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Abstract: Feline immunodeficiency virus (FIV) is an important cat pathogen worldwide whose
biological and pathophysiological properties resemble those of human immunodeficiency virus
type 1 (HIV-1). Therefore, the study of FIV not only benefits its natural host but is also useful for the
development of antiviral strategies directed against HIV-1 infections in humans. FIV assembly results
from the multimerization of a single but complex viral polypeptide, the Gag precursor. In this review,
we will first give an overview of the current knowledge of the proteins encoded by the FIV pol, env,
rev, vif, and orf-A genes, and then we will describe and discuss in detail the critical roles that each of
the FIV Gag domains plays in virion morphogenesis. Since retroviral assembly is an attractive target
for therapeutic interventions, gaining a better understanding of this process is highly desirable.
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1. Introduction

Feline immunodeficiency virus (FIV) is a lentivirus that induces an AIDS-like syndrome in
domestic cats [1]. Although FIV also infects wild felids, they appear not to develop feline AIDS [2].
However, there is evidence suggesting that FIV is a potentially harmful agent in free-ranging lions [3].
FIV is mainly transmitted by bite wounds during fight or coitus [4]. In addition, mother-to-offspring
FIV exposure can occur both in utero and postnatally [5,6]. Of note, FIV has a broader tropism than
that of HIV-1, since it not only infects CD4+ T lymphocytes, monocytes, and macrophages but also
exhibits tropism for CD8+ T and B lymphocytes [7–10]. FIV shows structural, genomic, biochemical,
and pathophysiological similarities with human immunodeficiency virus type 1 (HIV-1) [5,11].
Indeed, infected domestic cats develop immune dysfunction, including a marked decline in CD4+ T
lymphocytes, thymic depletion, and lymphoid hyperplasia, as well as susceptibility to opportunistic
infections and rare cancers [5,12]. Therefore, FIV is not only an important cat pathogen but also a useful
model of HIV-1 infections in humans [5,11–13]. In this regard, FIV features have allowed to model in
domestic cats certain aspects of HIV-1 infections: (a) transmission of cell-associated, as well as cell-free,
viruses; (b) mucosal infectivity; (c) host immune responses; (d) acquired immunodeficiency; (e) thymic
dysfunction; (f) neuropathogenesis; (g) host-virus interactions; and (h) efficacy of antiviral therapy and
experimental vaccines [12]. Indeed, a wealth of data characterizing FIV infection of cats has provided
relevant biological information translatable to HIV-1 [5,12–14]. Furthermore, FIV-infected cats were
the first animal model used to test HIV-1 reverse transcriptase inhibitors [15,16] and the efficacy of
acyclic nucleoside phosphonate analogues, which led to the development of tenofovir, a common drug
used for the treatment of HIV-1 infections [17,18]. Moreover, FIV is also sensitive to HIV-1 integrase
inhibitors [19].
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2. FIV Genome

FIV has a genome of around 9400 nucleotides, which is flanked by the Long Terminal Repeats
(LTR) and contains the characteristic retroviral genes gag, pol, and env (Figure 1) [20]. In addition,
the FIV genome encodes the regulatory proteins Rev, Vif, and OrfA (Figure 1) [20]. However, FIV
lacks the accessory HIV-1 genes vpr, vpu, and nef, as well as tat, whose product regulates viral genome
transcription [20].
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3 ĹTR

MA CA

1

p1 NC

ZFN ZFC

p2

450
MHR

Figure 1. Organization of the FIV proviral DNA (Petaluma FIV-14 molecular clone; GenBank:
M25381.1). The 5′ and 3′ long terminal repeats (LTR) are shown together with the open reading
frames encoding Gag, Pol, Env, and the regulatory proteins Rev, Vif, and Orf-A. Numbers indicate
the nucleotide positions in the FIV genome. PR, protease; RT, reverse transcriptase; DU, dUTPase;
IN, integrase; SU, Env surface subunit; TM, Env transmembrane subunit.

