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Abstract

A novel external cavity-quantum cascade laser (Efl-based setup for mid-IR transmission
spectroscopy in the amide | and amide Il region employed for monitoring pH-induced
changes of protein secondary structure. pH titnatb3-lactoglobulin revealed unfolding of
the nativep-sheet secondary structure occurring at basic pken@metric analysis of the
dynamic IR spectra was performed by multivariateveuesolution-alternating least squares
(MCR-ALS). Using this approach, spectral and abucda distribution profiles of the
conformational transition were obtained. A propestgprocessing procedure was implemented
allowing to extract information about pure protespectra and spurious signals that may
interfere in the interpretation of the system. Thak demonstrates the potential and versatility
of the EC-QCL-based IR transmission setup for ftwasugh applications, benefitting from the

high available optical path length.

Keywords: mid-infrared, quantum cascade laser, protein stracpH titration 3-lactoglobulin,

chemometrics
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1. Introduction

Mid-infrared (mid-IR) spectroscopy is a powerful darwell-established analytical
technique to study the structure of biological mauwnlecules, e.g., proteins [1]. Vibrations of
the polypeptide repeating units of proteins resukiine characteristic group frequencies in the
mid-IR region referred to as amide bands. For iigagson of the protein secondary structure,
the amide | (1700-1600 ¢ originating from the C=0 stretching and N-H imagse bending
vibration of the amide group) and the amide Il i#600-1500 cfh — arising from N-H
bending and €N stretching vibration)shave been recognized to be most characteristic to
secondary structure [1,2]. The sensitivity to indizal secondary structure elements originates in
differing patterns of hydrogen bonding, dipole-dgoteractions and geometric orientations in
the a-helices,-sheets, turns and random coil structures thatcadlifferent frequencies of the
C=0 vibrations [3]. Although the amide | band demstoates to be most sensitive to
conformational changes, it has been shown thatiaddl and more in-depth information about
protein secondary structure can be gained by dnleeanalysis of both spectral regions,
particularly in combination with chemometric anadyfl-6].

An experimental limitation to investigations of pgm secondary structure in aqueous
solutions with state-of-the-art Fourier transfomfrared (FTIR) spectrometers is constituted by
the low feasible path lengths of the transmissiefisc This constraint originates from the
combination of two factors: first, the HOH-bendihgnd of water near 1645 cnwith a high
molar absorption coefficient, which overlaps witfe tprotein amide | band; and second, the low
emission power provided by conventional thermahtligources (globars). As a consequence,
path lengths most commonly used for IR transmissiasurements of proteins in aqueous
solutions are in the range ofué to avoid total IR absorption in the region of thH®H-bending

band. This limitation comes along with laborioudl ead sample handling as well as the need
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for high protein concentration (>10 mg fL[7]. The low feasible path lengths for FTIR
transmission measurements of proteins in aquedus@oare a considerable impairment for the
robustness of analysis and impede flow-through oreasents and high-throughput applications.
This prevents semi-automated measurements in aueaytical applications, but also basic
monitoring of titrations in transmission mode tdlda conformation changes of proteins as a
function of external perturbation (pH, ligand coniration, denaturant concentration, etc) [8].
With the introduction of quantum cascade lasersL(Q& significant step forward was
made towards resolving these restrictions of loweadight sources in mid-IR spectroscopy [9].
They provide polarized and coherent light with $mdcpower densities several orders of
magnitude higher than thermal light [10]. Initiglihhe advantages of this new light source were
predominantly exploited in the gas phase and cus$toith setups have gained manifold
implementations in process analytical applicatiassvell as in biomedical spectroscopy [11]. In
the last decade, a new type of these mid-IR lagatternal cavity-QCLs (EC-QCLSs), became
commercially available combining high emission poswith spectral tuning ranges of several
hundred wavenumbers. The high available emissiovepenabled to increase the optical path
up to 38 um for transmission measurements in tloeepr region [12]. EC-QCL-based IR
transmission measurements have been successfabmatished for the analysis of protein
secondary structure [13-15]. Furthermore, the Ielityi of protein discrimination and
quantitation in commercial bovine milk samples hasn demonstrated by QCL-IR spectroscopy
and evaluation of the amide | band using part@aiesquares (PLS) modelling [16-18]. Recently,
an EC-QCL-based IR transmission setup was intratlfmethe analysis of the protein amide |
and Il regions, which favourably competes with FEipectroscopy regarding the signal to noise

