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Abstract: Wastes generated during the treatment of water containing arsenic 
were mixed with Portland cement in 3 : 1 volume ratio, respectively,  
to produce mortars that were then used to manufacture monolithic bricks.  
Two different wastes, containing 1.0 × 103 and 2.0 × 103 mg As per kg of  
dried waste, were generated in experiments of aqueous trivalent arsenic  
([As(III)] = 50 mg L−1) removal in columns filled with a mixture of zero-valent 
iron and sand (1%, w/w of ZVI). The mechanical tests indicated that the waste-
containing bricks showed a decrease in the compression tests, while no 
significant differences were found in the flexural tests. Studies on arsenic 
leaching indicated that, in normal conditions, the amount of released arsenic is 
not significant, as extreme conditions are required to exceed the maximum 
allowable limit for non-hazardous waste. Even though the quality of the 
resulting mortar is lower, it is still well suited to make bricks for use in the 
construction of foundations or for final disposal in landfills. 

Keywords: safe disposal; solid wastes; ZVI; zero-valent iron; arsenic removal; 
drinking water treatment; stabilisation/solidification; Portland cements mortars; 
arsenic leachates. 
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1 Introduction 

The consumption of arsenic-containing water is related with the occurrence of 
arsenicosis, a pathology that involves skin disorders such as dermatosis and keratosis,  
among others, ending sometimes in skin, lung, bladder, kidney and/or liver cancer, 
among others (Bardach et al., 2015). For this reason, the World Health Organization 
(WHO, 2008) has established a guideline concentration of 10 µg L–1 for total arsenic in 
drinking water; with this value, an estimated 226 million person are exposed around  
the world (Smedley and Kinniburgh, 2013). In Argentina, around 4 million inhabitants 
(Bardach et al., 2015), accounting almost 10% of the total population, are at risk for 
drinking groundwater naturally containing arsenic in amounts exceeding the 10 µg L–1 
guideline value set be the Argentine Food Code in 2007 (CAA, 2007). This stringent 
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limit implies that more water treatment plants, with more efficient processes, are 
required, causing an increase in the generation of arsenic-containing wastes. 

The abatement of arsenic in groundwater generates effluents and wastes that depend 
on the type of technology used, the concentration and speciation of arsenic (as As(III)  
is usually more difficult to remove than As(V)) and the quality of water to be treated  
(Fu et al., 2014; Litter et al., 2010). The effluents, such as those generated by reverse 
osmosis, have an increased concentration of salts and, in particular, of arsenic (Geucke  
et al., 2009; Litter et al., 2010), so this rejection water may require further treatment or 
special disposal. On the other hand, treatment processes that transfer arsenic from water  
to a solid phase, such as coagulation-flocculation and/or adsorption, generate sludge  
and solid wastes (Bordoloi et al., 2013; Litter et al., 2010; Sarkar and Paul, 2016; 
Sullivan et al., 2010). One practice of particular concern is the deposit of these wastes in 
dehydration lakes, which is a common process in drinking water treatment (Litter et al., 
2010). In the long term, these dehydrated wastes may release arsenic into the soil  
and groundwater, thus polluting them (Sarkar and Paul, 2016); i.e., under reducing 
conditions arsenic is released from ferric hydroxide used in the treatment of drinking 
water (Clancy et al., 2013; Ghosh et al., 2006). 

Arsenic removal with zero-valent iron (ZVI) also involves the retention of As in a 
solid phase and has attracted a lot of attention as ZVI can efficiently remove both As(III) 
and As(V) from groundwater (Litter et al., 2010; Su and Puls, 2001). The mechanism of 
arsenic removal by ZVI involves As(III) and/or As(V) adsorption and coprecipitation by 
the different iron (oxy)hydroxides formed after ZVI corrosion (Fu et al., 2014; Mak et al., 
2009); under anoxic conditions, ZVI can even remove As by generation of insoluble 
As(0) (Fu et al., 2014; Yan et al., 2012). Although particulated iron (oxy)hydroxides can 
be used instead of ZVI, their removal capacity is usually lower (Mamindy-Pajany et al., 
2011). Arsenic removal with ZVI has been largely studied for the development of 
household and small-scale filters, which combines the advantages of simple installation 
and use, easy maintenance and low cost (Litter et al., 2010; Noubactep et al., 2010). 
However, ZVI has to be combined with an inert material in these filters, as otherwise the 
expansion of the materials when ZVI is transformed into iron (oxy)hydroxides could 
cause the clogging of the filter; sand is one of the most used material as sand filters is a 
well known, low cost technology (Noubactep et al., 2010). 

