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Step Response of a Second-Order Digital Filter
With Two’s Complement Arithmetic

Bingo Wing-Kuen Ling, Peter Kwong-Shun Taember, IEEEand Xinghuo Yu Senior Member, IEEE

Abstract—it is well known that the autonomous response of a chine are presented in [5], and those of a third-order autonomous
second-order digital filter with two’s complement arithmetic may  system are reported in [3].
exhibit chaotic behaviors. In this paper, results of the step-response However, practically, various types of input signals are usu-

case are presented. Despite the presence of the overflow nonlin- I lied. A It dt | f d-i t
earity, it is found that the step-response behaviors can be related &Y @PplIi€d. AS a result, we need to analyze 1orced-input sys-

to some corresponding autonomous-response behaviors by meand€Mms in addition to autonomous systems. In this paper, we con-
of an appropriate affine transformation. Based on this method, centrate on the analysis of systems with step inputs.

some differences between the step response and the autonomous |n Section I, we will briefly describe the system using
response are explored. The effects of the filter parameter and o notations employed in the existing literature [1]-[10]. In

input step size on the trajectory behaviors are presented. Some Section Il| \vtical and simulati it th h ith
previous necessary conditions for the trajectory behaviors, initial =€CHON 11, analylical and simuiation results on the system wi

conditions and symbolic sequences are extended and strengthenedstep inputs are presented. Finally, a conclusion is presented in
to become necessary and sufficient conditions. Based on theseSection IV.

necessary and sufficient conditions, some counter-intuitive results

are reported. For example, it is found that for some sets of filter Il. SYSTEM DESCRIPTION

parameter values, the system may exhibit the type | trajectory ’

even when a large input step size is applied and overflow occurs. The system in [1]-[10] is defined as follows.

On the other hand, for some sets of filter parameter values, the  Assume a second-order digital filter can be represented by a
system will not give the type | trajectory for any small input step state—space model

size, no matter what the initial conditions are.
xl(k + 1)

|=ramn. @
{EQ(k + 1)

If it can be realized by a direct form representation, then, the
system can be further represented as

z2(k)
ANY practical higher order digital filters can be real- x(k+1) = {
ized by first-order digital filters and second-order dig- F(b-a1(k) + a - (k) + u(k))
ital filters in cascade and/or parallel realizations. When suchvierea andb are the filter parametera(k) is the input signal,
digital filter is implemented using a fixed-point microprocessar1 (k) andz» (k) are the state variables, ayfids the nonlinearity
with a two’s complement arithmetic for the addition operatiorflue to the use of two’s complement arithmetic.
the physically realized filter is a nonlinear discrete-time system. The nonlinearityf can be modeled as
Due to the nonlinearity, the dynamics of such a system may be -
. ) : fwy=v—-2-n 3)
quite complex, and chaotic behaviors may occur [1].
Many researchers had studied the chaotic behaviors of an sueh that
tonomous system [1]-[10]. Some trajectory equations and sets
of initial conditions corresponding to some types of trajecto- 2:n—=1<v<2-n+1 (4)
ries are characterized in [1]. The admissibility of symbolic se-
guences is studied in [1], [4], [6] and [7]. The analysis is e%ndn € 7. Hence, the system can be represented as
tended by considering all the real values of the filter parameter z2(k)
a in [8], and all the real values of the filter parameterand b-zi(k)+ a-z2(k) + u(k)+2 - s(k)
0

Index Terms—Affine transformation, autonomous response, _
. : aton, . , x(k+1)=
chaotic behavior, second-order digital filter with two’s comple-

ment arithmetic, symbolic sequences.

I. INTRODUCTION

} @)

x(k+1) = { } (5)

b in [9]. The periodic behaviors of the symbolic sequences are
discussed in [1] and [10]. A saturation-type adder overflow is =A -x(k)+B - u(k)+ {2] - 5(k) (6)
analyzed in [2]. Some chaotic behaviors of a finite-state ma-

for k£ > 0, where

) ) ) . xl(k> 2 xl(k>
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B— [0} 9) jectory is an elliptic region on the phase portrait. In this section,
1 some results related to the symbolic sequences and initial condi-
and tions are explored. The set of the filter paramatand the input
s(k) €{-m, ..., =1,0,1, ..., m} (10) step.size:thatgiv.es the type | trajegtory is also determined. The
details are explained by the following lemma.
in which m is the minimum integer satisfying Lemma 1: Let

