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Description of ν and ν scattering within quantum hadrodynamic theory
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In this paper we develop a model to describe ν and ν̄ scattering in the GeV region by nuclei within a nuclear
matter quantum hadrodynamics approach that is fully relativistic. We simplify it as much as possible, keeping
the most relevant effects and trying to describe the greatest number of observables. We introduce explicitly the
effect of ground-state correlations through a momentum distribution calculated perturbatively, and also final-
state interactions using a perturbed nucleon propagator dressed by a relativistic self-energy containing nucleon-
nucleon and �-nucleon correlations. Also, primary � excitations are considered within a consistent approach.
All these mentioned effects are built on together, into the Lehmann representation of the propagator. Within our
model we take into account the effect of 2p2h and 3p3h excitations in addition to the quasielastic 1p1h ones,
needed to describe the experimental data. The obtained results are promising, showing that the model works quit
well and thus putting to disposal a simple but powerful approach developed within the context of nuclear matter
field theory.
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I. INTRODUCTION

A. Description of quasielastic scattering

In the description of quasielastic (QE) neutrino (ν)-nucleon
(N) scattering, we have three form factors (FF): (i) the
F1,2(Q2 = −(pν − pl )2) vector ones [1] obtained from elec-
tron scattering using CVC, with pν and pl being the neutrino
and final lepton momentum, respectively; and (ii) the axial
one, FA(Q2). Assuming a dipole functional form we have
FA(Q2) = FA(0)

(1+Q2/M2
A )

, where FA(0) is determined from neutron
β decay [2] and the axial mass value MA = 1.03 ± 0.02 GeV
is usually quoted [3]. More recently precise determinations
lead to MA = 1.014 ± 0.014 [4]. With this information and
a nuclear model, a description of ν and antineutrino (ν)
scattering with energies around 1 GeV, should be possible
with the high precision required by the new and forthcoming
neutrino experiments. They are planned to measure the θ13

mixing angle or the leptonic CP violation and, as statistical
uncertainties will diminish, the nuclear effects contributing to
the systematical errors should be kept under control [5].

Current-generation [6–9] and next-generation [10,11] ex-
periments explore a broad range of energy, and different
reaction mechanisms, involving both nucleon and nuclear
excitations. At hundreds of MeVs, the main mechanism is
QE, where the neutrino (when we use generically “neutri-
nos” we refer to both neutrinos and antineutrinos) interacts
primarily with individual bounded nucleons. From the ex-
perimental side, the charged current (CC) MiniBooNE data
[12,13] (where ν and ν̄ are not monoenergetic but distributed
in a flux) showed a curious result. First, if one considers only
one nucleon ejection QE excitations (1p1h) the theoretical

cross sections (flux folded or unfolded) underpredict the data,
where the total cross section per nucleon on 12C is larger
than for free ones. Second, to fit the neutrino flux folded
cross section, dσ/dQ2, within the relativistic Fermi gas model
one gets MA = 1.35±0.17 GeV, much larger than reported.
The increase of dσ/dQ2 with MA also implies an important
increase in the total unfolded cross section at each incident
neutrino energy Eν . The inconsistency in the impossibility of
describing the MiniBooNE data with standard values of MA,
would indicate incompleteness of the considered nuclear ef-
fects and is consistent with the fact that multinucleon ejection
is not distinguishable from single-nucleon production in the
detectors.

An important step ahead was given in Ref. [14] with
the inclusion of two-nucleon mechanisms (2p2h) and other
multinucleon excitations related to the � resonance decay
(2p2h+3p3h), to solve the mentioned paradox in describing
the total QE cross section . Then, the used formalism was
extended to ν̄ and other observables [15]. These works could
reproduce the MiniBooNE total QE cross section without
modifying the axial mass, suggesting that a good part of the
experimental cross section was not strictly QE scattering.

Theoretical studies of npnh excitations in connection with
charged current quasielastic (CCQE) at MiniBooNE kinemat-
ics were performed essentially by four groups: the works of
Martini et al. [14,15], those of Amaro et al. [16,17], those
of Nieves et al. [18,19], and the ones of Benhar et al. [20].
In addition, it appeared in a paper of Bodek et al. within
a phenomenological approach related to electron scattering
[21]. The models of Martini et al. and Nieves et al. are
more similar: They start from a local Fermi gas picture of
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the nucleus. The authors considered medium polarization and
collective effects through the random phase approximation
(RPA) including ph degrees of freedom, and meson exchange
and g´ Landau-Migdal parameters in the effective ph interac-
tion. Nieves et al. worked within a relativistic frame while
Martini et al. originally in a nonrelativistic one, and later
improving the model through relativistic corrections. Amaro
et al. worked out within the relativistic superscaling approach
that lies on the superscaling behavior exhibited by electron
scattering, without the inclusion of correlations between ini-
tial nucleons (i.e., they are distributed according to the Fermi
gas model). Finally, in Benhar et al. the correlations of the
ground state are accounted for by hole spectral functions of
both nucleons.

