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ABSTRACT: In response to the side effects of antihypertensive drugs, dietary and lifestyle modification approaches have become 

alternative strategies for prevention and modulation of mild hypertension. Moreover, the use of low molecular size bioactive 

peptides (BAPs) as antihypertensive agents has gained particular attention as a result of the safety, low cost, and consumer 

preference for natural health products compared to drugs. BAPs are produced by enzymatic hydrolysis of food proteins followed 

by post-hydrolysis processing to fractionate the active peptides. Antihypertensive BAPs exert their effect mostly by modulating 

the renin-angiotensin system pathway leading to decrease in vasoactive peptides with concomitant reduction of elevated blood 

pressure associated with hypertension in animal models and humans. This review revisits the prevalence of hypertension and the 

molecular basis of activity, bioavailability and safety of BAPS as well as contradictions and controversies on the use of peptides as 

antihypertensive agents. 
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INTRODUCTION 

Hypertension is a controllable risk factor for developing 

cardiovascular disease and a major global public health concern. 

The prevalent treatment and management strategy against severe 

cases of hypertension involve the use of synthetic antihypertensive 

drugs, but the various side effects associated with therapeutic use 

of these drugs supports the need to discover alternative approaches 

to treatment and management of hypertension. The strategic use of 

food-derived natural compounds against molecular disease targets 

can provide safe and effective modulation of aberrant human health 

processes and diseases. Consequently, food protein-derived 

bioactive peptides (BAPs) have emerged as safer health-promoting 

agents that can be used to manage hypertension in humans. These 

peptides are liberated from native food proteins by specific and 

non-specific enzymatic proteolysis, and have shown tremendous 

prospects in modulating key physiological processes that lead to 

hypertension depending on their bioavailability in target tissues. 

This paper reviews the literature on the prevalence of hypertension 

in various populations as well as the molecular and clinical aspects 

of intervention against hypertension using BAPs, based mainly on 

modulation of the renin angiotensin system (RAS) pathway. 

Current research on the safety and bioavailability of BAPs in target 

cellular locations, and potential application as functional food 

ingredients for prevention and management of hypertension are 

also discussed. 
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DEFINITION AND CLASSIFICATION OF 

HYPERTENSION 

 Hypertension is currently defined by the presence of a 

sustained elevation of systemic arterial pressure above systolic 

(SBP) and diastolic blood pressure (DBP) ratio of 140/90 mmHg. It 

is usually induced by physiologic and/or psychologic stressors. 

