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Background: The roots of chicory and the tubers of Jerusalem artichoke are used for the production of inulin.
However, a quality of tubers and roots, i.e. the content of inulin, monosaccarides and disaccharides, depends on
the activity of enzymes implicated in the metabolism of inulin. The knowledge on the changes of activities of
inulin synthesizing and degrading enzymes is limited during plant sprouting, growth and dormancy. It happens
due to complicated measurements of the product of enzymatic reaction in the presence of crude plant extract.
Fructan exohydrolase (β-D-fructan fructohydrolase, FEH, EC 3.2.1.80) is an enzyme responsible for the hydrolysis
of fructans in plants. For fructose as the reaction product measurement, a high-performance liquid
chromatography is usually used. The aim of the study was to choose a simple and suitable method for FEH
activity determination and the measurement of fructose in the presence of plant extracts.

Results: Two chemical methods, i.e. copper(II)–neocuproine and 3,5-dinitrosalicylic acid, and the enzymatic one
based on the reactions catalyzed by hexokinase, phosphoglucose isomerase and glucose-6-phosphate
dehydrogenase were used. Enzymatic method was found to be suitable for FEH activity determination in plant
extracts, and on the contrary to chemical methods no interference effects of compounds from crude plant
extracts were observed.
Conclusion: Enzymatic method is applicable for the routine analysis and will allow performing the investigations
without special equipment on the inulin degrading enzyme in biotechnologically important crops.
© 2014 Pontificia Universidad Católica de Valparaíso. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Fructan exohydrolase (β-D-fructan fructohydrolase, FEH, EC 3.2.1.80)
is an enzyme responsible for the hydrolysis of fructans in plants. FEH
hydrolyzes fructan molecules at the terminal non-reducing (2 → 1) and
(2 → 6) linked β-D-fructofuranose residue and release free fructose
molecule [1,2]. Fructan is a major reserve carbohydrate found in plants
which mainly belong to the Asteraceae, Campanulaceae, Boraginaceae,
Poaceae and Liliaceae families [1]. FEH is found in such plants as Avena
sativa [3], Allium cepa [4], Hordeum vulgare [5], Lolium perenne [6],
Triticum aestivum [7], Smallanthus sonchifolius [8], Vernonia herbacea [9]
and Cynara cardunculus [10]. Two commercially important plants as
Cichorium intybus (chicory) and Helianthus tuberosus L. (Jerusalem
artichoke) also exhibit FEH activity [11,12]. The roots of chicory
).
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and the tubers of Jerusalem artichoke are used for the production
of inulin. It consists of linear β (2 → 1) linked fructofuranosyl units
terminated by a glucose residue through a sucrose type linkage. Inulin is
used in food industry as a soluble dietary fiber and fat or sugar
replacement [13,14]. Inulin is also known as a prebiotic and is able to
stimulate health-promoting bacterial growth in human colon [15,16].
Moreover, inulin is an important material in bioprocesses and has a
high biotechnological potential. Inulin can be used for ethanol and
high-fructose syrup production [17]. A quality of tubers, i.e. the content
of inulin, monosaccarides and disaccharides depends on the activity of
enzymes implicated in the metabolism of inulin. There is a lot of
information on the variation of those carbohydrates in various plant
species. However, the knowledge on the changes of inulin synthesizing
and degrading enzyme activities during plant sprouting, growth and
dormancy is limited [2,18,19,20,21]. It seems that it happens due to
complicated measurements of the product of enzymatic reaction in the
presence of crude plant extract. The product of FEH reaction is a
reducing monosaccharide fructose. Usually, the content of fructose
formed during the reaction is quantified by high-performance liquid
chromatography [4,22,23]. However, this method requires special not
always available equipment and is time consuming. For fructose
quantification, two chemicalmethods and the enzymatic onewere tested.
sevier B.V. All rights reserved.
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2. Materials and methods

2.1. Chemicals

All chemical reagents were of analytical grade. Inulin from Dahlia
tubers, 3,5-dinitrosalicylic acid, neocuproine hydrochloride hydrate,
copper (II) sulfate pentahydrate, potassium–sodium tartrate
tetrahydrate, glycine, and sodium carbonate were purchased from
Sigma-Aldrich Chemical Co. Glucose and fructose were from Fluka.
A kit K-FRUGL 11/05 for the determination of D-fructose and D-glucose
was purchased from Megazyme International Ireland Ltd.

