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Background: In this study, the detection of nifH and nifD by a polymerase chain reaction assay was used to screen
the potential photosynthetic bacteria capable of producing hydrogen from five different environmental sources.
Efficiency of photo-hydrogen production is highly dependent on the culture conditions. Initial pH, temperature
and illumination intensity were optimized for maximal hydrogen production using response surface
Keywords: methodology with central composite design.

. : Results: Rhodobacter sp. KKU-PS1 (GenBank Accession No. KC478552) was isolated from the methane
nifD . . . .
nifH fermentation broth of an UASB reactor. Malic acid was the favored carbon source while Na-glutamate was the
best nitrogen source. The optimum conditions for simultaneously maximizing the cumulative hydrogen
production (Hpax) and hydrogen production rate (Ry,) from malic acid were an initial of pH 7.0, a temperature
of 25.6°C, and an illumination intensity of 2500 Ix. Hyax and Ry, levels of 1264 ml Hy/I and 6.8 ml Hy/L-h
were obtained, respectively. The optimum initial pH and temperature were further used to optimize the
illumination intensity for hydrogen production. An illumination intensity of 7500 Ix gave the highest values of
Hmax (1339 ml Hy/1) and Ry, (12.0 ml Hp/L-h) with a hydrogen yield and substrate conversion efficiency of
3.88 mol Hy/mol,iate and 64.7%, respectively.
Conclusions: KKU-PS1 can produce hydrogen from at least 8 types of organic acids. By optimizing pH and
temperature, a maximal hydrogen production by this strain was obtained. Additionally, by optimizing the light
intensity, R;,, was increased by approximately two fold and the lag phase of hydrogen production was shortened.

Photo fermentation
Purple-non-sulfur bacteria
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1. Introduction

Alternative energy is one of the solutions to environmental
problems such as global warming and climate change. Among the
alternative energies available, hydrogen has received increasing
attention due to its environmentally friendly characteristics and
high energy content [1]. Biologically, hydrogen can be produced by
dark fermentation, photo-fermentation, biophotolysis, and microbial
electrolysis [2]. Dark fermentation utilizes various substrates to
produce hydrogen at a high rate in which volatile fatty acids (VFAs)
are produced as the main soluble metabolites. VFAs can accumulate in
the effluent that requires additional treatment before being released
into the environment. In addition, the imbalance between acidogens
and methanogens results in digestion failure due to the accumulation
of VFAs with an associated drop in pH [3]. However, VFAs can be
utilized by photosynthetic bacteria to produce hydrogen with a
high hydrogen yield (HY) (i.e., approximately 50% of theoretical
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value (4-6 moL Hy/moOLgjycose)) [4,5]. For this reason, a search for
microorganisms that efficiently produce hydrogen from VFA
containing wastes is needed. Apart from reducing COD loading,
hydrogen can also be produced from these VFA containing wastes.
Examples of wastes containing VFAs are those from the wineries,
distilleries and beverage industries [6,7] as well as the effluent from
hydrogen production process by dark fermentation.

Among the bio-hydrogen producers, the purple non-sulfur
photosynthetic bacteria (PNSB) are regarded as effective in producing
hydrogen from different kinds of substrates containing VFAs and sugar
[8]. Rhodobacter sphaeroides KKU-PS5 used malate [9] and R. sphaeroides
KD131 used succinate to produce hydrogen [10]. Lactate was reported
as the substrate for hydrogen production by R. sphaeroides KD131
[11]. Acetate and butyrate were used by R. sphaeroides 0.U.001 [12]
and Rhodopseudomonas palustris WP3-5 [13] to produce hydrogen,
respectively. Mixed VFAs consisting of acetate, propionate and butyrate
were used by Rhodopseudomonas capsulata to produce hydrogen [14].
Additionally, the effluent from dark fermentation of hydrogen was used
as a substrate to produce hydrogen by R. sphaeroides NRRL-B1727 [15]
and R. sphaeroides RS [16]. Not only VFAs but also other carbon sources
such as glucose were used by palustris Rp. CQK 01 to produce hydrogen
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[17]. PNSB are widely distributed in aquatic and wastewater environments
[18,19,20]. They can be isolated from the environment using conventional
enrichment techniques. However, these methods are time-consuming,
tedious, and require a large number of samples. In order to overcome
these limitations, application of a molecular biology technique, the
polymerase chain reaction (PCR), was used in this study to detect the
potential genes in the isolates responsible for hydrogen production.
Hydrogenase is responsible for the production of hydrogen from organic
acids in dark fermentation, while nitrogenase is responsible for the
production of hydrogen by PNSB [8,21,22]. Mo nitrogenase consists of a
nitrogenase iron (Fe) protein, called dinitrogenase reductase (or nifH)
and a nitrogenase molybdenum-iron (MoFe) protein known as
dinitrogenase, which consists of two subunits denoted alpha (or nifD)
and beta (or nifK) [23,24]. In this study, we employed the PCR assay
developed by Tan et al. [25] for the detection of nifH and nifD. This was
done to screen for potential PNSB capable of producing hydrogen. This
PCR assay offers a quick and efficient pre-identification of PNSB
hydrogen producers [25].

Photo-hydrogen production strictly depends on operating/
operational conditions. Environmental factors such as pH, temperature
and illumination intensity have the greatest impact on hydrogen
production [21,26,27]. The pH influences the ionic concentration at the
active sites and enzyme activity. Temperature affects cell synthesis, HY,
hydrogen production rate (HPR) and substrate conversion efficiency
[26]. PNSB require energy from light to use in ATP synthesis for cell
growth and hydrogen production [28,29]. Additionally, light intensity
affects the irradiation area, cell concentration and surface-to-volume
ratio in the bioreactor [30]. For these reasons, the environmental
factors including pH, incubation temperature, and illumination
intensity needed to be optimized before practical use of the isolates
and to maximize hydrogen production.

