ACC treatment had no significant effects on
HCl-extractable Ca, Mn and Cu (Fig. 3). Taken together, total Zn,
HCl-extractable Zn and Fe concentration were promoted and deduced
by AVG and ACC treatment respectively in hypocotyls of soybean seeds.

4. Discussion

4.1. Ethylene is at least partly involved in the regulation of soybean
seed germination

Numerous studies demonstrate that the ability to germinate
correlates with ethylene production, suggesting that ethylene
is involved in the regulation of seed germination and dormancy [4,18].
However, Gianinetti et al. [19] concluded that endogenous ethylene is
not required for dormancy breakage in many species, and germination
Fig. 3. The effect of AVG and ACC treatments on HCl-extractable Zn, Ca, Fe, Mn and Cu in the hy
after AVG and ACC treatments; b: HCl-extractable Ca level in hypocotyls after AVG and AC
d: HCl-extractable Mn level in hypocotyls after AVG and ACC treatments, and e: HCl-extractab
Different letters within the same figure indicated significant difference at 5% level by LSD.
does not strictly depend on ethylene produced by the seed itself.
Increased ethylene production during germination is associated with
an increase in ACO activity, as well as a progressive accumulation of
ACS and ACO transcripts [6,20]. Our study showed that an early
endogenous ethylene emission peak was observed at 1 d after seed
sowing, followed by radicle protrusion through the seed coat, and the
maximum of ethylene emission was observed at 7 d. After ethylene
biosynthesis was promoted by ethylene precursor ACC, hypocotyl
dry weight increased significantly (Table 2). However, in AVG and
control treatment, there was no significant difference in hypocotyl dry
weight at the same day after sowing. In the control, levels of GMACS
expression and ACS activity were in accordance with ethylene
production at 1 and 7 d. Taken together, these results indicated that
ethylene was at least partly involved in the regulation of seed
germination and hypocotyl elongation, and soybean seed germination
was associated with an increase in transcripts and activity of ACS.

4.2. Ethylene and Zn remobilization during soybean seed germination

Zinc (Zn) is essential for many plant functions as it works as a
metal cofactor in transcription factors and other enzymes of DNA
metabolism. Zn is required for ethylene response because it is a
component of ethylene receptor. Month-old Zn-deficient tomato
plants hardly respond to ethylene even overnight, and show
no ethylene-induced epinasty. Thus, Zn deficiency might lead to
pocotyls during soybean seed germination stage. a: HCl-extractable Zn level in hypocotyls
C treatments; c: HCl-extractable Fe level in hypocotyls after AVG and ACC treatments;
le Zn level in hypocotyls after AVG and ACC treatments. Data represent the mean ± SD.
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reduced ethylene-mediated response [21]. It has also been suggested
that there is a substantial remobilization of Zn from seed pools
into the developing roots (radicle) and coleoptile during wheat seed
germination [22]. However, the effect of ethylene on Zn uptake or
remobilization remains unknown. In the present study, the total and
HCl-extractable Zn concentration in hypocotyls increased with seed
germination time in the control, and the results confirmed that
there existed a remobilization of Zn from seed pools into hypocotyls.
Total Zn and HCl-extractable Zn concentration were promoted
and deduced by AVG and ACC treatment respectively (Fig. 2, Fig. 3).
As a component of ethylene receptor, promoted total and HCl-
extractable Zn concentration in AVG treatment may be beneficial for
the sensibility maintenance of ethylene receptor. Similarly, reduced
HCl-extractable Zn concentration may weaken ethylene receptor
sensibility in ACC treatment. In brief, Zn remobilization may be
negatively regulated by ethylene, and Zn remobilization likely in turn
kept the sensibility of ethylene receptor to ethylene within a
reasonable limit in order to adapt to restricted nutrition circumstance.

4.3. Ethylene and Fe remobilization during soybean seed germination

Iron (Fe) plays an important role in the respiration and
photosynthetic processes of plants. It is present in several enzymes of
redox system and is also implied in many enzymatic systems [21]. It
has been shown that ACC addition to Arabidopsis, tomato, and
cucumber plants enhanced the expression of genes that respond to
low Fe supply and mediate Fe uptake and assimilation [23]. On the
contrary, ethylene production increases under Fe deficiency in the
roots of several dicots and non-grass monocots [24]. In general,
HCl-extractable Fe showed obvious declining trend (Fig. 3) due to the
rapid increase of hypocotyl dry weight. Total and HCl-extractable Fe
concentration was promoted and deduced by AVG and ACC treatment
in varying degrees respectively (Fig. 2, Fig. 3). The results likely
indicated that Fe remobilization was negatively regulated by ethylene,
which was not consistent with the previous reports [25]. Mobilization
of vacuolar Fe stores is crucial to support Arabidopsis early
development until efficient systems for Fe acquisition from the soil
take over [26]. In the present study, Fe reserves in cotyledon of seeds
may be enough to meet the early development need of seedling. Thus,
ethylene may promote Fe remobilization or uptake only when Fe
deficiency was obvious. When Fe stores in seeds were abundant
during seeds germination, ethylene may have a negative effect on Fe
remobilization, and its detail mechanism needs further research.
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