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Abstract. We approach the classification of Lie bialgebra structures
on simple Lie algebras from the viewpoint of descent and non-abelian
cohomology. We achieve a description of the problem in terms of faith-
fully flat cohomology over an arbitrary ring over Q, and solve it for
Drinfeld–Jimbo Lie bialgebras over fields of characteristic zero. We
consider the classification up to isomorphism, as opposed to equiva-
lence, and treat split and non-split Lie algebras alike. We moreover
give a new interpretation of scalar multiples of Lie bialgebras hitherto
studied using twisted Belavin–Drinfeld cohomology.
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1 Introduction

The “linearization problem” for quantum groups, outlined in spirit by Drin-
feld [D], and solved in the celebrated work of Etingof and Kazhdan [EK1] and
[EK2], naturally leads to the study of Lie bialgebras over the power series ring
R = C[[t]]. If g is a finite dimensional (necessarily) split simple complex Lie
algebra one can try to understand all possible Lie bialgebra structures that can
be put on the R–Lie algebra g ⊗C R. This is exactly the program started by
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Kadets, Karolinsky, Pop and Stolin and pursued in [KKPS] and other papers,
where this is done by considering the (algebraic) Laurent series fieldK = C((t)),
and introducing (twisted and untwisted) Belavin–Drinfeld cohomologies. These
cohomologies parametrized the possible Lie bialgebra structures on g⊗CK, and
they were computed on a case-by-case fashion for the classical types.
We recall that the Belavin–Drinfeld theorem from [BD] gives a complete list
(up to equivalence) of all possible Lie bialgebra structures on g⊗CK. It is thus
natural to approach the problem at hand by means of usual Galois cohomology.
This is done in [PS], where the Belavin–Drinfeld cohomologies are shown to be
usual Galois cohomology with values in the algebraic group C(G, rBD) (the
centralizer in the adjoint group G of g of the given Belavin–Drinfeld r-matrix
rBD). The main results of [PS] state that:

(a) untwisted Belavin–Drinfeld cohomologies are the usual Galois cohomolo-
gies H1

Gal(K,C(G, rBD));

(b) for the Drinfeld–Jimbo r-matrix rDJ the twisted Belavin–Drinfeld co-
homologies can be expressed in terms of the Galois cohomology set
H1

Gal(K, C̃(G, rDJ)) for a twisted form C̃(G, rDJ) of theK-algebraic group
C(G, rDJ). This form is split by the quadratic extension L = K(

√
t) of

K;

(c)H1
Gal(K,C(G, rDJ)) is trivial by Hilbert 90, andH

1(K, C̃(G, rDJ)) is trivial
by a theorem of Steinberg that is also used to establish the correspondence
in (b). As a consequence, there are unique (up to Belavin–Drinfeld
equivalence with gauge group G) corresponding Lie bialgebra structures
on g with prescribed doubles (namely g × g in the untwisted case, and
g⊗K L in the twisted case).

The main objective of the present paper is to develop the theory of faithfully
flat descent for Lie bialgebras over rings, with emphasis on what this theory is
best suited for: the classification of twisted forms of a given Lie bialgebra up

to isomorphism and without the restriction that the underlying Lie algebras be

split. This is the main difference between our work and the recent paper [KPS],
where the authors use Galois descent to obtain far-reaching results about Lie
bialgebra structures on split Lie algebras up to equivalence. The Belavin–
Drinfeld classification is up to equivalence, in the sense that two coboundary
Lie bialgebra structures ∂r and ∂r′ on a split Lie algebra g are considered
equivalent if

r′ = α(AdX ⊗AdX)(r)

for some invertible scalar α and some X in a suitably chosen group with cor-
responding simple Lie algebra g. This relation is not comparable to isomor-
phism. On the one hand, scalar multiples of r-matrices in general lead to non-
isomorphic Lie bialgebras. On the other hand, non-equivalent Lie bialgebra
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structures may still be isomorphic if the Lie algebra admits outer automor-
phisms. Nevertheless, the flexibility of the point of view that we take allows
us to recover and in some cases explain all the results up to equivalence known
heretofore. As we will see, it is well suited for understanding Lie bialgebras
whose underlying Lie algebra is not necessarily split over arbitrary fields of
characteristic zero, a topic that has been little investigated in the literature.
In the appendix of [KPS], the authors classify Lie bialgebra structures on
sl(2, R) and sl(3, R) for a discrete valuation ring R using orders and lattices. It
would therefore be interesting to find a cohomological interpretation and gen-
eralization of these results. Another instance where Lie bialgebras over rings
are discussed is [BFS], where solutions to the quantum Yang–Baxter equation
that arise from Frobenius algebras over rings are treated.
After the necessary definitions in this section, the paper proceeds with the
statement of the formalism of faithfully flat descent for Lie bialgebras in Sec-
tion 2. In Section 3 we give a description of the automorphism groups of
Belavin–Drinfeld Lie bialgebras defined over the base ring. Our major result
is in Section 4, where we solve the classification problem for standard (i.e.
Drinfeld–Jimbo) Lie bialgebras over arbitrary fields of characteristic zero. In
Section 5 we turn our attention to Lie bialgebras that are locally scalar mul-
tiples of Belavin–Drinfeld structures. This includes and provides context to
previous results on twisted Belavin–Drinfeld bialgebras. In the final Section 6
we review some known classification results in the light of the results of the
previous sections.

Acknowledgement

We are grateful to Alexander Stolin for fruitful discussions, and to the referees
for their careful reading of our manuscript, and for their feedback.

1.1 Lie Bialgebras over Rings

The importance of considering Lie bialgebras over rings that are not fields
was explained in the introduction. Throughout, we fix a unital, commutative
ring R. All unadorned tensor products are understood to be over R. By an
R-ring we understand a unital, commutative R-algebra. We will further always
assume that Spec R, as a scheme, has characteristic 0; this amounts to saying
that R is a Q-ring. For any R-module M we will always write κ for the linear
map M ⊗M → M ⊗M defined by the transposition x ⊗ y 7→ y ⊗ x of tensor
factors. Let M be an R-module. A Lie cobracket on M is an R-linear map
δ :M →M ⊗M that is anti-symmetric in the sense that

κ ◦ δ = −δ,

and satisfies the co-Jacobi identity

(δ ⊗ IdM ) ◦ δ = (IdM ⊗ δ) ◦ δ + (IdM ⊗ κ) ◦ (δ ⊗ IdM ) ◦ δ.
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The pair (M, δ) is called a Lie coalgebra. From the definition it follows that
the composition

M∗ ⊗M∗ (M ⊗M)∗ M∗can δ∗

is a Lie bracket on M∗.

Remark 1.1. IfM is a finitely generated projective module, then the canonical
map can is an isomorphism. In that case, identifyingM∗⊗M∗ with (M⊗M)∗,
it can be verified that δ is a Lie cobracket if and only if δ∗ is a Lie bracket.

If g = (g, [, ]) is a Lie algebra, and δ is a Lie cobracket on g satisfying the cocycle
condition

δ([a, b]) = (ada ⊗ 1 + 1⊗ ada)δ(b)− (adb ⊗ 1 + 1⊗ adb)δ(a)

for any a, b ∈ g, then (g, δ) is called a Lie bialgebra. If (g, δ) and (g′, δ′)
are Lie bialgebras, then a map φ : g → g′ is a morphism of Lie bialgebras
(g, δ) → (g′, δ′) if it is a Lie algebra morphism that in addition satisfies

(φ ⊗ φ) ◦ δ = δ′ ◦ φ. (1.1)

If φ is invertible, then φ−1 is a morphism of Lie bialgebras (g′, δ′) → (g, δ),
and φ is called an isomorphism of Lie bialgebras. Thus R-Lie bialgebras form a

category, which we denote by L̂BiR. We denote by LBiR the full subcategory

of L̂BiR whose objects are those Lie bialgebras whose underlying module is
finitely generated and projective.

2 Descent for Lie Bialgebras

We will first establish the desired correspondence between twisted forms of
bialgebras and certain cohomology classes. Let (g, δ) be a Lie bialgebra over R,
and let S be a R-ring. On the S-algebra gS = g ⊗ S one has a unique Lie
bialgebra structure δS that satisfies

δS(x⊗ 1) =
∑

(yi ⊗ 1)⊗S (zi ⊗ 1)

for all x ∈ g, where
∑
yi ⊗ zi = δ(x) ∈ g ⊗ g. An R-Lie bialgebra (g′, δ′) is

said to be an S/R-twisted form of (g, δ) if (g′S , δ
′
S) ≃ (gS , δS) as S-bialgebras.

We will mainly be interested in the case where S is faithfully flat over R. This
includes the special case where R is a field of characteristic zero and S is any
field extension.
Let (g, δ) now be an S-Lie bialgebra, and let κ : S⊗S → S⊗S be the (R-linear)
flip α⊗ β 7→ β⊗α. There are two ways to endow g⊗ S with an S ⊗ S-module
structure; the S⊗S-action being component-wise in the first, and twisted by κ
in the second. We denote the two modules (algebras, bialgebras) by g⊗12S and
g ⊗21 S, respectively. Both modules (algebras, bialgebras) are seen as having
the same underlying R-module (R-algebra, R-bialgebra) structure which we
continue to denote by g⊗ S.
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Definition 2.1. A descent datum on g is an isomorphism θ : g⊗12S → g⊗21S
of S ⊗ S- Lie bialgebras, satisfying the equality

(Id⊗ κ)(θ ⊗ Id)(Id⊗ κ) = (θ ⊗ Id)(Id⊗ κ)(θ ⊗ Id)

of maps on g⊗S⊗S. The triple (g, δ, θ) is called a Lie bialgebra with a descent

datum. A morphism of Lie bialgebras with descent data (g, δ, θ) → (g′, δ′, θ′) is
a morphism of Lie bialgebras f : (g, δ) → (g′, δ′) such that the diagram

g⊗12 S g′ ⊗12 S

g⊗21 S g′ ⊗21 S

θ θ′

commutes, where the horizontal arrows are given by f ⊗ Id.