Hypertension is a progressive cardiovascular syndrome that results 

from an array of distinct but interrelated etiologies.1 The sustained 

elevation of blood pressure (BP) is usually sequel to the presence of 

early markers of the disease. Hypertension is the most common 

non-communicable disease in the world.2 It is also the world’s 

leading cause of cardiovascular diseases.3 This is largely because 

the progression of hypertension is strongly associated with cardiac 

and vascular abnormalities that negatively affect the functions and 

structures of target organs like the heart, kidneys, brain, 

vasculature, etc, leading to premature and high levels of morbidity 

and mortality.1,4 

 The Joint National Committee on Prevention, Detection, 

Evaluation, and Treatment of High Blood Pressure, in its most 

recent report (JNC 7 report) classifies BP into four categories – 

normal, prehypertension, stage 1 hypertension and stage 2 

hypertension.5 Normal BP (<120/80 mmHg) is described as a case of 

blood pressure elevations and the absence of any identifiable 

cardiovascular disease. Prehypertension (120/80–139/89 mmHg) is 

characterized by occasional or intermittent blood pressure 

elevations and early cardiovascular disease. Stage 1 hypertension 

(140/90–159/99 mmHg) is defined as a case of sustained blood 

pressure elevations or progressive cardiovascular disease. It comes 

with overt early disease markers and early signs of target organ 

disease. This stage develops as a result of persistent structural and 

functional alterations in blood pressure control mechanisms. Stage 

2 hypertension (≥160/100 mmHg) is characterized by a marked and 

sustained blood pressure elevation or advanced cardiovascular 

disease. Cardiovascular disease risk factors, early disease markers 

and target organ disease are not only present, but are also 

progressive with or without cardiovascular disease events. The 

advanced stage of the hypertension continuum is exacerbated by 

aging, BP elevations and persistent disease risk factors.1,5 

EPIDEMIOLOGY 

Risk factors 

 Elevated BP is the single most important modifiable risk factor 

for hypertension. Randomized trials have established that reducing 

BP can prevent cardiovascular events, especially stroke.6,7 

Overweight and obesity are the next important modifiable risk 

factors for hypertension.8,9 The strongest risk factor for incident 

hypertension is overweight/obesity and both are independent and 

significant predictors of the level of blood pressure.10 In fact, 

according to the JNC report,5 a 10 kg weight loss promotes a 5 to 

20 mmHg reduction in blood pressure. A western-styled diet – 

high fat, high sugar, low fibre diet – is another modifiable risk 

factor for hypertension.  The Dietary Approaches to Stop 

Hypertension (DASH) trial illustrated for the first time that 

dietary intervention alone (using the DASH diet that is low in fat, 

low in sugar, and high in fibre among others) significantly lowers 

SBP and DBP by an average of 11.4 and 5.5 mmHg in hypertensive 

subjects and by 3.5 and 2.1 mmHg in non-hypertensive subjects, 

respectively.11 The above magnitude is comparable to that achieved 

by mono-pharmacotherapy for mild hypertension. Moreover, there 

is considerable scientific evidence linking high sodium intake 

(consumed as table salt) to hypertension and increased 

cardiovascular events,12 whereas a high intake of potassium, 

calcium and magnesium reportedly has a BP-lowering effect.10,11 

Furthermore, there is a direct dose-response relationship between 

alcohol consumption and hypertension. This is more so when 

alcohol consumption is in excess of 2 drinks per day.13 The 

reduction of alcohol consumption to less than 2 drinks a day can 

lower blood pressure by up to 4 mmHg.14 Physical inactivity is also 

a modifiable risk factor for hypertension. There is an established 

inverse relationship between physical activity level and blood 

pressure, and higher physical activity levels reduce the risk of 

hypertension by about 15%.15,16 

 The major non-modifiable risk factors for hypertension are age, 

gender and genetics. Hypertension and cardiovascular events occur 

more frequently during and after age 50 years. Hypertension is 

however thought to originate in childhood and adolescence and 

tracks into adulthood.17,18 The hypertension risk advantage that 

premenopausal women have, and lose after menopause is thought 

to be linked to hormones involved in renal salt handling.19 Sex 

differences in the frequency of hypertension is put at 4% in the 

United States, 8% in Canada and 11% in Western Europe.20 

However, from age 61 years onwards, the prevalence of 

hypertension becomes higher in women than in men.21 The 

prevalence of hypertension from a racial/ethnic point of view is 

highest among African Americans. Hypertension in blacks is more 

prevalent (though the incidence of hypertension has been shown to 

differ between blacks and whites only before age 74 years)22, and 

more severe, starts earlier in life, and has higher target organ 

morbidity.23 Blacks have higher peripheral vascular resistance, 

greater salt sensitivity and lower circulating levels of renin. About 

30% of all deaths among African Americans are attributable to 

hypertension.24 Conversion from prehypertension to hypertension 

is also accelerated in blacks25 Other identifiable causes of 

hypertension include sleep apnea, drug induced or related causes, 

chronic kidney disease, primary aldosteronism, renovascular 

disease, chronic steroid therapy and Cushing’s syndrome, 

pheochromocytoma, coarctation of the aorta, and thyroid or 

parathyroid disease.5 

Prevalence of hypertension 

 Kearney et al.3 reported that 26.4% of the adult population 

(26.6% of men and 26.1% of women) in 2000 had hypertension and 

29.2% (29.0% of men and 29.5% of women) were projected to have 

this condition by 2025, an increase to a total of 1.56 billion people. 

Accordingly, the total number of adults with hypertension in 2000 

was estimated at 972 million; 333 million in developed countries 

and 639 million in developing countries. The global hypertension 

prevalence is reportedly lowest in rural India (3.4% in men and 

6.8% in women) and highest in Poland (68.9% in men and 72.5% in 

women).2 In the United States, the prevalence of hypertension 

increased from 23.9% in the period 1988-1994, to 28.5% in the 

period 1999-2000, and to 29% in the period 2007-2008.26 A recent 
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report put the figure for American adults with elevated blood 

pressure requiring treatment, at 150 million (32%).27 An analysis of 

data from the Canadian Heart Health Surveys (CHHS) reported a 

prevalence of 21.1% for Canadians aged 18-74 years.28 A very recent 

report29 shows that the prevalence of hypertension in Canada has 

been fairly stable (19.7% to 21.6%) between 1992 and 2009. The 

latter report shows that 21.6% of the adult population (25.5% of 

men and 17.8% of women) in 1992 had hypertension; 21.3% (23.8% 

of men and 19.0% of women) had the disease in 2006; while 19.7% 

(19.9% of men and 19.4% of women) had hypertension in 2009. 