ratio at equal data acquisition times [19].
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B-Lactoglobulin B-LG) is a predominantlf3-sheet protein consisting of 162 amino acids
that are folded in three-helices and nine strands of antiparaiesheet, that are wrapped in a
way to form an antiparallfl-barrel [20,21]. It is a main constituent of bovimék and therefore
it has been the subject of many studies probinduristion and structure in relation to internal
and external perturbation factors such as protemcentration [22-24], temperature [25-27],
pressure [28], pH [21,29], ionic strength [30], demant concentration [31,32], metal ion
concentration [33], among others. In this regatrdhais been found th@LG features multiple
structural transitions along the entire pH rangee Tonomeric structure @-LG prevailing at
low pH values starts to dimerize at pH 3. Betwekindpand pH 5B-LG undergoes a dimer-to-
octamer transition. Throughout these transitiokntaplace in the acidic pH range, the global
secondary structure of the antiparalfebarrel does not show evident changes [24]. Further
increase of the pH value into the alkaline regieads to disruption of thB-sheet secondary
structure and formation of disordered secondanycsire, as investigated by circular dichroism
(CD) spectroscopy [21] and FTIR spectroscopy [84dreover, conformational changes®i.G
induced by pH [24], concentration [35], temperat{2&,28,36], pressure [25,28] as well as
adsorption [37] were successfully evaluated by F3pRctroscopy.

Multivariate curve resolution-alternating least aop (MCR-ALS) is a widespread
iterative soft-modelling technique that allows tasadiminate individual contributions of
underlying constituents [38,39]. MCR-ALS providesusd and meaningful models with
chemically interpretable output in the form of dpaicprofiles of the compounds and the related
abundance distribution profiles along the dynamacess. Due to its flexibility and robustness, it
has been successfully used in combination with ouari analytical techniques, such as

chromatography [40], electrophoresis [41], and femwalysis [42], among others. In combination



111 with spectroscopic techniques, particularly with $Rectroscopy, MCR-ALS has become a
112 highly valuable technique for the study of evolvprgcesses [13,43,44].

113 In this work, we present a continuous flow-throutfination to monitor pH-induced
114 protein unfolding by EC-QCL-based IR spectroscapyis type of experiment was impeded with
115 conventional FTIR spectroscopy due to experimgmalblems such as defects in liquid tightness
116 and cell clogging arising from the necessity of litne path length required for IR measurements
117 of proteins in agueous solution. To this epd,G was chosen as a model protein as it depicts a
118 gradual transition fronf8-sheet to random secondary structure in the akaglid range. MCR-
119 ALS analysis was utilized to obtain pure spectradl abundance distribution profiles of the pH-
120 induced transition between native and denaturagednglary structure.

121

122 2. Materialsand methods

123 2.1. Reagentsand Samples

124 Sodium hydroxide (NaOH) solution 50 % in water,gssium chloride (KCI) p.a. arfi#
125 lactoglobulin B-LG) from bovine milk £85 %) were obtained from Sigma-Aldrich (Steinheim,
126 Germany) and used as purchased. Ultrapure wateM@B was used for preparation of all
127 solutions and was obtained with a Milli-Q water ification system from Millipore (Bedford,
128 USA).