—2-m—1<b-z1(k)+a-z2(k) +ulk) <2-m+1. (11) cosf = — (15)

a
2
Since s(k) is an element in the discrete sétm, ..., 0
-1,0, 1, ..., m}, the values ofs(k) can be viewed as sym- T= [Cos() sinﬁ} (16)
bols ands(k) is called a symbolic sequence. { cosf  sin 9} an

In this paper, we only consider the case when the filter is —sind  cos

marginally stable, that is . .
_ x*=—- (18)
b=-1 (12) 2—a |1

la] <2 (13) and
ulk) =e W = {Qfl(k)} — T -<x(k-) _et2is -x*> (19)
for k > 0, andc € R. Ta(k) c

Itis worth noting that once the initial conditio{0), the filter where

parameters, and the input signal are given, the state variables and

the symbolic sequences are uniquely defined by (5)—(14). s0 = s(0). (20)
For the system defined above, it is reported in [1], that, for

. . Then, the following three statements are equivalents:
the autonomous response, there are three types of trajectories

on the phase portrait, namely type I, Il, and Ill trajectories, re-  j) x(k+1) = A x(k), for k > 0.
spectively, depending on the initial conditions. The type I-lll
trajectories are defined as trajectories that give a single rotated i) s(k) = s0, fork > 0.

ellipse, some rotated, and translated ellipses, and an elliptical _ . c+2-s50
fractal pattern on the phase portrait, respectively [1]. In this i) X(0) € {X(O): HT '(x(o) - X )H
paper, we investigate solutions to the following problems. Do e 42 5o

we have similar trajectory behaviors with step inputs for the <1- T} .
system in the presence of overflow nonlinearity? What are the ¢

effects of the parameter and input step size on the trajectory ~ Proof: The proof can be easily obtained by the use
behaviors? What are the relationships among the trajectory pé-an affine transformation. The key steps are shown in the

haviors, symbolic sequences and the initial conditions, whéppendix. _ n
overflow occurs? 1) Trajectory Pattern: SinceA is a rotation matrixx (k +
1) = A - x(k) for k > 0 corresponds to a circular trajectory
[Il. ANALYTICAL AND SIMULATION RESULTS with center at the origin and radius

It is obvious that, in general, the method of affine trans- ~
formation cannot relate the step-response behaviors and 10 =
autonomous-response behaviors in a straightforward aR
simplistic manner if the system is nonlinear. However, we
will show, in this section, that the step-response behaviors %(k) =T (x(k) _ct+2-50 _X*>
can be related to the autonomous-response behaviors in an c
explicit manner even overflow nonlinearity occurs. Based Gfe trajectory of(k) is an elliptical orbit with the center of the
the method of affine transformation, some differences betwegfipse at((c + 2 - s9)/c) - x*. Since
the step response and the autonomous response are explored.

The effects of the filter parameterand input step size on the ct+2-s x* =& 250 {1}
trajectory behaviors, are discussed. Some previous necessary ¢ 2—-a 1
conditions for the trajectory behaviors, initial conditions anthe center is on the diagonal ling = z;.
symbolic sequences are extended and strengthened to becon@mpared to that of the autonomous response, the center of
necessary and sufficient conditions. Based on these necessiaeyellipse is shifted by the vectér/(2 — a)) - [1], which

and sufficient conditions, some counter-intuitive results atepends on the input step size and the filter parameter

e (o2 )|

9the transformation in Lemma 1, that is

reported. Fig. 1 shows the phase portrait of such a system when
) a = —1.5 ande = 1 with different initial conditions. Fig. 1(a)
A. Type | Trajectory shows the trajectory wher(0) = [Z05]. Fig. 1(b) shows

For the type | trajectory, there is a single ellipse shown dhe corresponding symbolic sequeneg;) = —2 for k > 0.
the phase portrait. The set of initial conditions for the type | trd=ig. 1(c) shows the trajectory whet{0) = [78:5]. Fig. 1(d)
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Fig. 1. Phase portrait and the symbolic sequences for the type | trajectories.
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Fig. 2. Set of initial conditions that gives the type | trajectory.

shows the corresponding symbolic sequen¢é) = —1 for 5

k > 0. Fig. 1(e) shows the trajectory whet{0) = [7)Z].