Remark 2.2. Some authors set θ0 = (Id⊗κ)(θ⊗Id)(Id⊗κ), θ1 = (θ⊗Id)(Id⊗κ)
and θ2 = (θ ⊗ Id), and write the equality in the definition in the equivalent
form θ1 = θ0θ2.

We recall the following fundamental fact of faithfully flat descent (see [KO,
II.2.5]). Here and in what follows, if N is an R-module and T an R-ring, we
shall often abbreviate N ⊗ T by NT .

Lemma 2.3. Let S be a faithfully flat R-ring and let N and N ′ be R-modules.

There is an exact sequence

0 HomR(N,N
′) HomS(NS , N

′
S) HomS⊗S(NS⊗S , N

′
S⊗S)

∆

of R-modules. Here ∆ is defined by f 7→ (f ⊗ Id)− (Id⊗ κ)(f ⊗ Id)(Id ⊗ κ).

For an R-ring S, we write L̂Bi
S

R for the category of S-Lie bialgebras with
descent data, and LBiSR for the full subcategory formed by the objects whose

underlying modules are finitely generated projective. If (g, δ) ∈ L̂BiR, then
the standard descent datum on g⊗ S is the map

Idg ⊗ κ : (g⊗ S)⊗12 S → (g⊗ S)⊗21 S.

It is straightforward to verify that this is indeed a descent datum, and that

we thus get a functor D = DS
R : L̂BiR → L̂Bi

S

R, defined on objects by g 7→
(g⊗ S, Idg ⊗ κ), and on morphisms by f 7→ f ⊗ IdS .
Faithfully flat descent for Lie bialgebras is then as follows.

Proposition 2.4. If the R-ring S is faithfully flat, then D is an equivalence

of categories L̂BiR → L̂Bi
S

R, and induces an equivalence LBiR → LBiSR.

This result is well-known for modules (where the descent data are linear maps).
We will use this in the proof below.
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Proof. It is clear that D(g) is finitely generated projective if g is. We claim

that a quasi-inverse to D is given by D′ : L̂Bi
S

R → L̂BiR, defined on objects
by mapping (g, θ) ∈ LBiSR to

gθ := {x ∈ g|θ(x⊗ 1) = x⊗ 1},

and on morphisms by restriction. It is known that gθ is an R-submodule of g,
which is finitely generated projective if g is, and by [W, 17.2] gθ ⊗ S ≃ g as
S-modules, via the isomorphism m : x⊗ α 7→ αx.
The module gθ is an algebra by [KO, II.3.]. We repeat their argument here.
The Lie bracket on g induces, via the map m, a Lie bracket [, ]θ on gθ ⊗ S,
thus making m into an algebra homomorphism fitting into the commutative
diagram

(gθ ⊗ S)⊗S (gθ ⊗ S) gθ ⊗ S

g⊗S g g

[,]θ

m⊗Sm m . (2.1)

Consider the following diagram of T := S ⊗ S-modules

(gθ ⊗ T )⊗T (gθ ⊗ T ) gθ ⊗ T

(g⊗21 S)⊗T (g⊗21 S) (g⊗21 S)

(g⊗12 S)⊗T (g⊗12 S) (g⊗12 S)

[,]1

[,]2
(m⊗IdS)(Id

gθ⊗κ)⊗2

(m⊗IdS)⊗2

m⊗IdS

(m⊗IdS)(Id
gθ⊗κ)

θ⊗θ θ

(2.2)
where the middle and bottom horizontal arrows are the Lie brackets on the
respective modules, and the maps [, ]1 and [, ]2 are defined by

[x⊗ α⊗ β, y ⊗ 1⊗ 1]1 = [x⊗ α, y ⊗ 1]θ ⊗ β,
[x⊗ β ⊗ α, y ⊗ 1⊗ 1]2 = (Idgθ ⊗ κ)([x⊗ α, y ⊗ 1]θ ⊗ β).

Note that the vertical arrows are isomorphisms: this holds for m⊗ IdS since S
is flat, and for (m ⊗ IdS)

⊗2 since tensoring is right exact, hence preserves
isomorphisms. Recall next that we have an isomorphism fU : (gθ ⊗ U) ⊗U

(gθ ⊗ U) → gθ ⊗ gθ ⊗ U for any R-ring U . Given the isomorphism fT and the
construction of [, ]1 and [, ]2 it remains, by Lemma 2.3, to show that these two
brackets are equal. The lemma then implies that [, ]θ is induced by a unique
bracket on gθ, which satisfies the axioms of a Lie bracket since so does [, ]θ (see
[KO, II.3.]).
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Since the rightmost vertical arrow is an isomorphism, it suffices to show that
the rear square commutes with each of [, ]i as top arrow. For [, ]1, this fol-
lows from the commutativity of (2.1) by applying fS, tensoring with S on the
right, and applying fT . Tensoring with S in the middle instead implies that
the top parallelogram is commutative for [, ]2. The bottom parallelogram is
commutative since θ is a Lie algebra homomorphism, and the two triangles
commute by definition of a descent datum. This altogether implies that the
square commutes with [, ]2 as well, as desired.

To show that gθ is a Lie coalgebra, we use the same argument up to reversing
some arrows. More specifically, we have a Lie cobracket δθ on gθ⊗S, makingm
into a coalgebra homomorphism such that the diagram

(gθ ⊗ S)⊗S (gθ ⊗ S) gθ ⊗ S

g⊗S g g

m⊗Sm m

δθ

(2.3)

commutes. Consider the diagram

(gθ ⊗ T )⊗T (gθ ⊗ T ) gθ ⊗ T

(g⊗21 S)⊗T (g⊗21 S) (g⊗21 S)

(g⊗12 S)⊗T (g⊗12 S) (g⊗12 S)

(m⊗Id)(Id⊗κ)⊗2

(m⊗Id)(Id⊗κ)

δ1

δ2

θ⊗θ θ

(2.4)
which only differs from (2.2) at the horizontal arrows: the middle and bottom
arrows are the Lie cobrackets on the respective modules, and the maps δ1 and
δ2 are defined by

δ1(x⊗ α⊗ β) =
∑

(xi ⊗ αi ⊗ β)⊗T (x′i ⊗ α′
i ⊗ 1)

δ2(x⊗ β ⊗ α) =
∑

(xi ⊗ β ⊗ αi)⊗T (x′i ⊗ 1⊗ α′
i)

with δθ(x ⊗ α) =
∑

(xi ⊗ αi) ⊗S (x′i ⊗ α′
i). As above it suffices to check that

the square commutes for each δi. For δ1 this follows from the commutativity of
(2.3) via fS , tensoring with S on the right, and fT . Again, tensoring with S
in the middle implies that the top parallelogram is commutative for δ2. The
bottom parallelogram is commutative since θ is a Lie coalgebra homomorphism,
and the triangles are those from (2.2). Thus δθ is induced by a unique cobracket
on gθ, which satisfies the axioms of a Lie cobracket since δθ does.
The cocycle condition further follows, by faithful flatness, from that on gθ ⊗S,
which holds in view of the isomorphism m. Thus gθ is a Lie bialgebra.
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To show that D′ is well-defined on morphisms, let f : (g, θ) → (g′, θ′) be a
morphism of S-Lie bialgebras with descent data. Then for all x ∈ gθ,

θ′(f(x)⊗1) = θ′(f ⊗ Id)(x⊗1) = (f ⊗ Id)θ(x⊗1) = (f ⊗ Id)(x⊗1) = f(x)⊗1,

where the second equality holds by definition of a map of Lie bialgebras with
descent data, and the third by construction of gθ. Thus f(x) ∈ (g′)θ

′

, and the
functor is well-defined morphisms.
It remains to be shown that D′ is a quasi-inverse to D. Firstly, for each

g ∈ L̂BiR,
D′D(g) = {x ∈ g⊗ S|(Idg ⊗ κ)(x⊗ 1) = x⊗ 1}.

Applying Lemma 2.3 with N = R and N ′ = g, we see that the assignment
x 7→ x ⊗ 1 yields an isomorphism g → D′D(g). Since this map is clearly a
natural morphism of Lie bialgebras, this implies D′D ≃ Id

L̂BiR
.

Secondly, if (g, θ) ∈ L̂Bi
S

R, then

DD′(g, θ) = (gθ ⊗ S, Idgθ ⊗ κ).

From the above we know that the map m : gθ ⊗ S → g is an isomorphism of
Lie bialgebras. It is a map of Lie bialgebras with descent data, since for all
x ∈ gθ and α, β ∈ S,

θ(m⊗ IdS)(x ⊗ α⊗ β) = θ(αx ⊗ β) = (β ⊗ α)θ(x ⊗ 1) = (β ⊗ α)(x ⊗ 1)

which is equal to

βx⊗ α = (m⊗ IdS)(x ⊗ β ⊗ α) = (m⊗ IdS)(Idgθ ⊗ κ)(x⊗ α⊗ β).

Naturality is clear, and the equivalence of categories thus obtained induces an
equivalence LBiR → LBiSR by restriction. The proof is complete.

For any R-Lie bialgebra (g, δ) and any faithfully flat R-ring S, we wish to
classify all S/R-twisted forms of g, i.e. all R-Lie bialgebras (g′, δ′) such that
(g′S , δ

′
S) ≃ (gS , δS). Let A = Aut((g, δ)) be the automorphism group functor

of (g, δ). As one does for modules and algebras, we consider, for each faithfully
flat R-ring S the cohomology set H1(S/R,A) := H1

fppf(S/R,A), consisting of
cohomology classes of 1-cocycles. Here a 1-cocycle is an element φ ∈ A(S ⊗S)
satisfying the cocycle condition

d1φ = (d0φ)(d2φ)

where diφ is the R-linear extension of φ to g⊗S⊗S⊗S obtained by applying
IdS to the ith copy of S; two cocycles φ and φ′ are defined to be cohomologous
if

φ′ = (Idg ⊗ κ)(ρ⊗ IdS)(Idg ⊗ κ)φ(ρ−1 ⊗ IdS)

for some ρ ∈ A(S). The following is then a consequence of the above proposi-
tion, and the proof is analogous to that for descent of modules.