129

130 2.2. EC-QCL Setup

131 A detailed description of the custom-made EC-QCiuean be found elsewhere [19].
132 Briefly, a water-cooled external-cavity quantum czae laser (Hedgehog, Daylight Solutions

133 Inc., San Diego, USA) was used operating at a tepetate of 100 kHz and a pulse width of
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5 us. Spectra were recorded in the spectral tuainge of 1730-1470 chcovering the amide |
and amide Il region of proteins, at a scan speei260 crits®. The mid-IR light was focused on
the detector element by a gold plated off-axis Ipalie mirror with a focal length of 43 mm. A
thermoelectrically-cooled MCT detector operating-@8 °C (PCI-10.6, Vigo Systems S.A,,
Poland) was used as IR detector, as shown in Figll neasurements were carried out using a
custom-built, temperature-controlled flow cell qoped with two mid-IR transparent GaF
windows and 31 pm-thick spacer, at 25 °C. A mesh @maployed to attenuate the laser intensity
and a wedged sapphire window (2.5 mm thickness) wsasl to selectively reduce the laser
intensity in the amide 1l region. To reduce thduahce of water vapor, the setup was placed in a
housing of polyethylene foil and constantly flusivath dry air.

The measured signal was processed by a lock-inifng/Stanford Research Systems,
CA, USA) and digitized by a NI DAQ 9239 24-bit AD@lational Instruments Corp., Austin,
USA). Each single beam spectrum consisting of Gi@ points was recorded during the tuning
time for one scan of approx. 250 us. A total of Hd@ns were recorded for background and
sample single beam spectra at a total acquisitioa of 53 s.

A data processing routine was devised to removseetisgcans that are shifted more than
0.1 cni* based on evaluation of the similarity index. Usihig approach, approximately 3 % of
the recorded scans were sorted out. At last, nttoarier filtering (cutoff frequency of 150-200)

was applied to remove residual noise in the fitaloaption spectra.
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Fig. 1. Experimental setup for pH titration monitored b@-B)CL IR transmission spectroscopy.

2.3. Titration Procedure

400 mg of B-LG were dissolved in 20 mL of water to obtain atpm solution of
20 mg mL*. Subsequently, the pH value was adjusted to 6.@&dujition of HCI. KCI (final
concentration: 100 mmol}) was added for stabilization of the ionic strengthoughout the
titration. pH measurements were carried out usingH830i (Wissenschaftlich-Technische
Werkstatten GmbH, Weilheim, Germany) potentiometguipped with a Sentix® Mic-D
(Wissenschaftlich Technische Werkstatten GmbH, ké@h, Germany) combined glass
electrode and temperature probe. pH titration werfopmed by adding 10 pL aliquots of 1 M,
25M,5M, 10 M and 15.4 M NaOH to 20 mL of thegimal protein solution to achieve pH
increments of approximately 0.1-0.3 between speatquisition. In total, 37 IR spectra were
obtained covering the pH range from 6.0 to pH 12ffe solution was continuously pumped

through the IR transmission cell with a pump spe@.9 mL min® and stopped while recording
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of the IR spectra. The temperature was monitorealifhout the titration, being constant in the
range of £ 0.1 °C.

For assessing the changes of the HOH-bending blanéter throughout the introduced
pH change, a similar titration procedure was pentd with 20 mL of medium solution,
constituted by water containing 100 mma! &f KCI. Here, 35 IR spectra were obtained between
pH 6.0 and pH 12.9.

For the calculation of all absorption spectra,agtire water was taken as a reference.

24. MCR-ALS

MCR-ALS is a soft-modelling iterative method thatt@ises on bilinear decomposition of
a data matrix into two submatrices containing cloatty meaningful information of
contributions of the pure compounds involved in thgstem [45]. In spectroscopy, the

decomposition results provide information aboutctiaé behavior of the individual sample

constituents and the related abundance. Here, BR-KLS modelling approach was chosen,
because it is capable to provide chemically intadle profiles from a bilinear decomposition of
a_unique matrix. The majority of bilinear decompiosi algorithms are used with quantitative
aims and do not offer the possibility to revealcip# information of the system constituents.
Thus, MCR-ALS seems to be the best option to uttimeespectral and chemical behavior of the

present system.

One of the most compelling characteristics of MCRSAresolution is its general
applicability without prior information about theysgem under study. However, to achieve
chemically meaningful component profiles, additiok@owledge can be incorporated [46]. This

information can be introduced either as initiairaates of the iterative optimization or through
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the implementation of chemical or mathematical t@ists, such as non-negativity, unimodality,
normalization and closure, among others [47].

