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Calibration of mechanistic kinetic models describing 
microorganism growth and secondary metabolite 
production on solid substrates is difficult due to model 
complexity given the sheer number of parameters 
needing to be estimated and violation of standard 
conditions   of   numerical   regularity.   We   show   how 

*Corresponding author 

advanced non-linear programming techniques can be 
applied to achieve fast and reliable calibration of a 
complex kinetic model describing growth of Gibberella 
fujikuroi and production of gibberellic acid on an inert 
solid support in glass columns. Experimental culture 
data was obtained under different temperature and  
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water activity conditions. Model differential equations 
were discretized using orthogonal collocations on finite 
elements while model calibration was formulated as a 
simultaneous solution/optimization problem. A special 
purpose optimization code (IPOPT) was used to solve 
the resulting large-scale non-linear program. 
Convergence proved much faster and a better fitting 
model was achieved in comparison with the standard 
sequential solution/optimization approach. Furthermore, 
statistical analysis showed that most parameter 
estimates were reliable and accurate.  

Solid substrate fermentation (SSF) can be defined as the 
cultivation of microorganisms on solid substrates devoid of 
or deficient in free water (Pandey, 2003). SSF has several 
advantages (Hölker and Lenz, 2005) over more 
conventional submerged fermentation, and many promising 
lab-scale SSF processes are periodically reported in the 
literature (John et al. 2006; Krasniewski et al. 2006; 
Lechner and Papinutti, 2006; Sabu et al. 2006). 
Unfortunately, very few of these processes enter 
commercial production (Hölker and Lenz, 2005) due to the 
magnitude of the technical difficulties in operating and 
optimizing large scale SSF bioreactors. Since modern 
process control and optimization engineering techniques are 
model based, mathematical modelling should significantly 
improve the chances of successfully transforming an SSF 
process from laboratory to commercial production. 

Nevertheless, a number of factors make modelling SSF 
processes particularly trying: the absence of reliable on-line 
measurements of relevant cultivation variables (like 
biomass and nutrient concentration) and the system’s 
inherent complexity, considering that microorganism 
interaction with the environment and its growth and 
production kinetics are still not well understood on a micro 
scale (Mitchell et al. 2004). In addition, the more useful 
mechanistic dynamic models proposed are highly complex 
and have many parameters that need to be estimated from 
extensive good quality experimental data. Acquiring such 
data is costly and time consuming and yet, even when this 
data is available, attaining reliable parameter estimates is 
far from trivial (Gelmi et al. 2002). 

Therefore, in most current SSF lab-scale studies that 
include modelling, only simple black box or empirical 
kinetics models are used (Machado et al. 2004; Corona et 
al. 2005; Jian et al. 2005). However, these models can only 
reproduce process behaviour encountered in controlled 
conditions that are never found in large scale SSF 
bioreactors and, as such, more often than not commercial 
production yields are disappointingly low compared to lab-
scale performance. 

Parameters in dynamic fermentation models are commonly 
estimated using the sequential solution/optimization 
(SeqSO) procedure (Rivera et al. 2006). Though simple, 
this procedure may be severely limited when fitting 
complex models with many parameters or constraints that 

violate standard numerical regularity conditions, as is the 
case of more mechanistic SSF kinetic models. A high 
degree of heuristics is therefore required to overcome the 
method’s slow convergence and unreliable estimation 
(Gelmi et al. 2002). Alternatively, the simultaneous 
solution/optimization (SimSO) approach (Biegler et al. 
2002) is fast, robust and reliable, and have shown its 
suitability for fitting a variety of complex dynamic models. 

In this work a SimSO procedure is developed to estimate 
model parameters in an SSF kinetic model and the results 
obtained are compared, in terms of fit quality and numerical 
performance, with those obtained with the commonly used 
SeqSO approach. The SimSO procedure developed was 
coded in AMPL and the resulting non-linear program 
(NLP) was solved using IPOPT (Biegler et al. 2002), a 
robust interior point NLP solver specially designed for 
large scale optimization problems. First, the model is 
described in brief and calibration details are provided. 
Then, results are shown and discussed, and finally the main 
conclusions of this work are presented. 