The solidification/stabilisation (S/S) of wastes by their combination with building 
materials, such as Portland cement, allows the immobilisation of pollutants, making them 
less soluble and reducing their toxicity. Previous studies have demonstrated that S/S 
technology is a good method for minimising the risk of arsenic release into the 
environment (Clancy et al., 2013; Sullivan et al., 2010; Mahzuz et al., 2009; Minocha and 
Bhatnagar, 2007). The effectiveness of S/S depends on the nature of the residues (liquid, 
solid or sludge), the contaminants’ interaction with other components of the residues  
(i.e., in the case of As, with Fe and Al oxides) or with the binder (i.e., calcium), the 
geological conditions of the deposition/placement site (transport properties, hydraulic 
gradient, gas infiltration, salinity, etc.), as well as micro- and macro-biological activity 
and freeze-thaw resistance. All these variables will affect the behaviour of waste in time. 
There are studies that shows that there have been no major failures (Bates and Hills, 
2015; PASSiFy, 2010) on pilot plant scale S/S treatments conducted in the USA, UK and 
France. However, the structural properties of these mixtures may be altered, and the 
components of the building materials may modify the chemical as well as 
adsorption/desorption equilibrium of the retained arsenic (Litter et al., 2010; Sarkar and 



   

 

   

   
 

   

   

 

   

   54 E.G. De Seta et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Paul, 2016). Therefore, leaching tests are required to verify the proper immobilisation of 
the pollutant in the long term (Wickramanayake et al., 2003); besides, leaching tests 
should be part of the economic analysis when different As removal technologies are 
compared, as depending on the results the wastes may require special final disposition as 
dangerous wastes (Chen et al., 1999). 

In this work, the final disposal by S/S of wastes generated in the treatment of aqueous 
As(III) with columns filled with sand and ZVI is analysed. Two wastes with different  
As concentrations were tested, and Portland cement was used as binder for the 
sand/iron/arsenic solid wastes. Bricks were built with the so-obtained mortar, and 
mechanical tests were performed on these bricks; leaching tests were then performed on 
the granular material obtained by grounding the bricks. The results were evaluated in 
accordance with the potential use of the bricks, and with the Argentinian legislation 
regarding the disposal of dangerous wastes. 

2 Materials and methods 

2.1 Materials 

High purity zero-valent iron (ZVI) (>99.8%), with a particle diameter between 0.84 and 
0.074 mm (>95%), and oriental-type silica sand ([SiO2] > 96%) were used for As(III) 
removal experiments. As(III) (as As2O3) was Merck (99.9%). Ascorbic acid (99%, 
Sigma-Aldrich), ammonium molibdate (98%, Mallinckrodt), antimonium tartrate  
(99%, Sigma-Aldrich), sulphuric acid (98%, Biopack) and potassium permanganate 
(99%, Merck) were used for As measurements. For pH adjustment, HCl (37%, Merck) 
and solid KOH (85%, Mallinckrodt) were used. Regular Portland cement (CP40,  
90–100% clinker-calcium sulphate, 0–10% ashes, Loma Negra) was used as binding 
material for the preparation of mortars (a more precise description of the chemical 
composition of Portland cements can be found in Paria and Yuet, 2006). The remaining 
reactives used were of analytical quality; low conductivity distilled water (1 µS cm–1) 
was used in all the experiments. 

