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Background: In the field of microbial fermentation technology, how to optimize the fermentation conditions is of
great crucial for practical applications. Here, we use artificial neural networks (ANNs) and support vector
machine (SVM) to offer a series of effective optimization methods for the production of iturin A. The
concentration levels of asparagine (Asn), glutamic acid (Glu) and proline (Pro) (mg/L) were set as independent
variables, while the iturin A titer (U/mL) was set as dependent variable. General regression neural network
(GRNN), multilayer feed-forward neural networks (MLFNs) and the SVM were developed. Comparisons were
made among different ANNs and the SVM.
Results: The GRNN has the lowest RMS error (457.88) and the shortest training time (1 s), with a steady fluctuation
during repeated experiments, whereas theMLFNs have comparatively higher RMS errors and longer training times,
which have a significant fluctuation with the change of nodes. In terms of the SVM, it also has a relatively low RMS

error (466.13), with a short training time (1 s).
Conclusion: According to the modeling results, the GRNN is considered as the most suitable ANN model for the
design of the fed-batch fermentation conditions for the production of iturin A because of its high robustness and
precision, and the SVM is also considered as a very suitable alternative model. Under the tolerance of 30%, the
prediction accuracies of the GRNN and SVM are both 100% respectively in repeated experiments.
© 2015 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Produced by Bacillus subtilis, the nonribosomal lipopeptide antifungal
antibiotic iturin A is structurally composed of two parts. The first part
consists of seven amino acid residues (L-Asn–D-Tyr–D-Asn–L-Gln–L-Pro–
D–Asn–L-Ser) which are formed into a peptide circle. The second part is
a hydrophobic tail with 11–12 carbons [1,2,3]. In terms of treating both
human and animal mycoses, iturin A has been showed to be a potential
bio-resource due to its wide-scale-spectrum antifungal activity [4,5].
According to recent research, the iturin A can also be applied as a
controlling agent to fight against plant pathogens causing a decrease in
crop production, such as southern corn leaf blight [6].

During the past decades, researchers have paid much attention
to the practical production of iturin A due to its foreseeable potential in
biological fields. In order to increase the yield of iturin A, the
optimization method is commonly adopted in creating better
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fermentation conditions. For decades, the optimization of fermentation
has been studied in many ways [7,8]. In a laboratory environment, the
majority of the methods to optimize the fermentation process are
largely based on data obtained from a large amount of experimental
works, which cannot be used in practical applications. Additionally, the
statistic-based methods such as the orthogonal experiment method and
response surface methodology (RSM) [9] cost more manpower and
resources than expected. In order to gain statistics that are suitable for
practical production, researchers brought up the uniform design (UD)
method. So far, the UD method has been successfully applied in
many optimization processes [6,10,11]. Compared with the traditional
statistical methods, the UD can enormously save manpower and
resources in the lab by reducing the number of essential experiments
in different dimensions and allows as many different levels of factors as
it can [6].

With the development of artificial intelligence (AI), artificial
neural networks (ANNs) have been widely applied in predictive
modeling. With a comparatively higher accuracy in modeling and
better ability in generalization, ANNs are able to simulate the
bio-process and predict the results [12,13,14,15]. Compared with
sevier B.V. All rights reserved.
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the traditional statistical methods, ANNs can also model all
non-linear multivariate functions, while the traditional statistical
methods can only model the quadratic functions [16,17,18]. Also, it is
reported that the ANNs are more accurate than the RSMs in many
cases [19,20]. Normally, UDs have relatively-representative and
regularly-distributed patterns. Based on these patterns with high
quality, ANNs are also able to establish equally accurate models with a
comparatively smaller amount of data than it is supposed to require
obtain.

Despite the advantages of ANNs modeling, few studies have
reported using ANNs to reduce the number of experiments. An ANN
model was established based on UD data was conducted by Peng and
colleagues [6]. In their research, the ANN model based on UD data was
adopted in the optimization of iturin A yield and a comparison of the
ANN-GA methods and the UD methods was conducted for the first
time. Adopted widely during variable chemical process [21,22],
this method can be effectively used for applications. However, as a
technician, one may find it difficult to use this method to practical
applications because of its complexity. People may feel confused using
related approaches. Here, an alternative series of user-friendly ANNs
and a support vector machine (SVM) are proposed to seek a better
optimization method in order to increase the yield of iturin A based
on the data from Peng's research [6]. We aim at creating more
alternative methods to improve the simplification of the fed-batch
fermentation conditions for the production of iturin A, so that the
maneuverability of the practical applications can be improved using
novel modeling methods.