 In sub-Saharan Africa, the prevalence of hypertension is higher 

in the urban areas compared to the rural areas. Hypertension is 

nevertheless age-dependent irrespective of place of domicile. A 

review by Addo et al.30 shows that the prevalence of hypertension 

(using the JNC 7 criteria) was lowest in rural Nigeria and Eritrea 

(14.5% each) and highest in urban Tanzania (39.1% for women and 

37.3% for men). The prevalence of hypertension in Nigeria has risen 

from 10% in 198731 to 17-20% in 199932 and 32.8% in 2010.33 The 

small sample size of the last mentioned study33 especially in the 

rural areas (n = 370), however, warrants a cautious comparison of 

the data to larger studies. There is yet (to our knowledge) no 

standardized nationally representative study of hypertension in 

Nigeria. In Ghana, the prevalence of hypertension has risen from 2-

5% in 197334 to 28.7% in 200335 and 25.4% in 2006.36 In a recent 

review of more than 70 published studies on hypertension in 

Ghana, it was reported that “most studies reported a crude 

prevalence of hypertension between 25% and 48% using the newer 

threshold of 140/90 mmHg” and “only four studies reported a 

prevalence of less than 20%”.37 Hypertension is without doubts, a 

very important global public health problem that cuts across 

ethnic and geographic differences, albeit to varying degrees. 

PHYSIOLOGICAL BLOOD PRESSURE REGULATION 

AND HYPERTENSION 

 As with other cellular processes, the human physiological 

processes possess strong regulatory mechanisms for controlling 

vascular tone and BP. The renin-angiotensin system (RAS) and the 

kinin-nitric oxide system (KNOS) are the major pathways for 

physiological BP regulation. As shown in Fig. 1, in the RAS 

pathway, angiotensinogen is hydrolyzed to release a decapeptide 

angiotensin (AT)-I by the cleavage of the C-terminal of Leu10 

located at the C-terminal region of the protein in the rate limiting 

step catalyzed by renin (E.C. 3.4.23.15; produced by renal cells). 

Mature renin is a 37 kDa 340 amino acid-residue enzyme that 

belongs to the aspartate protease family, uniquely characterized by 

the presence of two Asp residues in their active sites. In the second 

step of RAS, AT-I is converted to a potent octapeptide 

vasoconstrictor, AT-II, by cleavage of His-Leu from C-terminal by 

zinc metallopeptidase, angiotensin I-converting enzyme (ACE; 

E.C. 3.4.15.1), which is produced predominantly in the lungs.38 

Subsequently, AT-II binds its receptors to trigger a physiological 

cascade that induces vasoconstriction, aldosterone secretion, salt 

reabsorption and water retention.38 On the other hand, the KNOS 

pathway plays a role in the regulation of bradykinin (a 

vasodilator), which elicits physiological processes that lead to 

increased intracellular Ca2+ that forms a complex with calmodulin 

to activate endothelial nitric oxide synthase (NOS), which 

catalyzes the synthesis of nitric oxide (NO) from L-arginine; NO is 

responsible for the vasoregulatory effect of bradykinin.38,39 In 

addition to AT-II synthesis, ACE also catalyzes the hydrolysis of 

bradykinin into inactive fragments leading to additional effects in 

BP elevation (Fig. 1). Excessive enzymatic activity due to over-

expression of ACE can lead to elevation of BP followed by 

hypertension. Thus, the modulation of physiological ACE activity 

has since been exploited towards the discovery of antihypertensive 

agents (e.g. captopril) because its inhibition in hypertensive 

subjects will lead to decreased AT-II and elevated bradykinin 

concentrations with concomitant decrease in BP. Moreover, the 

inhibition of ACE activity does not guarantee effective reduction of 

elevated BP during hypertension because formation of vasoactive 

AT-II can also occur in some tissues via ACE-independent 

pathway catalyzed by chymase, tonin or cathepsin.38,40,41 

Consequently, the inhibition of renin activity with drugs (e.g. 

aliskiren) has been developed as a more effective and selective 

approach towards treatment and management of hypertension.41 

MODULATION OF THE RENIN-ANGIOTENSIN 

SYSTEM BY BIOACTIVE PEPTIDES (BAPS) 