2.2 Wastes generation 

The sand used was previously sifted by vibration through the sieves of Abrams series, 
and a particle size module of 3.5 was determined. It was separated into three fractions, 
and iron was incorporated in the fine fraction, module 1.6 (particle diameter < 1.5 mm). 
The wastes were generated by gravity circulation of a 50 mg L–1 As(III) aqueous solution 
at pH 7 through 3 cm diameter and 20 cm height columns filled with a mixture of zero-
valent iron and sand (1%, w/w of ZVI); seven columns were used in parallel. The system 
was open to air, in order to have oxic conditions, and no Fe(II) nor Fe(III) were detected 
in the solution leaving the columns, as reported in previous experiments (Meichtry et al., 
2015). 

Two different wastes were prepared:  

(1) containing 1.0 × 103 mg of As per kg of dried waste 

(2) containing 2.0 × 103 mg of As per kg of dried waste; these results are similar to those 
found in previous studies of As removal with ZVI (Meichtry et al., 2015).  
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Waste (1) was prepared by recirculating a total 4.7 L of As(III) solution through  
each column until no changes were observed in the As concentration, (final 
[As]Tot ≈ 0.10 mg L–1); for waste (2), 9.4 L of As(III) solution were recirculated (final 
[As]Tot ≈ 0.25 mg L–1). For wastes (1) and (2), a removal higher than 99% of the initial 
As was obtained. The wastes of the seven columns were mixed, and then were 
homogenised and thermally dried at 60°C before their solidification and stabilisation in 
cement mortars. 

2.3 Bricks manufacturing 

Cement-based stabilisation/solidification: The wastes were stabilised through 
solidification by mixing with cements in a 3 : 1 mass ratio; a total of 2.0 kg of cement 
mortars (on dried base) were obtained for each waste, enough to prepare three specimens 
as prismatic bricks of 4 cm × 4 cm × 16 cm. The bricks were then compacted, removed 
from their moulds after 72 h according to IRAM 1570 and IRAM 1622 standards 
(Argentinian Official Standards), and mechanically tested 28 days later. Two waste-
containing materials ((1) and (2)), and two control materials ((C1) and (C2)) were 
obtained: 

(1) 25% of Portland cement and 75% of waste (sand with 1% of As polluted ZVI). 
Concentration of As total in the material: 0.75 × 103 mg kg–1. 

(2) 25% of Portland cement and 75% of waste (sand with 1% of As polluted ZVI). 
Concentration of As total in the material: 1.5 × 103 mg kg–1. 

(C1) 25% of Portland cement and 75% of sand. 

(C2) 25% of Portland cement and 75% of sand-ZVI mixture (1% of ZVI, no As). 

It should be mentioned that As concentration in materials (1) and (2) were within the 
range of arsenic-bearing solid wastes (0.1–7500 mg kg–1, Clancy et al., 2013). 

2.4 Mechanical tests 

Flexural strength tests were conducted with a ‘Soiltest’ load frame, and the flexural 
resistance reported was the pressure that splitted the bricks in two pieces: triplicate tests 
were done for each sample (all the prepared bricks were tested) and the results were 
averaged. This test measures concrete tensile strength according to the NRMCA – CIP-16 
(2000) code. Compression tests were performed with an ‘Omnia’ load frame, and the 
compression resistance reported was the pressure that caused the collapse of the brick 
pieces obtained from the flexural tests; each samples was measured six times, and the 
results were averaged. Previous experiments (not shown) indicated that flexural tests had 
no results on the results of the compression tests. 

2.5 Leaching tests 

Various leaching experiments were carried out: with distilled water (solid–water ratio 
1 : 20) and adaptations of the USEPA-TCLP, Method 1311 (USEPA-TCLP, 1992); 
USEPA-LSP, Method 1313: Liquid–Solid Partitioning as a Function of Extract pH Using 
a Parallel Batch Extraction Procedure (USEPA-LSP, 2012), and the CAL-WET: 
California Waste Extraction Test (CAL-WET, 1982). 
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The leaching tests were performed in 250 mL Erlenmeyer flasks at room temperature 
(20 ± 2°C). The cemented material was grounded in an agatha mortar, and only particles 
with diameter below 2 mm were used. The flasks containing the corresponding amount of 
material and 100 mL of the leaching solution were placed in a FERCA orbital shaker at 
200 rpm. At least duplicate tests were done for each sample; when the standard deviation 
for total As was either higher than 10% of the average value or three times higher than 
50 µg L–1 (As quantification limit), triplicate o quadruplicate experiments were 
performed, and the two closer results were used. The following leaching tests were 
performed: 

a Water: 5 g of the material were shaken for 18 h with 100 mL of pure water. 