3. FIV Proteins and Their Role in the Viral Life Cycle

3.1. Gag Polyprotein

FIV assembly, like that of all lentiviruses, occurs at the plasma membrane of the infected cells
as the result of the multimerization of the Gag polyprotein into virions, which are then released
into the extracellular medium. The FIV Gag polyprotein contains all the necessary information for
virion assembly and budding [21]. Indeed, the expression in cell cultures of the FIV Gag precursor,
in the absence of other viral proteins, results in the formation of particles morphologically similar to
immature virions [21]. Moreover, recombinant FIV Gag expressed in Escherichia coli self-assembles
in vitro into spherical particles, albeit of a smaller size (33 nm) than authentic virions [22]. Likewise,
the Gag polyproteins of the primate lentiviruses HIV-1 and simian immunodeficiency virus (SIV) are
capable of assembling into virus-like particles both in vivo and in vitro [23–27].

Concomitantly with virion budding, the FIV Gag polyprotein is processed by the pol-encoded
viral protease into the structural proteins of the mature particles: matrix (MA, 135 amino acids),
capsid (CA, 222 residues), spacer peptide p1 (9 amino acids), nucleocapsid (NC, 66 residues), and the
C-terminal p2 peptide (18 amino acids) [28] (Figure 2). A detailed description of the role of each of the
FIV Gag domains will be discussed later in Section 4.
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Figure 2. Domains of the FIV Gag polyprotein. The matrix (MA), capsid (CA), nuclecapsid (NC),
spacer peptide p1, and C-terminal peptide p2 are shown. The location of the major homology region
(MHR) in the CA, as well as that of the proximal (ZFN) and distal (ZFC) zinc finger motifs in the NC,
are indicated. Numbers correspond to the first and last Gag residues.
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3.2. Pol

The FIV proteins encoded by the pol gene derive from a large Gag-Pol polyprotein, which is
generated as a consequence of a −1 frameshift during translation of the full-length viral messenger
RNA (mRNA), an event that occurs once every fifteen translations of the mRNA of genomic length [29].
FIV Pol, like that of primate lentiviruses, comprises the following viral enzymes: protease (PR), reverse
transcriptase (RT), and integrase (IN) [28] (Figure 1). However, FIV pol encodes an additional protein,
a deoxyuridine pyrophosphatase (DU) [30] (Figure 1).

The FIV PR is an aspartyl proteinase, which, as a functional homodimer, processes the Gag
and Gag-Pol precursors into the structural proteins and enzymes of the mature virion [31]. Of note,
comparison of FIV and HIV-1 PRs has shown that both enzymes have related but distinct substrate
specificities [31].

After viral entry and uncoating, the FIV genomic RNA is converted by the RT into a double-
stranded DNA molecule. Although the FIV RT is a polypeptide of 67 kDa, the functional enzyme is
a heterodimer composed of 67-kDa and 54-kDa subunits, the latter being the PR-mediated cleavage
product of the 67 kDa polypeptide [32]. The FIV RT exhibits both DNA polymerase and RNaseH
activities that are essential to generating the viral cDNA and removing the viral RNA template,
respectively [32]. Although the FIV RT shares with its HIV-1 counterpart a heterodimeric organization
and the requirement for Mg2+ as a cofactor [32], it is resistant to all known non-nucleoside inhibitors
(NNRTI), a biological property that has been recently explained by comparing the crystal structure of
the FIV RT with that of HIV-1 [33]. Indeed, while the NNRTI binding pocket is conserved, structural
differences at its entryway render the FIV RT pocket unfavorable for effective NNRTI binding [33].