Fig. 1(f) shows the corresponding symbolic seques@e), = 0 =) 3 >
for k > 0. Fig. 1(g) shows the trajectory wher{0) = [J7]. 2(s0°2)

Fig. 1(h) shows the corresponding symbolic seques(ég,= 1 25

for k > 0. e

The significance of Lemma 1 is that some previous necessary
conditions for the trajectory behaviors, initial conditions, and
symbolic sequences, are extended and strengthened to become -2:(sot2)
necessary and sufficient conditions. We will have a detailed dis-
cussion on the relationship to the set of initial conditions in
Section I11-A-3, but we would like to mention in this section/ %
that a system will give a type | trajectory if and only if the sym-
bolic sequence is constant at any time instant 0. Based only if ¢ is a rational multiple ofr [1], [10], [11]. It is worth
on this necessary and sufficient condition, some counter-intating here that the frequency sprectrumeefk) andzo(k)
itive results are found. Lemma 1 implies that the system magnsists of impulses located at the dc frequency and at the nat-
also give the type | trajectory even when overflow occurs, thatal frequency of the digital filter, no matter(k) is periodic
is, s(k) # 0 for somek € z*[J{0}. As examples, when or not (It is one of various differences between continuous-time
s(k) = —2fork > 0,s(k) = —1fork > 0, 0rs(k) = 1 systems and discrete-time systems [12]). For the symbolic se-
for k > 0, overflow does occur, but the system still gives thquences, since(k) = so for k > 0, the frequency sprectrum of
type | trajectory, as illustrated in Fig. 1. This is a counter-intus(k) consists of an impulse located at the dc frequency only.
itive phenomenon that has not been reported before. 3) Set of Initial Conditions for the Type | Trajectorythe set

2) Periodicity of the State Vectortn [1] and [10], it is re- of initial conditions corresponding to the type | trajectory con-
ported that even if a single ellipse is exhibited on the phase pefsts of rotated and translated elliptical regions. For each value
trait, the state variables may not be periodic. Although this i s, the region is characterized by a single rotated and trans-
not a new result, we discuss them at this point, briefly, for confated ellipse with center &fc + 2 - s¢)/c) - x*. Itis interesting
pleteness, by using the results in Lemma 1 and applying the a&pnote that these centers are the same as that of the trajectory
proach in [11] to obtain some partial results in [1], [10] in amlescribed in Section 11I-A-1, and so these centers are also on the
easy way. Since is a rotation matrixx(k) is periodic if and diagonal linexs = x;. Compared to the autonomous response,

3. Possible values af andc for a fixed sg .
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Fig. 4. Parameter space for the type | trajectory.

the set of admissible initial conditions is shifted by the vectdrtrajectory, even if the input step size is so large that overflow
(¢/(2—a))- [}] , which also depends on the input step size aradways occurs. On the other hand, there are some values of
the filter parametes. and ¢ which are not in the parameter space shown in Fig. 4.
Moreover, by transforming these ellipses to circles, thEhis region includes the case for very small values.ofhis
radii of the circles arel — (Jc + 2 - so|/(2 — a)). For implies that the corresponding system can never give the type |
the autonomous-response case, the radii of the circles tisectory even though the input step size tends to a value very
1,1 - (2/(2 — a)),1 — (4/(2 — a)), ..., depending on close to zero, no matter what the initial conditions are. Under
the values ofsy. The corresponding radii of the circlesthis condition, the system will give either the type Il or type Il
for the step-response case are, 1 — (|c + 2|/(2 — a)), trajectory, depending on the values of the initial conditions.
1= (d/(2 = a)), 1 = (e = 2|/(2 = a)), .... Comparing
the two sequences, we can conclude that the sizes of theType Il Trajectory
ellipses for the step-response case are smaller than those fa{ow we extend the analysis to the type Il trajectory. For

the autonomous-response case. _ the type | trajectory, by the method of affine transformation,
Fig. 2 shows the set of initial conditions that gives the typethe step-response behaviors can be readily related to the au-
trajectory wheru = —1.5 andc = 1. tonomous-response behaviors. However, it is not the case for

4) Set of Filter Parameter and Input Step Size Values for tiige type Il trajectory. The method of affine transformation need
Type | Trajectory: The size of the elliptical region of the set oftg be modified, as discussed below.
initial conditions depend ot — (|c + 2 - s0|/(2 — a)), which 1) Trajectory Pattern: Itis found that there are some ellipses
should of course be greater than zero. This impliesZhat >  on the phase portrait for the step response, and the centers of
lc+2 - s0l. For a givensy, the possible values afandc are in  these ellipses on the phase portrait are just shifted versions of
a translated triangle as shown in Fig. 3. that of the autonomous response. The shift depends only on filter
By combining the results for the different valuessgf that parameter and input step size However, the shifts of the dif-
is, combining those triangles together, we have the paramefisient ellipses are different. The shifts also depend on the peri-
space for the type | trajectory being characterized as shownglicity of the symbolic sequences. The detail analytical results

