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ABSTRACT

The applicability of an outlier detection statistic developed for standard time series is
assessed in estimating missing values and detecting outliers in traffic count data.

The work of Chernick, Downing and Pike (1982) is extended to form a quantitive outlier
detection statistic for use with time series data. The statistic is formed from the squared
elements of the Influence Function Matrix, where each element of the matrix gives the
influence on p, of a pair of observations at time lag k. Approximate first four moments
for the statistic are derived and by fitting Johnson curves to those theoretical moments,
critical points are also produced. The statistic is also used to form the basis of an
adjustment procedure to treat outliers or estimate missing values in the time series.
Chernick et al’s (1982) nuclear power data and the Department of Transport’s traffic count
data are used for practical illustration.




An Influence method for outlier detection applied to Time Series trafﬁcﬂdi‘:\ta.

1. INTRODUCTION

Many types of transport data are collected over time and can therefore be considered as
suitable candidates for time series analysis. Examples include the Department of
Transport core census of traffic counts, ticket sales data and journey time information.
A serious problem in analysing traffic count data (for, say, forecasting purposes) is what
to do when missing or extreme values (outliers) occur in the series. This can arise for a
variety of reasons, such as broken counters or other machinery. In practice, missing data
are currently patched in a variety of ways, for example using grossing up factors
calculated using data from other areas and some computerized algorithms. Little work
has been undertaken to assess the merits of alternative methods or develop a more
analytical approach.

Recently more attention has been given to the detection and treatment of outliers in a
more general time series context. Statistical methods for modelling and forecasting time
series data are often based on the popular Box-Jenkins (1976) ARIMA time series
modelling philosophy. However this approach relies heavily upon the sample
autocorrelation function, r,, which can be severely depressed by the presence of outliers
(Walker, 1960).

Despite this, until recently little attention has been given to the detection and treatment
of outliers. The work of Fox (1972) and more recently Hau and Tong (1984), Tsay (1986),
Tiao (1985), Tsay (1988), Abraham and Chuang (1989) and Bruce and Martin (1989) have
created interest in detecting and modelling outliers, Chernick, Downing and Pike (1982}
developed a method of outlier detection using a plot of the Influence Function of data
points on the theoretical autocorrelation function. The method relies largely on subjective
visual interpretation of a graphical plot. In this paper, the work of Chernick et al (1982)
is extended to form a quantitative outlier detection statistic which in an amended form
can replace the outlier detected, or may be used to estimate a missing observation in the
series. Nuclear Power data is used to illustrate outlier detection and the treatment of
both outlying and missing observations is illustrated using time series of traffic counts.



2. THE INFLUENCE FUNCTION AND SUBJECTIVE DETECTION OF
OUTLIERS

Using similar notation to that of Chernick et al (1982) and based on Hampel’s (1974)
Influence Function, the influence, I, on the theoretical autocorrelation function, p,, of any
pair of observations k time points apart is defined by Chernick et al (1982) as:

I (py, ) = Vi - P ¥ + YD) / 2 o (D

Here y, is the t'th observed value in a time series. An n x L Influence Function Matrix
can be formed with elements given by (1) where n = sample size, L. = a fixed number of
Lags, and L << n.

If the j’'th standardiﬁed observation of the time series is denoted by z;, then the (j,k)th
entry of that matrix is given by I (py, z;, z;,,).

The matrix formed then consists of L. columns and n rows, where z; appears in each
element of the j’th row and a diagonal beginning at the first column of the preceding row.

Chernick et al (1982) show that substitution and manipulation of (1) gives
I (py (2 Zoa)) = (1 - o) 0y 1y

where u,, , u; = iid N (0,1)

More concisely this may be written
I=Guu

where G = (1 - p,®

Qutlier detection using the Influence Function Matrix method relies on discerning a
pattern of unusually "high" or "low" values of the Infiuence Function. Chernick et al
(1982) use a critical value of +/- 1 to isolate those values that are significant. This is
clearly inappropriate considering the need to estimate p, in expression (1).

Those values of I found to be significant are then marked in a graphical plot (size n x L)
by a "+"or "-" sign. A"+" sign indicates a value of I exceeding the eritical value of + 1 and
a "—" sign indicates that I is less than — 1. An outlier at the t'th point is indicated by a
"clear" pattern of those signs in the corresponding horizontal and preceding diagonal of

the plot.

3. OBJECTIVE DETECTION OF OUTLIERS

By taking expectations under the assumption that u,, u, are two independent standard
normal variates, and substituting for G gives the following moments for the Influence
Function.