The viral double-stranded DNA synthesized by the FIV RT is inserted into the chromosomes of the
infected cells, thereby generating the proviral DNA. The integration process involves three steps [34].
First, the IN eliminates two nucleotides from the 3′ end of the viral DNA leaving single-stranded 5′

ends. Second, the enzyme utilizes the viral DNA 3′-hydroxyls as nucleophiles to cut the host DNA,
simultaneously joining both viral DNA 3′ ends to the strands of the host DNA. Finally, the short 5′

overhangs flanking the proviral DNA are repaired by cellular enzymes. It has been shown that the FIV
IN is active as a multimer, and that different functions are provided by discrete domains on different
subunits [35]. A mutagenesis study of the FIV IN has revealed that this enzyme bears an N-terminal
domain involved in IN multimerization and binding to the viral DNA, a central region that contains
the enzyme active site, and a C-terminal domain carrying the determinants essential for IN interaction
with the host DNA [35]. The viral cDNA is translocated to the nucleus as a nucleoprotein complex
known as the pre-integration complex (PIC). It has been demonstrated that the cellular factor Lens
Epithelium-derived Growth Factor (LEDGF/p75) is a component of the functional FIV PIC and is the
main lentiviral integrase-to-chromatin tethering factor [36].

The FIV DU reduces the intracellular pool of dUTP, thereby preventing the misincorporation
of dUTP instead of dTTP during the reverse transcription process, which in turn minimizes the
accumulation of mutations in the viral genomic DNA [37]. DU activity is essential for FIV replication
in macrophages, because these cells exhibit low levels of endogenous DU [37].

3.3. Rev

Transcription of the FIV proviral DNA by the cellular RNA polymerase II produces (i) multi-
spliced mRNAs, such as those encoding Rev and Orf-A; (ii) single-spliced mRNAs, which code for Env
and Vif; and (iii) full-length RNA species that are either used for the synthesis of the Gag and Gag-Pol
precursors or packaged into virions as genomic RNA molecules [38]. After being synthesized on
cytoplasmic ribosomes, the FIV Rev protein enters the nucleus and binds to the viral RNA secondary
structure Rev-responsive element and to the nuclear export protein Chromosome Region Maintenance 1
(CRM1) [39]. This event allows the export to the cytoplasm of monospliced and unspliced viral RNAs.
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3.4. Vif

Mammalian cells express apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3
(APOBEC3) proteins, which act as restriction factors against lentivirus replication [40]. These proteins
are packaged into nascent lentiviral virions and, during the next infection cycle, they deaminate
cytosines to uracils during the synthesis of the cDNA strands, resulting in G-to-A hypermutation of the
newly synthesized viral DNA, which is detrimental to the expression of functional viral proteins [40].
To overcome APOBEC3 antiviral action, the lentiviral Vif protein degrades host APOBEC3 proteins via
the ubiquitin/proteasome-dependent pathway. Interestingly, it has been recently reported that the FIV
PR cleaves feline APOBEC3 in released virions [41]. Therefore, FIV exhibits two anti-APOBEC factors,
Vif and PR [41].

3.5. Orf-A

FIV Orf-A is a small polypeptide of 77 amino acids that is necessary for the production of infectious
virions [42]. Orf-A localizes to the nucleus and promotes cell-cycle arrest of the infected cells at the
G2 phase, a biological property that is also exhibited by the Vpr protein of primate lentiviruses [43].
In addition, Orf-A reduces the cell surface levels of the FIV primary receptor CD134, thereby facilitating
the release of the nascent virions, which is reminiscent of the detrimental activity of the HIV-1 Nef and
Vpu proteins on the expression and cell surface localization of CD4 [44].

3.6. Env

FIV, like the rest of the lentiviruses, encodes a single envelope glycoprotein (Env) that mediates
entry of the virus into its target cells. The mature Env protein is a heterodimer composed of the surface
(SU, gp95) and the transmembrane subunits (TM, gp35), which are non-covalently associated on the
viral surface [45,46]. FIV cell entry requires binding of the SU glycoprotein to the cell surface receptor
CD134 [47,48], which causes conformational changes in the Env protein that promote the subsequent
interaction of the SU with the chemokine receptor CXCR4 [49,50]. These events are then followed by
the fusion of the viral and cellular membranes, which is mediated by the TM glycoprotein [51–53].
It has been clearly demonstrated that one of the six variable regions of the FIV SU, the V3 domain, plays
an essential role in the association of the SU glycoprotein with the viral coreceptor CXCR4 [54–56].
Interestingly, it has been shown that a chimeric FIV Env glycoprotein in which its SU V3 domain is
replaced by the equivalent region of a CXCR4-tropic HIV-1 not only binds to CXCR4 as efficiently as
wild-type FIV Env but also promotes CXCR4-dependent membrane fusion [56].