BAPs-induced ACE inhibition 

 The activity of ACE has been widely targeted for 

antihypertensive therapy. The use of peptides as ACE inhibitors 

was first reported for insect venom peptides 42,43 and these reports 

were followed by numerous studies that discovered ACE-

inhibiting peptides from an enormous list of proteins from plant, 

animal and marine sources (see review articles by Hartman & 

Meisel44 and Udenigwe & Aluko45). Fig. 2 shows a schematic 

representation of the processes involved in the production and 

characterization of BAPs from food proteins and evaluation of their 

relevant biological properties. Of particular interest to several 

FIGURE 1 The renin-angiotensin system (RAS) and kinin-nitric 

oxide system (KNOS) pathways for BP regulation showing 

molecular targets for antihypertensive BAPs 
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FIGURE 2 The process of production and processing of BAPs, and evaluation of antihypertensive effects using different models 

research groups are the milk-derived tripeptides or 

lactotripeptides (LTPs), IPP and VPP, derived from β-casein (f74-

76 and f84-86, respectively), which have been widely evaluated for 

antihypertensive properties due to their potent ACE-inhibitory 

activities (IC50 of 5 and 9 µM, respectively).46 The LTPs were 

liberated from β-casein during fermentation with Lactobacillus 

helveticus and Saccharomyces cerevisiae.46 Other ACE inhibiting BAPs 

have been derived from fish and egg proteins but the abundance of 

plant proteins provides an advantage over animal proteins as 

sources of BAPs. In addition to purified peptides, crude enzymatic 

protein hydrolysates have also shown ACE-inhibitory properties, 

and their use as antihypertensive agents is encouraged to reduce 

cost and labour-intensive peptide purification steps. However, the 

use of peptide mixtures in modulating ACE activity might not lead 

to potent activity due to the possible low abundance of the active 

principles within the mixture. Marine-derived proteins have 

shown excellent potential due to the large amount of processing 

by-products, and these underutilized products are now exploited 

as sources of ACE inhibiting BAPs.47 For example, Alcalase-

catalyzed hydrolysis of Atlantic salmon collagen followed by RP-

HPLC purification resulted in the isolation of dipeptides (AP and 

VR), which inhibited ACE activity with IC50 of 0.06 and 0.33 

mg/ml representing 20- and 4-fold enhancement, respectively 

compared to the activity of the crude hydrolysates48; this 

highlights the need for extensive purification for increased potency 

of BAPs. 

 A comprehensive library of food protein-derived ACE-

inhibiting peptides can be found in BIOPEP database 

(http://www.uwm.edu.pl/biochemia/index.php/en/biopep). In fact, 

a bioinformatic-based approach using the BIOPEP program can be 

used for production of potent ACE inhibitors by in silico hydrolysis 

of primary sequence of the proteins for optimization of the 

enzymatic process. This approach showed excellent potential in 

identifying appropriate proteolytic enzymes and food protein raw 

materials, based on preponderance of active peptide sequences 

within the primary structure of the protein49; however, the use of 

this approach is limited to proteins with known primary sequence, 

and sound knowledge about the structure-function properties of 

peptides is often required. Since most points in evidence on the 

ACE-inhibitory activities of BAPs are based on in vitro evaluations, 

there are concerns as to whether the observed interactions 

between ACE and BAPs can be replicated in vivo especially for 

unstable and poorly absorbed BAPs. 

BAPs-induced renin inhibition 

 Recent studies have shown evidence that some food protein-

derived BAPs possess the ability to inhibit renin activity. The 

initial study demonstrated that low molecular size peptides 

derived from enzymatic hydrolysis of flaxseed proteins exhibited 

low to moderate renin-inhibitory activities via mixed-type 

inhibition pattern, possibly due to multiple interactions of renin 

with various components of the peptide mixtures.50 The fact that 

these BAPs showed multifunctional property by inhibiting both 

renin and ACE activities suggests possible in vivo potency as 

antihypertensive agents. Similar studies have also reported the 

release of renin inhibitors (IC50 0.81 mg/ml) by simulated 

gastrointestinal digestion of hempseed proteins with pepsin and 

pancreatin51, which indicates that beneficial BP-reducing effects 

can potentially result from consumption of native hempseed 

proteins depending on bioavailability of the resulting BAPs. 

Furthermore, a number of dipeptides have been identified from a 

pea protein hydrolysate fraction as renin inhibitors45,52, including 

dipeptides IR, KF and EF with IC50 values of 9.2, 17.8 and 22.6 mM, 

respectively.52 The wide range of activities observed for these 

peptides and their distinct structural properties provided a 

platform for the study of their structure-function relationships, 

and it is expected that such studies will provide fundamental 

knowledge of inhibitory mechanisms and peptide templates for the 
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design of peptidomimetics with enhanced potency and 

bioavailability. 