Corollary 2.5. Let (g, δ) be a Lie bialgebra over R with automorphism group

scheme A. Let S be a faithfully flat R-ring. Then there is a 1−1-correspondence
between H1(S/R,A) and R-isomorphism classes of S/R-twisted forms of (g, δ).
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3 Belavin–Drinfeld Lie Bialgebras and Their Automorphisms

3.1 Coboundary Lie Bialgebras and r-matrices

A Lie bialgebra (g, δ) is said to be a coboundary Lie bialgebra if δ = ∂r for
some r ∈ g⊗ g, i.e. if

δ(a) = (ada ⊗ 1 + 1⊗ ada)(r) (3.1)

for all a ∈ g. Using classical notation, alluding to the universal enveloping
algebra, this is written as

δ(a) = [a⊗ 1 + 1⊗ a, r]

In general, not every r ∈ g ⊗ g gives rise to a Lie bialgebra structure via the
above formula. We will come back to this point below.

Let G be a split simple adjoint group over R with g = Lie(G). By Chevalley
uniqueness [SGA3, XXIII.5] and the fact that R is a Q-ring, up to isomorphism
we may and will assume that G is defined over Q; thus g = g0 ⊗QR for a split
simple Q-Lie algebra g0. Let E be a pinning of G. The pinning provides a split
maximal torus H, a splitting Cartan subalgebra h = Lie(H) of g, a base Γ of
the corresponding root system ∆, a set of positive roots ∆+ ⊂ ∆ and, for each
α ∈ ∆, a Chevalley generator Xα 6= 0 of gα. This moreover provides a Casimir
element Ω ∈ g ⊗ g, and we write Ωh for its Cartan part. (More precisely,
writing h = h0 ⊗QR, where h0 is the Cartan subalgebra of g0 corresponding to
the above data, and taking an orthonormal basis (hi) of h0, Ωh is the image of∑

i hi ⊗ hi under the base change Q → R.)

Remark 3.1. It is known that in the above setting

QΩ = {s ∈ g0 ⊗ g0|∀a ∈ g0 : (ada ⊗ 1 + 1⊗ ada)(s) = 0}, (3.2)

and that any automorphism of g0 fixes Ω. From this we will deduce that

RΩ = {s ∈ g⊗ g|∀a ∈ g : (ada ⊗ 1 + 1⊗ ada)(s) = 0}, (3.3)

and that any automorphism of g fixes Ω. Indeed, consider the Q-linear map

F0 : g0 ⊗ g0 → HomQ(g0, g0 ⊗ g0), s 7→ ∂s

where ∂s(a) = [1⊗a+a⊗1, s]. The kernel of F0 is the right hand side of (3.2),
which thus is QΩ. Base change gives a map

F0 ⊗Q IdR : (g0 ⊗Q g0)⊗Q R → HomQ(g0, g0 ⊗Q g0)⊗Q R,

where the right hand side is canonically isomorphic to HomR(g, (g0⊗Qg0)⊗QR)
since g0 is finite-dimensional. Since R is flat over Q, the kernel of this map is
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QΩ ⊗Q R. Identifying (g0 ⊗Q g0) ⊗Q R with g ⊗R g we thus deduce that the
kernel of the map

F : g⊗ g → HomR(g, g⊗ g), s 7→ ∂s,

is RΩ. Furthermore Aut(g) = Aut(g0)R, whence for any R-ring S and any
φ ∈ Aut(g)(S),

(φ⊗S φ)(Ω ⊗Q 1S) = Ω⊗Q 1S

Note further that since g = g0 ⊗Q R and Ω is defined over Q and non-zero in
g0 ⊗ g0, it follows that if λ ∈ R satisfies λΩ = 0 in g⊗ g, then λ = 0.

By an r-matrix on g we understand an element r ∈ g⊗g satisfying CYB(r) = 0
and r + κ(r) = λΩ for some λ ∈ R. Here the classical Yang–Baxter operator
CYB is defined by

CYB(r) = [r12, r13] + [r12, r23] + [r13, r23],

which, writing r =
∑

i si ⊗ ti, is shorthand for3

∑

i,j

([si, sj]⊗ ti ⊗ tj + si ⊗ [ti, sj ]⊗ tj + si ⊗ sj ⊗ [ti, tj ]) ∈ g⊗ g⊗ g.

It is straightforward to check that if r is an r-matrix, then ∂r is a Lie bialgebra
structure on g. Conversely, if R = K is a field and δ is a Lie bialgebra structure
on g, then by Whitehead’s Lemma, δ = ∂r for some r ∈ g⊗ g. If moreover K
is algebraically closed, then one may take r to be an r-matrix (see e.g. [ES]).

Remark 3.2. When R is a field, r-matrices r satisfying r+κ(r) = 0 are called
skew-symmetric. These are excluded from the Belavin–Drinfeld classification.
In the sequel we will only consider r-matrices satisfying r + κ(r) = λΩ with
λ ∈ R×, i.e. those that remain non-skew symmetric under any base change
R → K with K a field.

Below we list a few properties of r-matrices and their coboundary structures
for later use.

Lemma 3.3. Let r1 and r2 be two r-matrices over g, and let φ be a surjective

endomorphism of the Lie algebra g. Then φ is a morphism of Lie bialgebras

(g, ∂r1) → (g, ∂r2) if and only if (φ⊗ φ)(r1)− r2 ∈ RΩ.

Proof. Set s = (φ ⊗ φ)(r1)− r2. Combining (1.1) and (3.1), one sees that φ is
a Lie bialgebra morphism if and only if (adφ(a) ⊗ 1 + 1⊗ adφ(a))(s) = 0 for all
a ∈ g. Remark 3.1 then implies that s ∈ RΩ, since φ is surjective.

3The notation is motivated by the classical situation where one passes to the universal
enveloping algebra U(g) and sets e.g. (s ⊗ t)13 = s ⊗ 1 ⊗ t. The bracket then denotes the
commutator in U(g)⊗3. This is however merely a convenient notation and there is no need
to resort to U(g).
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Lemma 3.4. Let φ ∈ Aut(g) and let r be an r-matrix on g. Then φ is an

automorphism of (g, ∂r) if and only if (φ⊗ φ)(r) = r.

Proof. From the previous lemma we know that (φ ⊗ φ)(r) = r + µΩ for some
µ ∈ R. Moreover, r satisfies r + κ(r) = λΩ for some λ ∈ R. Thus

(φ⊗φ)(r+κ(r)) = (φ⊗φ)(r)+ (φ⊗φ)κ(r) = r+µΩ+κ(r)+µΩ = (λ+2µ)Ω

while the left hand side equals (φ⊗φ)(λΩ) = λΩ. Thus 2µΩ = 0, whence µ = 0
by Remark 3.1.

Lemma 3.5. Assume that R is an integral domain. Let, for i = 1, 2, r1 and

r2 be two r-matrices with ri + κ(ri) = λiΩ with λi ∈ R×. If r2 = r1 − µΩ for

some µ ∈ R, then either µ = 0 or µ = λ1.

The result and its proof over fields have been communicated to us by A. Stolin.
The proof over integral domains given here is almost identical.

Proof. Inserting r2 = r1 − µΩ into the equation CYB(r2) = 0, and simplifying
the expression using the fact that CYB(r1) = 0 and κ(r1) = λ1Ω− r1, one sees
that the equation is equivalent to µ(µ−λ1)[Ω12,Ω13] = 0, where the subscripts
are as in the definition of the classical Yang–Baxter operator. Now [Ω12,Ω13] is
defined overQ and non-zero in g⊗3

0 , whence it is free over R. Thus µ(µ−λ1) = 0
and we conclude with the assumption on R.

Lemma 3.6. Assume that R is an integral domain, let r be an r-matrix on g

with r + κ(r) = λΩ, λ ∈ R×, and let α, β ∈ R×. If (g, ∂αr) ≃ (g, ∂βr), then
β = ±α.

Proof. Assume that φ : (g, ∂αr) ≃ (g, ∂βr) is an automorphism. By Lemma
3.3, (φ ⊗ φ)(αr) = βr + µΩ for some µ ∈ R. As in the proof of Lemma 3.4 we
get

(φ⊗ φ)(αr + κ(αr)) = (βλ+ 2µ)Ω,

while the left hand side equals (φ ⊗ φ)(αλΩ) = αλΩ. Thus Remark 3.1 gives
βλ = αλ − 2µ. On the other hand, r′ = (φ ⊗ φ)(αr) is an r-matrix with
r′ + κ(r′) = αλΩ. Thus Lemma 3.5 implies that µ = 0 or µ = αλ. Inserting
these cases into βλ = αλ− 2µ gives β = ±α, since λ is invertible.

Finally, for later use, we recall the split exact sequence

1 G Aut(g) AΓ 1
Ad f

(3.4)

of affine R-group schemes, where Ad denotes the adjoint representation and
AΓ is the constant group scheme corresponding to the finite abstract group
Aut(Γ).

Remark 3.7. This split exact sequence is obtained by base change from a
similar split exact sequence of Z-group schemes.
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3.2 Belavin–Drinfeld Structures

Let E be a pinning of g. By an admissible quadruple we mean a quadruple
Q = (Γ1,Γ2, τ, rh), where (Γ1,Γ2, τ) is an admissible triple, and rh ∈ h ⊗ h

satisfies rh + κ(rh) = Ωh and

∀α ∈ Γ1 : (τ(α) ⊗ 1 + 1⊗ α)(rh) = 0.

Recall that (Γ1,Γ2, τ) being admissible means that Γ1,Γ2 ⊂ Γ and τ : Γ1 → Γ2

is an isometry such that for every α ∈ Γ1 there exists a positive integer k such
that τk(α) /∈ Γ1. The map τ extends to a map SpanZ(Γ1) → SpanZ(Γ2), which
is also denoted by τ . Associated to these data is the Belavin–Drinfeld r-matrix

rBD = rBD(E, Q) = rh +
∑

α∈∆+

Xα ⊗X−α +
∑

α∈Span
Z
(Γ1)

+

k>0

Xα ∧X−τk(α).