EI) =0.0
V() =(1-pd"
VB(I) =0.0
8() =9.0
where V8, and B, are the skewness and kurtosis of .

When approximate critical points were evaluated for I, by fitting Johnson curves to the
above moments, the value of + 1 was found to be appropriate in only a few cases and a
critical value as high as + 2.71 would be needed for p, =0.0 at the 1% level of significance
(see Watson, 1987). The method may also be criticised as it relies heavily on the
subjective identification—of a clear pattern of significant points in the horizontal and
preceding diagonal of the Influence Function Matrix. The potential problems in outlier
detection are illustrated by Fig 1 which refers to part of the Influence Function Matrix
for eastbound traffic counts from 17:00 hours (T/B East 17:00). The series forms part of
the DTp’s data set and consists of 153 observations. A time series plot is shown below.
Visual inspection of the Influence Function Matrix does not clearly indicate which points
are suspect outliers, though some pattern exists at observation 17, 45, 52 and 72 (y,, being
a missing value).

Figure 1: Series plot for T/B EAST 17:00.
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Figure 1
Influence Function Matrix and series plot for a section of T/B EAST 17:00
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(a "+" or "—" indicates a significant I value, using + 1 as critical values)

In an attempt to avoid some of the problems of a subjective method for outlier
detection, we define a quantitative outlier detection statistic:

1
15,= % (5, P+ 5 P} "

where I is defined by (1), 2 indicates summation over the L
L.

Tt



elements in the t'th row and 2 indicates summation over all

D,,
available elements in the (t-1)'th diagonal of the Influence Function Matrix and
P=L+D,

The statistic (2) treats positive and negative values in the matrix with equal
weight and squaring the elements avoids the problem of large positive or
negative values cancelling each other. For a given L, P increases for t < L, and
for t> L, P is constant at 2L,

Equation (2) may be rewritten as

IS, =

4

2§ oy ady,

where ( ,%);, j = 1,2 are independent y,* variables and M = G*. M is not
strictly constant due to variation in p,, but is assumed to be so0 here.

The first four moments of IS, are needed to find approximate critical values for
the Influence Statistic, although this is not trivial as the definition of IS,
involves the sum of squares of products of normal variates. Using the general
result that the r'th moment about the origin for a %* variate with v df is given
by :

r-1

m,=2"IT [i+(y/2)]
i=0

straightforward but tedious algebra is needed {o take expectations and deduce
the moments about the origin of IS,, These are

n, =M

u, = _M? (9P + 3P (P-1))
P2
u, = 15M® (8 + 6P + F?)
P2
u, = _105m* (48 + 44p + 12P? + P%)
P
Using a binomial expansion to give relationships with moments about the

mean {Kendall and Stuart, 1977)

The mean of IS, = M



The variance of IS, = 6M* + 2M*
P

The skewness of IS, = 120 + 54P + 8P ... (3)
2% P(3+P)*2

The kurtosis of IS, = 5040 + 4140P + 963P? + 60P*
4P3 + PP

Since M must be estimated and is not strictly constant, the mean and variance
derived above will be approximate. In order to assess how good these
approximations (3) are, and how much sampling variability can be expected in
the higher order moments of IS,, simulation was used to evaluate empirical
moments,

4. SIMULATION RESULTS

Series were simulated 2000 times for various values of n and the empirical
moments caleulated for IS,. The empirical moments were then averaged for
t > (L + 1) to give a representative value to compare with theoretical moments
found from (3).

We begin with the special case p, = 0 for all k. The comparison is shown in
Table 1. It is clear that good agreement exists between theoretical and
empirical moments, particularly for the mean and variance. More discrepancy
is observed between theoretical and simulated skewness and kurtosis, but this
would be expected even for standard normal variables (see for example
Bowman & Shenton, 1975). As L increases this discrepancy is seen to
decrease. Varying the sample size n does not affect simuiated moments
appreciably.

Simulations have shown the agreement between theoretical and simulated
moments for IS, to be good when p, = 0. We now extend to AR and MA series
where p, # 0, by simulating ARMA series and calculating empirical moments
for IS,.