How can we connect with the 2p2h sector? We can excite
them acting with one-body currents to produce ph or �h ex-
citations, and then decaying into 2p1h configurations through
final-state interaction (FSI) on the ejected N or by � decay,
respectively. In an infinite system the lowest order FSI con-
tributions give rise to divergences, as we will discuss below.
The different prescriptions to regularize them lead to a model
dependence of the results. Also, 2p2h are excited then by pp,
�p, or hh scattering on the 2p2h or �hph ground-state (GS)
correlations (GSC), which appear as admixtures in a perturbed
GS. Finally, we can also generate 3p3h contributions through
the � self-energy. Also, there exist several contributions from
two-body currents [22], which are the so-called pion-in-flight
term (PF), the contact or sea gull term (CT) and pion-pole-
term (PP), as shown in Ref. [20]. We refer here only to these
terms as meson exchange current contributions (MEC), but
actually the most current convention consists of including the
�-excitation terms in MEC, too.

Referring to these points, Amaro et al. considered only the
MEC contributions and not the nucleon-nucleon (NN) corre-
lations (GSC+FSI) and the NN-MEC interference terms. NN,
MEC, and interference were present both in Martini et al. and
Nieves et al. even though the first considered only � MEC.
On the other hand, the treatment of Amaro et al. was fully
relativistic as well as that of Nieves et al., while the results of
Martini et al. were related to a nonrelativistic reduction of the
two-body currents. Amaro et al. considered MEC contribution
only in the vector sector, while Martini et al. and Nieves
et al. considered it also in the axial one. The virtual meson
exchanged in NN was just the pion for Amaro et al. while
Martini et al. and Nieves et al. considered also the ρ-meson
exchange contribution.

The inclusion of the multinucleon component has led to
the agreement with the “QE” MiniBooNE data for the un-
folded total cross section in all mentioned models. The same
happened with Bodek et al., which on the other hand agreed
also with NOMAD data. Total cross section was analyzed also
in the ν̄ mode by Martini et al., Nieves et al., and Bodek
et al. The effect of npnh configurations compared to the 1p1h
contribution should be somewhat less important for ν̄ than
for ν because the spin-isospin response, which is affected by
the 2p2h piece, has less weight for ν̄ owing to the negative
axial-vector interference. This effect is evident in Martini
et al. and Bodek et al., although not in Nieves et al. An-
other important observable is the MiniBooNE flux averaged

double differential cross section. This is a directly measured
quantity for a given lepton energy and angle pair, El and
θl , respectively, hence free from the uncertainty of neutrino
energy reconstruction which is a model-dependent procedure.
Calculations on 2p2h contributions have been performed by
Amaro et al. [5,6], Nieves et al. [8], and Martini et al. [4].
Similar results were obtained by the two last groups, while
in the first one the inclusion of 2p2h MEC tends to improve
the agreement with data at low θl angles, but not sufficiently
to account for discrepancies at higher angles. The absence
of NN correlation might be responsible for this residual
disagreement.

B. A relativistic model for nuclear matter

After a short review on the state of art, we will describe
our model for neutrino-nucleus scattering which is in short,
a model developed within a quantum hydrodynamics frame
for nuclear matter (QHDI) with inclusion of pion (π ) ring
series. The nonrelativistic approximations (NR) are deficient
in several ways as was discussed, for example, for electron
scattering [23]. Higher-order terms in the NR reduction pro-
cedure may become important when the momentum transfer
|q| becomes comparable to the nucleon mass mN . In NR
it is tacitly assumed that the q0

mN
� 1, q0 being the energy

transfer to the nucleus. This holds for elastic scattering and
excitation of low-lying levels but is certainly not the case
on the high-energy side of the QE peak. Retardation effects
are not accounted for, and one might expect that invariant
FF, F1(Q2), F2(Q2), should to be used rather than the three-
dimensional Fourier transform of charge and magnetization
densities. In NR explicit mesonic degrees of freedom are elim-
inated. Thus, not only is π production above the π threshold
omitted but also meson-exchange corrections to QE electron
scattering. All these difficulties, which also are present in
neutrino scattering, are closely related and require in principle
a consistent relativistic (R) theory of nuclei. If the nucleons
inside the nucleus obey a relativistic wave equation, one has
to specify the transformation properties of the potentials. For
example, it is well known they give rise to important effects
even at low energies: a strong nuclear spin-orbit force and
an energy dependence of the real part of the optical poten-
tial [24]. Also, the role played by relativistic kinematics is
important for describing the double differential cross section,
because the momenta and energies involved in these neutrino
reactions are somewhat large. For the MiniBooNE case, the
neutrino energy extends to 2 GeV and the ejected N kinetic
energy in the QE process can be a few hundred MeV making
a NR approximation questionable. Finally, it was pointed out
that conclusions on the role of the multinucleon process are
doubtful within a NR framework [15].