METHODS 

Kinetic model 

We have used a slightly modified version of the lumped 
parameter model proposed in (Gelmi et al. 2002) to 
describe cultivation in glass columns of Gibberella 
fujikuroi grown on an inert support (Amberlite IRA-900), 
urea and starch. The main assumptions of the model are: 

•Oxygen mass transfer resistance is negligible. 
•Negligible temperature and concentration gradients within 
the solid substrate. 
•Nitrogen is the only limiting substrate. 
•Temperature and water activity remain constant 
throughout the cultivation. 

Next, we present a brief description of the model. 

The total amount of measurable dry biomass (Xtot) 
considers active and inactive fungi and is expressed on a 
dry total mass basis (kgd.b.), 

[1] 

Assuming a first order death rate, the active biomass (X) is 
described by, 

[2] 

Here, µ and KD represent the specific growth rate and the 
specific death rate, respectively. 
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The model assumes that urea, U, is degraded to assimilable 
nitrogen, NI, following zero order kinetics and that 
Gibberella fujikuroi uses this nutrient for biomass growth, 

[3] 

As this equation does not satisfy standard numerical 
regularity conditions we replaced equation (3) with the 
smooth approximation, 

[4] 

which is also used in the nitrogen balance below (5); ε is a 
small number. The concentration of assimilable nitrogen is 
given by, 

[5] 

In these equations k is the conversion rate from urea to 
assimilable nitrogen, 0.47 corresponds to urea nitrogen 
content and YX/Ni is the mass yield between biomass and 
assimilable nitrogen. 

The microorganism consumes starch for growth and 
maintenance, 

[6] 

The differential equations for CO2 production and O2 
consumption rates include two terms, one associated with 
growth and the other with maintenance, 

[7] 

[8] 

where YX/CO2 and YX/O2 are the mass yield coefficients 
between biomass and respiratory gases. 

GA3 net production rate includes a growth associated term 
with nitrogen inhibition, β, and a first order degradation 
rate, 

[9] 

The specific growth rate, µ, is modelled using Monod’s 
expression with assimilable nitrogen the limiting nutrient, 

[10] 

Here, µM is the maximum specific growth rate and kN is the 
substrate inhibition constant. A substrate inhibition 
expression describes the specific GA3 production rate, 

[11] 

where βM is the maximum specific GA3 production rate and 
ki is the associated substrate inhibition constant. 

The above model was calibrated in four culture conditions, 

i) Temperature = 25ºC, Water Activity = 0.992. 
ii) Temperature = 25ºC, Water Activity = 0.999. 
iii) Temperature = 31ºC, Water Activity = 0.985. 
iv) Temperature = 31ºC, Water Activity = 0.992. 

Further details regarding the experimental set up and the 
above model are available elsewhere (Gelmi et al. 2000; 
Gelmi et al. 2002). 

Parameter estimation 

We have applied the simultaneous (SimSO) approach to 
solve the parameter estimation problem. The set of 

differential equations,  represented by is 
discretized using orthogonal collocation on finite elements. 
As shown in Figure 1, the integration interval is divided 
into sub-intervals (finite elements) within which the 
integration points are located (collocation points). 

A differential variable is approximated as a polynomial 
within a finite element, on a monomial basis (Rice and 
Duong, 1995). 

[12] 

where yi-1 is the value of the differential variable at the 
beginning of element i, HD(i) is the length of element i, 
dy/dtq,i is the value of the derivative in element i at the 
collocation point q, ncol is the number of collocation points 
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 and is a polynomial of degree ncol, 
satisfying, 

[13] 

Where δq,r is the Kronecker delta 

[14] 

and lq(x) is the basis function for a Lagrange polynomial of 
order ncol, i.e., 

    and    
     [15] 

We have used 69 finite elements and Radau points with two 
internal collocation points per finite element, since this 
configuration achieves a good compromise between 
precision and efficiency and it is easy to add constraints at 
the end of each finite element (Rice and Duong, 1995). 

Integrating equation [15] with Radau points (T1  = 
 0.1550625; T2 = 0.6449948; T3 = 1), and ti,q = ti-1 + 
HD(i)·Tq, leads to values for the polynomial coefficients, 
W(ti,q). 

[16] 

with   

The system [15] approximates the differential variable over 
the respective finite element. To solve the differential 
equations over the entire time domain, we expand these 
equations for each finite element and collocation point. 
This large set of nonlinear algebraic equations represents a 
high-order implicit Runge-Kutta (IRK) approximation to 
the differential equations. 