b Method 1311-USEPA-TCLP (USEPA-TCLP, 1992): 5 g of the material were shaken 
for 18 h with 100 mL of an aqueous solution of acetic acid at pH 2.9. 

c CAL-WET Method (CAL-WET, 1982): 10 g of the material were shaken for 48 h with 
100 mL of an aqueous solution of citric acid at pH 5.0. 

d Method 1313-USEPA-LSP (USEPA-LSP, 2012): 10 g of the material were shaken for 
24 h with 100 mL of an aqueous solution of hydrochloric acid at the concentrations 
indicated in Table 1. 

Table 1 Leaching test on mortar specimens (1) ([As] total in the specimen ≈0.075% w/w)  
and (2) ([As]total in the specimen ≈0.15% w/w). pH final is the pH of the leachate. 
The Total As is the sum of the leached As(III) and As(V) 

Leaching test  
(Material) pHfinal 

Cond. 
(mS cm–1) 

[As(V)]  
(mg L-1) 

[As(III)] 
(mg L–1) 

[As]Tot. 
(mg L–1) 

Water (1) 9.84 ± 0.07 0.53 ± 0.01 ≤0.05 ≤0.05 ≤0.1 

Water (2) 9.53 ± 0.13 0.53 ± 0.03 ≤0.05 ≤0.05 ≤0.1 

TCLP (1) 8.87 ± 0.06 2.18 ± 0.06 0.08 ± 0.02 0.08 ± 0.02 0.16 ± 0.04 
TCLP (2) 7.85 ± 0.08 1.98 ± 0.04 0.08 ± 0.01 0.14 ± 0.06 0.22 ± 0.07 
CAL-WET (1) 7.63 ± 0.10 1.72 ± 0.06 ≤0.05 0.12 ± 0.04 0.17 ± 0.04 
CAL-WET (2) 7.60 ± 0.04 1.74 ± 0.03 ≤0.05 0.41 ± 0.06 0.46 ± 0.06 
LSP 
[HCl] 

0.05 M (1) 7.20 ± 0.07 6.67 ± 0.08 0.08 ± 0.01 0.19 ± 0.03 0.27 ± 0.05 
0.05 M (2) 8.50 ± 0.08 6.67 ± 0.06 ≤0.05 0.44 ± 0.06 0.49 ± 0.06 
0.10 M (1) 8.34 ± 0.04 10.9 ± 0.3 0.08 ± 0.03 0.10 ± 0.02 0.18 ± 0.05 
0.10 M (2) 7.43 ± 0.08 8.11 ± 0.10 0.07 ± 0.02 0.13 ± 0.04 0.20 ± 0.06 
0.20 M (1) 6.33 ± 0.07 13.2 ± 0.6 0.13 ± 0.04 0.28 ± 0.05 0.41 ± 0.10 
0.20 M (2) 6.28 ± 0.08 14.5 ± 0.4 0.15 ± 0.03 0.47 ± 0.06 0.62 ± 0.09 
0.30 M (1) 5.48 ± 0.07 28.9 ± 0.3 0.53 ± 0.05 0.34 ± 0.05 0.88 ± 0.10 
0.30 M (2) 5.44 ± 0.13 29.2 ± 0.7 0.73 ± 0.10 0.54 ± 0.06 1.27 ± 0.17 
0.50 M (1) 2.32 ± 0.07 41.9 ± 1.0 1.45 ± 0.07 11.3 ± 0.7 12.7 ± 0.8 
0.50 M (2) 1.76 ± 0.11 44.9 ± 0.7 1.55 ± 0.09 11.8 ± 1.2 13.4 ± 1.3 
0.75 M (1) 0.46 ± 0.10 81.0 ± 1.0 0.18 ± 0.05 25.2 ± 1.5 25.4 ± 1.5 
0.75 M (2) 0.64 ± 0.07 120.4 ± 0.4 0.28 ± 0.03 40.1 ± 2.2 40.4 ± 2.2 
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2.6 Analytical determinations 