To facilitate determination of the optimum conditions, a statistical
experimental design by response surface methodology (RSM)
with central composite design (CCD) was used to overcome the
disadvantages of the conventional one-factor-at-a-time method
[31,32]. RSM with CCD reduces the load of experimental
measurements, saves both time and cost [33,34], as well as minimizes
errors in determining the effects of parameters It is also capable of
determining interactive effects among the treatment variables [31,35].

In this research, we attempted to isolate PNSB capable of producing
hydrogen from different environmental sources using the PCR assay
to detect nifH and nifD genes. Subsequently, the newly isolated
strains were identified, phylogenetically classified, and screened for
carbon and nitrogen utilization. The key culture conditions affecting
bio-hydrogen production included initial pH and incubation
temperature. These variables were optimized by RSM with CCD in
order to achieve maximal hydrogen production and HPR. Furthermore,
the effects of illumination intensity on hydrogen production were
investigated at the optimum initial pH and incubation temperature. The
isolate obtained from this study can potentially be used to treat VFA
containing wastes using an integrated system of dark-fermentative
bacteria and PNSB.

2. Materials and methods
2.1. Source of microorganisms

Hydrogen-producing PNSB were isolated from aquatic and
wastewater treatment facilities. Samples were taken from the
following three aquatic environments: East Sri-Than Lake (EST), Khon
Kaen University, Khon Kaen, Thailand; West Sri-Than Lake (WST),
Khon Kaen University, Khon Kaen, Thailand; and Songkhla Lake (SK),
Phatthalung, Thailand. Additionally, four samples from wastewater
treatment facilities were collected from the stabilization pond of a pig
farm (SPP), Khon Kaen, Thailand; the cesspool of a cassava starch
plant (CCS) Kalasin, Thailand; the facultative pond of a wastewater

treatment plant (FPW), Khon Kaen University, Khon Kaen, Thailand;
and the methane fermentation broth of an upflow anaerobic sludge
blanket (UASB) reactor in our laboratory.

2.2. Isolation of the microorganisms

PNSB were enriched and isolated by successive anaerobic cultivation
under continuous illumination. Briefly, approximately 2 mL of each
sample was inoculated into 18 mL of a basal medium which consisted
of 2 g/L of pL-malic acid as a carbon source, 0.36 g/L of sodium
glutamate as a nitrogen source, and 1 mL/L of trace elements [36].
The basal medium consisted of 0.5 g/L of KH,PO4 0.4 g/L of
MgS0,4 x 7H,0, 0.4 g/L of NaCl, 0.05 g/L of CaCl, x 2H,0, and 1.0 g/L of
yeast extract. The trace elements consisted of 68.2 mg/L of
ZnCl,, 72.7 mg/L of MnSO4 x H,0, 62 mg/L of H3BO3, 190 mg/L
of CoCl, x 6H,0, 17.04 mg/L of CuCl, x 2H,0, 23.77 mg/L of
NiCl, x 6H,0, 62.76 mg/L of Na,MoO,4 x 2H,0, and 5.24 mg/L of
EDTA-Na, x 2H,0. The pH of the medium was adjusted to 6.8 with
the addition of NaOH pellets before autoclaving. Enrichment of the
culture was conducted anaerobically at room temperature (32 + 2°C)
under an illumination intensity of 2500 Ix using light-emitting diode
(LED) lamps (E27 Corn-1205, epiStar). Samples were horizontally
shaken at 150 rpm. After 48 h of incubation, 2 mL of culture was
transferred into another 18 mL of the basal medium. After three cycles
of subculture, a single loop of the liquid culture was streaked onto
basal medium agar plates (1.5% w/v agar) and incubated in an
anaerobic jar under lighted conditions. After 7 d of incubation, red or
pink colonies were selected and re-streaked three times. In this
way, pure cultures were obtained. Each putative PNSB strain was
transferred into serum bottles containing basal medium and incubated
as described above.

2.3. DNA extraction and amplification of nifH and nifD genes by PCR

Total genomic DNA was extracted from 2 mL cultures generated
anaerobically under continuous illumination at 2500 Ix for 2 d. The
total genomic DNA of selected isolates was extracted using the
method described by Tan et al. [25]. PCR amplification of 16S rDNA
was performed using the same conditions for all of the strains. The
specific primers for the detection of the nifH and nifD genes in the
genome of palustris Rp. (GenBank NC005296) were designed by Tan et
al. [25]. The nifH forward primer NH1 (5’-ACT CCA CCC GTC TGA TCC
TC-3’) and nifH reverse primer NH2 (5’-CCG AGC ACG TCA TAG
GAGAC-3’) target a fragment of 253 bp which corresponded to the
genomic location, 5,205,363 - 5,205,615. The nifD forward primer ND1
(5’-TGC TAC CGC TCG ATG AAC TA-3’) and nifD reverse primer ND2
(5’-AAC CCG TCG TAG CCA TGA TA-3’) target fragment of 545 bp which
corresponded to location 5,203,390 - 5,203,934. PCR amplification was
performed in 25 pL aliquots containing 0.5 pL of the DNA template,
1.0 pL of primers (25 uM), 12.5 pL of 2XPCR Master Mix #K0171
(Fermentas), and 11.0 L of distilled water. The PCR was carried out on
a P x 2 thermal cycler (Thermo IEC Inc., Milford, MA, USA) following
the method of Tan et al. [25]. Separation of the PCR products was
achieved by agarose gel electrophoresis for 25 min at 90 V on a 0.8%
(w/v) agarose gel in 1XTBE (Tris-borate EDTA) buffer. The gel was
stained with ethidium bromide for 15 min and visualized on a UV
transilluminator (Dolphin-Doc., Wealtec., Taiwan).