2. Materials and methods

2.1. Fed-batch fermentation of iturin A

According to Peng and colleagues' research [6], the separated
B. subtilis ZK8 strain was used for the production of iturin A. The seed
culture-medium contained 2.86 g/L KH2PO4, 3 g/L MgSO4, 25 g/L
glucose and 30 g/L peptone. The slant culture-medium contained
1.5 g/L K2HPO4, 1.8 g/L agar, 1.8 g/L MgSO4·7H2O, 20 g/L peptone and
10 mL/L glycerol. The fermentation culture-medium was prepared
with 0.79 g/L KH2PO4, 0.8 g/L yeast extract, 2.4 g/L soybean protein
powder hydrolysate, 3.8 g/L MgSO4 and 31 g/L glucose. Strain ZK8 was
activated in the slant culture-medium. The activated strain was then
inoculated and incubated in the seed culture medium in a shaker at
30°C with 150 rpm for 20 h. Then, the seed culture was inoculated in
fermentation culture by 10% amount of inoculum for 48 h at 30°C
with 150 rpm. After 24 h of fermentation, the asparagine (Asn),
glutamic acid (Glu) and proline (Pro) were added to the broth in
different concentrations [6]. The yield of iturin A was
determined by titer measurement and the cylinder-plate
method was used to measure the titer of iturin A [6,23,24,25].
According to the experimental results [6], statistical results
were obtained (Table 1).

2.2. ANNs

ANNs [26,27,28] are powerful machine learning techniques
with the functions of estimation and approximation based on the
Table 1
Statistical experimental results of the amino acid concentration (mg/L) and iturin
A titer (U/mL) (data extracted from Peng's research [6]).

Statistical item Factor (mg/L) Iturin A titer (U/mL)

Asn Glu Pro

MIN 50 200 50 10,108
MAX 200 400 200 13,064.1
AVERAGE 119.6 293.52 119.6 12,033.2
inputs. Interconnected artificial neural networks usually consist
of neurons that can calculate values from inputs and adapt to
different situations. Therefore, ANNs are capable of numeric prediction
and pattern recognizing. Recent years, ANNs have gained wide
popularity in inferring a function from observation especially when the
data or the task is too complicated to be dealt with human brains. In
our studies, multilayer feed-forward neural networks (MLFNs) and
general regression neural network (GRNN) were used for developing
alternative models for optimizing the fed-batch fermentation conditions
of iturin A.

2.2.1. MLFNs
MLFNs trained with a back-propagation learning algorithm, are the

most popular neural networks [29,30,31]. They are applied to a wide
variety of chemistry related problems [29].

An MLFN model consists of neurons that are ordered into layers
(Fig. 1). The first layer is called the input layer, the last layer is called
the output layer, and the layers between are hidden layers. For the
formal description of the neurons we can use the so-called mapping
function Г, that assigns for each neuron i a subset Г(i) ⊆ V which
consists of all ancestors of the given neuron. A subset Г(i)‐ 1 ⊆ V
consists of all predecessors of the given neuron i. Each neuron in a
particular layer is connected with all neurons in the next layer. The
connection between the ith and jth neuron is characterized by the
weight coefficient ωij, and the ith neuron by the threshold coefficient
ϑi (Fig. 2). The weight coefficient reflects the importance degree of
the given connection in the neural network. The output value
of the ith neuron xi is determined by [Equation 1 and Equation 2].
It holds that:

xi ¼ f ξið Þ ½Equation 1�

ξi ¼ ϑi þ
X
j∈ri−1

ωi jx j ½Equation 2�

where ζi is the potential of the ith neuron, and function f(ζi) is the
so-called transfer function (the summation in [Equation 2] is
carried out over all neurons j transferring the signal to the ith
neuron). The threshold coefficient can be understood as a weight
coefficient of the connection with formally added neuron j, where
xj = 1 (so-called bias).