4. Role of the FIV Gag Domains in Virion Assembly and Budding

4.1. MA

As mentioned above, FIV assembles at the plasma membrane of the infected cells upon
multimerization of the Gag polyprotein [21]. The FIV MA is myristoylated at the glycine in position
2 after removal of the N-terminal methionine. Insertion of the myristic acid into the lipid bilayer
of the plasma membrane mediates Gag accumulation at the cell surface. Indeed, the amino acid
substitution Gly2Ala in the FIV MA abrogates virion production [21]. Interestingly, analysis by
electron microscopy of mammalian cells expressing this myristic-minus FIV Gag polyprotein revealed
the presence of intracytoplasmic Gag shells [21]. However, FIV Gag myristoylation is necessary
but not sufficient for Gag association with the plasma membrane. Another determinant in the FIV
MA, composed of the three lysines at positions 26, 28, and 29, is essential for Gag localization at the
plasma membrane and particle assembly [21]. In this regard, it has been shown that the HIV-1 Gag
polyprotein is targeted to the cell surface by the interaction of the MA N-terminal basic patch with
phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2], an acidic phospholipid that is highly enriched in
the inner leaflet of the plasma membrane [57]. During transport of Gag to the cell surface, the myristic
acid remains sequestered within the MA domain protein structure and upon binding of the MA to
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PI(4,5)P2; the myristic acid is exposed, inserts into the lipid bilayer, and stabilizes the association
of Gag with the plasma membrane [57]. Results of in vitro studies suggest that binding of cellular
RNAs to the MA domain prevents Gag association with intracellular membranes during HIV-1 Gag
trafficking to the plasma membrane [58,59]. However, when Gag molecules reach the cell surface,
the PI(4,5)P2 displaces the MA-bound RNA, thereby allowing myristate exposure and Gag interaction
with the plasma membrane [57]. Interestingly, depletion of PI(4,5)P2 from the plasma membrane of
FIV-infected cells inhibits virion production [60]. Therefore, as observed for HIV-1, FIV also utilizes
the PI(4,5)P2 for Gag targeting to the plasma membrane [60].

The crystal structure of the FIV MA shows that the molecule exhibits a helical organization, typical
of retroviral matrix proteins. [61] (Figure 3). However, in contrast to those of HIV-1 [62] and SIV [63],
the FIV MA is not found as a trimer in the crystal [61]. In solution, the unmyristoylated FIV MA forms
dimers at high protein concentration and in mildly acidic conditions [61]. Molecular docking studies
have demonstrated that a myristoyl group can be placed in a hydrophobic cavity close to the side
chains of residues Trp9, Phe35, Ile39, Ile53, and Phe90 [61], which is in agreement with the location of
the myristic acid moiety in the NMR structure of the myristoylated FIV MA [60].
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Figure 3. Crystal structure of the FIV MA protein (PDB 4IC9). (a) Ribbon diagram of the FIV MA
protein in which the α-helices H1–H5 are shown together with the amino (N) and carboxyl (C) termini;
(b) alignment of the FIV and HIV-1 MA proteins. The α-helices of the FIV MA [61] and HIV-1 MA [62]
are depicted with brown and green lines, respectively. The identical amino acids at the same positions
in both sequences are indicated in red, whereas the conserved residues appear in blue. The numbers
indicate the length of each polypeptide.