Structural requirements of BAPs for inhibition of RAS enzymes 

 The mechanism of ACE inhibition by BAPs has been studied 

using both synthetic and natural peptides. Most ACE-inhibiting 

BAPs exert their activities by competitive inhibition but some 

peptides have also exhibited non-competitive (e.g. LW and IY) and 

uncompetitive (e.g. IW and FY) inhibition.53,54 Structural 

properties such as chain length, steric properties, net charge and 

hydrophobicity constitute important factors that determine 

potency of BAPs in inhibiting ACE.55 Consequently, detailed 

knowledge of the structure-activity relationship of BAPs can 

enhance the discovery of more potent BAPs. It was earlier proposed 

that ACE inhibition by BAPs involves three circular hydrophobic 

clefts located at ACE catalytic site, which were designated as the 

major sites for interaction of C-terminal residues of BAPs.56 This 

implies that BAPs containing hydrophobic amino acid residues 

could effectively bind these hydrophobic pockets, depending on 

structural conformation, where they are held together by 

hydrophobic interaction. As a result, it was observed that most 

competitive ACE-inhibiting BAPs contain hydrophobic amino acid 

residues in their sequence.53,56  

 Quantitative structure-activity relationship (QSAR) studies 

have been conducted in attempt to elucidate the structure-

function properties of BAPs. The prevalent method utilizes a 

chemometric approach – the partial least squares projection of 

latent structure (PLS) – to design models that relate bioactivity 

data to the physicochemical properties of BAPs. Using the z-scale 

amino acid descriptors (z1, hydrophobicity; z2, molecular 

size/steric effects; z3, electronic properties), a library of BAPs was 

used to develop PLS models that showed that, for di- and 

tripeptides to exhibit potent ACE inhibition, the C-terminal amino 

acid residues must be hydrophobic and bulky (e.g. Phe, Trp, Pro, 

Tyr) whereas the N-terminal amino acid residues should preferably 

be aliphatic (e.g. Ile, Leu, Val).57 Typical examples of BAPs with 

such structural features include potent antihypertensive LTPs, 

which possess N-terminal Ile or Val and C-terminal Pro residues. 

Moreover, for oligopeptides with four or more (up to 10) amino 

acid residues, other QSAR PLS models demonstrated that the last 

four amino acid residues at the C-terminal of the peptides should 

be hydrophobic for potency and that these residues play major 

roles in determining the ACE–inhibitory activities of these 

peptides.58 These findings indicate that the ACE-inhibiting BAPs 

with strong hydrophobicity act possibly by interacting with the 

hydrophobic pockets of the catalytic site of the enzyme. Using 

short peptide fragments derived from ACE-inhibiting decapeptide 

(VTVNPYKWLP), the presence of Trp (W) in BAPs has been 

demonstrated to promote ACE inhibition59 possibly based on 

hydrophobicity and steric effects. 