The model parameters were estimated by weighted least 
squares, 

[17] 

Subject to, 

[18] 

where n is the number of measured variables and Ki, ∆ti, ŷi 
and y  are the number of measured values, the sampling 
interval, the solution of the differential equation and the 
normalization value for variable yi, respectively. The vector 

of estimated parameters is represented by . 

Because parameter k appears only in equations (3-5), and 
has little influence on the remaining state variables, it is 
estimated separately and can be obtained directly from the 
urea consumption curve. In addition, it was also verified 
that parameters mM and kN in equation [9] are correlated, 
since many combinations of these parameter values 
achieved the same data fit. Thus, we obtained the values of 
mM from curves of the accumulated respiratory gases 
(Saucedo-Castañeda et al. 1994), and estimated kN using the 
least squares procedure described above. The values 
obtained of both rates (k and mM) for all cultivation 
conditions are given in Table 1. 

The vector of estimated parameters, therefore, through least 
squares using equations 17 and 18 is θ = (ki, kN, kP, mCO2, 
mO2, mS, KD, YX/CO2, YX/O2, YX/N, YX/S, βM)’. The resulting 
large scale optimization problem was solved in AMPL 
using IPOPT solver (Biegler et al. 2002). 

Results obtained with the procedure described above were 
compared with those obtained with the SeqSO approach, as 
described in Gelmi et al. (2002). 

Statistical analysis 

Once the optimization is carried out, the solution of (17, 18) 

can be formally written as ŷ = F( ), where ŷ is the 
numerical solution of the differential equations (1 - 11). At 
this point we add further computations, explained next, to 
estimate the parameters’ standard deviations (σθi). First, we 
compute numerically the Jacobian J of the numerical 
solution with respect to the optimized parameters: J = 

(δF/δθ) at the point θ = . We do this in MATLAB using 
numerical integration for constructing the solution F for 
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different perturbations ∆θ of the θ parameters and then 
using central finite differences to estimate the Jacobian by, 

[19] 

We have found that using ∆θ = 0.001 θ is sufficient to 
obtain accurate estimates of the Jacobian. 

Now, since the number (n) of experimental points is large 
enough (O(103)), we can use the linear approximation 
(Seber and Wild, 1998) to use the result: 

[20] 

Where θ* is the true parameter vector,  its estimated 
value and σ2 is the variance of model residuals when the 
model is integrated using θ*. Now, according to standard 
procedures (Seber and Wild, 1989), we have used the 

Jacobian and error variance evaluated at  to construct the 
variance/covariance matrix estimate s2(Ĉ)-1, where s2 = ||ŷ-
yOBS||2 /(n-p) is an unbiased estimate of σ2, with yOBS the 
vector of observed values, and p is the number of estimated 
parameters. Parameter standard deviations (σθi) are 
estimated as the square roots of the variance/covariance 
matrix diagonal. The ratio θi/(σθi) is called the t-value for θi 
because it follows a t-distribution with (n-p) degrees of 
freedom (Seber and Wild, 1989). For large values of (n-p), 
as in our cases, t-values larger than 2.0 mean that the 95% 
confidence interval for θi does not include the zero value, 
that is, the parameter θi is statistically significant. 

 RESULTS AND DISCUSSION 

We compare our calibration results for each cultivation 
condition with the fit obtained using the SeqSO approach. 
We were specifically interested in fit quality, the 
performance of the optimization procedure and the value 
and accuracy of the estimated parameters. 

Cultivation condition 1 (T = 25ºC, aw = 0.992) 

In Table 2 we can see that the SimSO estimation of the GA3 
inhibition constant, ki, was highly inaccurate (large σ) yet 
the parameter is significant; the SimSO estimation of the 
GA3 degradation rate constant, kp, was unreliable (t value is 
almost zero). Therefore, it is pointless to compare the two 
methods’ estimation of these parameters. Other parameter 
estimates were reliable (t values above 2) and accurate 
(relatively small σ). We don’t have the estimation of σ for 
the parameters obtained with the SeqSO calibration 
method. Therefore, if we assume that both methods yield 
the same σ it is reasonable, as a first approximation, to 
consider that both parameter estimates are similar when 
their difference is smaller than 3 times the standard 
deviation computed for the SimSO estimate (Wild and 

Seber, 2000). Then, in this cultivation using the two 
fitting condition four parameter estimates differed 
significantly  methods, the Monod’s constant in equation 
[10], kN, the biomass/oxygen yield coefficient, YX/O2, the 
biomass/nitrogen yield coefficient, YX/N, and the maximum 
specific GA3 production rate, βM. 