The structural and functional relationship between the MA proteins of FIV and the primate
lentivirus SIV has been studied by generating chimeric proviruses, in which the MA-coding regions
were exchanged. An SIV provirus containing the FIV MA domain does not produce viral particles
due to the inability of the chimeric Gag polyprotein to associate with the plasma membrane [64].
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This defect is reversed by increasing the basic character of the N-terminal region of the FIV MA in the
chimera [64]. By contrast, replacement of the FIV MA-coding region by its SIV counterpart results in a
chimeric virus that not only assembles into virions as efficiently as wild-type FIV but also replicates in
a feline lymphoid cell line in a wild-type manner [64].

It has been established for both HIV-1 and SIV that the incorporation of the Env glycoprotein
into virions is mediated by an interaction between the MA and the Env cytoplasmic domain [65–68].
Although mutations within the FIV Env cytoplasmic domain have been shown to block Env packaging
into virions [51,53], it remains to be determined whether the FIV MA plays any role in this process.

4.2. CA

The CA, which is the central domain of the Gag polyprotein, plays distinct roles during lentiviral
morphogenesis. As part of the Gag precursor, it participates in the protein-protein interactions that
drive Gag multimerization into immature particles [27,69,70], whereas as an independent protein of
the mature virion, it self-assembles into the core structure that protects the viral components required
for the next steps of virus infection and spreading [71–73].

The CA domains of retroviral Gag polyproteins exhibit low sequence similarity, except for a
20-amino-acid motif known as the major homology region (MHR), which is highly conserved among
orthoretroviruses [74]. However, comparison of the solution structures of different retroviral CA
proteins shows a common organization in two highly α-helical regions that fold independently of
each other: an N-terminal domain (CA-NTD) that is linked via a flexible region to a C-terminal
domain (CA-CTD) [75]. Cryo-electron tomography of in vitro-assembled Gag particles from HIV-1,
Mason-Pfizer monkey virus, and Rous sarcoma virus revealed that Gag assembly results in the
formation of a hexagonal lattice, in which the CA-NTD organizes into hexameric rings connected by
CA-CTD homodimers [76].

The recent determination of the crystal structure of the FIV CA has revealed that the molecule
displays the standard α-helical CA topology with two domains separated by a linker [77] (Figure 4).
However, the crystallized FIV CA shows some features that differ from known structures of lentiviral
CA proteins [78,79], such as the formation of a β-hairpin motif at its amino terminal end in the absence
of a proline residue at position 1 and the presence of a cis Arg89-Pro90 bond [77]. It has been reported
that the FIV CA binds the peptidyl-prolyl cis-trans isomerase cyclophilin A (CypA) [80]. According to
the crystal structure of the FIV CA, there is a CypA binding site in loop 5 [77]. Of note, among the five
prolines in the FIV CA domain that CypA associates with, Pro90 is in a cis-conformation, which makes
it a critical target for CypA due to the strong preference of this enzyme for substrates containing cis
Pro [77]. Moreover, it has been shown that treatment of FIV-infected cells with the immunosuppressive
drug cyclosporin A, which inhibits CA-CypA binding, blocks virus replication [81].