Remark 3.8. The requirement on rh above implies that rBD is defined over R.

We denote by ABD the automorphism group of (g, ∂rBD) and by CBD ⊆ H the
centralizer of rBD; since the action of H on g⊗ g is linear we have

CBD(S) = {h ∈ H(S)|Adh ⊗ Adh(rBD) = rBD}

for any R-ring S, which, since the induced action of H on h⊗h is trivial, equals

{h ∈ H(S)|Adh ⊗Adh(r
′
BD) = r′BD},

where r′BD = rBD − rh is defined over Q. Thus CBD is obtained from an affine
Q-group scheme by base change. Since any Q-group scheme is smooth as Q is
a field of characteristic zero, and since smoothness is preserved by base change,
this proves the following.

Lemma 3.9. The group CBD is smooth.

Given an admissible quadruple Q = (Γ1,Γ2, τ, rh), we denote by A
Q
Γ the closed

subgroup of AΓ defined by the equations

π(Γ1) = Γ1, πτ = τπ, and (π̂ ⊗ π̂)(rh) = rh.

Here π̂ is the image of π under the (unique) splitting s : AΓ → Aut(G) leaving
invariant each of H and E; this splitting exists by [SGA3, XXIII.5.5].

Theorem 3.10. Let G be a split simple adjoint R-group with g = Lie(G).
Let E = (H,Γ, (Xα)α∈Γ) be a pinning of G. Fix an admissible quadruple

Q = (Γ1,Γ2, τ, rh) and consider rBD = rBD(E, Q). Then the sequence (3.4)
induces a split exact sequence

1 CBD ABD A
Q
Γ 1

Ad f

of affine group schemes.
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Proof. Via the above splitting s : AΓ → Aut(G), π 7→ π̂, AΓ acts on H in
such a way that for any R-ring S and any h ∈ H(S) and π ∈ AΓ(S),

Adπ·h = π̂Adhπ̂
−1.

If π ∈ A
Q
Γ (S), then by definition of AQ

Γ , π̂ ∈ ABD, whence for any h ∈ CBD(S)

we have π · h ∈ CBD(S). Hence the action induces an action of AQ
Γ on CBD

and we may form the semi-direct product CBD ·AQ
Γ with respect to this action,

and we have a group morphism

Ad× s : CBD ·AQ
Γ → ABD.

To prove the theorem it suffices to show that Ad × s is an isomorphism. The
group CBD is smooth (hence flat), and A

Q
Γ is a closed subgroup of a finite

constant group, hence flat as well. Thus their semi-direct product is flat, and
the fiber-wise isomorphism criterion [EGAIV, 417.9.5] reduces the problem to
the case where R = K is a field of characteristic zero. In that case the above
group schemes are smooth, and it suffices, by [KMRT, 22.5], to show that

(Ad × s)(K) : CBD(K) · AQ
Γ (K) → ABD(K) is an isomorphism of abstract

groups. This latter statement holds by the following lemma, which completes
the proof.

Lemma 3.11. Let K be an algebraically closed field of characteristic zero. The

map Ad× s defines an isomorphism of groups CBD(K) ·AQ
Γ (K) → ABD(K).

Proof. The map in question being the restriction of an injective homomor-
phism, it only remains to be shown that it is surjective. Let φ ∈ ABD(K).
Then φ = π̂Adg for some g ∈ G(K) and π ∈ AΓ(K). As a first step we
will show that necessarily, g ∈ H(K), building on an argument from [KKPS].
Indeed, consider the isomorphism

Ξ : g⊗ g → EndK(g)

defined by sending a⊗ b to the linear map u 7→ 〈a, u〉b, where 〈, 〉 is the Killing
form on g. Now Ξ((φ ⊗ φ)(rBD)) = φΞ(rBD)φ

−1. Hence, by Lemma 3.4, φ is
an automorphism of (g, ∂rBD) if and only if φ commutes with Ξ(rBD), which
holds if and only if φ commutes with its semisimple and nilpotent parts. Denote
byD the semisimple part of Ξ(rBD). It is shown in [KKPS, Proof of Theorem 1]
that the Borel subalgebra b+ (resp. b−) is the normalizer of the eigenspace of D
corresponding to the eigenvalue 0 (resp. 1) (recall that we have fixed a pinning).
Thus if φ ∈ ABD, then φ must preserve b+ and b−. Since this is true for π̂, it
follows that Adg must preserve b+ and b−. The end of the proof of Theorem 1
of [KKPS] now applies to yield that this implies that g ∈ H(K).

Next we will show that π ∈ A
Q
Γ . Once this is done, it follows from (φ ⊗

φ)(rBD) = rBD that Adg ⊗ Adg(rBD) = rBD, i.e. that g ∈ CBD(K), and the
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proof becomes complete. Now, (Adg⊗Adg)(rh) = rh, while Adg(Xα) = α(g)Xα

and Adg(X−α) = α(g)−1Xα. Thus (φ⊗ φ) maps rBD to

(π̂ ⊗ π̂)(rh) +
∑

α∈∆+

Xα ⊗X−α +
∑

α∈Span
Z
(Γ1)

+

k>0

λα,k(g)Xπ(α) ∧X−πτk(α),

where λα,k(g) = α(g)(τk(α)(g))−1 ∈ K×. Thus (π̂ ⊗ π̂)(rh) = rh, and

∑

α∈Span
Z
(Γ1)

+

k>0

λα,k(g)Xπ(α) ∧X−πτk(α) =
∑

β∈Span
Z
(Γ1)

+

l>0

Xβ ∧X−τ l(β).

Now π and τ map positive roots to positive roots, and the set {Xα}α∈∆ is
linearly independent in g. Thus for the above equality to hold, π must preserve
the intersection of SpanZ(Γ1)

+ with ∆ and thus it preserves SpanZ(Γ1)
+ ∩Γ =

Γ1. Thus for any α ∈ SpanZ(Γ), the sum of all terms with first component
Xπ(α) in the left-hand sum equals the sum of all terms with first component
Xβ in the right-hand sum, for β = π(α), whence

∑

k>0

λα,k(g)X−πτk(α) =
∑

l>0

X−τ lπ(α)

for all α ∈ SpanZΓ
+
1 . We want to prove that this implies that πτ = τπ. For

this it is enough to show that πτ(α) = τπ(α) for all α ∈ Γ1. If Γ1 = ∅, there
is nothing to prove. Assume thus that Γ1 6= ∅. For any α ∈ Γ1, the definition
of admissibility implies that there exists a unique integer lα ≥ 1 such that
τ lα(α) /∈ Γ1 and τk(α) ∈ Γ1 for k < lα. Since π(Γ1) = Γ1, the above equality
and the construction of a Chevalley basis implies that all λα,k = 1, that both
sums have lα terms, and that

{πτ(α), πτ2(α), . . . , πτ lα(α)} = {τπ(α), τ2π(α), . . . , τ lαπ(α)}.

Since lτ(α) = lα − 1, the set of all lα is a segment of integers starting at 1. We
may thus proceed by induction on lα. If lα = 1, the above sets are singletons,
giving the base of the induction. For lα > 1, by the induction hypothesis the
left hand side is equal to

{πτ(α), τπτ(α), . . . , τπτ lα−1(α)}.

Thus for the above equality of sets to hold, either τπ(α) = πτ(α), or
τπ(α) = τπτ j(α) for some j > 0. This second case is however not possible,
since by injectivity of τπ it implies α = τ j(α) for some j > 0, which violates
admissibility. Thus πτ(α) = τπ(α), and the result follows by induction. This
completes the proof.
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3.3 Standard Structure

Associated to a pinning E is the Drinfeld–Jimbo r-matrix

rDJ = rDJ(E) =
1

2
Ωh +

∑

α∈∆+

Xα ⊗X−α.

In other words rDJ = rBD(E, Q) for the trivial quadruple Q = (∅, ∅, Id∅, 12Ωh).

Lemma 3.12. If E and E
′ are pinnings of G, then the Lie bialgebras

(g, ∂rDJ(E)) and (g, ∂rDJ(E
′)) are isomorphic.

Proof. If E and E
′ are two pinnings of G, then there is an automorphism of

G mapping E to E
′ by [SGA3, XXIII.5.1]. As Ωh is determined by h and Ω,

there is thus an automorphism φ : g → g with (φ⊗ φ)(rDJ(E)) = rDJ(E
′), and

hence φ is an isomorphism of Lie bialgebras.

Following [ES], we use the term standard or Drinfeld–Jimbo for the Lie bialge-
bra structure ∂rDJ(E) on g. Up to isomorphism, the above lemma shows that
it is independent of the choice of E, and is thus determined by g. Classifying
twisted forms of standard Lie bialgebras, i.e. Lie bialgebras (g′, δ′) such that
(g′S , δ

′
S) ≃ (gS , (∂rDJ)S) for a split Lie algebra g with standard Lie bialgebra

structure ∂rDJ and a faithfully flat R-ring S amounts, by Corollary 2.5, to de-
scribing the set H1(S/R,A), where A is the automorphism R-group scheme of
(g, ∂rDJ). For this group scheme, Theorem 3.10 has the following consequence.

Corollary 3.13. Let G be a split simple adjoint R-group with g = Lie(G),
and let E = (H,Γ, (Xα)α∈Γ) be a pinning of G. Then the sequence (3.4)
induces a split exact sequence

1 H A AΓ 1
Ad f

(3.5)

of affine group schemes.

Proof. Any h ∈ H(S), with S an R-ring, maps Xα ⊗ X−α to itself. Thus in

the terminology of Theorem 3.10, CBD = H, and by construction A
Q
Γ = AΓ.

We conclude with Theorem 3.10.