As(V) and As(III) were determined applying the spectrophotometric technique described 
in Lenoble et al. (2003) (limit of quantification for As: 0.050 mg L–1). A double beam 
Shimadzu spectrophotometer, model UV-1700, equipped with 1 cm optical path quartz 
cells, was used for As measurements. Five millilitre samples were filtered through 
0.45 µm Millipore cellulose acetate filters, 25 mm diameter, and poured into 10 mL 
volumetric flasks; then, the chemical reagents required for the colour development were 
added in the order indicated in Lenoble et al. (2003), and the flask was completed with 
distilled water and left in the dark for 2 h before measurement. When As concentration 
was higher than 5 mg L–1, 1 mL sample were taken instead of 5 mL. Total arsenic content 
of selected samples was also measured by ICP-OES, following the procedure described 
in Meichtry et al. (2015). As the differences found in the total arsenic concentrations 
determined by both methods were within the experimental error (±10%), for most 
samples only the spectrophotometric technique was use, due to its lower analysis time 
and measurement costs, and because it allowed As speciation. 

pH and conductivity determinations were performed with a Hanna meter equipped 
with a combined pH electrode and a conductivity sensor. 

3 Results and discussion 

3.1 Mechanical strength tests 

The four different sample bricks obtained (waste-containing materials (1) and (2), and 
control materials (C1) and (C2)) were submitted to flexural tests in order to evaluate the 
tensional strength of the materials and the effect of As and Fe on this property; the results 
obtained after triplicate experiments, together with their standard error, can be observed 
in Figure 1. 

Figure 1 Flexural test on prismatic specimens Portland cement. The error bars are the standard 
deviation of triplicate measurements 

 

The results obtained indicate only small differences, within the measurement error, in 
flexural strength between the different samples; the standard errors are within the 
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0.7 MPa limit accepted for this test (NRMCA – CIP-16, 2000). Therefore, it can be 
concluded that neither Fe nor As, at the concentrations used in this work, influences the 
flexural resistance of the material. Fernández-Jiménez et al. (2005), using a Fe 
concentration of the same order of magnitude, reported a similar decrease in the flexural 
strength (around 15%) as that observed between (C1) and (C2) due to the presence of 
iron; the authors also found a decrease in the flexural strength when As alone and As 
combined with Fe were used, but their As concentration was much higher. 

After the flexural test, six bricks of each material were obtained, each with a length of 
around 8 cm (half the length of the original bricks). All these bricks were submitted to 
compression tests in order to evaluate the compression resistance of the materials and the 
effect of As and Fe; the averaged results obtained after the six times experiments and 
their corresponding standard error can be observed in Figure 2. 

Figure 2 Compression test on prismatic specimens Portland cement. The error bars are the 
standard deviation of six measurements 

 

Compression tests did not show significant differences between the mortar control 
specimens with and without ZVI. A 15% reduction in mechanical compression strength, 
only slightly higher than the measurement error, was observed in the case of the 
specimen with the highest As content (Figure 2). While this result indicates a lower 
quality mortar for material (2), it can still be considered well suited for use in 
construction. 