2.2. Plant materials

The tubers and leaves of H. tuberosus L., leaves of C. intybus and
tubers of Dahlia were purchased in the local market. Three cultivars
of H. tuberosus L., namely, Rubik, Sauliai and Albik that had been
previously described were used for experiments [24]. Tubers were
peeled and cut in small pieces using a knife (about 0.3 cm of thickness),
then were frozen and homogenized using a Bosch blender. Leaves
were frozen, then were cut and homogenized. All homogenized
plant materials were stored in plastic bags at -18°C.

2.3. Standard solutions

For constructions of calibration curves, the solutions containing
fructose in the concentration range of 0–4 mM and the solutions
containing additionally 5 or 20 v/v % of plant extract were prepared.
For plant extract preparation, 7.5 g of homogenized plant material in
25 mL of water were kept at 80°C for 15 min.

2.4. Determination of reducing sugars by copper(II)–neocuproine method

The measurement was performed according to the procedure of
Dygert et al. [25].

Two solutionswere prepared. Solution Awas prepared by dissolving
4 g of Na2CO3 in 60 mL of distilled water. Then 1.6 g of glycine was
dissolved and 0.045 g of CuSO4 × 5H2O was added. Finally, solution A
was diluted with distilled water to 100 mL. Solution B was prepared
by dissolving 0.12 g of neocuproine hydrochloride hydrate in
100 mL of distilled water. Solution B was stored in the dark. For the
measurement, 0.4 mL of the mixture of solution A and solution B
(1/1, v/v) was added to 0.03 mL of sample and test tubes were kept
in boiling water for 15 min. The reaction mixture was diluted with
water to 1.08 mL, and the absorbance was measured at 450 nm.

2.5. Determination of reducing sugars by 3,5-dinitrosalicylic acid (DNS)
method

The measurement was performed according to the procedure of
Saqib and Whitney [26]. DNS reagent was prepared by adding 1 g of
DNS and 30 g of sodium potassium tartaric acid to 80 mL of 0.5 N
NaOH. The solution was kept at 45°C for the complete dissolution of
reagents and then cooled down to room temperature and diluted with
distilled water to 100 mL. The solution was stored for two weeks at
4°C. For the measurement, 0.4 mL of DNS reagent was added to 0.1 mL
of sample and test tubes were kept at 95°C for 5 min using Eppendorf
Termomixer Comfort. The absorbance was measured at 540 nm.

2.6. Determination of reducing sugars by enzymatic method

A kit K-FRUGL 11/05 (Megazyme) for the determination of
D-fructose and D-glucose was used. The procedure was performed
accordingly as the manufacturer recommends.
2.7. FEH activity assay

The amount of 4 g of homogenized frozen plant material in 4 mL of
0.1MNa-acetate buffer, pH 4.5, containing 1mMphenylmethylsulfonyl
fluoride and 5mM EDTA was sonicated for 3 min at 10°C using a Sonics
Vibracell VCX 750. Undissolvedmaterialwas removed by centrifugation
at 15,000 × g for 10 min at 4°C and the supernatant was used for FEH
activity determination. A volume of 0.2 mL of supernatant was
added to 0.8 mL of 3% inulin solution in 0.1 M Na-acetate buffer,
pH 4.5 and incubated for 3 h at 30°C. The reaction was stopped by
heating at 95°C for 5 min and liberated fructose was measured by
the enzymatic method using a Megazyme kit K-FRUGL 11/05 in
accordance with manufacturer procedure. One unit of enzyme
activity was defined as the amount of enzyme that liberates 1 μmoL
of fructose per 1 h under the reaction conditions. The specific
activity was defined as μmol × h-1 per g of raw plant material.