Mammalian cells express factors that inhibit retrovirus replication. In this regard, HIV-1 efficiently
enters the cells of Old World monkeys but encounters a block before reverse transcription imposed by
the tripartite motif protein isoform 5 alpha (TRIM5alpha), which acts directly on the incoming HIV-1
CA [82]. By contrast, HIV-1 infection is weakly restricted by human TRIM5alpha [82]. Interestingly,
it is CypA that, by binding to the HIV-1 CA, isomerizes a peptide bond of this protein, making it
susceptible to the restriction imposed by TRIM5alpha from Old World monkeys [83]. Of note, it has
been discovered that owl monkeys exhibit a restriction factor denominated TRIMCyp that evolved from
a TRIM5 protein whose C-terminal domain was replaced by CypA [84]. It has been shown that both
rhesus monkey TRIM5alpha and owl monkey TRIMCyp inhibit FIV replication [85]. Potent restriction
of FIV by TRIMCyp occurred in the complete absence of its RING and B-box 2 domains, whereas FIV
restriction by TRIM5alpha required these regions [85]. Notably, the feline genome does not encode
either TRIM5alpha or TRIMCyp proteins, and HIV-1 is primarily blocked in feline cells by APOBEC3
proteins [86].
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Figure 4. Crystal structure of the FIV CA (PDB 5NA2). (a) Ribbon representation of the FIV CA
protein in which the α-helices H1–H7 (CA-NTD) and H8–H11 (CA-CTD) are shown together with the
N-terminal β-hairpin and the CypA-binding loop (CypA-BL); (b) alignment of the FIV and HIV-1 CA
proteins. The α-helices of the FIV CA [77] and HIV-1 CA [78] are shown as brown and green lines,
respectively. The identical amino acids at the same positions in both sequences are indicated in red,
whereas the conserved residues appear in blue. β1 to β2 indicate the amino acids involved in the
N-terminal β-hairpin. Boxes correspond to the proposed CypA-BL. The proline at position 1 in the FIV
CA sequence was replaced by a threonine residue due to technical reasons during the crystallographic
procedure [77].

A study aimed at identifying the FIV Gag domains that promote Gag multimerization analyzed
the ability of a panel of Gag subdomains to associate with full-length Gag and be recruited into
extracellular virus-like particles (VLPs). Of note, among the FIV Gag mutants tested, the CA-NC Gag
subdomain associated wild-type Gag with the highest efficiency and was rescued into particles in a
proportion close to 50% of the total Gag-related protein mass of VLPs [87]. Moreover, characterization
of the assembly phenotype of a series of FIV Gag mutants carrying internal deletions within the CA
region showed that three of the deletions that abolish Gag assembly [87] remove sequences homologous
to those in HIV-1 CA helices 4, 8, and 11, which have been demonstrated to be critical for immature
particle assembly [69].

Insight into the functional relationship between the SIV and FIV CA domains has been provided
by two studies that characterized chimeric SIV and FIV Gag polyproteins, in which the CA domains
were partially or totally exchanged [88,89]. A chimeric SIV carrying the FIV CA-NTD was found to be
assembly-defective [88]. By contrast, SIVs containing the FIV CA-CTD or the entire FIV CA, p1 and
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the first nine residues of the FIV NC produce wild-type levels of virions that incorporate the SIV Env
glycoprotein and package the viral genome RNA and RT with an efficiency similar to that of wild-type
SIV [88]. However, despite being assembly-competent, the latter chimeric SIVs are non-infectious
due to a post-entry impairment [88]. Furthermore, it was shown that the FIV CA-CTD dimerizes
in vitro and forms high-molecular-weight oligomers, which, together with the finding that the FIV
CA-CTD is sufficient to confer assembly competence to the SIV Gag polyprotein, provides evidence
that the CA-CTD exhibits more functional plasticity than the CA-NTD [88]. Strikingly, chimeric FIV
Gag proteins carrying different SIV CA regions are assembly-defective; however, all of them are able
to interact with wild-type SIV Gag and be recruited into extracellular VLPs, regardless of the SIV CA
sequences present in the chimeric FIV Gag [89].

The fact that swapping of CA regions between the SIV and FIV Gag polyproteins is reciprocally
non-equivalent underscores the relevance of the other Gag domains, apart from CA for the organization
and/or preservation of the Gag lattice during particle assembly. Moreover, the results from the studies
described above [88,89] suggest that although lentiviral CA proteins share a similar organization, i.e.,
an NTD linked by a flexible region to a CTD together with a conserved MHR, their functional exchange
between different lentiviruses is strictly dependent on the context of the recipient Gag precursor.

The observation that the SIV MA is biologically active in the context of FIV Gag [64], whereas
SIV CA-derived sequences have a deleterious effect on FIV Gag assembly [89], is likely related to the
different functions that the MA and CA domains perform during the virus life cycle.