Fig. 4. are explained in the following lemma.
Note that Lemma 2: For a second-order digital filtefr,# 0. Otherwise,
the system is a first-order system with delays. @5 not an
1— le+2-s0] >0 = ct2-50 . c I integer multiple ofr. Hence, we have
2-a ¢ i) |T—AM|#0,andsoI— AM)~! exists.
So, if« andc are in the parameter space shown in Fig. 4, then, ) BY defining
the centers of the trajectories arelfhautomatically. X! = (I _ AM) -1

The parameter space for the type | trajectory includes the line

¢ = 0. So, for any arbitrary value of € {a: |a|] < 2}, there N = To .
exist some initial conditions such that the autonomous system ' Z Al-B-c+ Z A ! [2] -s(7)
will give the type | trajectory. j=0 j=0

A counter-intuitive phenomenon can be derived from (21)

0

Lemma 1. The parameter space also includes the points with —A-2'+B-c+ [2] - s(i) (22)

large values ot. It means that the system will also give the type Xit1
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fori=0,1,..., M -2
Xi(k) =T - (x(k- M +1i) —x}) (23)
fork > 0andi = 0,1, ..., M — 1, we haved M such that
s(M -k +14i) =s(i)fork >0and: =0,1,..., M — 1
if and only ifx;(k + 1) = AM . x,(k) for k > 0 andi =
0,1,...,M—1.
Proof

i) The proof is obvious [1], [10].
i) For thenecessityart, by definition
xj= (- AM)""

M-1

M-1
(ZAJ B- c+ZAM =i,

K ]sm)

(24)
M-—1 ) M-1 )
= xp =AY .xj+ Y A.B.c+ » AMI
j=0 j=0
0
Since
xi+1:A-xi+B-c+{2}-s(z) (26)
fori=0,1,..., M — 2, we have
A-xi +B-c+ B] Cs(M = 1)
:AJ\VI.XS
M-—1 M-1 0
M—-1—
+ZAJBc+ZA 7 {2] s(j)
Jj=0 j=0
=X, 27)
If
s(M -k +1) = s(i) (28)
fork >0andi=0,1,..., M — 1, we have
M-1 ) M-—1 ) 0
xi=AM.xr 4+ Z AV .B-c+ Z AMlJ-[2]-s(i+j)
7=0 7=0
(29)
fori =0,1,..., M —1

M-1

M—-1
= > AN B.ct+ ) AM‘I_j~[
j=0 j=0

N O

]-s(k~M+i+j)

=(I-AM).x; (30)
forio =0,1,..., M —1.
Since
M-1
x((k+1)- M +14) = AM . x(k-M +14) + ZAJBC

M-1

—I-ZAM 1= [ ] s(k-M+i+j)

(31)

515

fork >0andi=0,1,..., M -1
x((k+1)-M+i) = AM.x(k-M+i)+(I-AM).x} (32)
fork>0andi=0,1,..., M — 1.
Since
xi(k) =T - (x(k-M+1i)—x}) = x(k-M+1i)
fork >0and: =0,1,..., M — 1, we have
T-x;(k+1)4+x7 = AM (T - x4(k)
+x))+I-AM) - x?
= Xi(k+1)=T"1- AM . T .x,(k) (34)
fork>0andi=0,1,..., M — 1.
SinceA =T -A - T !, we have
Xi(k+1) =AM . x,(k) (35)
fork > 0andi =0, 1, ..., My, and this proves theecessity
part.
For thesufficiencypart, if
Xi(k)=T 1 (x(k-M+1)—x}) (36)
and
Xi(k+1) = AM . x,(k) (37)
fork>0and: =0,1,..., M — 1, then
Xi(k+1) =T (x(k-M+ M +1i) —x})
=AM . T (x(k-M+i)—x}) (38)
fork >0and:i=0,1,..., M -1
= x(k-M+M+i) = AM x(k-M+i)+ (I - AM).x} (39)
fork >0andi=0,1, ..., M — 1.
But
x(k-M4+M+cC)=AM . x(k- M+ 1)
M-1
+ Z A’.B.c
M-—1
+ ZAM e [ } s(k- M+ i+ j)
(40)
fork>0andi=0,1,..., M —1
M—-1 )
= I-AY).x;- > A/-B-c
7=0
M-1 ) 0
= ZAA[13-|:2:|-S(k-M+i+j) (41)
7=0
fori =0,1,..., M — 1, andk > 0, which
M—-1
= (I-AM) . x;,, - ZA’ B-c
M—-1 ) 0
AM-1-5 [2} cs(k-M+i+1+35) (42)

