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Abstract 

A chaotic filter bank for computer cryptography is proposed. By encrypting 

and decrypting signals via a chaotic filter bank, the following advantages are enjoyed: 

1) one can embed signals in different frequency bands by employing different chaotic 

functions; 2) the number of chaotic generators to be employed and their 

corresponding functions can be selected and designed in a flexible manner because 

perfect reconstruction does not depend on the invertibility, causality, linearity and 

time invariance of the corresponding chaotic functions; 3) the ratios of the subband 

signal powers to the chaotic subband signal powers can be easily changed by the 

designers and perfect reconstruction is still guaranteed no matter how small these 

ratios are; 4) the proposed cryptographical system can be easily adapted in the 

international multimedia standards, such as JPEG 2000 and MPEG4. 

 

1.  Introduction 

Cryptography using chaos found many applications in audio processing 

[Delgado-Restituto, 1996], image processing [Yen, 2000] and communications [Yang, 

1997]. The existing cryptographical algorithms are implemented based on chaotic 

oscillator [Delgado-Restituto, 1996], Chua’s circuit [Yang, 1997], modulo operator 

[Götz, 1997; Dachselt, 1998] and permutation scheme [Yen, 2000]. However, these 
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algorithms are formulated based on the time domain state space nonlinear differential 

or difference equations. Hence, the information of the signals at different frequency 

bands does not exploited. Moreover, although these existing nonlinear 

cryptographical systems produce uncorrelated signals, these methods are highly relied 

on the corresponding chaotic functions. Hence, details analysis of these chaotic 

functions, such as the stability regions of chaotic parameters, sensitivity of these 

parameters to rounding errors, invertibility of the chaotic functions etc, is required. 

Unfortunately, the stability regions of parameters of the existing chaotic functions are 

limited and these parameters are very sensitive to rounding errors. Hence, it would 

cause significant errors and disasters when these methods are applied to real systems. 

Furthermore, since the structures of the existing chaotic systems are not flexible in the 

sense of changing the number of chaotic generators and their corresponding functions. 

Hence, the order of the complexity of the encrypted signals is constrained. In addition, 

these systems cannot be adapted into the existing international multimedia standards 

directly because the existing international multimedia standards are based on the filter 

bank approach. 

On the other hand, filter bank and wavelets theory is widely studied and found 

many applications in many engineering disciplines, particularly in multimedia signal 

processing applications [Vaidyanathan, 1990; Phoong, 1995; Mao, 2000; Soman, 

1993]. This is because filter bank and wavelets theory exploits both the time domain 

and frequency domain information of the signals. By permuting the subband signals, 

the signals are encrypted. Although both the encryption and decryption of this method 

is simple because just matrix multiplications are involved, the encrypted signal is 

usually correlated to the input signal. This is because since the power spectrum 

density of the input signal is usually not flat, permuting the subband signals cannot 

flatten the power spectral density. Recently, the filter bank and wavelets theory are 

extended to the systems with nonlinearity [Redmill, 1996]. Redmill found that perfect 

reconstruction can be achieved no matter the corresponding subband processing are 

noninvertible, noncausal, nonlinear and time varying. Also, the filter system is very 

flexible in the sense of changing the number of subband processing units and their 

corresponding functions. However, Redmill does not explore any applications. 

In this paper, a chaotic filter bank for computer cryptography is proposed. Our 

proposed system enjoys both the advantages of the traditional filter bank approach 
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and the existing nonlinear chaotic approach because the chaotic functions can produce 

an uncorrelated signal and the filter bank structure ensures perfect reconstruction no 

matter the chaotic functions are noninvertible, noncausal, nonlinear and time varying. 

The outline of this paper is as follows: The cryptographical system is discussed in 

section 2 and simulation results are given in section 3. Finally, a conclusion is 

summarized in section 4. 

 

2.  Proposed cryptographical system 

Refer to figure 1: let [ ]nx  and [ ]ny  be the input and the reconstructed signal of 

the filter bank system; [ ]nt0  and [ ]nt1  be the subband signals decomposed by the 

analysis bank; [ ]nv0  and [ ]nv1  be the encrypted subband signals; [ ]nw0  and [ ]nw1  be 

the decrypted subband signals; ( )zHi  and ( )zFi  for 1,0=i  be the analysis filters and 

synthesis filters; 2↓  and 2↑  be a 2 -fold decimator and 2 -fold expander; 0K  and 

1K  be the gains multiplied on each channels; and ( )⋅iα  for 1,0=i  be the chaotic 

functions, respectively. 

The various signals in figure 1 can be expressed as follows: 
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∀
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A filter bank is said to achieve perfect reconstruction if [ ]ny  is a delayed gain 

version of [ ]nx . That is, ℜ∈∃c  and Zm ∈∃ 0  such that [ ] [ ]0mncxny −=  Zn∈∀ . 

