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Abstract—It is well known that the autonomous response of a
second-order digital filter with two’s complement arithmetic may
exhibit chaotic behaviors. In this paper, results of the step-response
case are presented. Despite the presence of the overflow nonlin-
earity, it is found that the step-response behaviors can be related
to some corresponding autonomous-response behaviors by means
of an appropriate affine transformation. Based on this method,
some differences between the step response and the autonomous
response are explored. The effects of the filter parameter and
input step size on the trajectory behaviors are presented. Some
previous necessary conditions for the trajectory behaviors, initial
conditions and symbolic sequences are extended and strengthened
to become necessary and sufficient conditions. Based on these
necessary and sufficient conditions, some counter-intuitive results
are reported. For example, it is found that for some sets of filter
parameter values, the system may exhibit the type I trajectory
even when a large input step size is applied and overflow occurs.
On the other hand, for some sets of filter parameter values, the
system will not give the type I trajectory for any small input step
size, no matter what the initial conditions are.

Index Terms—Affine transformation, autonomous response,
chaotic behavior, second-order digital filter with two’s comple-
ment arithmetic, symbolic sequences.

I. INTRODUCTION

M ANY practical higher order digital filters can be real-
ized by first-order digital filters and second-order dig-

ital filters in cascade and/or parallel realizations. When such a
digital filter is implemented using a fixed-point microprocessor
with a two’s complement arithmetic for the addition operation,
the physically realized filter is a nonlinear discrete-time system.
Due to the nonlinearity, the dynamics of such a system may be
quite complex, and chaotic behaviors may occur [1].

Many researchers had studied the chaotic behaviors of an au-
tonomous system [1]–[10]. Some trajectory equations and sets
of initial conditions corresponding to some types of trajecto-
ries are characterized in [1]. The admissibility of symbolic se-
quences is studied in [1], [4], [6] and [7]. The analysis is ex-
tended by considering all the real values of the filter parameter

in [8], and all the real values of the filter parametersand
in [9]. The periodic behaviors of the symbolic sequences are

discussed in [1] and [10]. A saturation-type adder overflow is
analyzed in [2]. Some chaotic behaviors of a finite-state ma-
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chine are presented in [5], and those of a third-order autonomous
system are reported in [3].

However, practically, various types of input signals are usu-
ally applied. As a result, we need to analyze forced-input sys-
tems in addition to autonomous systems. In this paper, we con-
centrate on the analysis of systems with step inputs.

In Section II, we will briefly describe the system using
the notations employed in the existing literature [1]–[10]. In
Section III, analytical and simulation results on the system with
step inputs are presented. Finally, a conclusion is presented in
Section IV.

II. SYSTEM DESCRIPTION

The system in [1]–[10] is defined as follows.
Assume a second-order digital filter can be represented by a

state–space model

(1)

If it can be realized by a direct form representation, then, the
system can be further represented as

(2)

where and are the filter parameters, is the input signal,
and are the state variables, andis the nonlinearity

due to the use of two’s complement arithmetic.
The nonlinearity can be modeled as

(3)

such that

(4)

and . Hence, the system can be represented as

(5)

(6)

for , where

(7)

(8)
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(9)

and

(10)

in which is the minimum integer satisfying

(11)

Since is an element in the discrete set
, the values of can be viewed as sym-

bols and is called a symbolic sequence.
In this paper, we only consider the case when the filter is

marginally stable, that is

(12)

(13)

(14)

for , and .
It is worth noting that once the initial condition , the filter

parameters, and the input signal are given, the state variables and
the symbolic sequences are uniquely defined by (5)–(14).

For the system defined above, it is reported in [1], that, for
the autonomous response, there are three types of trajectories
on the phase portrait, namely type I, II, and III trajectories, re-
spectively, depending on the initial conditions. The type I–III
trajectories are defined as trajectories that give a single rotated
ellipse, some rotated, and translated ellipses, and an elliptical
fractal pattern on the phase portrait, respectively [1]. In this
paper, we investigate solutions to the following problems. Do
we have similar trajectory behaviors with step inputs for the
system in the presence of overflow nonlinearity? What are the
effects of the parameterand input step size on the trajectory
behaviors? What are the relationships among the trajectory be-
haviors, symbolic sequences and the initial conditions, when
overflow occurs?