=0
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Fig. 5. Phase portrait and the corresponding symbolic sequence for the type Il trajectory.

fori=0,1,..., M —2,andk > 0
M-—1 )
L(I-AMYx, - ) AT Bc-A
7=0

M-1

I-AM).x; - Y AI-B-c
=0
M-1 0
= Z AM-15, M s(k-M+i+1+35)—A
7=0
M-1 0
> AMT M -s(k-M+i+37) (43)
7=0

fori=0,1,..., M —2,andk > 0
:»(I—AM)-<A~X;*+B.(:+ B] ~s(z')>

—A-(I-AY).x;+(AY -1)-B-c

2
(44)

- (I-S(k-M+M+z')—AM-s(k.M+z'))-m

fork>0andi=0,1,..., M —2

= (I-AY). m - 5(4)

= (I.s(k.M+M+z')—AM-s(k-M+i))~[g} (45)

fork >0andi=0,1,..., M — 2.
Whenk = 0, we have

- a)- [9] 50 = s+~ A @) - [9]

2
(46)
fori =0,1,..., M —2
= s(i) = s(M +1) (47)
fori =0,1,..., M — 2.
Similarly, we can prove that
s(i) = s(M + i) (48)

fori = M — 1.

Whenk = 1, sinces(i) = s(M +i)fori=0,1,... M —1,
we haves(i) = s(2-M +i),fori =0, 1, ..., M —1. Similarly,
we haves(i) = s(k-M+i)fork > 0andi =0, 1, ..., M—1.
This proves theufficiencypart, completing the proof. ]

Sincex;(k + 1) = AM . x,(k) for k > 0 corresponds to a
circular trajectory for each= 0, 1, ..., M — 1, there areM
circles with centers at the origin and ragi;(0)|| = ||T ! -
(x(i)—x})||fori =0, 1, ..., M —1onthe phase portrait when
plotting the trajectory ok, (k) fori =0, 1, ..., M — 1. Sim-
ilarly, by applying theseé\f different transformations; (k) =
T (x(k-M+14)—xF)fori =0,1,..., M — 1, there
areM rotated and translated ellipses on the phase portrait when
plotting the trajectory ok(k). The centers of these ellipses are
atxy fori =0,1,..., M — 1.
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Fig. 6. Set of initial conditions that give the type Il trajectory.

It is interesting to note that when= 0 Furthermore, the second part of Lemma 2 is a generalization
Mt of the first part of Lemma 1. By substitutingy = 1 into the
£ (o AM)L AM-1-j 0 . second part of Lemma 2(k) becomes a constant fér > 0,
x; = ( ) Z 2 s(7) and we havex} = ((c + 2 - s9)/c) - x*. This gives the same
7=0 . X
results given by the first part of Lemma 1.
Xi =A-af+ [g] 10 2) Periodicity of State Vectorfor the type | trajectory (k)
is periodic if and only iff is a rational multiple ofr. For the
fori =0, 1,..., M — 2. Compared t@ # 0, x} is shifted by type ll trajectory,.this is also anecessary and sufficient condition
(I— AM)-1. ZjM—Bl A . B¢, andx? is shifted by for the state variables to be perlqdlc. quever, the frequency
sprectrum ofx; (k) andzo(k) consists of impulses located at
M—1 i—1 the harmonic frequencies of the symbolic sequences, thatis,
Al (I- AM)_1 Y AP Bec+y AT B¢ m-j)/Mforj=1,..., M — 1, and at the natural frequency
j= j=0 of the digital filter, no mattex(k) is periodic or not [12]. For

the symbolic sequences, since it is periodic with pefiddthe

fori =1,..., M — 1. Since different values afcorrespond o4 ency sprectrum of(k) consists of impulses located at its
to different shift values, the centers of the ellipses are shiftedyn .., nic frequencies only.

different positions. Moreover, the shift also depends on the pe-3) Set of Initial Condition for the Type Il TrajectoryThe set

riodicity of the symbolic sequences, which cannot be predictgdinitia| conditions that gives type Il trajectory is given by the
by the simple affine transformation used in Lemma 1. following lemma.