Various studies have indicated that compression strength decreases as the percentage 
of contaminated sludge (As-containing Fe or Al (oxy)hydroxides) increases in cement 
mortars. Some authors recommend such percentage should be 4% (Mahzuz et al., 2009), 
while others estimates that up to 25% can be used (Chan and Azhar, 2015; Rouf and 
Hossain, 2003; Zografou et al., 2015). Furthermore, the studies conducted by Minocha 
and Bhatnagar (2007) showed that concentrations of up to 500 mg L–1 of As(V) even 
increased the material resistance. Then, the observed decrease in the compression 
strength in the samples with the arsenic-containing wastes should be related to the 
presence of ZVI and/or Fe oxides, as reported by Fernández Olmo et al. (2001), regarding 
the effect of Fe2O3 in aged samples. 
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3.2 Leaching experiments 

As(V) and As(III) concentration in the different leaching tests was analysed according the 
procedure described in Section 2.6. It should be indicated that, if all As were leached 
from material (1), As concentration would be, for samples (1), 37.5 mg L–1 with the water 
and TCLP tests and 75 mg L–1 with the other two tests; for material (2), the values would 
be twice the corresponding values of material (1). Leaching tests were also performed in 
control materials (C1) and (C2), but no As was detected in the leachate; then the As 
contribution of the sand, ZVI and the cement to the As measured was neglected. The 
results of the different leaching procedures tested for the materials (1) and (2) are shown 
in Table 1. 

The results show that As is leached largely as As(III), which is consistent with the 
higher mobility of this species in water (Litter et al., 2010), and indicates that As(III) 
oxidation to As(V) is not complete during the stabilisation/solidification process; also, 
can be observed that only for the LSP test at [HCl] ≥ 0.3 M a significant amount (>1%) 
of the total As contained in the material was leached. For the two types of mortar 
specimens analysed (with 0.075 and 0.15% of total As concentration), the results of the 
leaching procedure show higher total As concentrations for sample (2), consistent with its 
higher percentage of As. 

For landfill disposal, the Argentinian legislation, both Resolution 97/01, Annex III 
(Ministry of Social Development and Environment, 2001) and Decree 831/93, Annex V 
(Ministry of Social Development and Environment, 1993), require analytical 
determination of leachates and the use of the Toxicity Characteristic Leaching Procedure, 
Method 1311 (USEPA-TCLP, 1992) to predict the behaviour of arsenic waste stabilised 
in a landfill, with an arsenic limit value of 1 mg L–1. However, it must be noted that even 
if these requirements are met, many researchers are raising concerns on the ability of this 
method to predict stability in the long term (Clancy et al., 2013; Wickramanayake et al., 
2003); besides, differences up to 10 times in leached As between tests TCLP and  
CAL-WET have been reported (Chen et al., 1999), and thus the classification of a waste 
as hazardous may depend a lot on the leaching procedure used. The tests carried out with 
water and under the TCLP and CAL-WET methods indicates that the As leached values 
are within the limit allowed for non-hazardous waste, and only at [HCl] ≥ 0.3 M this limit 
is surpassed. 

For both materials, total arsenic leaching is negligible when water is used as leaching 
solution ([As]Tot < 0.1 mg L–1); as this test represents the readily available fraction, that 
indicates the amounts of free arsenic (i.e., not bounded to any cation or metal hydroxide) 
and correspondingly, the most dangerous one (Yliniemi et al., 2015, and references 
therein), it can be concluded that there is no free arsenic neither in materials (1) nor (2).  
The TCLP and CAL-WET methods indicate the amount of weakly adsorbed arsenic, 
although it may include As(III) and/or As(V) leached when Fe hydroxides are dissolved 
by these organic acids (van Herck and Vandecasteele, 2001); the results of Table 1 
indicates thus that As is strongly retained by the materials. The bricks were not directly 
tested with the leaching solutions, so As physical encapsulation in the materials (i.e., as 
solid As2O3), as previously reported (Fernández-Jiménez et al., 2005) cannot be totally 
discarded. However, the low [As]Tot measured for almost all experiments shown in  
Table 1 indicate that the main stabilisation mechanisms are:  
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1  strong As(III)/As(V) adsorption over Fe (oxy)hydroxides (Fu et al., 2014;  
Litter et al., 2010) 

2 coprecipitation with Fe(II)/Fe(III) (Clancy et al., 2013; Fu et al., 2014; Litter et al., 
2010) or with Ca(II) (present in high concentration in the materials as calcium 
sulphate) as calcium arsenate (Zhu et al., 2006) and/or 

3 other mechanism of chemical retention (Yliniemi et al., 2015), i.e., sulphate 
replacement by As in ettringite (calcium–aluminium sulphates minerals present  
in cement) (Sullivan et al., 2010). 