 Although there is a strong positive correlation between 

hydrophobicity and bitterness of BAPs, a limiting factor in 

nutraceutical application of BAPs, there was no significant 

statistical relationship between bitterness property and ability of 

di- and tripeptides to inhibit ACE60; therefore, the low-molecular 

size peptides can potentially be incorporated into health-

promoting functional foods with little concern about negative 

sensory quality. As with ACE inhibition, a recent QSAR study 

reported similar structural requirements for dipeptide inhibitors of 

renin although there is no similarity in the primary and 3-

dimensional structures of ACE and renin, and no correlation was 

observed between the activities of the peptides in inhibiting the 

two RAS enzymes.45 In fact, similarity in structural requirements 

increases the feasibility of using a single peptide (e.g. IW) to 

modulate the activities of both ACE and renin leading to more 

pronounced reduction in BP compared to peptides that inhibit the 

activity of only ACE or renin.45,53 

ANIMAL STUDIES WITH ANTIHYPERTENSIVE BAPS 

 Spontaneously hypertensive rats (SHR) have been widely used 

as animal model of essential hypertension for studying the BP-

lowering effects of BAPs. The LTPs (IPP/VPP) independently 

lowered elevated SBP by maximum values of 28.3 and 32.1 mmHg, 

respectively, in SHR; several other bovine casein-derived peptides 

with 2−12 amino acids in their sequence induced ΔSBP ranging 

from −2 to −34 mmHg with the maximum activity displayed by αS1-

casein-derived FFVAPFPEVFGK (f23−34).61 These effects on BP 

were attributed to ACE inhibition by the BAPs; moreover, calcium 

present in fermented milk products has been suggested to promote 

BP-lowering effect of the BAPs product in SHR.62 Apart from the 

lactopeptides, a pea protein-derived peptide product demonstrated 

both short-term BP reduction in SHR following oral gavage (ΔSBP, 

−19 mmHg after 4 h) and long-term effects in hypertensive chronic 

kidney disease (Han:SPRD-cy) rats (SBP, −29 mmHg; DBP, −25 

mmHg after 8 wks) although the peptides were poorly active 

during in vitro evaluation.63 In the Han:SPRD-cy rats, the pea 

peptide product induced reduction of renal renin mRNA 

expression and plasma AT-II level but showed no effect on renal 

expression of ACE or plasma ACE activity.63 This pattern of 

activity indicates that the pea-derived BAPs modulated renin, not 

ACE, thereby reducing the amount of AT-II with concomitant 

lowering of elevated BP in the hypertensive rats. Moreover, other 

studies have reported substantial BP-lowering effects of crude 

enzymatic hydrolysates of hempseed51, apricot almonds64, soy, 

wheat gliadin, casein, and whey65 after short-term oral gavage of 

the products to SHR (Table 1). Despite the potent antihypertensive 

activities of the food-derived BAPs in animals, these data cannot be 

directly applied to hypertensive humans due to complexity of the 

human physiology; thus, BP-lowering potential of BAPs needs to be 

evaluated in hypertensive humans prior to health claims and 

commercialization of the products. 

TABLE 1 Short-term maximum systolic blood pressure (SBP)-lowering 

activity of BAPs-containing enzymatic protein hydrolysates in 

spontaneously hypertensive rats 

Protein 

hydrolysate 

Dose 

(mg/kg BW) 

ΔSBP 

(mmHg) 

 

Reference 

Hempseed 200 –30.0 Girgih et al.51 

Corn  100 –26.5 Huang et al.66 

Pea 200 –19.0 Li et al.63 

Apricot almond 400, 800 –17.2, –20.8 Wang et al.64 

Soybean 100 –30.0 Ibe et al.67 

Porcine  10 –23.0 Muguruma et al.68 

Tuna frame 10 –21.0 Lee et al.69 
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TABLE 2 Summary of meta-analyses of placebo-controlled clinical trials conducted with food protein hydrolysates and 

peptides in human subjects with different stages of hypertension 

 

HUMAN CLINICAL TRIALS WITH ANTI-

HYPERTENSIVE BAPS 

 Physiological BAPs-induced inhibition of ACE and renin 

activities during hypertension will ultimately result in decrease in 

the amount of circulating AT-II, and increased amount of 

bradykinin; and these would consequently lead to decrease in 

elevated BP. Several human clinical trials have shown evidence that 

BAPs in fermented milk possess antihypertensive effects in human 

subjects with mild hypertension.70-72 A recent study reported that 

consumption of milk protein hydrolysates enriched with the LTPs, 

IPP/VPP, induced −3.8 and −2.3 mmHg change in SBP and DBP, 

respectively, in prehypertensive and stage 1 hypertensive subjects 

using office BP measurements.73 Moreover, no significant decrease 

in BP was observed in the study in prehypertensive subjects 

compared to placebo indicating that substantial BP elevation is 

prerequisite for the antihypertensive effects of the peptides. 

Moreover, LTPs-based peptide product (AmealPeptide) was found 

to induce decrease in daytime ambulatory SBP (−3.6 mmHg) and 

mean 24-h SBP (−2 mmHg) in treated and newly diagnosed 

(treatment-naive) stage 1 and stage 2 hypertensive subjects that 

consumed a 150-mg dose of the product daily for 6 wks; more 

pronounced effects on daytime SBP was observed for treatment-

naive subjects compared to placebo.74 Apart from milk-derived 

peptides, plant protein-derived BAPs have also shown prospects 

for management of human hypertension. In hypertensive humans, a 

pea protein-derived peptide product was recently reported to have 

reduced SBP by 6 mmHg after 3 wks of treatment with 1.5 g/day of 

the peptides consumed with orange juice as delivery vehicle.63 

Although studies have demonstrated correlation between BAPs-

induced BP reduction and decreased activity of plasma RAS 

enzymes or amounts of vasoactive peptides75, there is evidence that 

the antihypertensive activity of certain BAPs occurred without 

changes in renin activity, AT-I or AT-II levels.73 Thus, there may be 

alternative routes for BP lowering by BAPs other than RAS 

modulation. For example, amaranth protein-derived BAPs with in 

vitro ACE-inhibitory activity was found to induce activation of 

endothelial NOS by phosphorylation at the Ser117 residue leading 

to smooth muscle relaxation in isolated rat aortic segments76; the 

observed effect was due to the synthesis of vasodilator, NO, that 

mediates lowering of BP during hypertension. 