Fig. 5(a) shows the phase portrait of such a system with| oyma 3: 3 M7 such thats(M - k + i) = s(i) for k > 0 and
a = —1.5andc = 1 at the initial conditionx(0) = [07]. , _ o 1 A/ _1ifand only if -

Fig. 5(b) shows the corresponding symbolic sequené)é? In this 1 ) .

particular case, the period of the symbolic sequence is four and x(0) € {x(0): [ T7"- (x(i) = x7)

the trajectory consists of four ellipses with centerscatfor fori=0,1,...., M —1.

i=0,1,2,3. Proof: For thenecessityart, if 3 M such thats(M - k +
The significance of the second part of Lemma 2 is to give = s(i), fork > 0andi = 0, 1,...., M — 1, then, by

a necessary and sufficient condition relating the symbolic seemma 2, we have;(k + 1) = AM - x;(k), for k > 0, and

quence and the type Il trajectory. A system gives a type ll tra=0, 1, ..., M —1, wherex;(k) = T~ (x(k-M +1i) —x})

jectory if and only if the symbolic sequence is periodic witfior k > 0,andi = 0, 1, ..., M — 1. Since the phase portrait of

period M. xi(k+1) = AM.x;(k)fori =0, 1, ..., M—1isacircle with

| < 1=l
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radius||x;(0)|| = |T=(x(¢)—x})||,fori =0, 1, ..., M—1,
we can let

i) = [T et = x|
fork>0andi=0,1,..., M -1
Xi(k)=T7' - (x(k-M+1i)—x}) = x(k-M+1)

cos a(k)

sin a(k)] (49)

fork>0andi=0,1,..., M —1
=x(k-M+1i)
T () — - cos a(k) ] o
= et =) e e

fork>0andi=0,1,..., M — 1.
Sincex(k) € I?, we have|z;(k)] < 1 and|z2(k)| < 1.
Hence, we have

T (x(@) = x7)|| + 1%l
<1=|T70-(x() —x)|| < 1=/l (52)
fori =0, 1, ..., M — 1. This proves th@ecessityart.
For thesufficiencypart, since
xi(k) =T (x(k-M +1i) —x}) (53)
fork >0and:=0,1,..., M — 1, we have
Xi(k+1) =T (x((k+1)- M +i) —x}) (54)
fork>0andi=0,1,..., M — 1.
M-—1 )
xi(k+1)=T" [ AM .x(k-M+i)+ Y A/ -B-c
7=0

M-1

+ ) AV [g]s(/ﬂ-M-l-i-l-j)_X;) (55)
=0

fork>0andi=0,1,..., M -1

xi(k+1)
=AM . x;(k) +T7L (AM — 1) x; + T2
M-1 M-1 To
. Z Al B.c+T L. Z AM-1-j | {2]
7=0 §=0
cs(k-M+i+3j) (56)
fork>0andi=0,1,..., M — 1.
Since
. il . . izl . . 0
xi=A"-x}+ ZAZ—I—J B.c+ ZA’L—l—J . [2] -5(%)
3=0 i=0
(57)
fori =0,1,..., M — 1, we have
i—1
(I-AM).x;=(I-AM). (Ai.x3+ZAilj.B.c
j=0

fori =0,1,..., M — 1.
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Since
M-1 ) M-1 ) 0
(I-AM). x5 = Z Al-B.c+ Z AM_l_J-[Z]s(j)
7=0 7=0
(59)
we have
(I—AM)~XE‘
M-1 M—1—i 0
_ j M—-1—j
_ZAJ.B.C+ Z A J.|:2:|
j=0 j=0
M-1 0
1. /. M_l_. . , '_
cs(i+ i)+ Y A i M s(i+j— M) (60)
j=M—i
fori=1,...,M — 1, and
xi(k+1)
M-—1 0
_AM 3. -1 M-1-j
=AM . x,;(k)+T ZA J M
7=0
M—-1-—1 0
P S M—1-j
s(k-M+i+7)—T Z A J M
7=0
M-1 0
S -1 M—1—j S
-s(i+4)-T %;A ]-|:2:|-S(Z+J—M)
J=M—i

(61)

fork>0andi=0,1,..., M — 1.
Whenk = 0, we have

xi(1) = AM . %,(0) + T}

. (Mil AM=1d [g} -(s(i+j)—8(i+j—M)))

j=M-—i
(62)
fori=1,..., M — 1.
If
x(0) € {x(0): [T71- (x(1) = x})|| <1~ [Ix{ll.} (63)
fori =1,..., M — 1, then
1% (O] <1 = [Ix} ]l (64)
fori =0,..., M —1.
Since||A|| = 1, by takingi = 1, we have
s(M) = s(0). (65)

Similarly, by takingi = 2 ands(
1) = s(1). As a result, we have

M) = 5(0), we haves(M +

s(M + 1) = s(i) (66)
fori =0,..., M — 2.
Whenk = 1 andi = 0, we have
M-1
—~ 2 M —~ — J—1—19 0
X0(2) = AA[ . Xo(l) +T L. ZO AAI =i, |:2:|
=
(s(M +j) = s(4))- (67)
Sinces(M + i) = s(i)fori =0, ..., M — 2, s0
s(2-M—-1)=s(M —1). (68)
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Fig. 7. Phase portrait and the corresponding symbolic sequence for the type Ill trajectory.