The results obtained with the LSP method (USEPA-LSP, 2012) indicate a strong 
dependence on pH, being required very extreme conditions (HCl > 0.2 M and pHfinal < 6) 
to reach the maximum allowable limit of 1 mg L–1 for non-hazardous waste (Figures 3 
and 4). 

Figure 3 Leaching test on material (1) ([As]Tot in the specimen ≈0.075 % m/m). The Total As is 
the sum of the leached As(III) and As(V). The horizontal solid line indicates the total 
arsenic limit value accepted for the disposal of solids as urban wastes 

 

As can be clearly observed, a maximum in As(V) concentration at [HCl] = 0.5 M can be 
observed for both materials (1) and (2); this cannot be related with As(III) oxidation in 
solution by atmospheric O2 during the tests, as under pH values direct As(III) oxidation 
by O2 can be neglected (Bundschuh et al., 2012; Clancy et al., 2013; Litter et al., 2010). 
However, it should be noted that [As(V)] is very similar to the error of [As]Tot, and thus 
this As(V) maximum can be only an analytical error. 

When Fe is present, the mobility of As is largely controlled by Fe speciation: under 
oxic conditions, Fe(III) (oxy)hydroxides are responsible for the scavenging of the stable 
As(V) and for the oxidation of As(III), while under anoxic conditions, As(V) is released 
during the reduction of Fe(III) to Fe(II), as Fe(II) has a higher solubility than Fe(III) 
and/or can form reduced Fe phases (magnetite, green rusts, mackinawite) that have lower  
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As affinity; besides, the more mobile As(III) can be formed when the redox potential of 
the media equals the As(V)/As(III) redox potential (Charlet et al., 2011; Ghosh et al., 
2006; Hsu et al., 2016; Yunmei et al., 2004). Considering that As(V) leaching in the 
treated samples was almost negligible, it must be noted that the solidification/stabilisation 
treatment with Portland cement can be of particular interest for Argentina and other 
regions where As(V) is the main As species in groundwater (Bundschuh et al., 2012). 

Figure 4 Leaching test on material (2) ([As] total in the specimen ≈ 0.15 % m/m). The Total As 
is the sum of the leached As(III) and As(V). The horizontal solid line indicates the total 
arsenic limit value accepted for the disposal of solids as urban wastes 

 

Finally, it should be emphasised that, although ZVI can efficiently remove both As(III) 
and As(V) from water, there are no studies on the influence of contaminant speciation 
and the presence of carbonates, chloride, phosphate, sulphates and other anions when this 
technology is applied in sand filters (Noubactep, 2015); moreover, the incidence of these 
anions in the leaching process is almost unknown. One of these few studies was 
performed by Yliniemi et al. (2015), which determined that after alkali activation anionic 
species become leachable when the standard test EN 12457-3 (2003) is applied; in 
particular for As, the leaching increase was very significant, reaching concentrations that 
exceed 0.5 mg L–1 (Finland legal limits, FINLEX®, 2006). Future works will be directed 
to study the effect of anions besides chloride and carboxylic acids, as well as the redox 
potential of the media, on As leaching; also, a detailed characterisation of the solid 
materials by techniques as X-ray diffraction, ATR-FTIR, SEM, Raman and Mossbauer 
spectroscopy, will be performed. 

4 Conclusions 

The mechanical strength of waste-containing mortars was only slightly affected by the 
presence of arsenic waste in concentrations up to 0.15% (w/w), maintaining a suitable 
quality as construction material. 
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Under normal leaching conditions, the limits to classify the waste stabilised and 
solidified with cement as hazardous waste were not reached. 

Extreme conditions (HCl > 0.2 M) are required to exceed the 1 mg L–1 limit allowed 
for hazardous materials according to Argentine law. 

For these reasons, it can be concluded that the stabilisation/solidification 
methodology is a suitable option for the final disposal of arsenic waste. In addition, its 
characteristics enable the use of such waste as construction material. 
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