2.4. Strain identification and phylogenetic analysis

The 16S rRNA gene sequences were amplified by PCR using a
universal primer set composed of the forward primer PA (5-AGA GTT
TGA TCC TGG CTC AG-3'), corresponding to positions 19-38. The
reverse primer PH (5'-AAG GAG GTG ATC CAG CCG CA-3'),
corresponding to positions 1541-1561 was also used [37]. The PCR
protocol followed the method of Khamtib et al. [38]. The PCR products
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were purified using a gel extraction method and sequenced using
the BigDye® Terminator cycle sequencing kit, Version 3.1 (1st BASE
Laboratories SdnBhd, Seri Kembangan, Malaysia) in accordance with
the manufacturer's instructions. The partial 16S rRNA gene sequences
were matched using DNA Baser Version 4.12 and identified by
searching in GenBank using BLAST tools [39]. Subsequently, the
sequences of reference microorganisms obtained from GenBank
were aligned using Clustal X [40]. A phylogenetic tree was created to
assess evolutionary distance using the neighbor-joining method [41].
Bootstrapping analysis [42] of 1000 re-samplings was performed to
measure the confidence of the tree topologies using Mega 4 Version
4.0.2.

2.5. Bio-hydrogen production of the isolated PNSB strains using different
carbon and nitrogen sources

The capacity of the KKU-PS1 strain to utilize different carbon and
nitrogen sources for bio-hydrogen production was investigated in
batch fermentation. The different carbon sources tested included
malate, acetate, butyrate, succinate, propionate, formic acid, citrate,
glucose, fructose, arabinose, sucrose, ethanol, methanol, glycerol, and
D-mannitol at a concentration of 2 g/L, with 0.36 g/L (2 mM) of
Na-glutamate as a nitrogen source. The concentration of 2 g/L of
carbon was tested because it is a suitable concentration for the
formation of total VFAs in hydrogen production by Rhodobacter sp.
[13,43]. The capability of the KKU-PS1 strain to produce hydrogen
using different nitrogen sources was examined. The experiments were
conducted at a concentration of 2 mM of organic nitrogen
(Na-glutamate) and inorganic nitrogen (ammonium sulfate) with a
2 g/L of pL-malic acid as the carbon source. Two micromolar of
Na-glutamate was reported as the optimum nitrogen concentration
for obtaining maximal hydrogen production by R. sphaeroides 0.U.001
[12]. Therefore, a nitrogen concentration of 2 mM was used to test the
capability of the KKU-PS1 strain in producing hydrogen. All of the
experiments were performed in 60 mL serum bottles with a working
volume of 40 mL. The fermentation broth contained 36 mL of sterile
hydrogen production medium (HPM) and 10% (v/v) inoculum (cell
concentrations of 106-107 cells/mL). The HPM consists of 2.0 g/L of
pL-malic acid, 0.5 g/L of Na-glutamate, 3.9 g/L of KH,P04, 2.8 g/L of
K,HPO,, 0.2 g/L of MgSO,4 x 7H,0, 0.01 g/L of Na,MO,4 x 2H,0, and
2 mL/L of a stock solution of 5 g/L FeSO, (Fe-EDTA complex). The
initial pH of the HPM was adjusted to 7.0 using either NaOH pellets
or 4 M HCl. Trace elements were added as described above. The
HPM medium was sterilized at 121°C for 15 min before being used
in hydrogen production. All of the above tests were done under

Table 1

anaerobic conditions. The bottles were closed with a rubber stopper
and capped with an aluminum seal. Subsequently, the head space of
the bottles was flushed with argon for 3 min. The serum bottles were
incubated at 30°C, horizontally shaken at 150 rpm, and illuminated
at an intensity of 2500 Ix in an incubator shaker (WIS-10R, Wisd
Laboratory Instruments, Korea) using LED lamps.

2.6. Optimization of initial pH and incubation temperature for
bio-hydrogen production

2.6.1. Experimental design

RSM with CCD was applied to determine the major and interactive
effects of two independent factors (Table 1) i.e., initial pH (6-8) and
incubation temperature (22-38°C). The ranges of initial pH and
temperature were chosen as the result of a literature search. Previous
reports indicated that an initial pH of 7 was found to be optimal for
both cell growth and hydrogen production in PNSB [10,44,45] while
hydrogen cannot be produced at an initial pH of 5 [44,45]. Therefore,
the initial pH tested in this study was in the range of 6-8. There
were several temperature ranges for photo-hydrogen production by
PNSB. For example, the temperature range hydrogen production
by Rhodobacter sp. was between 31-36°C [31] and 27.5-32.5°C
for Rp. palustris CQK 01 [17]. Thus, in order to cover the possible
optimum temperature for hydrogen production by the KKU-PS1
strain, fermentation at 22-38°C was studied. Maximum cumulative
hydrogen production (Hpax) and maximum hydrogen production
rate (Ry,) were selected as the desirable responses in a batch culture.
The statistical analysis and test factors of X; were coded as x; values
according to the following [Equation 1]
X; = (Xj— Xg)/AX; [Equation 1]
where X; is the coded value of the variable, X; is the actual value of the
independent variable, Xq is the actual value of X; at the center point
and AX; is the step change value. A quadratic model [Equation 2] [46]
was used to optimize the key environmental factors.

Y, = Bo + EBiXi + EBHX? + EBinin [Equation 2]

where Y; is the predicted response (Hmax Or Riy), Po is a constant, 3; is the
linear coefficient, B; is the squared coefficient, B; is the interaction
coefficient, and x; is the variable. The response variables (Hyax and Ryy,)
were fitted using a predictive polynomial quadratic equation [Equation 2]
in order to correlate the response variable to the independent variables
[47,48]. The test conditions were designed with experimental data.

Central composite experimental design matrix defining initial pH (X;) and incubation temperature (X,) and result on maximum cumulative hydrogen production (Hp,,x) and maximum

hydrogen production rate (Ry,).