In the present work, pH-induced conformational ggwas monitored in the amide | and
amide Il spectral region by varying the pH valuéwsen 6.0 and 12.7. For a complete titration
experiment, 37 x 4451 and 35 x 4451 matrices wétairmed for protein and medium solution,

respectively, and subjected to MCR-ALS analysis.

25.  Software

Data processing and MCR-ALS analysis were performed MATLAB R2014
(MathWorks, Inc., Natick, MA, 2014). MCR-ALS algtrms were implemented by using MCR-
ALS GUI 2.0 graphical interface available at httpww.mcrals.info. Discrete wavelet transform
was implemented by using the wavelet package aéddato MATLAB R2014.

Daylight Solution driver software (Hedgehog, Dakligsolutions Inc., San Diego, USA)
was used for laser control. For data acquisitiahtemperature control a custom-made LabView-

based GUI (National Instruments Corp., Austin, US/&s utilized.

3. Resultsand Discussion
3.1. IR Spectra of pH-induced Conformational Change of 3-L actoglobulin

QCL-IR spectra of the pH-induced changepeafG were recorded between pH 6.0 and
pH 12.7. In Fig. 2, the QCL-IR absorption spectrdhie amide | and amide Il region are shown.
The QCL-IR spectra at pH 6.0 shows a band maximuthe amide | region at 1634 ¢rwith a
shoulder at 1655 ch and a broad band at approximately 1550  evith a shoulder at 1520 ¢
in the amide Il region, characteristic for the lignatures of3-LG featuring a predominantly-
sheet secondary structure [5,48]. Upon stepwiseease of the pH value, the maximum of the

10



215

216

217

218

219

220

221

222

223
224

225

226

227

228

229

230

amide | band is shifted towards higher wavenumlaeid the band shape loses its distinctive
form. The IR spectrum at the highest measured pHevsehows broad featureless bands with

maxima at 1645 cthand 1550 ci in the amide | and amide Il region, respectivetgicating a

disordered secondary structure [1,34]. Even thousdtelical structure is present LG, no
bands could be attributed to this type of secondamcture in the recorded data set, presumably

because the induced conformational change is nocioimpared to the pronounced transition from

B-sheet to disordered secondary structure.

Absorbance / AU

1600 1550 1500

Wavenumber / cm’

Fig. 2. Fourier-filtered QCL-IR spectra of 20 mg MLB-LG recorded as a function of pH
between 6.0 (red solid line) and 12.9 (blue sohé)land QCL-IR spectra of water recorded as a

function of pH between 6.0 (red dashed line) and {2lue dashed line).

After reaching the end point of titration at highl palue, HCI was added to test the
reversibility of the conformational change howewveo spectral changes were observed,

suggesting the irreversibility of protein unfoldingaction (data not shown) [49].

11
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Fig. 2 also shows the spectral changes of the mre¢i®0 mmol ! KCI) induced by the
variation of the pH value. The spectra reveal asogition band at 1633 chattributed to KCI-
solvated water [50], as well as an increasing diffthe baseline at higher pH values [51].
Consequently, the pH-induced change of the proderondary structure in the IR spectra is
superimposed by spectral changes of the mediunti@o]which hampers direct analysis of the
dynamics of the conformational change. ConsequeMIYR-ALS analysis was performed for
in-depth analysis of the presented pH-resolved pecsa and further evaluation of the
conformational changes.

3.2. Chemometric Analyssby MCR-ALS

Detailed chemometric analysis of the recorded IRcsp was performed by applying
MCR-ALS. This approach has been successfully enguldgr the analysis of the progression of
protein secondary structural change in dynamictspsmpic data [4,13,52].