We should expect therefore model simulations with both 
parameter sets to be similar. This supposition is supported 
by a marginal improvement in the objective function 
(equation 17) (see Table 3). Hence, the SimSO method 
shows only a slightly better fit for the respiratory gases 
(Figure 2) and the other model variables are almost 
indistinguishable for the two methods (not shown). 

For the particular conditions of cultivation 1, the main 
advantage of the SimSO calibration procedure is its 
efficiency and robustness. We started from two different 
guesses and achieved the same estimation parameters in 
less than 30 CPU s on an Athlon XP 2K PC, running 
Windows XP. Here, deviation errors in equation [17] were 
normalized by the maximum measured value. 

Cultivation condition 2 (T = 25ºC, aw = 0.999) 

Under these conditions there was an unusual delay of 20 hrs 
in microorganism growth, which the model does not 
consider. Hence, calibration only included the data after 20 
hrs. Estimates for ki and kP were not significant (t value 
below 2); most of the other parameter estimates were very 
significant (t above 10), as shown in Table 4. The SimSO 
fit presented estimated parameter values different from the 
SeqSO method, except for the death rate constant, KD, the 
biomass/nitrogen yield coefficient, YX/N, and the oxygen 
maintenance coefficient, mO2. 

Despite the differences in parameter values observed in 
Table 4, only oxygen consumption and GA3 production 
curves differed significantly in fittings with the two 
methods (Figure 3). Moreover, the objective function value 
of the SimSO calibration is just 10% lower than the SeqSO 
result (Table 3). 

Here, deviation errors in the objective function were also 
normalized by the maximum measured value. Since starting 
from two different guesses produced the same set of 
estimates in less than 30 sec, just like in the fitting of 
condition 1, the SimSO calibration procedure for this data 
was efficient and robust. 

Cultivation condition 3 (T = 31ºC, aw = 0.985) 

Table 5 shows that under these conditions, the kP SimSO 
estimate was not significant. However, contrary to 
cultivation conditions 1 and 2, the ki estimate was 
significant and more accurate; at least here, contrary to 
cultivations 1 and 2, σ for this parameter is smaller than the 
estimate values allowing us to compare both methods. 
Again, the rest of the parameter estimates were significant 
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and accurate. Table 5 shows that both methods yielded 
different estimates for all model parameters, except for the 
death rate constant, KD. Moreover, a much better fit was 
achieved with SimSO parameter values for biomass, GA3 
and starch (Figure 4) that, in turn, is reflected in the sharp 
reduction in the objective function (Table 3). Here, again, 
deviation errors were normalized by the maximum 
measured value and optimization was started from two 
different initial guesses. Convergence was more difficult 
than for the previous cultivation conditions, requiring more 
iterations and CPU time (Table 3). 

Cultivation condition 4 (T = 31ºC, aw = 0.992) 

Here, ki and kP estimates were not significant, while the 
remaining SimSO parameter estimates were accurate and 
significant (Table 6). Except for mCO2, YX/CO2 and YX/N, 
SimSO parameter estimates did not stray much from the 
SeqSO estimates. Nevertheless, the SimSO procedure 
achieved a better fit for biomass and GA3 (Figure 5), and a 
significantly lower objective function value (Table 3). 
Convergence for these conditions was the most difficult of 
the 4 cases, requiring a 5-fold increase in CPU time than in 
cultivation conditions 1 and 2 (Table 3) and twice as much 
as cultivation 3. We had to normalize by the average 
measured value in equation [17] to get convergence here, 
too. 

Effect of temperature 

In a comparison of cultivation conditions 1 and 4 only the 
death rate was unaffected by temperature (Table 2 and 
Table 6). The other model parameters took on different 
values at the two temperatures. For instance, µM, βM and the 
maintenance coefficients increased with temperature, while 
the yield coefficients and kN decreased with temperature 
(Table 1, Table 2 and Table 6). The net result was that at 
25ºC twice as much biomass was produced, while a little 
more GA3 was produced at 31ºC (results not shown). In 
addition, at 25ºC production of CO2 and consumption of O2 
was a bit higher (results not shown). 