4 Standard Lie Bialgebras over Fields

We now specialize to the case whereR = K is a field (of characteristic zero), and
consider K/K-twisted forms of standard Lie bialgebras. Recall that over K,
two (bi)algebras whose underlying modules are finitely generated are locally
isomorphic with respect to the fppf topology if and only if they become iso-
morphic after scalar extension to K. If A is an algebraic group over K, then
H1

Gal(K,A) stands in bijection to K-isomorphism classes of A-torsors that
become trivial over K. In order to classify twisted forms of standard Lie bial-
gebras, we thus wish to compute H1

Gal(K,A), where A is the automorphism
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group scheme of the standard Lie bialgebra (g, ∂rDJ). We can in fact prove the
following.

Theorem 4.1. The map f of (3.5) induces an isomorphism of pointed sets

f∗ : H1
Gal(K,A)

∼−→ H1
Gal(K,AΓ).

Proof. The split exact sequence (3.5) induces an exact sequence

H1
Gal(K,H) H1

Gal(K,A) H1
Gal(K,AΓ)

Ad∗ f∗

of pointed sets. The map f∗ is surjective since, as a consequence of Remark 3.7,
the sequence (3.5) is split by a Galois equivariant section. To prove injectivity
of f∗, let c ∈ H1

Gal(K,A). The set of all c′ ∈ H1
Gal(K,A) with f∗(c) = f∗(c′) is

in bijection with a quotient of the set H1
Gal(K,f∗(c) H) by a certain equivalence

relation, where f∗(c) indicates a twisted Gal(K)-action. As AΓ acts on H via
permutation of the roots, f∗(c)H is a permutation torus (i.e. the Weil restriction
of a split torus T over some finite field extension K ⊂ L). By Shapiro’s
Lemma, H1

Gal(K,f∗(c) H) = H1
Gal(L,T) , which is trivial by Hilbert’s Ninetieth

Theorem.

An immediate consequence is the following.

Corollary 4.2. Assume that g is of type A1, Bn or Cn for any n, E7, E8,

F4 or G2. Then all twisted forms of (g, ∂rDJ) are isomorphic.

Proof. The assumption implies that AΓ is the trivial group, whence the trivi-
ality of H1

Gal(K,AΓ) and, by the above theorem, of H1
Gal(K,A).

5 Scalar Multiples

The Belavin–Drinfeld classification is up to equivalence, which, as explained in
the introduction, groups together scalar multiples of Lie bialgebra structures
on a given Lie algebra. Therefore, it is reasonable to consider the set Bα(K)
of K-Lie bialgebra structures on g that, after scalar extension to K, become

isomorphic to α∂rBD for some α ∈ K
×

and some Belavin–Drinfeld r-matrix
rBD.
We start in a more general setting. Let g be a split simple Lie algebra over
an integral domain R (as always assumed to be a Q-ring), let δ be an R-
Lie bialgebra structure on g, and let α ∈ S× with S a faithfully flat R-ring.
Consider the Lie bialgebra structure αδS on gS . It is worth noting that a priori,
there are three possible scenarios for the descent properties of αδS . Recall that
we wish to consider Lie bialgebra structures δ′ on S/R-twisted forms g′ of g
such that (g′S , δ

′
S) ≃ (gS , αδS). We phrase this by saying that αδS descends to

g′. Then either αδS descends to g, or it does not descend to g, but descends to
a (non-split) twisted form of g, or αδS does not descend to any form of g.
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Remark 5.1. Let δe be an S-Lie bialgebra structure on gS . Then any R-Lie
bialgebra (g′, δ′) with (g′S , δ

′
S) ≃ (gS , δe) is R-isomorphic to the restriction δθe

of δe to

gθS = {x ∈ g⊗ S|θ(x⊗ 1) = x⊗ 1}
for some descent datum θ of Lie algebras. Indeed, if θ′ denotes the standard
descent datum on (g′S , δ

′
S) and φ : (g′S , δ

′
S) → (gS , δe) is an S-isomorphism,

then θ = (φ ⊗ IdS)θ
′(φ−1 ⊗ IdS) is a descent datum on (gS , δe). Thus δe

restricts to an R-bialgebra structure on gθS . This is R-isomorphic to (g′, δ′)
since by construction of θ, the map φ is an isomorphism of S-Lie bialgebras
with descent data between (g′S , δ

′
S) with datum θ′ and (gS , δe) with datum θ.

Thus to classify R-Lie bialgebras that become isomorphic to (gS , δe) over S, it
suffices to consider restrictions of δe itself to twisted forms of g. This will be
used throughout for the case δe = αδS

5.1 Twisted Cohomology

The following proposition sheds some light on the occurrence of the possible
cases discussed in the opening of this section. Our approach extends that used
for so called twisted Belavin–Drinfeld cohomologies, see e.g. [KKPS, Section 7].
We begin with the case when R = K is a field, where Galois cohomology gives
a rather precise insight, and treat the more general case below.

Proposition 5.2. Let g be a split simple Lie algebra over K and let δ = ∂r

for an r-matrix r ∈ g⊗ g with r + κ(r) = λΩ for some λ ∈ K×. Let α ∈ K
×
.

Finally let g′ be a twisted form of g and (uγ) the corresponding Γ-cocycle, where
Γ = Gal(K). Then αδ descends to g′ if and only if one of the following mutually

exclusive conditions holds.

1. α ∈ K× and (uγ ⊗ uγ)(r) = r for each γ ∈ Γ.

2. α2 ∈ K× \ (K×)2 and

(uγ ⊗ uγ)(r) =

{
r if γ ∈ Gal(K(α))
κ(r) if γ(α) = −α. (5.1)

Here we are using the notation g = gK and δ = δK .

Proof. Assume that αδ descends to g′. Then δ(x) ∈ g′ ⊗ g′ for any x ∈ g′,
which in terms of cocycles implies

(uγ ⊗ uγ)
γ⊗γ(αδ(x)) = αδ(x)

for each γ ∈ Γ. Using the fact that δ = ∂r, that γ⊗γr = r since r ∈ g⊗ g, and
that uγ(

γx) = x since x ∈ g′, this is equivalent to

[1⊗ x+ x⊗ 1, γ(α)(uγ ⊗ uγ)(r)] = [1⊗ x+ x⊗ 1, αr]
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for each γ ∈ Γ. This is in turn equivalent to

γ(α)(uγ ⊗ uγ)(r) = αr − µγΩ (5.2)

for some µγ ∈ K. Now CYB(αr) = α2CYB(r) = 0 and

CYB(γ(α)(uγ ⊗ uγ)(r)) = γ(α)2u⊗3
γ CYB(r) = 0.

Since
(uγ ⊗ uγ)(r) + κ(uγ ⊗ uγ)(r) = (uγ ⊗ uγ)(r + κ(r)) = Ω,

we may, after extending scalars to K, apply Lemma 3.5 with r1 = αr, r2 =
γ(α)(uγ ⊗ uγ)(r), λ1 = αλ, λ2 = γ(α)λ and µ = µγ . Thus we get µγ = jγαλ
for some jγ = 0, 1. Since r + κ(r) = λΩ, (5.2) is then equivalent to

γ(α)(uγ ⊗ uγ)(r) = α(−κ)jγ (r).

Applying κ to both sides gives

γ(α)(uγ ⊗ uγ)κ(r) = α(−1)jγκjγ+1(r),

and adding the two equations, using r + κ(r) = λΩ and (uγ ⊗ uγ)(Ω) = Ω,
yields

γ(α)Ω = (−1)jγαΩ.

Thus γ(α2) = α2 for each γ ∈ Γ, whence α2 ∈ K×. For a given γ ∈ Γ, two
cases are possible: either jγ = 0, i.e. equivalently γ(α) = α, and then (5.2)
gives (uγ ⊗ uγ)(r) = r; or jγ = 1, i.e. equivalently γ(α) = −α, and then (5.2)
gives (uγ ⊗ uγ)(r) = κ(r). It follows that if αδ descends to g′, then (1) or (2)
holds.
Assume, conversely, that (1) or (2) holds. It is straightforward to check that
(5.2) is satisfied for each γ ∈ Γ, with µγ = 0 if γ(α) = α, and µγ = αλ if
γ(α) = −α. By the chain of equivalences in the above argument, this implies
that

(uγ ⊗ uγ)
γ⊗γ(αδ(x)) = αδ(x).

We may then conclude with the lemma below.

Lemma 5.3. Let g be a finite-dimensional vector space over a field K, (uγ) a

Γ = Gal(K)-cocycle in GL(g) with corresponding twisted form g′, and δ a Lie

coalgebra structure on g. Then δ descends to g′ if and only if

(uγ ⊗ uγ)
γ⊗γ(δ(x)) = δ(x)

for each x ∈ g′.

Remark 5.4. Of course g ≃ g′ as K-vector spaces. What the lemma achieves
is to establish an easily checked condition for when the coalgebra structure δ
is compatible with the Galois action.
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Proof. What needs to be shown is that the inclusion g′ ⊗ g′ ⊆ (g ⊗ g)Γ
′

is an
equality, where the right-hand side denotes the fixed points of g⊗ g under the
component-wise twisted Γ-action

γ ·u (y ⊗ z) = uγ(
γy)⊗ uγ(

γz).

Let (ei) be a K-basis of g′. It is then finite by assumption, and a K-basis of g.
Thus if x ∈ g⊗ g, then

x =
∑

i,j

αijei ⊗ ej

for some αij ∈ K. Then for each γ ∈ Γ,

γ ·u x =
∑

i,j

γ(αij)uγ(
γei)⊗ uγ(

γej) =
∑

i,j

γ(αij)ei ⊗ ej ,

where the last equality holds since ek ∈ g′ implies uγ(
γek) = ek for each k. If

x ∈ (g⊗ g)Γ
′

, then for each γ ∈ Γ, γ ·u x = x, which, together with the above,
by linear independence implies that γ(αij) = αij , i.e. αij ∈ K, for each i and j.
Thus x ∈ g′ ⊗ g′, as desired.