For the transfer function, it holds that

f ζð Þ ¼ 1
1þ exp −ζð Þ : ½Equation 3�

The supervised adaptation process varies the threshold coefficientϑi

and weight coefficient ωij to minimize the sum of the squared
Fig. 1. Structure of the MLFN.



Fig. 2. Connection between the two neurons i and j.

Fig. 4. Support vectors determine the position of the optimal hyperplane.
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differences between the computed and required output values. This is
accomplished by minimization of the objective function E:

E ¼
X
0

1
2

x0−x̂0ð Þ2 ½Equation 4�

where x0 and x̂0 are the vectors composed of the computed and required
activities of the output neurons and summation runs over all output
neurons.

2.2.2. GRNN
GRNN was firstly created by Specht [32]. It has a strong prediction

capacity in approximation, prediction, medical diagnosis, chemical
engineering, pattern recognition, and 3D modeling [33,34,35,36,37,38].
In terms of approximation, GRNN usually performed better than
other neural networks in practical applications [38]. The features of
the GRNN are fast learning, consistency, and optimal regression with
large number of samples [39]. A GRNN has four layers: input, pattern,
summation, and output, which are shown in Fig. 3 [39].

Input layer keeps corresponding input automatically and
transfers input vector x to pattern layer. Pattern layer consists of
neurons for training datums. In this layer, the weighted squared
Euclidean distance can be calculated by [Equation 5]. Test inputs
applied to the network are first subtracted from values of pattern
layer neurons. And either squares or absolute values of subtracts
applied to exponential activation function will be summed. Results
are transferred to the summation layer. Dot product of pattern
layer outputs and weights is added by neurons of summation layer.
In Fig. 3, weights are shown by A and B, y values of training data
stored at pattern layer determine their values, and f(x)K denotes
weighted outputs of pattern layer where K is a Parzen window
associated constant. Yf(x)K denotes multiplication of pattern layer
outputs and training data output Y. At output layer, f(x)K divides
Yf(x)K to estimate the desired Y, given in [Equation 6 and
Equation 7] [32,38]:

Dj ¼ x−xj
� �T x−xj

� �
; ½Equation 5�
Fig. 3. Structure of the GRNN.
Y xð Þ ¼

Z ∞

−∞
Y f x; Yð ÞdY

Z ∞

−∞
Y f x; Yð ÞdY

; ½Equation 6�

Y xð Þ ¼
Xp

j¼1
yje −Dj=2σ2

� �
Xp

j
e −Dj=2σ2
� � : ½Equation 7�

2.3. SVM model

SVM is a learning algorithm mainly based on statistical learning
theory [40]. On the basis of the limited information of samples
between the complexity and learning ability of models, this theory
has an excellent capability of global optimization to improve
generalization. In regard to linear separable binary classification,
finding the optimal hyperplane, a plane that separates all samples
with the maximum margin, is an essential principle of SVM [41,42].
Not only does the plane help improve the predictive ability of the
model, but also it helps reduce the error which occurs occasionally
in classifying. Fig. 4 illustrates the optimal hyperplane, with “+”
indicating the samples of type 1 and “-” representing the samples
of type -1.

Fig. 5 shows the main structure of SVM. The letter “K” stands for
kernels [43]. As we can see from the figure, it is a small subset
Fig. 5.Main structure of support vector machine.



Table 2
Best model search in different machine learning models.

Model type Mean RMS error Training time Forecast accuracy

GRNN 457.88 0:00:01 100%
SVM 460.13 0:00:01 100%
MLFN (2 nodes) 760.86 0:00:23 88.89%
MLFN (3 nodes) 526.38 0:00:26 88.89%
MLFN (4 nodes) 848.09 0:00:39 77.78%
MLFN (5 nodes) 1410.73 0:00:50 55.56%
MLFN (6 nodes) 583.13 0:01:07 88.89%
MLFN (7 nodes) 878.71 0:01:23 77.78%
MLFN (8 nodes) 866.83 0:01:51 77.78%
MLFN (9 nodes) 1380.12 0:02:13 55.56%
MLFN (10 nodes) 972.60 0:02:42 66.67%
… … … …
MLFN (25 Nodes) 3032.92 0:02:02 0.00%
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extracted from the training data by relevant algorithm that consists of
the SVM. For classification, choosing suitable kernels and appropriate
parameters is of great importance to get prediction accuracy. However,
a mature international standard currently for us to choose these
parameters is nonexistent. In most circumstances, the comparison of
experimental results, the experiences from copious calculating, and
the use of cross validation that is available in software package are
helping us to solve that problem to some extent [44,45].