This property is important in cryptography because this guarantees decryption is 

lossless. It is shown in [Redmill, 1996] that the filter bank system achieves perfect 

reconstruction if and only if 
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no matter ( )⋅iα  for 1,0=i  are noninvertible, noncausal, nonlinear and time varying 

functions. This property provides a great flexibility in design because one can embed 

signals in different frequency bands by employing different chaotic functions, and the 

number of chaotic generators as well as their corresponding functions can be selected 

and designed in a more flexible manner. 

By expressing the filters in the polyphase representation, that is 
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for 1,0=i , the perfect reconstruction condition becomes 

( ) ( ) IER 0mczzz −= , (11) 

where I is an identity matrix [Vaidyanathan, 1990]. 

It is found that if ( )zE  is a paraunitary matrix, that is 

( ) ( ) IEE dzz =~ , (12) 

where d  is a constant and ( )zE~  denotes ( )1−
∗ zTE  in which ( )z∗E  represents the 

conjugation of the coefficients of ( )zE , then the wavelets generated by the binary tree 

structure filter bank is orthonormal [Soman, 1993]. Since Haar wavelets is the unique 

wavelets function that is orthogonal, symmetrical, and of compact support. This 

wavelets function is chosen in our case. The mother wavelets function of Haar 

transform and the corresponding polyphase matrix are 
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respectively. 

In order to generate uncorrelated signals, we employ the logistic maps as the 
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chaotic functions. The nonlinear functions are 

( ) ( ) ( )( )kxkxkx iiii −=+ 11 λ , (15) 

( ) ( ) ( )kukxky iii += , (16) 

for 1,0=i , where iλ , ( )kxi , ( )kui  and ( )kyi  are the parameters, state variables, inputs 

and outputs of the function ( )⋅iα , respectively. It is worth noting that ( )⋅iα  is in 

general not invertible, and chaotic behaviors are exhibited if ( ) 100 << ix  and 

43 << iλ . Hence, the parameters and the initial conditions are selected in these 

ranges for our case. In the cryptographical system, iλ  is used as the public keys, and 

( )0ix  is used as private keys. Since the logistic map is very sensitive to both iλ  and 

( )0ix  because of its chaotic nature, different users will get very different encrypted 

signals and they cannot decrypt other users’ signals by using its own private keys. 

 

 

 

 

 

 

Figure 1. The proposed chaotic filter bank system. 

 

3.  Simulation results 

In this paper, we choose a standard one dimensional test signal [Mallat, 1992], 

a simple sinusoidal signal and a random Gaussian noise with zero mean and unit 

variance as test inputs. The parameters are selected as 01.00 =K , 04.01 =K , 

98.30 =λ , 41 =λ , ( ) 7.000 =x , ( ) 9.001 =x , 1=c  and 00 =m , respectively. The 

simulation results are shown in figures 2, 3 and 4, respectively. The correlation 

coefficients (
22
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σ
) are summarized in table 1. According to the results shown in 

table 1, the encrypted subband signals are almost uncorrelated to the subband signals 

decomposed by the analysis bank, which implies that the encryption performance is 

very good. 
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Table 2 summarizes the ratios of subband signal power ( [ ]∑
∀n

i nt 2 ) to the 

subband chaotic signal power ( [ ] [ ]∑
∀

−
n

ii ntnv 2 ) for each channel in the filter bank 

system. It is interesting to note that although these ratios are very low, perfect 

reconstruction is still guaranteed. Also, the designers can easily change these ratios by 

changing the values of 0K  and 1K , respectively. 

 One dimensional test 

signal [Mallat, 1992]

Simple 

sinusoidal signal

Random 

Gaussian noise 
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2
1

11
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σσ
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0908.0−  0014.0−  0292.0  

Table 1. Correlation coefficients of subband signals decomposed by analysis bank and 

encrypted subband signals. 

 One dimensional test 

signal [Mallat, 1992]
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sinusoidal signal

Random 

Gaussian noise 
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Table 2. Ratios of subband signal power to the subband chaotic signal power. 
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Figure 2. A one dimensional test signal [Mallat, 1992]. (a) [ ]nx . (b) [ ]nt0 . (c) [ ]nt1 . (d) 

[ ]nv0 . (e) [ ]nv1 . (f) [ ]nw0 . (g) [ ]nw1 . (h) [ ]ny . 
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Figure 3. A simple sinusoidal signal. (a) [ ]nx . (b) [ ]nt0 . (c) [ ]nt1 . (d) [ ]nv0 . (e) [ ]nv1 . 

(f) [ ]nw0 . (g) [ ]nw1 . (h) [ ]ny . 
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Figure 4. A random Gaussian noise with zero mean and unit variance. (a) [ ]nx . (b) 

[ ]nt0 . (c) [ ]nt1 . (d) [ ]nv0 . (e) [ ]nv1 . (f) [ ]nw0 . (g) [ ]nw1 . (h) [ ]ny . 
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4.  Conclusion 

In this paper, a chaotic filter bank system is proposed for computer 

cryptography. According to the simulation results, the system provides good 

performances for cryptography. Moreover, the system also provides high design 

flexibility. 
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