Since||%;(0)]] < 1 — ||x¥]loc fori = 0,..., M — 1, we C. Type lll Trajectory
1

have||x;(1)]| < 1 — [|x}[loc fori = 0,..., M —1,and  Now we proceed to the type Ill trajectory.

s(M +i) = s(i) fori =0,...., M — 1, by mathematical  pemark 1:Based on our intensive simulations, we ob-
induction, we conclude tha{(M - k + 1) = s(i) for k > 0 gerye that the system may give an elliptical fractal pattern
andi =0, ..., M — 1. Hence, this proves treufficiencypart, of yrajectory if the system does not give the type | or type I
completing the proof. [ | trajectories.

Lemma 3 |mplles that the set of initial conditions cor- F|g 7(a) shows the phase portrait of such a System with
responding to the type Il trajectory consists of rotated and—= —1.5 andc = 1 at the initial conditionx(0) = [_—00598]_
translated elliptical regions. For each periodic symbolic sgig. 7(b) shows the corresponding symbolic sequence. In
quences(M -k +i) = s(i) fori =0, ..., M — 1, we have a this particular case, there is an elliptical fractal pattern
corresponding single rotated and translated ellipse with cenégown on the phase portrait and the symbolic sequences are
atx; fori = 0,..., M — 1. Overally, the centers are thegperiodic.
same as that of the trajectory described in Lemma 2. HenceRemark 2: The symbolic sequences and the state
comparing to that of the autonomous response, the centers\@gables are, in general, aperiodic. Hence, the frequency
shifted to different positions, and the shifts depend on filtgfpectrum of the state variables and the symbolic sequences are
parameteun, input step size, and the periodicity of the symboligontinuous.
sequences. By transforming these ellipses to circles, the radiRemark 3: Let Dy; = {x(0): || T~! - (x(i) — x})|| < 1 —
of these circles aré — ||x}||o foréi =0, ..., M — 1. |x¥||.. ands(i) = s(i + M)} for M € Z\{0} andi =

Fig. 6 shows the set of initial conditions that give the type , ..., M — 1. Define D = I?\ (v ar Dar. Then, the set of
trajectory wherm = —1.5 ande = 1. It can be seen from the initial conditions that may give the type Ill trajectoryiis. That
figure that the set of initial conditions is in the elliptical regionss, the system with initial condition in the rest of the space after
with centers ak} for: =0, ..., M — 1. taking away the regions indicated in Figs. 2 and 6 may give rise

We can consider Lemma 3 as a generalization of the secdodan elliptical fractal pattern of trajectory.
part of Lemma 1. By substituting/ = 1 into Lemma 1, we  Fig. 8 shows the set of initial conditions that will give the
have the results given by second part of Lemma 1. type Il trajectory wherms = —1.5 andc = 1.
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X2

B4 42 0 02 0 04 0B

Fig. 8. Set of initial conditions that gives the type Ill trajectory.

IV. CONCLUSION Some previous necessary conditions for the trajectory behav-

The main focus of this paper is the analysis of second-ord8fS: initial conditions, and symbolic sequences are extepded
digital filters with two’s complement arithmetic, when there ar@1d Strengthened to become necessary and sufficient conditions.
step inputs. Even though in the presence of the overflow nonliftiS Proved in this paper, that the system gives the type | trajec-
earity, the step-response behaviors can be related to some ¥ if and only if the symbolic sequences are constant at any
responding autonomous-response behaviors by means of afflA€ Instant. This implies that the system will give the type | tra-
transformations. Based on this method, some differences iR&tory even when overflow occurs. The system gives the type
tween the step response and autonomous response are expldré@jectory if and only if the symbolic sequences are periodic