Run Initial pH (X4) Incubation temperature Hpmax (mL Ha/L) Rm (mL Hy/L-h) Incubation time
(X2) (d)
Code Actual Code Actual (°C) Observed Predicted Observed Predicted
1 0 7.0 0 30 1128 1124 5.1 5.0 12
2 -1 6.5 -1 26 1166 1299 4.6 4.8 14
3 -2 6.0 0 30 1106 1099 3.1 33 19
4 2 8.0 0 30 686 695 5.0 44 8
5 0 7.0 0 30 1100 1124 5.6 5.0 11
6 -1 6.5 1 34 977 856 35 33 14
7 1 7.5 1 34 783 645 3.1 38 13
8 0 7.0 0 30 1105 1124 53 5.0 12
9 0 7.0 0 30 1109 1124 4.8 5.0 13
10 0 7.0 2 38 182 310 1.9 1.9 7
11 1 7.5 -1 26 990 1106 44 5.4 12
12 0 7.0 0 30 1170 1124 5.1 5.0 12
13 0 7.0 -2 22 1338 1213 5.4 5.0 14

Hmax: maximum cumulative hydrogen production; Ry,: maximum hydrogen production rate.
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Fig. 1. The detection of nifH and nifD genes was used by monoplex and duplex PCR. Lanes 1
and 11: 100 bp marker; 2: 545 bp of nifD; 3: 235 bp of nifH; 4: duplex of nif D and nifH;
5-9: EST, WST, SK, SPP and UASB, respectively; 10: negative control.

Graphical analysis was performed using the statistical software,
Design-Expert 7.0.0 Demo version (Stat-Ease, Inc., Minneapolis, MN,
USA). A differentiation calculation was then used to predict the
optimum values of the different factors simultaneously maximizing
Hiax and Ry, of the new isolate in batch fermentation.

2.6.2. Bio-hydrogen production from malic acid by the new isolate

Seed inocula were grown on basal medium in 60 mL serum bottles
with a working volume of 40 mL, incubated at 30°C, horizontally
shaken at 150 rpm and illuminated at a controlled light intensity of
2500 Ix. After 48 h of incubation, 40 mL of culture was transferred
to 360 mL of basal medium in 600 mL serum bottles. After 24 h
of subculture, the culture was used as the inoculum of a batch
experiment. Malic acid at a concentration of 2 mM was used as the
model substrate to produce hydrogen in this study. This is because
malic acid can be easily used as an energy source for supporting
hydrogen formation by directly entering the tricarboxylic acid (TCA)
cycle [10]. Na-glutamate at a concentration of 3 mM (0.5 g/L) was
used as the nitrogen source. The cultures (mid-log phase) were
harvested by centrifugation at 7000 rpm for 10 min. An initial cell
concentration of 0.52 g cell dry weight (cdw)/L and 10% (v/v)
inoculum was used for hydrogen production. To assess hydrogen
production, the experiment was carried out in 300 mL serum
bottles with a working volume of 180 mL. Hydrogen production was
conducted at different initial pH values and incubation temperatures
according to the design (Table 1). Using the predicted optimum
conditions, the effects of illumination intensities of 2500, 5000, 7500
and 10,000 Ix on hydrogen production by the PNSB isolates were

800 -

600 -

400 -

200 4

Maximum cumulative hydrogen (mL H,/L)

0 100 200 300
Time (h)

Fig. 2. Cumulative hydrogen production by PNSB strain EST, WST, SK, SPP, UASB grown on
pL-malic acid.

Table 2

Comparison PNSB strains on hydrogen production.
PNSB  HY Substrate Himax Rm A R?
strains  (mol Hy/mol maae) degradation (mLHp/L) (mLHy/L-h) (h)

(%)

EST 1.68 37.73 214 3.4 39 099
WST 1.77 18.39 144 29 52 099
SK 0.69 52.92 129 3.8 40 0.99
SPP 1.81 100.00 614 1.9 28 099
UASB 242 100.00 881 4.3 53 098

HY: hydrogen yield; Hpax: maximum cumulative hydrogen production; Ry,: maximum
hydrogen production rate; \: lag phase time; R?: regression coefficient; EST: East
Sri-Than Lake; WST: West Sri-Than Lake; SK: Songkhla Lake; SPP: stabilization pond of a
pig farm; UASB: upflow anaerobic sludge blanket reactor.

examined. All experiments were carried out under anaerobic conditions
as described above.

2.7. Analytical methods

CDW was determined in four replicates using 7 mL culture samples.
After filtration through a 0.45 um membrane, the cells were washed
with distilled water and dried at 85°C for 12 h (modified from
Bianchi et al. [49]). The cell concentration was determined by
measuring the absorbance at 660 nm with a UV-VIS Spectrophotometer
(UVmini-1240, Shimadzu, Japan). An absorbance of 1.5 units was
equivalent to 0.52 g.qw/L. The pH was measured using a digital pH
meter (Sartorius, Germany).

The concentrations of VFAs (malic, acetic, butyric, propionic, lactic,
formic, citric and succinic acids) in the liquid samples were analyzed
using high performance liquid chromatography (HPLC) (Shimadzu
LC-20AD, Shimadzu, Tokyo, Japan), employing refractive index (RI)
and ultraviolet (UV) detectors with an Aminex HPX-87H column
(Bio-Rad Laboratories, Hercules, CA, USA). The oven temperature was
45°C. The mobile phase was 5 mM H,SOy4 at a flow rate of 0.5 mL/min
[50].

The volume of the biogas was measured by releasing pressure from
each of the serum bottles using wetted glass syringes ranging in size
from 5 to 50 mL [51]. The resulting biogas was collected every 12 h or
24 h for the analysis of its composition and hydrogen content using a
Shimadzu GC-2014 apparatus equipped with a 2 m stainless steel
column packed with Shin carbon (50/80 mesh), following Fangkum
and Reungsang [52]. Preparation of the liquid samples prior to HPLC
analysis was performed according to Saraphirom and Reungsang [53].