Effect of water activity 

Comparing cultivation conditions 1 and 2, we observe that, 
except for mS, water activity had little effect on the 
maintenance coefficients. Yield coefficients, µM and βM 
were higher for aw = 0.992, while kN and KD were lower 
(Table 1, Table 2 and Table 4). The net result was that for 
aw = 0.992 around 30% more biomass and twice as much 
GA3 were produced (results not shown). Comparing 
cultivations 3 and 4, on the other hand, we observe that for 
aw = 0.985 the death rate was unaffected, kN, βM and 
maintenance coefficients were higher, while the yield 
coefficients and µM were lower (Table 1, Table 5 and Table 
6). Therefore, for aw = 0.985 less biomass and a little more 
GA3 were obtained (results not shown). 

Overall, estimation of GA3 kinetic parameters proved 
awkward. Estimations of kp were unreliable and close to 
zero for all cultivation conditions, and indicates that GA3 
degradation in these experiments was most probably 
negligible. Moreover, estimations of ki were unreliable or 
inaccurate in almost all instances. GA3 is a secondary 
metabolite that Gibberella starts producing when available 
nitrogen in the medium is almost exhausted. Therefore, 
many measurements close to the point of nitrogen 
exhaustion are required to obtain accurate estimations of ki. 
In the range studied, we also verified that βM increases with 
temperature yet it decreases with water activity. Regarding 
variations of growth kinetic parameters, we found the death 
rate was unaffected by temperature and reached a 
maximum for aw = 0.999. In addition, µM increased with 
temperature and water activity, while kN decreased with 
temperature and it appeared to reach a minimum at aw = 
0.992. Maintenance coefficients increased with temperature 
and took their highest values at aw = 0.985. In turn, yield 
coefficients decreased with temperature and appeared to 
reach their maximum at aw = 0.992. 

The importance of this work is the significant reduction in 
convergence time the SimSO approach achieved. As a 
consequence it drastically simplified the parameter 
estimation problem. A typical calibration with the SeqSO 
approach, as described in Gelmi et al. (2002), required 
many runs of the optimization program, each taking several 
hours to converge and requiring a high degree of heuristics 
and, in all, the entire SeqSO procedure took over a week to 
complete. Another important consideration is that for most 
conditions the SimSO calibration strategy achieved a 
significantly better fit for biomass, GA3 and oxygen 
consumption. The method used here is a valuable tool and 
should contribute appreciably to the development and 
testing of complex SSF mechanistic models. 
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APPENDIX 
 

TABLES 
 

Table 1. Urea decomposition rate (k) and maximum specific growth rate (mM) estimated from urea consumption curves 
and from the accumulated respiratory gases (for all cultivation conditions), respectively. 

 
T 

(ºC) aw k 104 

(1/h) 
mM 

(1/h) 

25 0.992 1.287 0.1832 

25 0.999 3.529 0.2253 

31 0.985 1.553 0.1868 

31 0.992 1.243 0.1968 

 
Table 2. Estimates and statistical parameters for cultivation condition 1. 

 
  SeqSO SimSO 

θ Value Value σ t-val 

ki 3E + 05 8E + 05 3E + 05 3E + 00 

kN 7.9E - 04 4.6E - 04 1E - 05 4E + 01 

kP 2E - 03 4E - 09 8E - 04 6E - 06 

mCO2 1.32E - 01 1.32E - 01 5E - 03 3E + 01 

mO2 5.5E - 02 5.4E - 02 2E - 03 3E + 01 

mS 9E - 02 9.9E - 02 7E - 03 1E + 01 

KD 2.66E - 02 2.43E - 02 6E - 04 4E + 01 

YX/CO2 1.2E + 00 1.8E + 00 3E - 01 6E + 00 

YX/O2 2.6E + 00 3.7E + 00 5E - 01 7E + 00 

YX/N 2.10E + 01 2.03E + 01 3E - 01 8E + 01 

YX/S 9E - 01 1.4E + 00 5E - 01 3E + 00 

βM 6.1E - 04 4.5E - 04 2E - 05 3E + 01 
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Table 3. Numerical performance of the optimization with both methods for all cultivation conditions. 

 

Cultivation # (method) Cost function (Eq. 17) Iter. CPU (s) 

1 (SeqSO) 0.035 - - 

1 (SimSO) 0.032 198 29.7 (a) 

2 (SeqSO) 0.092 - - 

2 (SimSO) 0.088 441 28.5 (b) 

3 (SeqSO) 0.047 - - 

3 (SimSO) 0.035 891 74.3 (a) 

4 (SeqSO) 0.141 - - 

4 (SimSO) 0.089 852 149 (a) 

(a) Athlon XP, running Windows XP. 
(b) NEOS server: http://www-neos.mcs.anl.gov/neos/solvers/NCO:IPOPT/solver-www.html. 