 In contrast, some studies have reported lack of substantial 

BAPs-induced decrease in elevated BP. In a multicentre crossover 

study with untreated hypertensive white subjects (n=162), Van 

Mierlo and co-workers77 reported that LTPs (IPP/VPP) 

administered in form of dairy drink did not significantly affect 

mean 24-h ambulatory BP compared to placebo. Likewise, 

administration of LTPs-containing fermented milk or placebo to 94 

prehypertensive and borderline hypertensive subjects daily for 8 

wks did not result in any significant difference in SBP and DBP 

between the groups.78 Actually, the latter study observed that the 

slight change in BP due to the LTPs was not better than BP 

decreases that result from lifestyle intervention for lowering BP, 

which raises concerns with respect to balance between cost and 

efficacy/benefits of the BAPs. The contrasting findings on BP-

lowering effects of BAPs can be attributed to a number of factors 

including genetic, dietary and lifestyle variations in the different 

populations, study design, vehicle of delivery of the peptides and 

mode of BP measurement. Therefore, there is need to develop 

standardized protocols for clinical intervention trials with BAPs 

and precise tools for BP measurements (e.g. ambulatory BP 

measurement) for comparison of data conducted in various 

locations. To the best of our knowledge, there is dearth of 

literature information on studies that evaluated the potential use of 

food-derived BAPs for the management of hypertension in an 

African population; this approach towards the reduction of 

elevated BP is encouraged considering the abundance of potential 

raw materials on the African continent for the production of BAPs. 

META-ANALYSES OF CLINICAL TRIALS 

 Due to conflicting results from human intervention studies 

with food-derived peptides, meta-analyses of several placebo-

controlled trials have been conducted to confirm the presence or 

absence of BP-lowering effects by the peptides. As shown in Table 

2, meta-analyses of human clinical trials showed that food protein 

hydrolysates and peptides have the ability to reduce both SBP and 

DBP in subjects with different stages of hypertension. As much as 

−5.13 and −2.4 mmHg change in SBP and DBP, respectively were 

observed in 423 subjects with high-normal BP or mild 

 

Sample 

 

Study 

Outcome (mmHg)  

References ΔSBP ΔDBP 

LTPs (VPP and IPP) Eighteen clinical trials (28 groups, n=885) with 
untreated subjects with hypertension 

−3.73 −1.97 Cicero et al.79 

LTPs (VPP and IPP) Twelve clinical trials (n=623) with pre-hypertensive 
and hypertensive subjects 

−4.80 −2.20 Xu et al.80 

Peptides and protein 
hydrolysates derived 
from milk and fish 
(mostly LTPs) 

Fifteen clinical trials (17 groups, n=423) with subjects 
with normal high BP and mild hypertension 

 

−5.13 −2.40 Pripp81 

LTPs (IPP/VPP) Five randomized clinical trials in mild hypertensive 
and hypertensive subjects (n=295) 

−4.00 −2.10 Jauhianen et al.82 

SBP, systolic blood pressure; DBP, diastolic blood pressure; LTPs, lactotripeptides 
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hypertension after receiving various enzymatic protein 

hydrolysates and peptides derived from milk (LTPs) and fish.81 

These values are encouraging since −5 and −2.5 mmHg change in 

SBP and DBP, respectively can reduce the risk of coronary artery 

disease and stroke by 12% and 20%, respectively, irrespective of the 

mode of intervention.7 Moreover, it was demonstrated that the 

LTPs showed more pronounced reduction of BP in hypertensive 

subjects compared to those with mild cases of hypertension.80 This 

observation indicates that the BAPs may have modulated the 

increased levels of BP-regulating molecules with little or no effect 

on their basal levels. In addition, Cicero and co-workers79 reported 

based on meta-analysis that efficacy of the LTPs in lowering ele-

vated blood pressure is dependent on ethnic factors, since Asian 

subjects (ΔSBP, −6.93 mmHg; ΔDBP, −3.98 mmHg) were found to 

be more responsive to the BAPs-based intervention than Caucasian 

subjects (ΔSBP, −1.17 mmHg; ΔDBP, −0.52 mmHg). This discrep-

ancy could be attributed to genetic variation or different dietary 

lifestyles of the populations; however, there is need to conduct 

appropriate studies to explain these responses. Furthermore, 

LTPs-induced BP-lowering effects in human subjects were 

observed to be independent of baseline BP, treatment duration, 

peptide dose and age of subjects.79 BAPs-based interventions in 

some populations clearly show prospects for the control of 

hypertension and associated vascular disease since the slight BP 

reduction induced by the potent peptides can be combined with 

lifestyle modification practices to potentially produce substantial 

reduction in elevated BP during hypertension. 