Fig. 3. Scanning electron microscopy (SEM) image of strain UASB under a JEOL,
JSM-5410LV electron microscope instrument operating at 15 kV and 20,000 X.



T. Assawamongkholsiri, A. Reungsang / Electronic Journal of Biotechnology 18 (2015) 221-230

225

Rhodobacter sp. JA460 (FN543495) (99%)

Rhodobacter sphaeroides JA252 (AM983575) (99%)

Rhodobacter sphaeroides NMBIL-01 (JN256029) (99%)
KKU-PS1

Rhodabacter blasticus (NR (143733) (93%)

Rhodobacter capsulatus (NR 043407) (92%)

Rhodovulum strictum (11 6419) (91%)

Rhodovulum sulfidophilum (JIF794560) (87%)

Rhodospirillum rubrum (D30778) (85%)

Rhodospivilhum salinarum (M39069) (83%)

0.1

Rhodopseudomonas palustris (AJ534609) (54%)

Fig. 4. Phylogenetic trees showing the relationship between stain KKU-PS1 and related species based on 16S rDNA sequences. The bar corresponds to a 10% difference in nucleotide
sequence. The numbers shown next to the nodes indicate percent bootstrap values from 1000 iterations.

2.8. Calculations

Hydrogen gas production was calculated from head-space
measurements of hydrogen composition and the total volume of
hydrogen produced using a mass balance after each time interval [54].
The hydrogen production rate (HPR) (mL H,/L-h) was calculated by
dividing Hyax (mL Hy/L culture) by the incubation time (h). Hy,.x was
calculated using a modified Gompertz equation [55].

The HY (mol Hy/molsypstrate) Was calculated as the total amount of
hydrogen (mol H;) divided by the amount of substrate consumed
(molsypstrate) ON @ molar basis. The amount of hydrogen was
determined using the ideal gas law [Equation 3], where P = pressure
(1 atm), V = Hpax (L Hy/L culture), R = 0.0821 (L atm/K mol), and
T = temperature (K) [56].

Moles of hydrogen gas (n) = PV/RT [Equation 3|

The substrate conversion efficiency is a calculation of how much
substrate has been converted for hydrogen production. The efficiency
was determined by calculating the ratio of hydrogen produced to the

amount theoretically possible from stoichiometric conversion of the
substrate [Equation 4] [57].

Substrate conversion efficiency = mol H, produced/mol H, theoretically possible

[Equation 4|

3. Results and discussion
3.1. Isolation of hydrogen-producing PNSB strains

Single red colonies isolated from the environmental samples were
selected for further investigation. Red colonies indicated the presence
of carotenoids and bacteriochlorophyll [44,58,59]. Most of the isolates
were gram negative except those from CCS and FPW. These isolates
were subsequently analyzed by PCR amplification to detect nifD and
nifH genes before testing for hydrogen production ability.

The monoplex PCR targeting for each gene was individually
performed to estimate the specificity of each primer. The primers for
nifD and nifH yielded amplicons of 545 bp and 235 bp, respectively

Table 3
The effect of different carbon source on hydrogen production.
Carbon source Rhodobacter sp. R. sphaeroides R. sphaeroides R. sulfidophilum
KKU-PS1 ZX-5 KKU-PS5 P5
H, production ODggonm H, production ODggonm H, H,
production production

Organic acid Malate + 3.12 + 229 + ND
Acetate + 4.28 + 1.62 + +
Butyrate + 4.65 + 4.12 + -
Succinate + 2.60 + 244 + +
Lactate + 2.16 + 242 + +
Propionate + 231 + 245 - -
Formic acid - 137 ND ND ND -
Citrate - 0.52 ND ND - -

Carbohydrate Glucose + 3.64 + 2.12 + +
Fructose + 347 + 241 + +
Arabinose - 0.82 - 2.58 + +
Sucrose - 1.61 + 2.05 - +

Other NaCO3 + 1.54 ND ND ND ND
Ethanol - 0.94 - 1.87 - ND
Methanol - 0.69 ND ND ND ND
Glycerol - 2.84 ND ND ND +
Dp-mannitol + 438 + 295 + -

Reference This study [44] [9] [70]

Notes: + = presence of H, production; - = absence of H, production; 4 = partially utilized and ND = not determined.
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Table 4
Model coefficients estimated by multiple linear regressions (significance of regression
coefficients).

Factors Hmax (ML Hy/L) Rm (mL Hy/L h)
Coefficient estimate p-value Coefficient estimate p-value

Model 1123.57 0.0002 5.00 0.0152
X4 -100.91 0.0223 0.27 0.1789
X5 -225.62 0.0003 -0.79 0.0035
X1X2 -4.45 0.9428 -0.03 0.9268
X2 -56.57 0.0581 -0.30 0.0592
X7 -90.56 0.0085 -0.39 0.0199

Values of “Prob > F” less than 0.0500 indicate factor terms are significant.
Hmax: maximum cumulative hydrogen production; Ry,: maximum hydrogen production
rate.

(Fig. 1, lanes 2 and 3). Then, a duplex PCR containing both primer sets
(ND1 and 2, NH1 and 2) was done to simultaneously detect both
genes (nifD and nifH) (Fig. 1, lane 4). Rp. palustris CGA009 was used
as a positive control (Fig. 1, lanes 2, 3 and 4) while sterile water
was used as a negative control to confirm that no amplicons were
contaminated (Fig. 1, lane 10). The results from PCR amplification
indicated that only five isolates (EST, WST, SK, SPP and UASB)
contained the nifD gene (Fig. 1, lanes 5, 6, 7, 8 and 9) while the
nifH gene was not observed. Even though these five isolates contained
only the nifD gene, they still could efficiently produce hydrogen
when prL-malic acid was used as a carbon source (Fig. 1 and Fig. 2).
Theoretically, Mo nitrogenase activity involves a synergy between the
Fe protein (NifH) and the MoFe protein (NifDK) (Danyal et al. [60];
Seefeldt et al. [61]; Hu and Ribbe [24]). The MoFe protein is an 232
heterotetramer composed of two types of metal clusters [62] that
aggregate into large proteins enabling easy detection of nifD. This site
is important for electron transfer activity and responsible for gene
expression [61].