3. Results and discussion

3.1. Model development

According to previous research, the production of iturin A yields
by adding various concentrations of Asn, Glu and Pro during the
fed-batch fermentation process [6]. Here, we aim at using novel
ANNs and SVM to fit the concentration levels of the added
component of Asn, Glu and Pro, from which we can use for the
prediction of the iturin A titer.

The concentration levels of Asn, Glu and Pro (mg/L) were set as
independent variables, while the iturin A titer (U/mL) was set as
dependent variable. Since numeric predictions of machine learning
techniques are completely based on existing data, the data should be
divided into two sets before model developments, the training and
testing sets. Training set help programs “learn” the regulation of data
while testing set is used for validating the trained model after a
training process. Here, 65% data group was set as training set, while
Fig. 6. Results of repeated computati
35% data group was set as testing set. The ANN prediction models
were constructed by the NeuralTools® software (trial version, Palisade
Corporation, NY, USA) [46,47,48]. We chose the GRNN and MLFN as
the training algorithms. The SVMwas developed with Matlab software.

We used root mean square (RMS) error and training time as the
indicators to measure the performances of the ANNs and SVM
(Table 2). The number of nodes of MLFNs were set from 2 to 25, from
which we tried to find out the change regulation of the MLFNs when
dealing with the development process.

Table 2 indicates that the GRNN, SVM andMLFNswith 3 and 6 nodes
have comparatively low mean RMS errors (477.88, 460.13, 526.38 and
583.13 respectively). It is clear that the GRNN and SVM have the
lowest RMS errors and the shortest training times, while the MLFNs
have comparatively higher RMS errors and longer training times. To
determine the accuracy of predictions, the forecast accuracy was used
as an indicator. In current applications, the empirical tolerance of
ANNs is 30%, which means that a single prediction result can be
considered as “good prediction” when the relative error is lower than
30% of the actual value. Here, the forecast accuracy is the percentage
of the tested sample of “good prediction” in the total testing set.
Table 2 shows that the forecast accuracy (under the tolerance of 30%)
of the GRNN and SVM are both 100%. Here, we discuss the availability
of the GRNN, SVM and MLFNs respectively in order to determine the
most suitable model for the design of the fed-batch fermentation
conditions for the production of iturin A.
3.2. Comparison between the GRNN and MLFNs

As for the GRNN, it has the lowest RMS error and the shortest
training time during our research, compared with other 24 MLFNs.
And according to the robustness of the principles of the GRNN [32,38],
it has a high reproducibility, which has an overwhelming advantage
compared to other ANNs during our research. In order to test the
robustness of the GRNN, computational experiments for the GRNN
were repeated, which are shown in Fig. 6.

Fig. 6 shows the RMS errors of theGRNN in repeated experiments. It
is significant that there is a stable fluctuation during the
experiments, which shows that the GRNN for the optimization
process is robust. More importantly, the mean RMS error is
relatively low, which ensures the availability of the GRNN. Under
the tolerance of 30%, the prediction accuracy of the GRNN is 100%
in all repeated experiments.
onal experiments for the GRNN.



Fig. 7. RMS errors and training times of MLFNs with the change of nodes.
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To illustrate the change regulation of different MLFNs, Fig. 7 is used
for showing the RMS errors and training times of MLFNs with
different nodes.

It can be seen that with the increase of nodes, the RMS errors
and training times of MLFNs become unsteadily fluctuant, which
highly corresponds to the fluctuation character of the MLFN
Fig. 8. Training results of the GRNN. a) Predicted values versus actual values; b) re
principle. It should be mentioned that results in different MLFNs
presented by Table 2 are not the fixed results, because of the
effects of the different random initial values chosen by
the computer when training. However, it is still clear that MLFNs
may have good results (relatively low RMS errors and short
training times) with a relatively low number of nodes.
sidual values versus actual values; c) residual values versus predicted values.