As an additional aspect of virion formation, it should be mentioned that FIV Gag, like its HIV-1
counterpart, progresses through a pathway of assembly intermediates derived from host RNA granules,
establishing interactions with the host factors ATP-binding cassette protein E1 (ABCE1), DEAD-box
helicase 6 (DDX6), and mRNA Decapping protein 2 (DCP2) [90]. Interestingly, FIV CA mutants that
are defective in particle production appear to be arrested at these assembly intermediates [90].

4.3. NC

The selective encapsidation of the full-length viral genomic RNA from a pool of cellular and viral
RNAs is an essential stage in the life cycle of all retroviruses. This requires the recognition by the NC
domain of the Gag polyprotein of an RNA sequence, termed encapsidation signal (E) or packaging
signal (ψ), located at the 5′ end of the genome and often extending into the gag gene [91]. All lentiviral
NC proteins exhibit a high content of basic residues and contain two copies of a zinc-binding motif
with the sequence Cys-X2-Cys-X4-His-X4-Cys that is similar to those found in many DNA-binding
proteins [91] (Figure 5). Analysis of the RNA binding activity and assembly phenotype of FIV NC
mutant viruses has shown that substitution of serine for the first cysteine residue in the NC proximal
zinc finger (Cys11Ser) is sufficient to impair both virion assembly and genomic RNA binding [92]
(Figure 5). A similar defective phenotype with respect to particle formation and NC-RNA interaction
is observed when the basic residues Lys28 and Lys29 in the region connecting both zinc fingers are
replaced by alanine [92] (Figure 5). By contrast, mutation of the first cysteine residue in the distal zinc
finger (Cys30Ser) does not affect virion production or RNA binding to the mutant NC protein [92]
(Figure 5). Furthermore, the Cys30Ser NC mutant virus replicates in the feline T-cell line MYA-1 as
efficiently as wild-type FIV [92]. Collectively, these data indicate that the proximal zinc finger of the
FIV NC is more important for genomic RNA binding and virion assembly than the distal motif [84].
Interestingly, in HIV-1, the NC proximal Cys-His motif is also more sensitive to alteration with respect
to genomic RNA packaging than the distal zinc finger [93,94].

Of note, the observation that the defect in viral RNA binding exhibited by the Cys11Ser and
Lys28Ala/Lys29Ala FIV NC mutants is accompanied by a block in particle production [92] supports
the concept that the NC-RNA association plays a central role in lentiviral assembly [95,96]. Further
evidence for this notion is provided by the fact that the in vitro assembly of the lentiviral Gag
polyproteins of HIV-1, SIV, and FIV is strictly dependent on the presence of RNA [22,25–27].
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Figure 5. Amino acid sequences of the NC and p2 domains of FIV Gag. The proximal and distal zinc
finger motifs are boxed with the characteristic cysteine and histidine residues highlighted in blue. The
basic residues lysine and arginine appear in red throughout the NC sequence. The arrow indicates the
PR processing site that generates the C-terminal p2 peptide. The budding domain in the p2 sequence is
denoted in green. The numbers refer to the amino acid positions in the NC-p2 region.

In addition to its role in genomic RNA packaging, chaperone properties have been attributed to
the FIV NC protein such as mediating RNA dimerization, annealing of the tRNALys to the genomic
primer binding site, and minus strand DNA transfer [97].

During retrovirus assembly, two copies of the viral genomic RNA in the form of a non-covalently
linked dimer are encapsidated into virions [91]. It has been shown that the FIV genome exhibits
a bipartite packaging signal comprising the first 150 nucleotides of the 5′ untranslated region and
the first 100 nucleotides of gag [98,99]. A secondary structural analysis of the FIV encapsidation
region indicated that it contains four conserved stem-loops, a long-range interaction (LRI) between
complementary heptanucleotides in R-U5 and gag, and a small palindromic stem-loop (SL5) within
the gag open reading frame that may act as a dimerization initiation site [100]. Further study of the
packaging signal led the authors to propose that the 5′ and 3′ regions previously shown to be only
involved in the LRI indeed appear to alternate between two different conformations, one that favors
genome-sized RNA translation and other that exposes the putative dimerization initiation site SL5,
thereby promoting genome RNA packaging into virions [101].