III. A NALYTICAL AND SIMULATION RESULTS

It is obvious that, in general, the method of affine trans-
formation cannot relate the step-response behaviors and
autonomous-response behaviors in a straightforward and
simplistic manner if the system is nonlinear. However, we
will show, in this section, that the step-response behaviors
can be related to the autonomous-response behaviors in an
explicit manner even overflow nonlinearity occurs. Based on
the method of affine transformation, some differences between
the step response and the autonomous response are explored.
The effects of the filter parameterand input step size, on the
trajectory behaviors, are discussed. Some previous necessary
conditions for the trajectory behaviors, initial conditions and
symbolic sequences are extended and strengthened to become
necessary and sufficient conditions. Based on these necessary
and sufficient conditions, some counter-intuitive results are
reported.

A. Type I Trajectory

For the type I trajectory, there is a single ellipse shown on
the phase portrait. The set of initial conditions for the type I tra-

jectory is an elliptic region on the phase portrait. In this section,
some results related to the symbolic sequences and initial condi-
tions are explored. The set of the filter parameterand the input
step size that gives the type I trajectory is also determined. The
details are explained by the following lemma.

Lemma 1: Let

(15)

(16)

(17)

(18)

and

(19)

where

(20)

Then, the following three statements are equivalents:

i) for

ii) for

iii)

Proof: The proof can be easily obtained by the use
of an affine transformation. The key steps are shown in the
Appendix.

1) Trajectory Pattern: Since is a rotation matrix,
for corresponds to a circular trajectory

with center at the origin and radius

By the transformation in Lemma 1, that is

the trajectory of is an elliptical orbit with the center of the
ellipse at . Since

the center is on the diagonal line .
Compared to that of the autonomous response, the center of

the ellipse is shifted by the vector , which
depends on the input step size and the filter parameter.

Fig. 1 shows the phase portrait of such a system when
and with different initial conditions. Fig. 1(a)

shows the trajectory when . Fig. 1(b) shows
the corresponding symbolic sequence, for .
Fig. 1(c) shows the trajectory when . Fig. 1(d)
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 1. Phase portrait and the symbolic sequences for the type I trajectories.
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Fig. 2. Set of initial conditions that gives the type I trajectory.

shows the corresponding symbolic sequence, for
. Fig. 1(e) shows the trajectory when .

Fig. 1(f) shows the corresponding symbolic sequence,
for . Fig. 1(g) shows the trajectory when .
Fig. 1(h) shows the corresponding symbolic sequence,
for .

The significance of Lemma 1 is that some previous necessary
conditions for the trajectory behaviors, initial conditions, and
symbolic sequences, are extended and strengthened to become
necessary and sufficient conditions. We will have a detailed dis-
cussion on the relationship to the set of initial conditions in
Section III-A-3, but we would like to mention in this section,
that a system will give a type I trajectory if and only if the sym-
bolic sequence is constant at any time instant . Based
on this necessary and sufficient condition, some counter-intu-
itive results are found. Lemma 1 implies that the system may
also give the type I trajectory even when overflow occurs, that
is, for some . As examples, when

for , for , or
for , overflow does occur, but the system still gives the
type I trajectory, as illustrated in Fig. 1. This is a counter-intu-
itive phenomenon that has not been reported before.

2) Periodicity of the State Vector:In [1] and [10], it is re-
ported that even if a single ellipse is exhibited on the phase por-
trait, the state variables may not be periodic. Although this is
not a new result, we discuss them at this point, briefly, for com-
pleteness, by using the results in Lemma 1 and applying the ap-
proach in [11] to obtain some partial results in [1], [10] in an
easy way. Since is a rotation matrix, is periodic if and

Fig. 3. Possible values ofa andc for a fixeds .