For the analysis of complex systems by MCR-ALS, esal aspects ought to be
considered in order to achieve reliable and medmingsults. One consideration relates to the
initialization of the ALS step. Here, the numbercoimponents involved in the system and their
initial estimates are required. The number of congmds refers to the spectroscopically active
species that explain the system and is usually awkn therefore, it is estimated by applying
singular value decomposition (SVD) or principal goment analysis (PCA). Regarding ALS
initialization, different first estimates can beedsto initiate the modelling. The initial spectral
profiles can either reflect the system under stadgomprise fully random values. In the first
mentioned case, if no spectral information of theepconstituents is available, they can be
estimated by means of different methodologies, siscthe analysis of the purest variables [53]
or the so-called Evolving Factor Analysis (EFA) [5Bven though it is reported that the nature

of the initial estimates does not significantlyeaff the final result of chemometric modelling
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[55], it has been demonstrated that estimates ictog@e real information aids achieving the true
solution in systems of unknown composition or afremely complex nature [56]. For evaluation
of an evolving system, e.g., protein conformatiolnitoring in agueous medium by IR
spectroscopy, the estimation of the initial prafilbecomes challenging since no information
about system composition and information of punestituents are available in advance.

In pH-titration experiments, a challenge for cheretnia modelling of the system is that
not only the analyte but also the medium undergpestral changes induced by alteration of the
pH value, which depend on the surrounding mediareyrother parameters. This phenomenon,
which can be observed in the form of changes iroffset of the baseline or in the band position
and shape, arises from the concentration of icasrttodify the pH (H and OH) as well as the
solvation of the ions, KCI in the present caseth®/water molecules. This effect can be seen in
Fig. 2, where absorption spectra of the mediumftdrdnt pH are depicted (absorption spectra of
the medium were obtained against pure water). & dhse of protein titration, the spectral
changes of the medium are overshadowed by proigals, which are more intense than the
ones of the medium, precluding the proper extractob the profiles of all constituents by
chemometric decomposition.

In the context of this complex scenario, the follegvprocedure was implemented in the
attempt to extract the most reliable, accurateraptesentative information about the system. For
MCR-ALS analysis, un(Fourier-)filtered QCL-IR spectvere employed. First, medium-titration
and protein-titration data were individually suliget to MCR-ALS analysis. In both cases, the
optimum number of components that explain the syststimated by SVD was evaluated to be
three and four, respectively. Abundance distributprofiles obtained from the analysis of the
purest variables to each individual data set weikzed as initial estimates of the ALS

optimization. For the medium system, non-negatigitgl spectra normalization constraints were
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implemented, while for the protein system, non-tiegg, spectra normalization and closure for

those components involved in the protein evolutieere applied. Once the optimized results
were obtained from the separate analyses, the igetinspectral profiles were combined in order
to build a unique set of spectral profiles. It sldobe noted that two of the spectral profiles
obtained from the protein titration analysis copesd to the medium. Subsequently, those
profiles were replaced with the profiles obtaineahf the medium-titration analysis. Therefore,
five optimized spectral profiles were assembled aimatrix, two for the protein (obtained from

protein analysis) and three for the medium (obthifrem the medium analysis), and were
considered as initial estimates for a subsequet@ndrd MCR-ALS analysis of an augmented
data matrix.

The augmented data matrix was built by appendiagtiginal medium data matrix to the
protein data matrix. In this way, a ¥24451 data matrix was obtained and analyzed by the
extended version of MCR-ALS. Here, the previoudhtfained five optimized spectral profiles
were utilized as initial estimates of the ALS sti®jpn-negativity and spectra normalization were
implemented as constraints during optimizationtHis manner, it was possible to model the

contribution of the medium in presence of protédins a pronounced benefit of the employed

extended MCR-ALS modelling to analyze the refereand the sample matrix in one single
model. This is in particular the case for pH tivas, where pH levels cannot be exactly
reproduced for the reference and sample titrat@wnsequently, absorption spectra at individual
pH values cannot be directly calculated withoutradticing spectral artefacts due to pH

differences between the reference and sample specfigure 3 shows the optimized results

achieved by MCR-ALS analysis for the protein eviantthrough the pH variation.
The MCR-ALS analysis resolved pH-dependent (Fig) 8Ad spectral profiles (Fig. 3B)

of the protein secondary structures as well astsgdeglements of the medium that change with