It has been reported that the FIV CA-NC-p2 domain mediates Gag nuclear shuttling, which led
the authors to suggest that FIV genomic RNA encapsidation may initiate in the nucleus [102]. However,
further studies are necessary to define the exact role that Gag nuclear cycling plays in FIV replication.

4.4. p2

Ion spray mass spectrometry has revealed that the FIV Gag polyprotein contains a C-terminal
peptide of 18 amino acids denominated p2 [28] (Figure 5). Interestingly, this peptide exhibits a PSAP
motif [92], which is also found as P(S/T)AP in the C-terminal p6 domain of the HIV-1 Gag protein.
It has been shown that the P(S/T)AP motif is a Gag late domain that recruits the cellular protein Tsg101
to exploit the cellular ESCRT machinery (Endosomal Sorting Complexes Required for Transport) for
virus budding [103–105]. Interestingly, amino acid substitutions disrupting the PSAP motif in FIV Gag
p2 abrogate virion production, which led to the proposal that FIV p2 is functionally equivalent to the p6
domain of HIV-1 Gag with respect to mediating virus egress [92]. Further study of FIV Gag budding has
revealed that mutagenesis of the FIV Gag PSAP motif, knockdown of Tsg101 synthesis, and expression
of a Tsg101 peptide that binds to the P(T/S)AP motif, each inhibits FIV release, which indicates that
this process is dependent on the Tsg101-PSAP motif association [106]. It has been demonstrated that
Gag PPxY motifs in Rous sarcoma virus, human T cell leukemia virus, and Mason Pfizer monkey virus
bind to Nedd4, which promotes Gag ubiquitination and facilitates ESCRT recruitment [105]. In this
regard, evidence has been presented that although FIV Gag lacks a PPxY motif, Nedd4-2s is capable
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of ubiquitinating FIV Gag, and that this process can reverse the defect in virus budding imposed by
mutations in the FIV late PSAP motif [107]. However, the role of ubiquitin-ligases in FIV budding
needs further investigation.

Type I interferon induces the expression at the plasma membrane of the BST2/tetherin factor
that inhibits cell surface release of several enveloped viruses including retroviruses [108]. Primate
lentiviruses utilize three different viral proteins to antagonize the budding restriction imposed by
tetherin: Vpu (HIV-1 and Vpu-expressing SIV strains mus, gsn, and mon) [109,110], Nef (most SIV
isolates) [111], and Env (HIV-2 and SIVtan) [112,113]. A feline tetherin has been identified and shown
to prevent the release of FIV virions in transient assays, which led to the suggestion that FIV may
lack a tetherin antagonist [114]. However, viral replication was found to occur in the presence of
tetherin due to FIV cell-to-cell transmission mediated by syncytium formation [114]. In contrast, other
studies have shown that feline tetherin fails to restrict wild-type FIV budding, and that the egress
of Env-defective FIV mutants is blocked [115,116]. The budding defect exhibited by these env-minus
mutants can be reversed by transient expression of the FIV Env protein, which indicates that feline
cells express a functional tetherin, and that the FIV Env glycoprotein is the viral factor counteracting
tetherin restriction [115,116].

5. Conclusions

In this review, we summarize the available information about the different steps in FIV assembly
and budding, as well as the specific contributions of each of the Gag domains to these processes.
We highlight the parallels and distinctions between FIV morphogenesis and that of primate lentiviruses
to illustrate how the molecular mechanisms underlying the generation of infectious virions have
evolved in lentiviruses. In-depth knowledge of FIV biology is essential for the development of broad
antiviral strategies aimed at blocking or interfering with lentiviral replication.
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