only if is a rational multiple of [1], [10], [11]. It is worth
stating here that the frequency sprectrum of and
consists of impulses located at the dc frequency and at the nat-
ural frequency of the digital filter, no matter is periodic
or not (It is one of various differences between continuous-time
systems and discrete-time systems [12]). For the symbolic se-
quences, since for , the frequency sprectrum of

consists of an impulse located at the dc frequency only.
3) Set of Initial Conditions for the Type I Trajectory:The set

of initial conditions corresponding to the type I trajectory con-
sists of rotated and translated elliptical regions. For each value
of , the region is characterized by a single rotated and trans-
lated ellipse with center at . It is interesting
to note that these centers are the same as that of the trajectory
described in Section III-A-1, and so these centers are also on the
diagonal line . Compared to the autonomous response,
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Fig. 4. Parameter space for the type I trajectory.

the set of admissible initial conditions is shifted by the vector
, which also depends on the input step size and

the filter parameter .
Moreover, by transforming these ellipses to circles, the

radii of the circles are . For
the autonomous-response case, the radii of the circles are

, depending on
the values of . The corresponding radii of the circles
for the step-response case are ,

, . Comparing
the two sequences, we can conclude that the sizes of the
ellipses for the step-response case are smaller than those for
the autonomous-response case.

Fig. 2 shows the set of initial conditions that gives the type I
trajectory when and .

4) Set of Filter Parameter and Input Step Size Values for the
Type I Trajectory: The size of the elliptical region of the set of
initial conditions depend on , which
should of course be greater than zero. This implies that

. For a given , the possible values ofand are in
a translated triangle as shown in Fig. 3.

By combining the results for the different values of, that
is, combining those triangles together, we have the parameter
space for the type I trajectory being characterized as shown in
Fig. 4.

Note that

So, if and are in the parameter space shown in Fig. 4, then,
the centers of the trajectories are inautomatically.

The parameter space for the type I trajectory includes the line
. So, for any arbitrary value of , there

exist some initial conditions such that the autonomous system
will give the type I trajectory.

A counter-intuitive phenomenon can be derived from
Lemma 1. The parameter space also includes the points with
large values of. It means that the system will also give the type

I trajectory, even if the input step size is so large that overflow
always occurs. On the other hand, there are some values of
and which are not in the parameter space shown in Fig. 4.
This region includes the case for very small values of. This
implies that the corresponding system can never give the type I
trajectory even though the input step size tends to a value very
close to zero, no matter what the initial conditions are. Under
this condition, the system will give either the type II or type III
trajectory, depending on the values of the initial conditions.

B. Type II Trajectory

Now we extend the analysis to the type II trajectory. For
the type I trajectory, by the method of affine transformation,
the step-response behaviors can be readily related to the au-
tonomous-response behaviors. However, it is not the case for
the type II trajectory. The method of affine transformation need
to be modified, as discussed below.

1) Trajectory Pattern: It is found that there are some ellipses
on the phase portrait for the step response, and the centers of
these ellipses on the phase portrait are just shifted versions of
that of the autonomous response. The shift depends only on filter
parameter and input step size. However, the shifts of the dif-
ferent ellipses are different. The shifts also depend on the peri-
odicity of the symbolic sequences. The detail analytical results
are explained in the following lemma.

Lemma 2: For a second-order digital filter, . Otherwise,
the system is a first-order system with delays. So,is not an
integer multiple of . Hence, we have

i) , and so exists.
ii) By defining

(21)

(22)



LING et al.: STEP RESPONSE OF SECOND-ORDER DIGITAL FILTER 515

for

(23)

for and , we have such that
for and

if and only if for and
.

Proof:

i) The proof is obvious [1], [10].
ii) For thenecessitypart, by definition

(24)

(25)

Since

(26)

for , we have

(27)

If

(28)

for and , we have

(29)
for

(30)

for .
Since

(31)

for and

(32)

for and .
Since

(33)

for and , we have

(34)

for and .
Since , we have

(35)

for and , and this proves thenecessity
part.

For thesufficiencypart, if

(36)

and

(37)

for and , then

(38)

for and

(39)

for and .
But

(40)

for and

(41)

for , and , which

(42)
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Fig. 5. Phase portrait and the corresponding symbolic sequence for the type II trajectory.

for , and

(43)

for , and

(44)

for and

(45)

for and .
When , we have

(46)

for

(47)

for .
Similarly, we can prove that

(48)

for .
When , since for ,

we have , for . Similarly,
we have for and .
This proves thesufficiencypart, completing the proof.