TABLE I

Theoretical (in brackets) and Averaged Empirical Moments of IS,

(2000 Simulations), p, = 0

MAX LAG n MEAN VAR SKEW | KURT
L

1 200 0.99 5.03 6.16 67.50

(1.00) (5.00) (5.81) | (87.72)

2 200 0.99 3.39 4.79 42.31

(1.00) (3.50) (4.43) - | (5155)

3 500 0.99 3.45 4.79 41.66

(1.00) (3500 | (443) | (51.55)

5 200 1.00 2.61 3.90 29.87

(1.00) (2.60) (3.48) | (29.59)

5 500 0.99 2.59 3.77 26.34

(1.00) (2.60) (348) | (29.59)

In Tables II, ITI and IV, the model parameters, theoretical p, and a comparison
of theoretical and empirical moments are shown for simulated AR(1), MA(1)
and MA(2) processes. Note that from expression (3) the theoretical skewness
and kurtosis depend on the number of elements summed, not p, and so appear
as constants in Tables II, ITT and IV.

From Table II the empirical skewness and kurtosis is particularly high in the
AR process for ¢, > 0.6 although Tables III and IV show generally good
agreement between theoretical and empirical values for these moments.

It can be seen from Table IV that all simulated and empirical moments are
close for the MA(2) process for the range of @,, ©, chosen. For both the MA(1)
and MA(2) the theoretical mean and variance have been somewhat over
estimated.

Repeated simulations for AR, MA and ARMA series up to order 2 were made
with varying values for the maximum lag (see Watson, 1987). Overall the
agreement between theoretical and empirical moments was good. We found
(by plotting the relative positions of the theoretical @,, ©,) that those series
with theoretical parameters closest to non-stationarity give the largest
discrepancy between simulated and expected moments of IS,.



TABLE II TABLE II1

Theoretical (in brackets) and Empirical
Moments of IS, for AR (1), 2000 simulations,
n=200, maximum lag=10

Theoretical (in brackets) and Empirical Moments
of IS, for MA(1), 2000 simulations, n=200
maximum lag=10

¢, MEAN VAR SKEW KURT 8, p MEAN VAR SKEW KURT
o1 099 221 329 19.93 0.1 0.099 099 221 331 20.47
(0.98) (2.21) (3.15)(22.26) (0.98) (2.21) (3.15)(22.26)

02 093 196 329 20.29 02 019 093 196 331 20.35
(0.92) (195) (3.15)(22.26) (0.93) (1.98) (3.15)(22.26)

03 088 159 3.46 23.45 03 028 084 116 335 21.23
(0.83) (158) (3.15)(22.26) (0.85) (1.68) (3.15)(22.26)

04 069 112 3.42 2183 04 034 075 127 342 2252
(.71 (1.15) (3.15)(22.26) (0.78) (1.39) (3.15)(22.26)

05 055 073 370 26.17 05 04 063 092 3.39 2179
(056) (0.73) (3.15)(22.26) (0.71) (1.15) (3.15)(22.26)

06 039 039 3.82 2697 0.6 044 053 067 356 2357
(0.41) (0.39) (3.15)(22.26) (0.65) (0.97) (3.15)(22.26)

07 024 015 4.15 8214 07 047 045 047 3.52 23.07
(0.26) (0.16) (3.15)(22.26) (0.61) (0.85) (3.15)(22.26)

08 0.1 004 541 5929 0.8 049 037 031 351 23.73
(0.13) (0.04) (3.15)(22.26) (0.58) (0.78) (8.15)(22.26)

09 0.028 0004 6355 78.04 09 049 029 021 857 2388
(0.036)(0.003) (3.15)(22.26) (0.57) (0.74) (3.15)(22.26)

1.0 05 025 0.14 355 23.69

(0.56) (0.73)

(3.15)(22.26)

Since the first four theoretical moments given by (3) are close to the empirical
distribution of IS,, these may be used to evaluate critical points for the statistic
for use in outlier detection. The algorithm of Dodgson (1987) was used to
calculate approximate critical points for IS, by passing the first four theoretical
moments to Algorithm AS99 (1976) which finds the type and parameters of an
appropriate Johnson curve. Critical values are returned for the specified
significance levels (o = 0.09 to o = 0.99 here) and according to P.

An example of a plot of p, against critical values of IS, for o = 0.9, oo = 0.95
and o = 0.99 for the case when P = 10 (L=5) is shown in Fig 2. From Fig 2,
assuming p, = 0.2 for all k, an outlier would be indicated at the t’th point if IS,
> 6.6 using the 1% significance level. The estimation of p, in practice is
discussed in section 5.