14



303 increasing pH value. The spectral profile attrilbute thef3-sheet secondary structure features a
304 band maximum at 1630 ¢hin the amide | region and a prominent shouldeuagol520 crif in

305 the amide Il region (Fig. 3B). The component atttdal to the disordered protein structure shows
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308 Fig. 3. (A) pH-dependent and (B) spectral profiles reteigby MCR-ALS for the performed pH-
309 titration of B-lactoglobulin at a concentration of 20 mg Thand the pH-titration of the medium.
310 The red and black lines show tBesheet and disordered secondary structure of theeipr
311 respectively. The green lines indicate the off$¢he baseline at elevated pH values and the blue
312 lines exhibit the contribution of KCI-solvated waté@hin lines in (B) are raw spectral profiles

313 received by MCR-ALS, thick lines in (B) were obtathby discrete Meyer wavelet transform
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314 (WT). (C) Residuals obtained from the WT for theliiidual spectral profiles. The grey line

315 shows a (scaled) spectrum of water vapor.
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band maxima at 1645 ¢hand 1550 cr in the amide | and amide Il region, respectivalye
shapes and maximum positions of the spectral psofibtained by rigorous application of MCR-
ALS analysis fit well to spectral features reporfed IR spectra of the respective secondary
structure elements. The profiles of the pH-dependgnlution of the two secondary structures
(Fig. 3A) reveal that the respective share remegamstant between pH 5.0 and 9.5. Upon further
increase of the pH value, the fractionfaéheet secondary structure rapidly decreases wiale
portion of disordered protein structure increasethe same manner with an inflection point at
pH ~10.2. Above pH 11, the rapid conversion of seconddructure is completed, and the
change continues at slower and constant rate.pragression of pH induced conversior3e G
secondary structure agrees well with reported teslitained by CD spectroscopy [21].

The MCR-ALS analysis further revealed pH-depend&ing. 3A) and spectral profiles
(Fig. 3B) of the medium constituents. One speqtrafile with a maximum at 1634 chwas
attributed to the absorption of KCI-solvated waléiis assignment seems reasonable, as the KCI
concentration does not change throughout theitaitratvhich is reflected in the constant and flat
progression in the pH-dependent profiles (Fig. FApally, the fourth, rather featureless spectral
profile is attributed to the baseline offset indectra that occurs in aqueous solutions at elgvate
pH values. This is supported by the significantréase of the relative concentration of this
spectral profile at pH > 11.5. The fifth retrievedmponent (not shown) does not demonstrate
any particular spectral feature and then could letattributed to a specific phenomenon;

however, it was necessary to include to improvegt@ness of fit of the MCR-ALS model.
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3.3. Evaluation of spectral profiles

In the previous section, MCR-ALS was employed fbermometric analysis of QCL-IR
spectra monitoring the conformational change dunptg titration. However, chemometric
analysis also allows to retrieve additional in-deeptformation of the experimentally recorded

QCL-IR spectra and reveal details about the exparial setup.

At this point, it should be emphasized that forrmbenetric models such as MCR-ALS,

any characteristic of the analyzed data is of pataminterest and will influence the obtained

result. In this regard, the noise plays an impartale in the decomposition. In most cases, the
noise in the experimental data is introduced byglsstic variations of the system, for example,

instrumental and electrical interferences, and equently presents a random behavior. To
facilitate the modelling, random noise can be ab@ld by implementing denoising procedures,
such as Savitzky-Golay smoothing. On the other haatvanced denoising procedures, as
transforms or filtering, may disrupt the randonusture of the noise and, then, change the inner
structure of the data turning the random into remdom noise. Besides, either smoothing or
filtering is not trivial to implement and distortie can be unintentionally introduced to the

original signals, which would alter the informati@omprised in the experimental data. For

illustration, Figure S1 shows the results obtaifiemin the MCR-ALS analysis of (Fourier
transform) FT-filtered data. It can be observed thdly one component was obtained for the