Remark 5.5. Note that this result encompasses those Lie bialgebras that in
[KKPS] and [PS] are treated by means of twisted Belavin–Drinfeld cohomolo-
gies. Indeed, when they exist, these are obtained by constructing the cocycle

(uγ) as follows: one takes α ∈ K
×
with α2 ∈ K× \ (K×)2, and sets uγ = Id for

any γ ∈ Gal(K(α)), and uγα
= Ad−1

X
γαAdX for X ∈ G(K) satisfying certain

conditions. (Here G is an adjoint group with g = LieG, and γα is the non-
trivial element of Gal(K(α)/K).) Note that, as the authors remark in [PS],
this cocycle is trivial as a Lie algebra cocycle, i.e. the fixed locus is the split
Lie algebra g. However, the descended Lie bialgebra is, by Lemma 3.6, not
isomorphic to (g, β∂r) for any β ∈ K×.

Led by the above, we define twisted cohomologies as follows. For each α ∈ K
×

with α2 ∈ K× \ (K×)2 we write Z
1

α = Z
1
(K,Aut(g, ∂r), α) for the set of all

Gal(K)-cocycles (uγ) in Aut(g) that satisfy (5.1). Thus Z
1

α ⊂ Aut(g)(K),

and we define an equivalence relation ∼ on Z
1

α by

(vγ) ∼ (uγ) ⇐⇒ ∃ρ ∈ Aut(g, ∂r)(K) : ∀γ : vγ = ρ−1uγ
γρ (5.3)

and write H
1

Gal(K,Aut(g, ∂r), α) for the set of equivalence classes. The pur-
pose of this set is explained by the following result.

Proposition 5.6. Let α ∈ K
×
. The set of all K-Lie bialgebras that become

isomorphic to (g, α∂r) over K is in bijection with

1. H1
Gal(K,Aut(g, ∂r)), if α ∈ K×,
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2. H
1

Gal(K,Aut(g, ∂r), α), if α2 ∈ K× \ (K×)2, and

3. the empty set, otherwise.

Proof. Corollary 2.5 and the fact that Aut(g, α∂r)) ≃ Aut(g, ∂r)) whenever
α ∈ K× together imply (1), and (3) follows from Proposition 5.2. For (2), the
proposition provides a surjective map from the set of all K-Lie bialgebras that

become isomorphic to (g, α∂r) to Z
1
. To show that it induces a bijection with

the twisted cohomology, let first g′ and g′′ be twisted forms of g to which αδ
descend (where δ = ∂r), and let (uγ) and (vγ) be the cocycles corresponding
to g′ and g′′, respectively. Denote by δ′ and δ′′ the respective descended Lie
bialgebra structures.
If (g′, δ′) ≃ (g′′, δ′′), then there is a K-automorphism ρ of (g, α∂r) that maps
gΓu to gΓv . (We denote by gΓu the set of all x ∈ g that are fixed under the
twisted action γ · x = uγ

γx of Γ = Gal(K), and likewise for Γv.) Then for any
γ ∈ Γ and x ∈ gΓu ,

ρ(uγ
γx) = ρ(x) = vγ

γρ(x).

Since g is generated as a K-vector space by gΓu , this implies that uγ =
ρ−1vγ(

γρ), i.e. (uγ) ∼ (vγ), since the K-automorphisms of (g, α∂r) coin-
cide with those of (g, ∂r). If conversely (uγ) ∼ (vγ) with ρ satisfying
uγ = ρ−1vγ(

γρ), then it follows that ρ maps gΓu to gΓv and thus induces
an isomorphism (g′, δ′) → (g′′, δ′′).

In the more general case where R is an integral domain, Proposition 5.2 admits
the following generalization.

Proposition 5.7. Assume that R is an integral domain. Let g be a split simple

Lie algebra over R, and let g′ = gθS be the S/R-twisted form of g corresponding

to the descent datum θ and cocycle φ. Let δ = ∂r be a coboundary R-Lie
bialgebra structure on g, with r ∈ g ⊗ g an r-matrix satisfying r + κ(r) = λΩ
for some λ ∈ R×. Finally let S be a faithfully flat R ring and α ∈ S×.

Then αδS descends to g′ if and only if one of the following mutually exclusive

conditions holds.

1. α ∈ R× and (φ⊗ φ)(r ⊗ 1⊗ 1) = r ⊗ 1⊗ 1,

2. α2 ∈ R× \ (R×)2 and (φ ⊗ φ)(r ⊗ 1⊗ 1) = κ(r) ⊗ 1⊗ 1.

Let us give some explanation of the terminology of the proposition. If θ is a
descent datum on gS , then θ = (Idg ⊗ κ)φ for some φ ∈ Aut(g⊗ S ⊗ S) (recall
that (Idg⊗κ) is the standard descent datum, corresponding to the S/R-form g).
This automorphism is the cocycle corresponding to θ. We thus have

g′ ≃ {x ∈ g⊗ S|φ(x⊗ 1) = (Idg ⊗ κ)(x⊗ 1)}.

We will also identify, for any ring T , T -ring U , and T -moduleM , (MU )⊗U (MU )
with (M ⊗T M)⊗T U .
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Proof. Write T = S⊗S. Assume that αδS descends to g′. Then αδS(x) ∈ g′⊗g′

for any x ∈ g′, which in terms of descent data implies

(θ ⊗T θ)(αδS(x) ⊗ 1) = αδS(x) ⊗ 1.

Using the fact that δ = ∂r, that (θ⊗T θ)(r⊗ 1⊗ 1) = (φ⊗T φ)(r⊗ 1⊗ 1) since
r ∈ g⊗ g, and that θ(x⊗ 1) = x⊗ 1 since x ∈ g′, this is equivalent to

[1⊗T (x⊗1)+(x⊗1)⊗T 1, (φ⊗Tφ)(r⊗1⊗α)] = [1⊗T (x⊗1)+(x⊗1)⊗T 1, r⊗α⊗1].

Since the module gT is generated over T by elements of g′, this is, by Re-
mark 3.1, equivalent to

(φ⊗ φ)(r ⊗ 1⊗ α) = (r ⊗ α⊗ 1)− µ(Ω⊗ 1⊗ 1). (5.4)

Now for any β ∈ T , CYB(r ⊗ β) = β2CYB(r ⊗ 1 ⊗ 1) = 0 and CYB((φ ⊗T

φ)(r ⊗ β)) = β2φ⊗T 3CYB(r ⊗ 1 ⊗ 1) = 0. We may thus apply Lemma 3.5 to
gT with r1 = r ⊗ α⊗ 1, r2 = (φ⊗ φ)(r ⊗ 1⊗ α), λ1 = λα⊗ 1 and λ2 = λ⊗ α.
Thus we get µ = j(λα ⊗ 1) for some j ∈ {0, 1}. Since r + κ(r) = λΩ, (5.4) is
then equivalent to

(φ⊗ φ)(r ⊗ 1⊗ α) = (−κ)j(r) ⊗ α⊗ 1.

Applying κ to both sides gives

(φ ⊗ φ)(κ(r) ⊗ 1⊗ α) = (−1)jκj+1(r) ⊗ α⊗ 1.

and adding the two equations, using r+ κ(r) = λΩ and the fact that Ω⊗ 1⊗ 1
is fixed by automorphisms, we get

Ω⊗ 1⊗ α = (−1)jΩ⊗ α⊗ 1.

Thus 1 ⊗ α2 = α2 ⊗ 1, whence by faithful flatness, α2 ∈ R×. Two cases are
then possible: either j = 0, whence α ∈ R×, and then µ = 0 and (5.4) gives
(φ ⊗ φ)(r ⊗ 1 ⊗ 1) = r ⊗ 1 ⊗ 1; or j = 1, whence 1 ⊗ α = −α ⊗ 1, and then
µ = λα⊗ 1 and (5.4) gives (φ⊗ φ)(r ⊗ 1⊗ 1) = κ(r)⊗ 1⊗ 1. It follows that if
αδS descends to g′, then (1) or (2) holds.
Assume, conversely, that (1) or (2) holds. It is straight-forward to check that
(5.4) is satisfied with µ = 0 in case (1) and µ = αλ ⊗ 1 in case (2). By the
chain of equivalences in the above argument, this implies that

(θ ⊗T θ)(αδS(x) ⊗ 1) = αδS(x) ⊗ 1.

We may then conclude with the lemma below.

Lemma 5.8. Let g be a finitely generated projective R-module, let S be a faith-

fully flat R-ring and θ a descent datum on gS with corresponding twisted form

g′, and δ a Lie coalgebra structure on gS. Then δ descends to g′ if and only if

θ ⊗S⊗S θ(δ(x) ⊗ 1) = δ(x) ⊗ 1

for each x ∈ g′.
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Proof. Again we write T = S⊗S. What needs to be shown is that the inclusion
g′ ⊗ g′ ⊆ (gS ⊗S gS)

θ is an equality, where the right hand side denotes the set
of all w =

∑
i yi ⊗ zi ∈ gS ⊗S gS that satisfy

(θ ⊗T θ)

(∑

i

(yi ⊗ 1)⊗T (zi ⊗ 1)

)
=
∑

i

(yi ⊗ 1)⊗T (zi ⊗ 1)

By descent it is enough to show that for some faithfully flat R-ring R̂, the
inclusion (g′ ⊗ g′)⊗ R̂ ⊆ (gS ⊗S gS)

θ ⊗ R̂ is an equality. The left hand side is
isomorphic to g′

R̂
⊗R̂ g′

R̂
, and the right hand side is isomorphic to

(
(gR̂)S⊗R̂ ⊗S⊗R̂ (gR̂)S⊗R̂

)θ̂
,

where θ̂ is obtained from θ by the base change induced by R → R̂; this follows
from faithful flatness and the canonical isomorphism

(gR̂)S⊗R̂ ⊗S⊗R̂ (gR̂)S⊗R̂ ≃ (gS ⊗S gS)⊗ R̂.