For the type | trajectory, there is a single ellipse on the phagéth period greater than one. In general, the results obtained in
portrait where the center of the ellipse is located on the diaie type | trajectory can be obtained by setting the period equal
onal line. Compared to that of the autonomous response, thetelone into the results obtained in the type Il trajectory. For the
lipse is shifted. The shift depends on the filter parameter and tiyge Ill trajectory, the symbolic sequences are aperiodic.
input step size. For the type Il trajectory, we have similar results. The filter parameter values and the input step sizes that might
There are some ellipses on the phase portrait and these elligges the type | trajectory are found, and some counter-intuitive
are the shifted versions of the autonomous-response case. Hasults are reported. It is interesting to note that for some filter
ever, different ellipses are shifted in different positions, and ti@rameters, the system may give the type | trajectory even when
shifts also depend on the periodicity of the symbolic sequencasarge input step size is applied. On the other hand, the system
For the rest of the space of initial conditions, the system withill not give the type | trajectory for some values of filter pa-
step input may exhibit the type Ill trajectory with an ellipticakameter and any arbitrarily small input step size no matter what
fractal pattern shown on the phase portrait. the initial conditions are. Under this situation, the system will

ferent types of trajectory. The sets of initial conditions for thg,itial conditions.

type | and type Il trajectories are elliptical regions on the phase

portrait, while the centers of these ellipses are the centers of their

elliptical trajectories. The sizes of those ellipses for the type |

trajectory are smaller compared to that of the autonomous case. APPENDIX

For the type Il trajectory, the set of initial conditions is the unit

square minus the sets of initial conditions that give the type | or This Appendix is to prove Lemma 1. The proof can be divided
the type Il trajectory. into two parts. The first part is to prove(k + 1) = A - x(k)



LING et al: STEP RESPONSE OF SECOND-ORDER DIGITAL FILTER

for £ > 0if and only if s(k) = so for & > 0. And the second

part is to proves(k) = so for £ > 0 if and only if

x(0) € {X(O): HT—I - <x(0) _ctZs -x*>

C

<1_M},
- 2—a

For thenecessityf the first part, sinc(k+1) = A -x(k)+
B -u(k)+ [9] - s(k)

u(k) = ¢, and s(k) = so, forkzo,B:m (69)
we have
x(k+1)=A-x(k) + (c+2-50)-B (70)
x(k+1)=T"! ~<x(k +1) - @ ~x*> (72)
=>i(k—l—l):T_1~<A~x(k)+(6+2-so)
.B_m.x*) (72)

SinceA=T-A-T 'andB c= (I-A) - x*, we have

x(k+1)=A-x(k) (73)
and this proves theecessityf the first part.
For thesufficiencyof the first part, if
x(k+1)=A-x(k) (74)
then
1. (x<k+ 1y ¢F2:%0 .x*)
C
— AT -(x(k) _ct2s ~x*> (75)
&
ﬁx(k+1):A~x(k)—|—B~c+[g}~so (76)
= s(k) = so (77)

for £ > 0. This proves theufficiencyof the first part.

For thenecessityof the second part, whes(k) = s, for
k > 0, from the above, we have(k + 1) = A - x(k) for
k > 0, where

(k) =T (x(k) _ch25 -x*) .

C

Since the phase portrait &f(k + 1) = A - x(k) is a circle with

radius
(o= )
we can let
o -2 220
(78)
e fn-s220)
Lol ll o
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Sincex(k) € I?, that is

lz1 (k)| <1 (80)
and
|z2(k)| <1 (81)
we have
2.
oo (om0 )|
C
cos(p(k) + A2 <1 (62)
—a
o (- el
c 2—a
(83)
and this proves theecessityf the second part.
For thesufficiencyof the second part, since
~ 2-
%(k) =T (x(k') _ct2s -x*)
C
A=T-A -T!and
B:c=(I-A) x* (84)

we have
x(k+1) = A -x(k) + T~ - (s(k) — o) - m . (85)

i
x(0) € {X(O): HT—1 . (x(O) -

c+2-sg *)H
4-X
c

< 1_|‘3+2'80|}
- 2—a

then
. lc+ 2 - sl
0N<1—- ——.
[I%(0)]] < Sy
Since||A| = 1, we haves(0) = s, and
()l = A~ () <1 - <7200l
Assume that
1 C+2'50 *
x(k) € dx(k): |71 - (k) = E215%0
(&
<1 le+ 2 - 5]
- 2—a

then, using an approach similar to that $d0), we can show
thats(k) = so and

M' (86)
2—a

Ik + 1))l = || A x (k) < 1-

Hence, by mathematical induction, we conclude & =
so for k > 0, and this proves thsufficiencyof the second part,
and completing the proof. [ |
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