BIOAVAILABILITY AND SAFETY OF FOOD-DERIVED 

ANTIHYPERTENSIVE PEPTIDES 

 Oral consumption of BAPs increases their susceptibility to 

degradation into inactive fragments by gastrointestinal, brush 

border and serum peptidases. Therefore, antihypertensive BAPs 

must withstand proteolytic inactivation and be absorbed through 

the enterocytes into circulation in order to exert their BP-lowering 

effects during hypertension. There is considerable evidence that 

antihypertensive di- and tripeptides are absorbed intact in 

humans83-85 since their transepithelial movement can be facilitated 

by peptide transporters (PepT) that are expressed in enterocytes; 

small oligopeptides can sometimes escape peptidolysis and cross 

the enterocytes through hydrophobic regions of intestinal 

membrane epithelia or tight junctions.86 After consumption of 

yogurt containing the antihypertensive LTP by normotensive 

subjects, IPP was detected in nanomolar concentrations in the 

plasma of subjects indicating efficient absorption and 

bioavailability.83 In addition to chain length, other factors that 

influence bioavailability include charge, lipophilicity and solubility 

of BAPs.86 

 Based on the literature, food protein-derived BAPs are 

considered safe for human consumption since studies in animals 

and human subjects demonstrated lack of adverse effects of the 

peptides compared to placebo. For example, Anadon and co-

workers demonstrated that a single dose of 2000 mg/kg BW and 

repeated daily doses of 1000 mg/kg BW (higher than typical 

therapeutic doses) of antihypertensive lactopeptide (αs1-casein 

f90–94 and f143–149)-containing hydolysates had no negative 

effects on clinical parameters and mortality in rats.87 Moreover, 

LTP-rich products were reported to have no significant adverse 

effects on serum and urine chemistry in prehypertensive and 

hypertensive human subjects compared to placebo.73,74 It appears 

that BAPs also showed no adverse effect in normotensive 

subjects.85 These points in evidence indicate that food protein-

derived antihypertensive BAPs are safer for human consumption 

compared to synthetic antihypertensive drugs. 

COMMERCIAL BAPS-BASED ANTIHYPERTENSIVE 

PRODUCTS 

 A number of BAPs-based food products with antihypertensive 

properties have been commercialized and marketed by 

international food companies. Table 3 shows a list of some of these 

products, their food sources and, in some products, the sequence of 

the active peptides. Most of the peptide products are derived from 

milk proteins; Calpis AMEEL and Evolus are formulated with LTPs 

(IPP/VPP) whereas BioZate and Peptide Soup are composed of a 

mixture of peptides.44 These BAPs products have demonstrated a 

wide range of BP-lowering activity in hypertensive human subjects 

in certain populations with ΔSBP of −4.5 to −14.9 mmHg and ΔDBP 

of −3.6 to −8.8 mmHg.61 

TABLE 3 Commercial antihypertensive peptide productsa 

CONCLUSION 

 Based on available evidence, there are prospects in the use of 

food-derived BAPs and protein hydrolysates for the management of 

hypertension in some human populations although contradictory 

evidence indicates otherwise in other populations. The mild BP-

reductions observed for these peptide products are generally lower 

than the activity of antihypertensive drugs but the natural form of 

food protein-derived BAPs can promote their use as safe 

antihypertensive agents. Moreover, future studies are needed to 

elucidate the long-term systemic molecular interactions of 

antihypertensive BAPs with the human genome, proteome and 

other cellular processes to ensure absolute safety, and possibly to 

explain the observed variation in potency of the peptides in 

different populations. It would also be economically beneficial to 

discover approaches that will yield high amounts of crude protein 

hydrolysates with potent BP-lowering effects to obviate the need 

for extensive peptide purification, which may alter the natural 

integrity and safety of BAPs. Finally, the economic and health-

Product Food 
source 

Active peptide Manufacturer 

Calpis AMEEL S Sour milk VPP/IPP Calpis Co., Japan 

Evolus Fermented 
milk 

VPP/IPP Valio, Finland 

BioZate Whey Peptide mixture Davisco, USA 

C12 Peption Ingredient Casein-derived  
FFVAPFPEVFGK 

DMV, 
Netherlands 

Peptide Soup Bonito Peptide mixture NIPPON, Japan 

Casein DP 
Peptio Drink 

Ingredient Casein-derived  
FFVAPFPEVFGK 

Kanebo, Japan 

a Derived from Hartman & Meisel44 
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promoting values of protein-rich foods and food processing by-

products in African countries can be potentially increased by using 

these products as raw materials for the production of 

antihypertensive BAPs. 
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