Fig. 9. Testing results of the GRNN. a) Predicted values versus actual values; b) residual values versus actual values; c) residual values versus predicted values.
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For practical applications, one should use related software to
find out the most suitable model for the optimization of the
fed-batch fermentation condition in the range of low number of
nodes. Compared to the GRNN, MLFNs cost longer time and the
fluctuations are not as stable as what the GRNN presents.
Therefore, we still consider that the GRNN is a more suitable
model for the optimization of the fed-batch fermentation
conditions.
3.3. Training and testing results of the GRNN and SVM

Here, we use one of the typical examples of the training and
testing results to present the availability of the GRNN and SVM
respectively. Fig. 8 and Fig. 9 are used to illustrate the training and
testing results of the GRNN, while Fig. 10 is used to illustrate the
testing results of the SVM. The training and testing sets of the
GRNN and SVM are the same.

The capacity for recall of the GRNN for the optimization of
the design is illustrated in Fig. 8, showing the training results of the
GRNN. It shows that the GRNN has a strong capacity for recall. The
predicted values are highly close to the actual values (Fig. 8a),
which indicates that the non-linear fitting effects of the model is
highly decent. The comparisons between the residual values and
actual/predicted values (Fig. 8b and Fig. 8c) also show that the
residual values are relatively low, which suggests the robustness of
the development of the GRNN.

To show the availability of the GRNN after a training process, we use
the data setwhichhas not been used for the trainingprocess. Results are
shown in Fig. 9.

Fig. 9 shows the precise predicted results during the testing process.
Predicted values are close to the actual values (Fig. 9a). Residual values
presented by Fig. 9b and Fig. 9c show that the residual values are
relatively low. Results present the robustness and availability of the
GRNNmodel when testing.

In terms of the testing results of the SVM, Fig. 10 illustrates the
correctness and robustness of the SVM in the prediction section.

Being similar to the results of the GRNN in the aspects of the RMS
error and the training time, the testing results of the SVM are also
highly similar to those of the GRNN. We can see that the SVM can
generate a fairly analogical and precise result, compared to the testing
results of the GRNN.

In sum, the GRNN and SVM are both available for the optimization
of fed-batch fermentation conditions for the production of iturin A.
Both the GRNN and SVM have the lowest RMS errors and the
shortest training times. Compared to Peng's research [6], the GRNN
and SVM are more convenient because of the user-friendly packed
software [46,47,48,49]. Technicians can use the models and
approaches provided by this article in practical applications
without complex operation works.



Fig. 10. Testing results of the SVM. a) Predicted values versus actual values; b) residual values versus actual values; c) residual values versus predicted values.
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3.4. Comparisons with other optimization methodologies

Related different optimization methodologies for biotechnology
were presented in previous reports [6,9,19,20], including regression
analysis, orthogonal experiment method and the RSM. Though these
models have their own advantages (e.g. they do not have high
requirements to computers), they also have many disadvantages
compared to machine learning techniques like ANNs and SVM.
Generally, the overwhelming advantages of ANNs and SVM in
optimization process of biotechnological production are precision,
robustness and time-saving. ANNs and SVMmake predictions strongly
based on the “well-trained” training data set and their programs can
run automatically without too much human intervention. The
non-linear function of ANNs can even develop a powerful non-linear
prediction system, which ensures the precision of predictions [48,49].
The principle of the SVM can strongly ensure robust results [40]. With
the development of computers and programming tools, ANNs and
SVM now can be easily established, which are more time-saving and
user-friendly.
4. Conclusion

According to the modeling results, the GRNN is considered as the
most suitable ANN model due to its highly robustness and precision.
The SVM is also considered as a suitable alternative model due to its
robust and precise testing results. Under the tolerance of 30%, the
prediction accuracies of the GRNN and SVM are both 100% in repeated
experiments. Results indicate that the GRNN and SVM are strong
alternative and operable models for the optimization for the
fermentation conditions of iturin A. Being compared to the MLFNs and
other models provided by previous studies, the GRNN and SVM have
overwhelming advantages including low RMS error, time-saving and
user-friendliness. According to the characteristic of machine learning
models, over-fitting can be avoided with a large scale of training data
because it can get rid of the local over-fitting phenomenon [49,50].
Therefore, with a larger scale of samples, the prediction results
may be improved. We can rationally assume that in further practical
applications, a larger amount of data obtained from mass production
in industry can ensure higher availability and robustness of a model
for optimizing the fermentation conditions of iturin A.
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