Thus, replacing R by a faithfully flat R-ring R̂ so that g′ ⊗ R̂ is free, we may
assume that g′ is a free R-module. Let (ei) be an R-basis of g

′. It is then finite
by assumption, and an (ei ⊗ 1) is an S-basis of gS . Thus if w ∈ gS ⊗ gS , then

w =
∑

i,j

(ei ⊗ αij)⊗S (ej ⊗ 1)

for some αij ∈ S. Then

θ(w ⊗ 1) = (θ ⊗T θ)


∑

i,j

(ei ⊗ αij ⊗ 1)⊗T (ej ⊗ 1⊗ 1)


 ,

which equals
∑

i,j(ei⊗ 1⊗αij)⊗T (ej ⊗ 1⊗ 1) since ek ∈ g′ implies that θ fixes

ek ⊗ 1 ⊗ 1 for each k. If w ∈ (gS ⊗ gS)
θ, then θ ⊗T θ fixes w ⊗ 1, which by

linear independence implies that (αij ⊗ 1) = (1⊗αij) for each i and j, whence
αij ∈ R for each i and j by faithful flatness. Thus x ∈ g′ ⊗ g′, as desired.

As in the field case, we can encode this in terms of twisted cohomologies. Given
a split simple Lie algebra g over an integral domain R, an r-matrix r on g, a
faithfully flat R-ring S, and α ∈ S×, we set

Z
1
:= Z

1
(S/R,Aut(g)) = {φ ∈ Z1(S/R,Aut(g))|(φ ⊗ φ)(r) = κ(r)},

where Z1(S/R,Aut(g)) is the set of 1-cocycles on Aut(g) (using the conven-

tions of [W, 17.6]). Thus Z
1 ⊂ Aut(g)(S ⊗ S). We then define an equivalence

relation ∼ on Z
1
by

ψ ∼ φ⇐⇒ ∃ρ ∈ Aut(g, ∂r)(S) : ψ = (Idg ⊗ κ)(ρ⊗ IdS)(Idg ⊗ κ)φ(ρ⊗ IdS)
−1

and write H
1
(S/R,Aut(g, ∂r)) for the set of equivalence classes.
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Corollary 5.9. The set of all R-Lie bialgebras that become isomorphic to

(gS , α∂r) over S is in bijection with

1. H1(S/R,Aut(g, ∂r)), if α ∈ R×,

2. H
1
(S/R,Aut(g, ∂r)), if α2 ∈ R× \ (R×)2, and

3. the empty set, otherwise.

Proof. Part (1) follows from Corollary 2.5 since Aut(g, α∂r)) ≃ Aut(g, ∂r)),
and part (3) is immediate from Proposition 5.7. For part (2), in view of the
proposition, we have a surjective map from the set of all R-Lie bialgebras that

become isomorphic to (gS , α∂r) to Z
1
. To show that it induces a bijection

with the twisted cohomology, assume first that g′ and g′′ are twisted forms of g
to which αδS descend, where δ = ∂r, and let θ′ and θ′′ be the descent data
corresponding to g′ and g′′, respectively. Denote by δ′ and δ′′ the respective
descended Lie bialgebra structures.
If now (g′, δ′) ≃ (g′′, δ′′), then there is an S-automorphism ρ of (gS , α∂r) that
maps gθ

′

S to gθ
′′

S . Thus for all x ∈ gθ
′

S we have

θ′′(ρ⊗ IdS)(x ⊗ 1) = (ρ⊗ IdS)(x ⊗ 1) = (ρ⊗ IdS)θ
′(x⊗ 1).

Now g⊗S⊗S is generated as an S⊗S-module by gθ
′

S ⊗1, and, for all λ, µ ∈ S,

θ′′(ρ⊗ IdS)((λ ⊗ µ)(x⊗ 1)) = (µ⊗ λ)θ′′(ρ⊗ IdS)(x ⊗ 1)

which equals

(µ⊗ λ)(ρ⊗ IdS)θ
′(x ⊗ 1) = (ρ⊗ IdS)θ

′((λ⊗ µ)(x ⊗ 1)),

whence θ′′(ρ⊗IdS) = (ρ⊗IdS)θ
′. Expressed in terms of the corresponding cocy-

cles φ for θ′ and ψ for θ′′ this precisely gives ψ ∼ φ, since the S-automorphisms
of (gS , α∂r) coincide with the S-automorphisms of (gS , ∂r).
Assume conversely that ψ ∼ φ, with ρ such that

ψ = (Idg ⊗ κ)(ρ⊗ IdS)(Idg ⊗ κ)φ(ρ⊗ IdS)
−1,

or equivalently θ′′(ρ⊗ IdS) = (ρ⊗ IdS)θ
′ in terms of the corresponding descent

data. Then the automorphism ρ of (gS , ∂r) maps gθ
′

S to gθ
′′

S and thus induces an
isomorphism of Lie bialgebras (g′, δ′) → (g′′, δ′′). This completes the proof.

5.2 Interpreting Twisted Cohomologies

The twisted cohomologies defined above can be interpreted as (ordinary) co-
homologies of twisted groups. To begin with, we need to determine when the
twisted cohomology sets are non-empty. This is the content of the following.
Throughout, we work over a field K.
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Proposition 5.10. Let rBD be a Belavin–Drinfeld r-matrix with associated

admissible quadruple (Γ1,Γ2, τ, rh). Then H
1

Gal(K,Aut(g, ∂rBD)) is non-empty

if and only if there exists a diagram automorphism π of Γ satisfying

π(Γ1) = Γ2, π(Γ2) = Γ1, πτπ−1 = τ−1 and (π̂ ⊗ π̂)(rh) = r21h . (5.5)

The following lemma will be helpful.

Lemma 5.11. Let rBD be the Belavin–Drinfeld r-matrix with associated ad-

missible quadruple (Γ1,Γ2, τ, rh). If there exists a diagram automorphism π
satisfying (5.5), then there exists a diagram automorphism π′ of order 1 or 2

satisfying (5.5). More specifically, either π itself is of order 1 or 2, or g is of

type D4 and rBD = rDJ, in which case Id satisfies (5.5).

Proof. This is immediate if g is not of type D4. If g is of type D4 and Γ1 6= ∅,
then it is straightforward to check, case by case, that for all admissible Γ1, Γ2

and τ , a diagram automorphism satisfying (5.5) must satisfy π2 = Id. If Γ1 =
Γ2 = ∅ and π2 6= Id, then π3 = Id. But then the condition (π̂ ⊗ π̂)(rh) = r21h
implies that (π̂2 ⊗ π̂2)(rh) = rh, whence

rh = (π̂3 ⊗ π̂3)(rh) = (π̂ ⊗ π̂)(rh) = r21h .

Thus since rh + r21h = Ωh, this implies that rh = 1
2Ωh, whence rBD = rDJ. In

that case Id satisfies (5.5), and the proof is complete.

Proof of Proposition 5.10. Assume such an element π exists. By the above
lemma, we may assume π2 = Id. Let χ be the Chevalley automorphism of g
and set φ = χπ, which we view as an element of Aut(g)(K). We claim that

φ ∈ Z
1
(K,Aut(g, ∂rBD), α).

We have χ(h) = −h for any h ∈ h, whence (χ ⊗ χ)(rh) = rh. Moreover π
permutes all α ∈ ∆+, and πτk = τ−kπ, whence

(φ ⊗ φ)(rBD) = r21h +
∑

α∈∆+

X−α ⊗Xα +
∑

α∈Span
Z
(Γ1)

+

k>0

X−π(α) ∧Xτ−kπ(α).

For fixed α and k, setting α′ = τ−kπ(α), the term X−π(α) ∧Xτ−kπ(α) becomes
X−τk(α′) ∧Xα′ . Summing over α′ and k, we thus get

(φ⊗ φ)(rBD) = r21h +
∑

α∈∆+

X−α ⊗Xα +
∑

α′∈Span
Z
(Γ1)

+

k>0

X−τk(α′) ∧Xα′ ,

which is equal to r21BD. Since χ and π commute and are of order at most two,
we have φ2 = 1. Since φ is stable under the Gal(K)-action, we get an element
uγ of Z1(K,Aut(g)) by setting

uγ =

{
Id if γ ∈ Gal(K(α))
φ if γ(α) = −α.
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By construction, this element belongs to Z
1
(K,Aut(g, ∂rBD), α).

Conversely, assume that Z
1
(K,Aut(g, ∂rBD), α) is non-empty. Then in partic-

ular there exists φ ∈ Aut(g, ∂rBD)(K) satisfying (φ⊗φ)(rBD) = r21BD. Arguing
as in 3.11, we conclude that any such φ must map the semisimple part of
Ξ(rBD) to the semisimple part of Ξ(r21BD). By [KKPS], the semisimple part of
Ξ(rBD) differs from Ξ(rDJ) only by an element in Ξ(h ⊗ h), and thus likewise
for Ξ(r21BD). Thus we have (φ⊗φ)(rDJ) = r21DJ, and thence φ = χAdhπ for some
h ∈ H(K) and a diagram automorphism π. Thus

(π ⊗ π)(rBD) = Adh−1χ(r21BD).

This implies (π ⊗ π)(rh) = r21h (since both Adh and χ leave h⊗ h fixed), and

∑

α∈Span
Z
(Γ1)

+

k>0

Xπ(α) ∧X−πτk(α) =
∑

β∈Span
Z
(Γ1)

+

l>0

λβ,lXτ l(β) ∧X−β,

for non-zero scalars λβ,l, which then must equal 1. Thus (π⊗π)(rBD) = χ(r21BD),
and h−1 ∈ C(χ(r21BD)), which implies that h ∈ C(rBD). Similarly to the case
in the proof of Lemma 3.11 this implies that π(Γ1) = Γ2 and π(Γ2) = Γ1.
Relabeling the terms, the equality becomes

∑

α∈Span
Z
(Γ1)

+

k>0

Xπ(α) ∧X−πτk(α) =
∑

β∈Span
Z
(Γ1)

+

l>0

Xβ ∧X−τ−l(β),

Proceeding again as in the proof of Lemma 3.11, this implies that for each
α ∈ Γ1 we have the equality of sets

{πτ(α), . . . , πτ lα(α)} = {τ−1π(α), . . . , τ−lαπ(α)},

where lα is defined as in the proof of Lemma 3.11. As there, we proceed by
induction on lα, the case lα = 1 being clear. For lα > 1, since lτ(α) = lα − 1,
by the induction hypothesis the left hand side is equal to

{πτ(α), τ−1πτ(α), . . . , τ−1πτ lα−1(α)}.