As the simulated moments of IS, were found to differ marginally from the
theoretical moments Johnson curves were therefore also fitted to the empirical
moments. This would enable a check to be made on whether the empirical
critical values differed appreciably from the critical values found from the
theoretical moments. Critical values were produced for p, = 0.0 and for P =
2,4, 6, 10. The discrepancy with theoretical critical points was small (no more

Tt —_—



than 1 unit in the first decimal place of entries). As P increased i:he
discrepancy also inereased marginally but did not appear to be substantial.

TABLE IV

Theoretical (in brackets) and Empirical moments of IS, for MA(2)
Process, 2000 simulations, n=200, maximum lag = 10

9, 6 p, p; MEAN VAR SKEW KURT
05 03 026022 055 073 3.69 26.51
(0.24) (0.13) (3.15)(22.26)

03 02 021018 078 141 3847 23.04
(0.91) (1.91) (3.15)(22.26)

-0.7 -0.1 051007 043 044 3.58 24.20
(0.54) (0.68) (3.15)(22.26)

1.0 -0.95-0.67 0.33 -0.12 0.03 3.44 2227
(0.30) (0.21) (3.15)(22.26)

-1.0 -0.95 0.67 033 0.12 0.03 3.38 21.66
(0.30) (0.21) (3.15)(22.26)

02 -0.7 -022 046 041 039 3.62 26.36
(0.21) (0.10) (3.15)(22.26)

05 -0.1 044 0.08 0.63 0.90 336 21.01
(0.66) (0.99) (3.15)(22.26)

0.7 -0.1 -0400.29 032 024 3.49 23.52
(0.70) (1.14) (3.15)(22.26)

0.1 0.7 -0.02-047 044 045 3.49 2279
(0.61) (0.86) (3.15)(22.26)



FIGURE 2
Critical values for IS, p=10

FIGURE 2
Critical values for IS,p=10
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5. OUTLIER DETECTION IN PRACTICE

Chernick et al (1982) use seven time series which refer to inventory differences
of quantities of Nuclear materials to illustrate the use of the Influence
Function Matrix. From Fig 1 it is clear that detecting spurious points using
this method can be difficult in practice due to confused patterns. Here the
Nuclear Power and DTp data sets are re-examined using the Influence
Statistic defined by (2) together with critical points to indicate outlying /
influential data.

Data from The Department of Transport, congists of traffic counts for a single
trunk road with information for Eastbound and Westbound traffic. Four time
series are available in each direction, beginning at 08:00, 12:00, 17:00 and
20:00 in each case, making 8 time series of traffic counts in total. Information
is also available for other routes which will be analysed later in the project.

So far we have assumed p, to be "constant”. Therefore some global "sample
summary" estimate of p, is needed for practical application. Watson (1287)
looked at three possible representative measures, these being:

i) r=max |n]|

0 \ | max ry| + |min
11 re =

2

max r,| + |max r. | + |max,r,

1ii) r=

3

where max r, and max,r, are the second and third largest sample
autocorrelations respectively. Some meagure is needed which is representative
across the range of values expected o occur in the autocorrelation function,
because of the assumption of constant r,. As the theoretical basis for IS, lies
in the influence outliers have on the sample autocorrelation function, the
possibility of using a robust estimator of p, is rejected.

Simulations of AR(1) and MA(1) processes with varying n, ¢ and © values were
used to assess the effect of the use of the three possible estimators on the
detection rate of IS,. Comparing the empirical significance levels with the
nominal levels of 10%, 5% and 1%, the estimator r* gave the most satisfactory
results from the three estimators considered. In Fig 3, the proportion of
outliers found at the three nominal significance levels is shown for simulated
AR(1) processes, using r* in calculations. The number of outliers detected
using r¥ only rose consistently above that expected at the nominal levels for
¢, > 0.6 approximately. Clearly a "better" summary measure than r* may well
exist, but for our purposes r* has proved adequate.

11



In practice we have found a maximum lag value of L. = 5 gave satisfactory
empirical outlier detection rates for most of the series examined. In Table V
the points detected by IS, (using r* in calculations) and those detected by
Chernick’s Influence Function Matrix are compared. Although fewer are now
detected at the 1% level, some consistency in the points picked out is apparent.

In table VI outlier detection results are shown for East and West bound traffic
counts for part of the DTp’s data. A comparison is made between points
detected by the influence statistic and those given by the straightforward
measure of residuals outside 3 standard deviation limits. The residuals were
calculated from a Box-Jenkins Multiplicative Seasonal ARIMA with a season
of period 7.

For each series observations 27 , 72 and 122 were missing and coded as zero.