Among the five isolates, the strain isolated from the methane
fermentation broth of an UASB reactor showed the highest Hy,.x, HY
and R, of 881 mL Hy/L, 2.42 mol Hy/molpajate and 4.3 mL Hy/L-h,
respectively (Fig. 2 and Table 2). Thus, the UASB strain was further
investigated for its hydrogen production capability. The possible
reasons that the UASB strain exhibited the highest bio-hydrogen
production potential might be due to its growth in a methane
fermentation broth containing high concentrations of VFAs. The
feedstock used to produce methane in the UASB was an acidic effluent
(mainly butyric acid and propionic acid (data not shown)) coming
from a sugarcane juice hydrogen fermentation process. Therefore, the
UASB strain might have been able to adjust to the use of malic acid to
produce hydrogen to a greater degree than isolates obtained from
other environmental sources. Moreover, the difference in hydrogen
production capability of the five isolates might have been due to the
activities of the nitrogenase enzyme of each isolate. This speculation is
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supported by the report of Xie et al. [63] who found that nitrogenase
activity had a positive correlation to hydrogen production.

3.2. Characterization of the UASB strain

The UASB strain was gram-negative, with ovoid red colonies and
dimensions of 0.88-1.21 x 0.58-0.62 um. Polar flagella were not
observed. Cells were divided by binary fission. It could produce slime
depending on the carbon source used and formed chains of cells
(Fig. 3). Cultures were yellowish brown under anaerobic conditions
and reddish brown in the presence of air. The absorption maxima
of the UASB strain occurred at 471 and 505 nm due to the presence
of carotenoids, and at 802 and 853 nm due to the presence of
bacteriochlorophyll a [44,64]. The partial 16S rRNA gene sequence
(1300 bp) of the UASB strain was deposited in GenBank with the
Accession No. KC478552. The 16S rRNA gene analysis demonstrated
that the UASB strain showed high similarity (99%) to R. sphaeroides.
Therefore, this strain was named Rhodobacter sp. KKU-PS1. A
phylogenetic tree (Fig. 4) revealed that KKU-PS1 strain was closely
related to strains JA460, JA252 and NMBL-01. The KKU-PS1 strain
showed the ability to grow on a wide variety of carbon sources
(Table 3). The phenotypic characteristics of the KKU-PS1 strain were
consistent with those of R. sphaeroides KKU-PS5 except that the
KKU-PS5 strain could not utilize propionate although it could grow on
arabinose (Table 3). Based on the range of carbon sources used, the
KKU-PS5 strain can be considered a new strain within the species of
R. sphaeroides.

3.3. Effect of carbon sources on bio-hydrogen production

KKU-PS1 was able to use all of the carbon sources tested for cell
growth and was able to use ten of carbon sources tested for producing
hydrogen (Table 3). This suggested that the KKU-PS1 strain had the
potential to produce hydrogen and cells using VFAs and simple sugars
as carbon sources. The highest cumulative hydrogen production of
881 mL H,/L was achieved when malic acid was used as the carbon
source (Table 2, Fig. 2), while maximum cell growth was obtained
when butyrate was used as the carbon source (Table 3). The carbon
source is usually the most important factor affecting the metabolism
of photo-hydrogen production and cell synthesis [65,66]. The majority
of carbon sources are utilized for cell synthesis. Only a few
substrates can be used for photo-hydrogen production under suitable
conditions [26]. Differences in hydrogen production utilizing different
carbon sources were observed [67]. The discrepancy might be due
to the variations in the electron transfer capabilities of cofactor
compounds required for nitrogenase activity. The metabolic pathways
of PNSB are different as well [26].

R, (mLH/L h)

Incubation
temperature (X;) (°C)

B 750
Tnitial pH (X;) 800" 2200

Fig. 5. Response surface plots showing the effect of initial pH and incubation temperature on Hy.x (@) and Ry, (b) from pi-malic acid by KKU-PS1.
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Table 5
Confirmation photo-hydrogen production experiment.

Run Condition initial pH Temperature Hmax (ML Hy/L) R (mL Hy/L -h) HY

O Observed Predicted Observed Predicted (mol Ha/molmaiate)

- Optimum 7.0 25.6 1353 1264 6.8 54 3.92

2 Worst 6.5 26.0 1209 1299 53 4.8 3.50

1 Center 7.0 30.0 1118 1124 4.6 5.0 3.08

7 Height 7.5 34.0 838 645 4.1 3.8 2.28

Hmax: maximum cumulative hydrogen production; Ry,: maximum hydrogen production rate; HY: hydrogen yield.

3.4. Effect of nitrogen source on bio-hydrogen production

The KKU-PS1 strain produced large amounts of hydrogen with
an organic nitrogen source, i.e., Na-glutamate (881 mL H,/L). With
2 mM of inorganic nitrogen, lower amounts of hydrogen were
produced than with the same concentration of inorganic nitrogen,
i.e,, 530 mL H,/L of NH4Cl. This is due to direct solubilization of
organic nitrogen into proteins or transfer into other nitrogenous
cellular components [68]. Microorganisms require more a developed
metabolism to use inorganic nitrogen for amino acid and protein
production [67]. Additionally, a higher ammonium ion concentration
in the form of NH4Cl instead of Na-glutamate inhibited nitrogenase
activity of KKU-PS1 resulting in lower hydrogen production when
NH4Cl was used as a nitrogen source [69].