Since for corresponds to a
circular trajectory for each , there are
circles with centers at the origin and radii

for on the phase portrait when
plotting the trajectory of for . Sim-
ilarly, by applying these different transformations

for , there
are rotated and translated ellipses on the phase portrait when
plotting the trajectory of . The centers of these ellipses are
at for .
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Fig. 6. Set of initial conditions that give the type II trajectory.

It is interesting to note that when

for . Compared to , is shifted by
, and is shifted by

for . Since different values of correspond
to different shift values, the centers of the ellipses are shifted in
different positions. Moreover, the shift also depends on the pe-
riodicity of the symbolic sequences, which cannot be predicted
by the simple affine transformation used in Lemma 1.

Fig. 5(a) shows the phase portrait of such a system with
and at the initial condition .

Fig. 5(b) shows the corresponding symbolic sequence. In this
particular case, the period of the symbolic sequence is four and
the trajectory consists of four ellipses with centers atfor

.
The significance of the second part of Lemma 2 is to give

a necessary and sufficient condition relating the symbolic se-
quence and the type II trajectory. A system gives a type II tra-
jectory if and only if the symbolic sequence is periodic with
period .

Furthermore, the second part of Lemma 2 is a generalization
of the first part of Lemma 1. By substituting into the
second part of Lemma 2, becomes a constant for ,
and we have . This gives the same
results given by the first part of Lemma 1.

2) Periodicity of State Vector:For the type I trajectory,
is periodic if and only if is a rational multiple of . For the
type II trajectory, this is also a necessary and sufficient condition
for the state variables to be periodic. However, the frequency
sprectrum of and consists of impulses located at
the harmonic frequencies of the symbolic sequences, that is,

for , and at the natural frequency
of the digital filter, no matter is periodic or not [12]. For
the symbolic sequences, since it is periodic with period, the
frequency sprectrum of consists of impulses located at its
harmonic frequencies only.

3) Set of Initial Condition for the Type II Trajectory:The set
of initial conditions that gives type II trajectory is given by the
following lemma.

Lemma 3: such that for and
if and only if

for .
Proof: For thenecessitypart, if such that

, for and , then, by
Lemma 2, we have , for , and

, where
for , and . Since the phase portrait of

for is a circle with
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radius , for ,
we can let

(49)

for and

(50)

for and

(51)

for and .
Since , we have and .

Hence, we have

(52)

for . This proves thenecessitypart.
For thesufficiencypart, since

(53)

for and , we have

(54)

for and .

(55)

for and

(56)

for and .
Since

(57)

for , we have

(58)

for .

Since

(59)

we have

(60)

for , and

(61)

for and .
When , we have

(62)

for .
If

(63)

for , then

(64)

for .
Since , by taking , we have

(65)

Similarly, by taking and , we have
. As a result, we have

(66)

for .
When and , we have

(67)

Since for , so

(68)
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Fig. 7. Phase portrait and the corresponding symbolic sequence for the type III trajectory.

Since for , we
have for , and

for , by mathematical
induction, we conclude that for
and . Hence, this proves thesufficiencypart,
completing the proof.

Lemma 3 implies that the set of initial conditions cor-
responding to the type II trajectory consists of rotated and
translated elliptical regions. For each periodic symbolic se-
quence for , we have a
corresponding single rotated and translated ellipse with center
at for . Overally, the centers are the
same as that of the trajectory described in Lemma 2. Hence,
comparing to that of the autonomous response, the centers are
shifted to different positions, and the shifts depend on filter
parameter , input step size, and the periodicity of the symbolic
sequences. By transforming these ellipses to circles, the radii
of these circles are for .

Fig. 6 shows the set of initial conditions that give the type II
trajectory when and . It can be seen from the
figure that the set of initial conditions is in the elliptical regions
with centers at for .

We can consider Lemma 3 as a generalization of the second
part of Lemma 1. By substituting into Lemma 1, we
have the results given by second part of Lemma 1.

C. Type III Trajectory

Now, we proceed to the type III trajectory.
Remark 1: Based on our intensive simulations, we ob-

serve that the system may give an elliptical fractal pattern
of trajectory if the system does not give the type I or type II
trajectories.

Fig. 7(a) shows the phase portrait of such a system with
and at the initial condition .