In column 2 of table VI the observations highlighted by both methods are
shown, whilst columns 3 and 4 indicate points detected by the high residual
and influence statistic exclusively. As each method utilizes different criteria
in the selection of "significant” points it is impossible to categorize results as
correct or incorrect. However it is clear from table VI that for each series a
number of points were picked out by both methods, including missing
observations. Several other data points were also highlighted by each eriteria.
Note that for the DTp data a maximum lag of L=8 was used together with the
r* estimate of p,, The increased value of L was felt to be appropriate because
of the pattern of spikes shown in the series ACF, which would not have been
accommodated using L=5.

6. A SIMPLE ADJUSTMENT PROCEDURE FOR OUTLIERS

Further examination of the Influence Function considered suggests possible
replacement values for any outlying or influential data found. For data
without highly influential or outlying points, I(p,, Z,Z,x) will be a random
variable with zero expectation. If the sample estimate of (1) takes its expected
value of zero, then approximately

Zy T~y B2+ ZpD =0 e (4)

Consider Y, as the quantity to be estimated (i.e. the missing data point or
outlier), then from knowledge of Z,,, and r, solving expression (4) suggests a
replacement value. Note that the calculation of r, will initially have been
made with Y, included. Manipulation shows the solution of (4) to be

z
Z= M 1-y1-rp
T

If the approzimation given by (4) holds, then the replacement value

(Z, x S) + Y may be practically applied to replace identified outliers.
Simulation studies with series of normal variates showed that the replacement
procedure works very well (see Watson, 1987).

T ot
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We simulated a series of iid N(0,1) variables and created artificial outliers by
gradually increasing the magnitude of one of the data points. A plot of the raw
series, together with the first few lags of the autocorrelation function is shown
in Fig 4, By visual inspection, the series has no distinctive features other than
a large negative value at Y,,.

FIGURE 3

Empirical significance levels using r*, max lag=5

10 il et G i s e dmw Gt e e e ey Al emmd Ml sm Sees s e G S
' ———— 300
— — 200
1 \ ]88
T ]
- 38
8 F — ver T M e et et Srun —
adiadialiy
§ 4 T - =g
w
g‘ 300
2 L
“ — 200
1 S e LT v e e e~ o e . T - - 100
50

TABLE V
Comparison between points found significant by IS, and the subjective
Influence Matrix methods in the Nuclear power data

POINTS SIGNIFICANT

IS, INFLUENCE MATRIX
SERIES  r* 10% 5% 1%  (ALL LEVELS)
LASLP 00572 Y, Y, - - Y,, Y,0, Yoo
LASLU 0.1582 Y, Y, Y, Y, Y
RICH 00147 Y,Y, Y, ; Y, Yo Yo, Yo
ORNLP 0.0545 - Y, Y, Y, - Y., Y, Yoo, Yoy, Yoo
ORNLP2 0.0680 Y, Y,, - Yy, Yas
U233 0.0044 - - . Y,, Yo
SAVV  0.1242 - - . Y,,

13




TABLE VI

Influence statistic and extreme residual results for DTp data.

Route T/B 912 East
Data Both Methods High Residual Influence
Only Statistic Only
08:00 27, 65, 72 88, 122, 128 24, 73, 79, 80
12:00 27, b7, 72, 88, 89, 1, 2, 66, 76, 79,
90, 122 86, 92, 93
17:00 45, 52, 66, 72 27 17, 88, 108,
122, 128, 129,
136
20:00 b2, 66, 72, 88 27, 122 10, 17, 31, 44,
45, 64, 65, 73,
87, 94, 95, 101,
108
Route T/B 912 West
Data Both Methods High Residual Influence
Only Statistic Only
08:00 217, 51, 65, 72 93, 96 44, 58, 62, 75,
86
12:00 72 18, 24, 27, 89, 2, 23, 30, 37,
122 44, 45, 51, 58,
65, 66, 79, 86,
87, 88, 93
17:00 27, 36, 40, 72, 13 6, 7, 30, 35, 79,
122 85, 86
20:00 85 2,22, 27,86, 122 | 64, 71, 72,77

(for each series 27, 72 and 122 are missing values)

14




FIGURE 4

Time series plot of series 1
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Using the Influence Statistic (2), we identified the points Y,, and Y,, as
potential outliers at the 5% level of significance. We concentrated on Y,,. Six
increments of size 0.2 were consecutively subtracted from Y,, to investigate the
corresponding effect on IS, and we also used the outlier adjustment in
expression (5). From Table VI, the values of IS, before and after adjustment
may be compared.