medium and the spectral profiles of the protein tnedmedium are distorted in comparison to the

results obtained from the unfiltered data resotutio
Moreover, the experimental data may also contaimmaodom noise contributions. For
example, it is known that spectra obtained by EQ-Q@@sed setups may contain, besides the

intrinsic random noise, a fine structure origingtinom the mode-hops due to competition of
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different optical modes for the available net gainthe laser medium [57]. Furthermore, the
numerous optical components of optical setups mapduce periodic spectral features due to
fringing effects. For this reason, no denoisingcpaures were implemented prior to MCR-ALS
modelling in order to avoid equivocal results do@ttefacts introduced by the denoising step.
After MCR-ALS, a denoising procedure was carefullglected, to decompose the
spectroscopic signal from the non-random noise cwapts of the experimental data.
Consequently, discrete Meyer wavelet transform (MWhRs applied to denoise the retrieved
spectral profiles. Fig. 3B shows a comparison efrdw spectral profiles retrieved by MCR-ALS
before and after denoising by MWT and Fig. 3C despibe residuals obtained from the MWT.
Analysis of residuals reveals the presence of lawdbwidth spikes in the spectral profiles that
can be attributed to the characteristic bands @gémweapor. Since the entire titration procedure
requires approximately five hours, it is experinadyt difficult to maintain the same humidity
throughout this time period. Furthermore, beside stochastic noise, interference fringes are
present in the entire spectral region and recobtezparticularly well in the region between
1580-1615 cril, that is undisturbed by water vapor gas-phase aimderference fringes are
sinusoidal pattern on the baseline of the spectaused by interference between radiation that
has been transmitted directly through an opticaimeint such as windows or sample cells with
light that has been reflected internally. Furthemeahe decreasing amplitude of the interference
fringes with increasing wavenumbers indicates thatsurfaces are not perfectly parallel [58].
Within the experimental setup, this kind of fringean stem for example from sample cell
windows or the Sapphire window employed for atteéimgethe laser power in the amide Il region

[19].

4, Conclusion
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389 EC-QCL based IR transmission spectroscopy was epitir performing a titration to monitor
390 the pH-induced conformational change @flactoglobulin between pH 6.0 and 12.7. The
391 experimental feasibility for this measurement wiaalded by the large optical transmission path
392 applicable due to the high emission power of quantascade lasers. The spectra revealed a
393 change of protein secondary structure in the ingattd pH region, but also an increasing offset
394 of the baseline at elevated pH values that impededght-forward evaluation. Consequently,
395 MCR-ALS was employed to unravel the overlappingcsae features in the IR spectra. With this
396 chemometric technique, spectral and abundancebdistn profiles were obtained by analysis of
397 recorded dynamic IR spectra. Spectral profiles iobth by the MCR-ALS model for the
398 identified secondary structure elements show goochparability with recorded IR spectra
399 regarding band positions. The abundance distribytiofiles reveal a transition froftsheet to
400 disordered secondary structure with a transitiomtpat a pH value of~10.2, which is in
401 accordance to previously reported investigationthisf system by CD spectroscopy. In addition,
402 wavelet transform was successfully implementecheoNMICR-ALS spectral profiles allowing to
403 extract significant information about the spurigignals that are intrinsically present in QCL-IR
404  spectra.

405 In conclusion, the present study demonstrates thaer-based IR transmission
406 spectroscopy is an excellent tool for performingwithrough measurements of proteins in
407 aqueous solution. Furthermore, it was demonstrgtatl MCR-ALS in combination with IR
408 spectroscopy is a powerful technique for monitoand interpreting protein folding.

409
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Highlights:

e Mid-infrared (IR) External Cavity-Quantum Cascade Laser (EC-QCL) spectroscopy
*  pH titration of B-lactoglobulin

e Measurement and analysis of the protein amide | and amide Il region

e Evaluation by multivariate curve resolution-alternating least square (MCR-ALS)

* Unfolding of native -sheet secondary structure at basic pH
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