3.5. Optimization of initial pH and incubation temperature on bio-hydrogen
production and hydrogen production rate from malic acid by KKU-PS1

The effects of the initial pH (X;) and incubation temperature (X,) on
two responses, i.e., Hpax (Yamax) and Ry, (Yrm), were investigated. The

regression models are shown in [Equation 5] and [Equation 6]:

Yhmax = —12419.63 + 3032.64X,

+298.76X,—2.22X, X, —226. 26X —5.66X;  [Equation 5]
Yrm = —76.32 + 17.58X,
+1.39X,—0.02X, X, —1.18X —0.02X; . [Equation 6]

High values of the coefficient of determination (R?) of 0.9040 and
0.8205 for Yymax and Yrm, respectively, indicated that the models
accurately fit the experimental data. In the regressions, the coefficients
for both factors, including the initial pH (X;) and incubation
temperature (X;), were significant with a low p-value (p < 0.05). Only
incubation temperature (X,) affected the response of Ry,. However,
no significant interaction was found between the initial pH and
incubation temperature for Hy,x and Ry, (X;X3) (p < 0.05) (Table 4).

The observed and predicted values of initial pH and incubation
temperature obtained from each condition are summarized in Table 1.
The response surface plot representing the interaction effect of the
initial pH and incubation temperature on H,.x based on [Equation 5]

is shown in Fig. 5a. The results indicated that an increase in the initial
pH and incubation temperature led to a substantial decrease in Hyax.
A peak value of 1304 mL H,/L at an initial pH of 6.6 and an incubation
temperature of 25.1°C was observed. Three-dimensional response
surfaces based on [Equation 6] were plotted in order to determine the
optimum level of each variable and the effects of their interactions on
R (Fig. 5b). Over the experimental range, the highest predicted R,
value of 5.5 mL H,/L-h was obtained at an initial pH of 7.3 and an
incubation temperature of 26°C. Ry, increased following elevation of
the initial pH from 6.00 to 7.3, but R, decreased when the initial pH
was further increased from 7.3 to 8.0. Additionally, the incubation
temperature showed a similar trend to that of the initial pH. Ry,
increased when the incubation temperature was raised from 22
to 26°C, but decreased when the incubation temperature was
greater than 26°C (Fig. 5b). When we optimized the conditions that
simultaneously maximized H;,.x and R,, using [Equation 5] and
[Equation 6], it was found that the maximum H;,,x and R, values of
1264 mL Hy/L and 5.4 mL Hy/L-h, respectively, occurred at an initial
pH of 7.0 and incubation temperature of 25.6°C. pH is a very critical
factor influencing metabolism and HY of PNSB [70]. The active site and
biochemical reaction characteristics of the nitrogenase enzyme, the
enzyme responsible for hydrogen production in PNSB, were affected
by its ionic form at different pH values in the culture medium [26,70].

Temperature has an important function of shifting the metabolic
pathways towards photo-hydrogen production [21]. It affects cell
synthesis, HY, hydrogen production rate and substrate conversion
efficiency of photo-hydrogen producing bacteria [26,71]. The optimum
initial pH of 7.0 in our study was found to be consistent with the other
reports [10,27,44,71,72]. The optimum temperature in our study was
slightly lower than other reports [10,73,74], where the optimum
temperature range of Rhodobacter sp. was between 30 and 32°C.
In contrast, Wang et al. [17] found that the optimal temperature for
Rp. palustris CQK 01 was between 27.5 and 32.5°C.

3.6. Confirmation experiment

To reconfirm the adequacy of the model, batch fermentation
experiments were conducted under the optimum, worst, median and
high conditions (Table 5). The predicted values for simultaneously
maximizing the Hpy,ax and Ry, values, calculated from [Equation 5] and
[Equation 6] under the optimum conditions were 1264 mL H,/L and

Table 6
Comparison of hydrogen production by different microorganisms.
Microorganism Malate con. (mM)  Conditions Himax Substrate conversion  Substrate Incubation ~ Reference
pH Temp. lllumination (mLHy/L) efficiency (%) degradation (%)  time (d)
(°C) intensity
R. sphaeroides KD131 30 7.0 30 6831 Ix* 1190 222 93.1 3 [10]
R. sphaeroides NMBL-01 30 7.0 3242 1800 Ix 2275 68.3 ND 15 [73]
R. sphaeroides RV 45 7.0 32 4000 Ix 284 7.0 934 4 [74]
R. sphaeroides ZX-5 30 7.0 30£1 5000 Ix 3157 71.25 ND 3 [44]
R. sphaeroides 0.U.001 7.5 68+02 32+£2 932Ix* 650 44.9 ND 5 [75]
Rhodobacter sp. KKU-PS1 15 7.0 25.6 7500 Ix 1339 64.7 100 8 This study

ND = not determined; Hy,ax: maximum cumulative hydrogen production.
* = [llumination intensity was calculated (1 Ix = 0.0161028 W/m?) [83].
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Table 7
Effect of illumination intensity on hydrogen production from pr-malic acid by KKU-PS1.
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Light Himax Rm N R? HY Incubation time
(Ix) (mL Hy/L) (mL Hyp/L-h) (h) (mol Hy/molmaiate) (d)
2500 1353 + 34 6.8+ 04 57.1 £ 5.6 0.99 3.92 12
5000 1382 + 38 8.1+ 0.6 479 £ 5.6 0.99 3.95 10
7500 1339 + 24 120+ 0.8 409 + 3.8 0.99 3.88 8
10,000 1258 + 16 133 +£09 39.8 + 2.8 0.99 3.67 8

Humax: maximum cumulative hydrogen production; Ry,,: maximum hydrogen production rate; \: lag phase time; R?: the determination coefficient; HY: hydrogen yield.