Thus τ−1π(α) = πτ(α), since by admissibility τ−1π(α) 6= τ−1πτ j(α) for any
j > 0. This completes the proof.

We are now ready to re-interpret H
1
(K,Aut(g, ∂rBD)) whenever it is non-

empty. Recall that in these cases there exists a diagram automorphism π of
order at most two satisfying (5.5). Recall also that we are in the situation
where K ⊂ K(α) ⊆ K, with α2 ∈ K.
Set ABD = Aut(g, ∂rBD). We have a map v = vπ : Gal(K) → Aut(ABD)(K)
that is the identity on Gal(K(α)) and maps γα to ρ 7→ χπρ(χπ)−1 = χπρπχ;
this is well defined since by the above, χπ(rBD) = r21BD, so

(χπρ(χπ)−1 ⊗ χπρ(χπ)−1)(rBD) = rBD.

Documenta Mathematica 24 (2019) 2583–2612



2608 S. Alsaody and A. Pianzola

Since Gal(K) acts trivially on ρ 7→ χπρ(χπ)−1, and since the map is of order
2, it is a cocycle, and, following [KPS] we may consider the twisted group
(ABD)v. The Gal(K)-action defining the cocycle set Z1

Gal(K, (ABD)v) and the
cohomology H1

Gal(K, (ABD)v) is given by

γ · ρ = v(γ)(γρ).

Theorem 5.12. Let rBD be a Belavin–Drinfeld r-matrix with associated admis-

sible quadruple (Γ1,Γ2, τ, rh) such that H
1
(K,ABD) is non-empty, and let π be

any diagram automorphism of Γ of order at most two satisfying (5.5). Then

the map

Z
1
(K,ABD, α) → Z1

Gal(K, (ABD)v)

mapping the cocycle (uγ) to the cocycle ûγ defined by

ûγ =

{
uγ if γ ∈ Gal(K(α))
uγπχ if γ(α) = −α,

induces an injective map

H
1
(K,ABD) → H1

Gal(K, (ABD)v),

where v = vπ is constructed as above.

Proof. First we show that the map is well-defined. If (uγ) ∈ Z
1
(K,ABD, α) we

need to show that (ûγ) is in ABD(K) and satisfies the twisted cocycle condition

ûγ1γ2
= ûγ1

v(γ1)(
γ1 ûγ2

).

To show that each ûγ is an automorphism, we must show that (ûγ⊗ ûγ)(rBD) is
equal to rBD. This is automatic whenever γ(α) = α, and holds when γ(α) = −α
by the proof of Proposition 5.10. The twisted cocycle condition follows from
the cocycle condition on (uγ) by a direct computation in each of the four cases
(γ1(α), γ2(α)) = (±α,±α). Thus the map is well defined. To show that it
induces an injective map on cohomology, we need show that

(uγ) ∼ (wγ) ⇐⇒ (ûγ) ∼ (ŵγ),

where the equivalence relations are in the respective cohomology sets. For
γ ∈ Gal(K(α)), this holds by definition. For those γ ∈ Gal(K) with γ(α) = −α,
the right hand equivalence amounts to

wγπχ = ρ−1uγπχχπ
γρπχ

which is equivalent to
wγ = ρ−1uγ

γρ,

which is precisely what the left hand equivalence amounts to. This completes
the proof.
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6 Previous Results Revisited

In the light of the above, we will now review those results obtained in [PS]
(for split Lie algebras) and [AS] (for a class of non-split Lie algebras) which
are concerned with Drinfeld–Jimbo (i.e. standard) Lie bialgebra structures.
Throughout, we work over a field K of characteristic zero and consider(K/K)-
twisted forms. We begin by the following consequence of Theorem 4.1.

Proposition 6.1. Let g be a split simple Lie algebra over K, and let g′ be

a twisted form of g. Then there is, up to K-isomorphism, at most one Lie

bialgebra structure δ′ on g′ such that (g′, δ′) is a twisted form of the standard

Lie bialgebra structure on g.

Proof. The inclusion i : A → Aut(g) induces a map

i∗ : H1
Gal(K,A) → H1

Gal(K,Aut(g)).

Now the first (resp. second) of these cohomology sets classifies those Lie bial-
gebras (resp. Lie algebras) that are twisted forms of (g, ∂rDJ) (resp. of g), and
the map i∗ corresponds to sending the isomorphism class of a Lie bialgebra
to the isomorphism class of the underlying Lie algebra. We thus need show
that i∗ is injective. But by construction, the isomorphism f∗ : H1

Gal(K,A)
∼−→

H1
Gal(K,AΓ) of Theorem 4.1 factors through i∗, which therefore is injective.

Remark 6.2. Note that in general, the map i∗ is not surjective, meaning that
there exist twisted forms g′ of g which admit no Lie bialgebra structure that
is a twisted form of the standard structure on g. By Corollary 4.2, this is in
particular the case whenever g′ is non-split of type A1, Bn, Cn, E7, E8, F4 or
G2.

Remark 6.3. In [PS], this was proved in the special case g′ = g, by formulating
the problem in terms of Galois cohomology of split tori and using Steinberg’s
theorem. This essentially corresponds to considering Lie bialgebra structures
on g up to those isomorphisms that are inner automorphisms of g.

Remark 6.4. In [AS], the authors studied the classification of Lie bialgebra
structures on certain non-split Lie algebras of type An, up to equivalence by
certain natural gauge groups. More precisely, the authors considered special
unitary Lie algebras under the action of unitary groups with respect to a
non-square d ∈ K×. Curiously, for twisted forms of the standard structure,
they showed that if such twisted forms exist, there exists a unique equivalence
class if n is odd, but if n is even, the equivalence classes are parametrized by
K×/N(K(

√
d)×). This does not contradict the above result, since the unitary

group is not adjoint. It is rather straightforward to check that if one uses the
corresponding adjoint group in the calculations of [AS], one obtains uniqueness
in all cases.
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The main part of [AS] is concerned with Lie bialgebras that upon extension to

K become equivalent to α∂rDJ for some α ∈ K
× \K× with d := α2 ∈ K×.

To review these results, let K be a field of characteristic zero admitting a
quadratic extension L = K(

√
d) ) K with d ∈ K×. Set g = sln(K) and

consider the Lie algebra

g′ = sun(K, d) = {x ∈ sln(L)|xt = −x},

where x 7→ x is the linear map induced by the non-trivial Galois automorphism
of L/K.
Note that g′L ≃ gL = sln(L). In the sequel we fix an algebraic closure K of K
containing L, so that g′

K
≃ sln(K). As a direct consequence of Proposition 5.2,

we obtain the following result from [AS].

Corollary 6.5. Let α ∈ K
×
. If the Lie bialgebra structure α∂rDJ on sln(K)

descends to g′, then α2 ∈ K×.

One thus distinguishes two cases: α2 ∈ (K×)2d, in which case K(α) = L, and
α2 /∈ (K×)2d, in which case K(α) ∩L = K. The former case is the one that is
thoroughly studied in [AS], and in this case, we obtain the following result.

Corollary 6.6. Let α ∈ K
×

with α2 ∈ (K×)2d. Then α∂rDJ descends to g′.

Proof. Note that the twisted form g′ of g corresponds to the Gal(K)-cocycle
(uγ) defined by uγα

(x) = −xt, where γα is the non-identity element of
Gal(L/K), and by uγ = Id whenever γ ∈ Gal(L). Since rt⊗t

DJ = κ(rDJ), Propo-
sition 5.2 implies that α∂rDJ descends to g′.

Remark 6.7. In [AS], the authors obtain, over e.g. fields of cohomological
dimension at most 2, a classification parametrized by (K×/N(L×))m for a
certain power m. Although we are here considering isomorphism classes of
Lie bialgebras that become a unique isomorphism class after scalar extension,
whereas in [AS] the authors consider equivalence classes that become a unique
equivalence class upon extension, our results above can be used to explain
the appearance of these norm classes, namely by restricting ourselves to inner
automorphisms in Proposition 5.6. Let us first clarify what we mean. The
embedding g′ → gL defines an L-isomorphism of Lie algebras g′L → gL. A Lie
bialgebra structure δ′ on g′ induces, by means of this isomorphism, an L-Lie
bialgebra structure δ′L on gL. We shall consider those δ′ where δ′L ≃

√
d∂rDJ

via an inner automorphism of gL, i.e. an element of the form AdX for X ∈
GL(L). Two such structures on g′ are considered (gauge) equivalent if they
are isomorphic via an inner automorphism of g′. Recall further that an inner
automorphism of gL is an automorphism of (gL, ∂rDJ) if and only if it is of the
form AdD with D ∈ Hn(L), where Hn is the split torus of GLn fixed by the
choice of a pinning.

This corresponds to considering, in Z
1

α, those cocycles (uγ) with uγα
= AdDu

χ
for the generator γα of Gal(L/K), with Du ∈ Hn(L) and where χ is the
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Chevalley automorphism. (Note that in general, not every D satisfies AdDχ ∈
Z

1

α(L), as the map in Theorem 5.12 may not be surjective. We will not go
into details, but refer to [AS].) Two cocycles AdDu

χ and AdDv
χ are then

equivalent if they satisfy (5.3) with ρ = AdD for some D ∈ H(L). This
equivalence condition translates as

AdDv
χ = Ad−1

D AdDu
χAdD.

By definition of χ, and the fact that Dt = D, this is equivalent to

AdDv
χ = Ad−1

D AdDu
Ad−1

D
χ,

i.e. AdDu
= AdDDDv

, which amounts to saying that each entry of Dv differs

from the corresponding entry of Du only by a factor in NL/K(L×). We thus re-

trieve the result obtained in [AS]. (Technically, Z
1

α was defined with respect to
the extensionK/K, but one can similarly consider any finite Galois extension.)
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