 
Table 4. Estimates and statistical parameters for cultivation condition 2. 

 
  SeqSO SimSO 

θ Value Value σ t-val 

ki 2E + 05 1E + 03 1E + 03 1E + 00 

kN 4.7E - 04 6.3E - 04 3E - 05 2E + 01 

kP 0E + 00 2E - 08 1E - 03 1E - 05 

mCO2 1.65E - 01 1.25E - 01 9E - 03 1E + 01 

mO2 7.2E - 02 5.9E - 02 4E - 03 1E + 01 

mS 8E - 02 4E - 02 1E - 02 3E + 00 

KD 3.9E - 02 3.3E - 02 2E - 03 2E + 01 

YX/CO2 1.96E + 00 7.9E - 01 7E - 02 1E + 01 

YX/O2 3.8E + 00 2.4E + 00 3E - 01 8E + 00 

YX/N 1.7E + 01 1.7E + 01 3E - 01 5E + 01 

YX/S 1.83E - 01 1.51E - 01 8E - 03 2E + 01 

βM 5.6E - 04 2.8E - 04 4E - 05 8E + 00 
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Table 5. Estimates and statistical parameters for cultivation condition 3. 

 
  SeqSO SimSO 

θ Value Value σ t-val 

ki 9.530E + 06 1.9E + 04 7E + 03 3E + 00 

kN 3.0E - 04 7.7E - 04 2E - 05 4E + 01 

kP 0E + 00 4E - 10 1E - 03 40E - 07 

mCO2 4.3E - 01 2.4E - 01 1E - 02 2E + 01 

mO2 2.40E - 01 1.50E - 01 7E - 03 2E + 01 

mS 9.0E - 01 3.3E - 01 4E - 02 8E + 00 

KD 2.70E - 02 2.71E - 02 9E - 04 3E + 01 

YX/CO2 7.45E - 01 1.71E - 01 7E - 03 3E + 01 

YX/O2 1.22E + 00 3.8E - 01 2E - 02 3E + 01 

YX/N 5.0E + 00 6.3E + 00 1E - 01 5E + 01 

YX/S 1.01E - 01 4.3E - 02 2E - 03 2E + 01 

βM 3.1E - 03 2.4E - 03 3E - 04 9E + 00 

 
Table 6. Estimates and statistical parameters for cultivation condition 4. 

 
  SeqSO SimSO 

θ Value Value σ t-val 

ki 1E + 05 1E + 07 3E + 07 3E - 01 

kN 2.4E - 04 2.6E - 04 2E - 05 2E + 01 

kP 0E + 00 1E - 09 1E - 03 1E - 06 

mCO2 2.44E - 01 1.96E - 01 7E - 03 3E + 01 

mO2 1.15E - 01 1.02E - 01 4E - 03 3E + 01 

mS 2.1E - 01 1.7E - 01 2E - 02 8E + 00 

KD 2.50E - 02 2.47E - 02 8E - 04 3E + 01 

YX/CO2 1.73E + 00 6.7E - 01 7E - 02 1E + 01 

YX/O2 2.6E + 00 2.0E + 00 4E - 01 6E + 00 

YX/N 9.6E + 00 1.06E + 01 2E - 01 4E + 01 

YX/S 1.8E - 01 1.8E - 01 2E - 02 1E + 01 

βM 8.8E - 04 9.1E - 04 9E - 05 1E + 01 
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FIGURES 
 

 
 

Figure 1. Finite elements and collocation points. 

 

 

 

Figure 2. Model performance with optimal parameter estimates for cultivation condition 1 (25ºC and 
0.992). 
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Figure 3. Model performance with optimal parameter estimates for cultivation condition 2 (25ºC and 
0.999). The SimSO problem was solved with an earlier version of IPOPT (http://www-
neos.mcs.anl.gov/neos/solvers/NCO:IPOPT/solver-www.html). 

 

 

 

Figure 4. Model performance with optimal parameter estimates for cultivation condition 3 (31ºC and 
0.985). 
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Figure 5. Model performance with optimal parameter estimates for cultivation condition 4 (31ºC and 
0.992). 

 