5.4 mL H,/L-h, respectively. These values were different from the
observed values by only 6.5% and 21%, respectively. Hence, RSM with
CCD was a useful tool to optimize photo-hydrogen production from
pL-malic acid by KKU-PS1. The results under the optimum conditions
in this study were compared to results from other experiments using
pL-malic acid as a carbon source for hydrogen production (Table 6).
The Hpax value obtained by the KKU-PS1 strain was comparable to
that observed in R. sphaeroides KD131 [10], and greater than the levels
found in R. sphaeroides RV [74] and R. sphaeroides 0.U.001 [75].
However, the H,,.x value of KKU-PS1 was lower than that obtained
using R. sphaeroides NMBL-01 [73] and R. sphaeroides ZX-5 [44].
The KKU-PS1 strain could completely utilize pL-malic acid. This can
be considered its distinguishing characteristic. The maximum malic
utilization by other microorganisms was approximately 93% (Table 6).
The difference in the Hy,,x and substrate conversion efficiency might
be due to differences in illumination intensity, light source, medium
composition and substrate concentrations used in each experiment.
Additionally, it was clearly seen that the efficiencies of PNSB strains in
producing hydrogen were different. These can be due to differences in
mechanisms to transform carbon substrates of each PNSB strain. For
example, if a few carbon substrates are used to produce the cells, a
larger number of carbon substrates can be used to produce hydrogen.
It was reported that a carbon substrate can be used in three ways,
i.e., bacterial cell components, CO,/HCO ™3 and non-volatile organic
carbon compounds [76].

3.7. Effect of illumination intensity on bio-hydrogen production

The results show that illumination intensity plays an important
role in photo-hydrogen production by the KKU-PS1 strain. Its R,
increased with increasing illumination intensity. The maximum Hyyax
was obtained at 10,000 Ix. Hyayx slightly increased when the light
intensity was increased from 2500 to 5000 Ix and then decreased with
further increases in light intensity. Additionally, an increase in light
intensity from 2500 to 10,000 Ix shortened the lag time (Table 7).

From these results, an optimum illumination intensity of 7500 Ix
gave the best conditions for the KKU-PS1 strain. Under these
conditions, maximal values of H,.x, HY, and Ry, of 1339 mL H,/L,
3.88 mol Hy/molpaiate, and 12.0 mL Hy/L-h were attained, respectively.
Simultaneously, the shortest lag times of 40.9 h and 8 d resulted. The
increase in Hyax and Ry, as light intensity increased from 2500 to
5000 Ix which occurred because at a high illumination intensity, more
ATP and reducing power were supplied to the photosynthetic system.
These are essential for photo-hydrogen producing bacteria [77,78].
Large amounts of ATP (in the form of light energy) are required
for nitrogenase activity to produce hydrogen and synthesize the cells.
However, the results indicated that higher illumination intensity
became a limiting factor for hydrogen production. This suggested
that hydrogen production by the KKU-PS1 strain was saturated at an
illumination intensity of 7500 Ix. Light saturation might have occurred
when the photosynthetic system provided excess ATP and Fd;eq
compared to the capacity of nitrogenase enzyme [79]. Photo inhibition
was observed in the studies of Kim et al. [80] who found that the light
saturation occurred when light intensity was higher than 200 W/m?
while Cai and Wang [70] reported that a light intensity of 6000 Ix
became an inhibiting factor for hydrogen production in Rhodovulum
sulfidophilum P5.

In this study, LED were used as the light source because they
have a suitable and specific wavelength range (770-920 nm) for
bacteriochlorophyll a [81]. Moreover, LED light sources have several
additional benefits, including lower energy consumption, lower
heat generation, longer life expectancy and improved performance
regarding photo-hydrogen production [27]. Other types of light
sources used previous studies of photo-fermentation of hydrogen
including halogen [65,80] and tungsten lamps [13,44,82].

3.8. Photo hydrogen production under the optimum conditions
Photo-hydrogen production of the KKU-PS1 strain in batch

fermentation under the optimum conditions (initial pH 7.0, 25.6°C
and 7500 1x) was investigated using pL-malic acid as the carbon
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Fig. 6. Time course of photo hydrogen production during batch fermentation at optimum conditions of initial pH 7.0, 25.6°C and 7500 Ix by KKU-PS1.
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source. The biomass concentration of KKU-PS1 cells rapidly increased to
0.61 gcpw/L within 84 h of inoculation. Then, the biomass concentration
increased slowly remaining within a range of 0.64-0.75 gcpw/L until the
end of the photo-fermentation period (Fig. 6). Hydrogen was produced
after a lag phase of about 32 h and ended at 216 h while the pL-malic
acid was completely utilized by the end of photo-fermentation.
When no carbon source was available (after 168 h) cell growth was
at steady state. However, hydrogen was continuously produced until
216 h. Under optimum conditions, Hpax, Rm and HY values were
1378 mL Hy/L, 7.6 ml Hy/L h, and 3.85 mol Ho/molya1ate, respectively,
with a substrate conversion efficiency of 64.1%.

4. Concluding remarks

Rhodobacter sp. KKU-PS1 was isolated from the methane fermentation
broth of an UASB reactor. The KKU-PS1 strain efficiently utilized ten carbon
sources for hydrogen production. Na-glutamate was a preferred nitrogen
source while malic acid was a preferred carbon source for hydrogen
production. Initial pH and incubation temperature had a significant effect
(p < 0.05) on Hpax and Ry, but there were no interaction effects
between the initial pH and incubation temperature. Simultaneous
maximization of Hyax and Ry, occurred at the optimal initial pH of 7.0,
an incubation temperature of 25.6°C and a light intensity of 2500 Ix.
Under these conditions, maximum H,,,x and R, values of 1353 mL H,/L
and 6.8 mL H,/L-h were obtained, respectively. Further investigations on
the light intensity using the optimum initial pH and incubation
temperature indicated that a light intensity of 7500 Ix increased R, by
approximately two fold. Additionally, an increase in illumination
intensity shortened the lag phase for hydrogen production.
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