3. Results and discussion

3.1. Determination of fructose by copper(II)–neocuproine method

Calibration curves for fructose determination by copper(II)–
neocuproine method in the absence and in the presence of 5 or 20 v/v %
of various plant extracts are presented in Fig. 1. The method is based
on the reduction of Cu(II) to Cu(I) by reducing sugars and the
formation of colored Cu(I)–neocuproine complexes [25]. In the
absence of plant extract the calibration curve is linear in the
concentration range of 0–0.6 mM under procedure conditions
presented in Section 2.4 and is described by the following equation:
y = 1.615X, R2 = 0.992. However, in the presence of extract from H.
tuberosus L. tubers (Fig. 1a) or leaves (Fig. 1b), C. intybus leaves
(Fig. 1c) and Dahlia tubers (Fig. 1d) an obvious deviation from the
linearity is observed. Moreover, when the reaction of reducing sugar
determination had been completed the samples were turbid. The
turbidity developed probably due to the formation of insoluble Cu ion
complexes with some compounds that come from plant extract and
interfere with the procedure of the determination of reducing sugar. It
is obvious that the copper(II)–neocuproine method is not suitable for
an accurate measurement of fructose and the determination of fructan
exohydrolase activity in the crude extracts of plants. It should be
mentioned that copper(II)–neocuproine method was successfully
applied for the determination of reducing sugars in wine [27,28].
There is the possibility to minimize the effect of interfering species by
the dilution of sample. This approach was used for polyphenols
measuring in wine by copper(II)–neocuproine method [29]. However,
this approach cannot be applied to the case of fructan exohydrolase
activity determination. Usually, in the crude plant extract the level of
enzyme activity is not high and the dilution of that extract can
minimize the chance to detect the enzymatic activity.

3.2. Determination of fructose by DNS method

Themethod is based on the reduction of 3,5-dinitrosalicylic acid to the
colorant 3-amino-5-nitro-salicylic acid and the oxidation of the aldehyde
group of reducing sugars to the carboxylic acid [26,30]. The method is
simple, and the reagents are inexpensive. Thus, the method is
widely used for the investigation of polysaccharide bioconversion
as well as for the determination of polysaccharide hydrolase
activity [31,32]. Moreover, it is an assay recommended by the
International Union of Pure and Applied Chemistry [26]. The
calibration curve for fructose is linear in the concentration range of
0.6–4.0 mM and is described by the following equation: y = 0.24X–
0.09, R2 = 0.999 (Fig. 2). It is obvious that DNS method is less
sensitive as compared with the copper (II)–neocuproine method
mentioned above. The addition of plant extract to the fructose sample
drastically influences on the calibration curve for fructose. The interval
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Fig. 1.Calibration curves for fructose determination by copper(II)–neocuproinemethod in the absence ( ) and in the presence of 5 ( ) or 20 ( ) v/v % extract fromH. tuberosus L. (Albik)
tubers (a) and leaves (b), C. intybus leaves (c) and Dahlia tubers (d). Data are presented as mean ± standard deviation of three parallel measurements.
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Fig. 2. Calibration curves for fructose determination by DNS method in the absence ( ) and in the presence of 5 ( ) or 20 ( ) v/v % extract from H. tuberosus L. (Albik) tubers (a) and
leaves (b), C. intybus leaves (c) and Dahlia tubers (d). Data are presented as mean ± standard deviation of three parallel measurements.
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of linearity becomes shorter or the slope of curve changes (Fig. 2). The
effect is observed in the case of addition of all plant extracts, but
it is different dependently on the plant. Deviations from fructose
calibration curve can arise due to the presence of phenolic compounds
in plant extracts and the reaction of DNS as a strong oxidator with
those compounds. The composition of those compounds and their
content differ dependently on the plant. Moreover, it is difficult to
compare the data reported in the literature because the composition
and the amount of phenolic compounds also depend on the extraction
method. Nevertheless, the total amount of phenolic compounds
was found to be fourfold higher in the leaves of H. tuberosus L. as
compared with the tubers [33]. More significant deviation from
fructose calibration curve was also observed in the presence of leaf
extract (Fig. 2b) as compared with the presence of tuber extract
(Fig. 2a). It is difficult to explain a negative interference with DNS
method observed in the presence of low concentration of tuber
extract equal to 5 v/v % (Fig. 2a). Therefore, the DNS method is
not suitable for an accurate fructose measurement and FEH activity
determination in the leaves and the tubers of H. tuberosus L. as well
as in the leaves of C. intybus and the tubers of Dahlia. There are a
lot of publications on the composition and content of phenolic
compounds in the leaves of C. intybus [34,35,36], but we found
no information on these compounds in Dahlia tubers. Previously,
Xu et al. [37] demonstrated the invalidity of DNS method for
glucose measurement in the presence of tea polyphenols.