It is clear that as the size of the outlier is increased by subtracting units of 0.2,
the Influence Statistic also becomes increasingly larger. After the artificial
outlier was replaced with the adjustment given by (5), the outlier detection
statistic was no longer significant. The adjustment procedure (5) does of
course depend upon the sample acf at lag k. We decided to use only one value,
namely the lag for which r, (k = 1, 2, ...) was largest. Another idea would be
to calculate adjusted data points using all of r, r,, .1y @y in (5). The "final”
adjusted value could be obtained by smoothing these k{max) adjustments. An
alternative solution may be to take an exponentially weighted sum of
adjustments up to a predetermined maximum lag.

15



TABLE VI1
Value of IS, for Y,, before and after adjustment

Before After

SERIES IS,, IS,
Y, 5.6 0.21
Y,,- 0.2 6.36 0.13
Y,,- 0.4 713 0.19
Y,,- 0.6 7.89 0.19
Y,,- 0.8 8.64 0.19
Y,,- 1.0 9.38 0.18
Y,,- 1.2 10.09 0.18

Similar ideas have been proposed by Abraham and Chuang (1989). Their
approach to model building is to "clean" the series, replacing outliers by an
adjustment dependent upon parameters of a fitted autoregressive model. The
influence statistic approach, of course, only depends upon the acf of the
observed series and not on some fitted model.

7. A PRACTICAL APPLICATION OF THE ADJUSTMENT
PROCEDURE

The DTp’s traffic count data provides an ideal practical application for the
adjustment procedure, containing both missing data and suspect outliers. The
procedure was successfully applied to each of the 8 series and sample results
for two of the series are given in Table VIII, Series plots for the data are
shown by figs 1 and 5, and from these it is clear that both time series have
several potential outliers and missing values (coded as zero). The original
value of the outlying observation is shown in column 5 of table VIII with
misging observations allocated a zero value. The observation number and
corresponding IS, value are shown in columns 2 and 3 respectively, whilst the
suggested replacement figure is given in column 4. Several applications of the
procedure were made, as the replacement of an initial set of outlying points
uncovered a further group for treatment. The r* value is indicated in column
1, together with the critical value (CV) for IS, and it is clear from table VIiI
that the r* value rises as each group of points i is replaced. This is as expected
and is indicative of the depressing quality of maverick data on the
autocorrelation function. Some variation is found in the suggested
replacement values although they do not fluctuate substantiaily.
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Figure 5
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Table VIII
Application of adjustment procedure to DTp
time series traffic counts

T/B East @ 17:00

Statistic Obs Influence New Original
Statistic Value | Value

CV=5.6 45 11.7 530 1164
r* = 0.345 66 7.3 430 995

: 72 101 338 |0

88 13.2 333 1118

Cv=45 122 4.9 387 {0
r¥* = 0.439 136 12.3 354 643
CV=44 52 5.2 444 952
r¥ = 0478
Cv=44 17 6.1 333 607
r* = 0477 108 5.8 370 607
CV = 4.0 129 4.9 339 476
r* = 0.508
CV=39 (STOP)
r* = 0.52

T/B West @ 8:00

Statistic Obs Influence New Original
Statistic Value | Value

CV=61 51 8.2 151 462

r* = 0.262 58 14.5 147 374
62 6.6 154 287
65 41.1 120 522
72 27.1 161 0

CV=65 27 6.5 150 0

r¥ = 0.214 44 74 148 259
86 9.7 | 144 357

CV=64 72 7.9 155 0

r¥ = 0.226

CV=6.3 (STOP)

r* = 0.249
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8. CONCLUSIONS

The Influence Function Matrix proposed by Chernick et al (1982) has been
developed to form an objective statistic, IS, for outlier detection in time series.
By assuming p, is approximately constant, the approximate first four moments
for the statistic have been obtained. Simulation studies have shown the first
four theoretical moments to be in good agreement with empirical moments for
the statistic with standard normal and ARMA series. By fitting Johnson
curves to the theoretical moments, critical points have been produced to
determine which data values are influential or outlying in a time series.

Practical applications of the statistic have been given using Chernick et al’s
(1982) nuclear power data and time series traffic counts from DTp:. The
statistic agreed with the points highlighted by Chernick et al (1982) as possible
outliers and was successful in detecting exireme traffic counts. An adjustment
procedure for outliers has been described derived from the statistic and shown
to have practical application with both outliers and missing observations in
traffic counts.
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