Fig. 7(b) shows the corresponding symbolic sequence. In
this particular case, there is an elliptical fractal pattern
shown on the phase portrait and the symbolic sequences are
aperiodic.

Remark 2: The symbolic sequences and the state
variables are, in general, aperiodic. Hence, the frequency
spectrum of the state variables and the symbolic sequences are
continuous.

Remark 3: Let :
and for and

. Define . Then, the set of
initial conditions that may give the type III trajectory is. That
is, the system with initial condition in the rest of the space after
taking away the regions indicated in Figs. 2 and 6 may give rise
to an elliptical fractal pattern of trajectory.

Fig. 8 shows the set of initial conditions that will give the
type III trajectory when and .
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Fig. 8. Set of initial conditions that gives the type III trajectory.

IV. CONCLUSION

The main focus of this paper is the analysis of second-order
digital filters with two’s complement arithmetic, when there are
step inputs. Even though in the presence of the overflow nonlin-
earity, the step-response behaviors can be related to some cor-
responding autonomous-response behaviors by means of affine
transformations. Based on this method, some differences be-
tween the step response and autonomous response are explored.

For the type I trajectory, there is a single ellipse on the phase
portrait where the center of the ellipse is located on the diag-
onal line. Compared to that of the autonomous response, the el-
lipse is shifted. The shift depends on the filter parameter and the
input step size. For the type II trajectory, we have similar results.
There are some ellipses on the phase portrait and these ellipses
are the shifted versions of the autonomous-response case. How-
ever, different ellipses are shifted in different positions, and the
shifts also depend on the periodicity of the symbolic sequences.
For the rest of the space of initial conditions, the system with
step input may exhibit the type III trajectory with an elliptical
fractal pattern shown on the phase portrait.

Besides, we have found the sets of initial conditions for dif-
ferent types of trajectory. The sets of initial conditions for the
type I and type II trajectories are elliptical regions on the phase
portrait, while the centers of these ellipses are the centers of their
elliptical trajectories. The sizes of those ellipses for the type I
trajectory are smaller compared to that of the autonomous case.
For the type III trajectory, the set of initial conditions is the unit
square minus the sets of initial conditions that give the type I or
the type II trajectory.

Some previous necessary conditions for the trajectory behav-
iors, initial conditions, and symbolic sequences are extended
and strengthened to become necessary and sufficient conditions.
It is proved in this paper, that the system gives the type I trajec-
tory if and only if the symbolic sequences are constant at any
time instant. This implies that the system will give the type I tra-
jectory even when overflow occurs. The system gives the type
II trajectory if and only if the symbolic sequences are periodic
with period greater than one. In general, the results obtained in
the type I trajectory can be obtained by setting the period equal
to one into the results obtained in the type II trajectory. For the
type III trajectory, the symbolic sequences are aperiodic.

The filter parameter values and the input step sizes that might
give the type I trajectory are found, and some counter-intuitive
results are reported. It is interesting to note that for some filter
parameters, the system may give the type I trajectory even when
a large input step size is applied. On the other hand, the system
will not give the type I trajectory for some values of filter pa-
rameter and any arbitrarily small input step size no matter what
the initial conditions are. Under this situation, the system will
give either the type II or the type III trajectory, depending on the
initial conditions.

APPENDIX

This Appendix is to prove Lemma 1. The proof can be divided
into two parts. The first part is to prove
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for if and only if for . And the second
part is to prove for if and only if

For thenecessityof the first part, since

and for (69)

we have

(70)

(71)

(72)

Since and , we have

(73)

and this proves thenecessityof the first part.
For thesufficiencyof the first part, if

(74)

then

(75)

(76)

(77)

for . This proves thesufficiencyof the first part.
For thenecessityof the second part, when for

, from the above, we have for
, where

Since the phase portrait of is a circle with
radius

we can let

(78)

(79)

Since , that is

(80)

and

(81)

we have

(82)

(83)

and this proves thenecessityof the second part.
For thesufficiencyof the second part, since

and

(84)

we have

(85)

If

then

Since , we have and

Assume that

then, using an approach similar to that for , we can show
that and

(86)

Hence, by mathematical induction, we conclude that
for , and this proves thesufficiencyof the second part,

and completing the proof.
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