3.3. Determination of fructose by enzymatic method

The best results were obtained using the enzymatic method.
The determination of fructose by Megazyme kit K-FRUGL 11/05
is based on fructose phosphorylation by hexokinase, subsequent
conversion of the reaction product fructose-6 phosphate to
glucose-6-phosphate by phosphoglucose isomerase and the oxidation
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of glucose-6-phosphate to gluconate-6-phosphate by NADP+ in the
presence of glucose-6-phosphate dehydrogenase. NADPH formed
in the reaction is measured by the increase of absorbance at 340 nm.
If fructose and glucose are present in the same sample the amount of
each sugar can be measured independently or the total amount of
both sugars can be determined simultaneously. As can be seen from
Fig. 3, calibration curves are linear and practically parallel, and their
slope is in the range of 0.22–0.25 independently on the plant extract
tested in the experiment. The calibration curves constructed in the
presence of plant extract are shifted up along the y-axis because some
amount of free fructose and glucose is present in the extracts. If the
amount of glucose is subtracted a shift is smaller, and the curves are
also parallel to the fructose calibration curve constructed without the
addition of plant extract (Fig. 3, open symbols). During the process of
FEH activity determination this shift will be eliminated by a blank
sample. Therefore, no interference of substances from plant extract
was observed, and the enzymatic method is applicable for fructose
measurement and FEH activity determination. Using the enzymatic
method for fructose measurement, we determined FEH activity in
H. tuberosus L. leaves and tubers and in C. intybus leaves without
additional isolation of the enzyme from plant extract (Table 1). It
should be mentioned that FEH activity in Dahlia tubers was not found.
For the experiments, winter tubers were used. It is plausible that at
dormancy the level of FEH activity is very low.

4. Conclusions

For FEH activity determination in the crude extracts of plants and the
measurement of fructose as the reaction product, we tested two popular
chemical methods, i.e. copper(II)–neocuproine and 3,5-dinitrosalicylic
acid, and the enzymatic one based on the reactions catalyzed by
hexokinase, phosphoglucose isomerase and glucose-6-phosphate
dehydrogenase. We found that only enzymatic method is suitable
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Table 1
FEH activity in the crude extracts of various plants.

Name of plant FEH activity (μmoL × h-1)/g

C. intybus leaves 2.2 ± 0.5
H. tuberosus L. leaves 0.17 ± 0.01

H. tuberosus L. tubers of three genetic variants:
Sauliai 2.6 ± 0.01
Albik 5.8 ± 0.02
Rubik 2.5 ± 0.3

Data are presented asmean ± standard deviation of three (for leaves) or two (for tubers)
parallel measurements.

333T. Krivorotova, J. Sereikaite / Electronic Journal of Biotechnology 17 (2014) 329–333
for FEH activity determination in plant extracts. This method is
applicable for routine analysis, and on the contrary to chemical
methods was found to be immune to the interference of various
compounds from plant extract. The possibility to determine FEH activity
in crude extracts, as we exemplified here, will allow establishing the
relationship between enzymatic activity and inulin content at various
life stages of plants important for inulin production.
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