A simple but consistent relativistic framework fulfilling
all the properties listed above, is provided by a nuclear field
theory from Walecka which incorporates the interaction of the
N with the σ and ω meson fields (QHDI) [25]. In spite of
successful treatments with the QHDI in describing QE, inelas-
tic, and scaling effects [23,26,27], we note the absence of the
pionic degree of freedom in the commonly used mean field
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theory (MFT) or relativistic Hartree (RHA) and Hartree-Fock
(RHF) approximations within QHDI. This is curious, because
π mediate the NN interaction at all but to shortest ranges.
Furthermore, chiral symmetry is an important approximated
symmetry of strongly interacting systems which requires pio-
nic degrees of freedom.

Properties of N propagation in the presence of the nu-
clear π field was not extensively studied in relativistic field
theory models. There are some related works, but these are
based on NR formalisms.To obtain a model that maintains
chiral symmetry and achieves nuclear-matter saturation it is
necessary to include terms beyond the MFT. Also it is im-
portant to include � isobars in addition to N because 2π

exchange (TPE) correlated with intermediate �’s supply im-
portant mid-range attraction in NN scattering. Relativistic
chiral treatments of nuclear matter were achieved studying
the pion-ring series [28] and second-order one-π exchange
with π propagation modified by the nuclear medium. The
adopted Lagrangian incorporates the physics of the original
Walecka QHDI model plus PCAC (partial conservation of
axial-vector current), the nonlinear σπ interaction, and �

contributions to the πN interaction. In summary, in addition
to the QHDI we will include a dressed π exchange and TPE
correlated contributions, which have consequences described
as follows.

For the intermediate-range NN force, TPE correlated or
uncorrelated, are known to dominate. In nuclear matter, TPE’s
effects on the binding energy are expected to be even more
important than the second-order 1π exchange (OPE) mainly
because of the presence of the � isobars. In addition, π

propagation in the nuclear medium can generate a collective
spin-isospin modes by coupling to the ph and �h states.
Without the short-range correlations between baryons, the col-
lective spin-isospin mode would develop into a so-called pion
condensate even at normal densities. If π propagation in the
nuclear medium is modified so as to excite collective modes,
the effects of the uncorrelated TPE and the second-order OPE
on the binding energy of nuclear matter should be enhanced
correspondingly. In other words, the exchanged pions between
nucleons can be rescattered by other N , thus amplifying the
attractive nuclear force. In Ref. [28] the single-particle nature
of N in relativistic nuclear matter was studied by calculating
its self-energy in the presence of the pion-ring series. Thus,
despite the fact that now σ (which interacts with π ) provides
only a small shift of the effective Dirac mass, the new π

effects cause an additional shift. In addition, if we include
TPE and OPE contributions [29], the N self-energy gives
one a way of introducing the FSI between 1p1h and 2p2h
excitations fully relativistically and to all orders within the
perturbed propagator. The mentioned formalism plus GSC
involved in a momentum distribution calculated perturbatively
onto a 2p2h+4p4h space [30], will be used to describe the
mentioned observables in neutrino-nucleus scattering. We get
a good description as described below.

The paper will be ordered as follows: In Sec. II we present
the ingredients of our model; in Sec. III we present cal-
culations and results; and finally in Sec. IV we sketch our
conclusions.

II. NEUTRINO(ANTINEUTRINO) NUCLEUS SCATTERING

We start with the cross section for the ν(ν̄)A →
μ(μ+)N ′A′ process in the LAB system, where
kA = (MA, 0), kν≡ν,ν̄ = (Eν, Eν k̂), and pl≡μμ+ = (El =√

p2
l + m2

l , pl sinθlcosφl , pl sinθlsinφl , pl cosθl ):

dσνA

dTl dcosθl

= �A

2Eν

1

2

∑
msν

2Im
[M(

kνmsν
Tlθl → kνmsν

Tlθl
)]

, (1)

2Im[M(kνTlθl → kνTlθl )]

=
∑

m′
ss m′

t s

(∫
d�l

(2π )3

n∏
i=1

Nl

∫
d3 pi

(2π )3
Npi

d3ki

(2π )3
Nki

)

× |M(kνk1k2... → pl p1 p2...)|2
× (2π )4δ4(pl + p1 + p2 ... − kν − k1 − k2 − ...),

(2)

ξ ≡ pl , pi, ki, ξ = (E (ξ), ξ), N = m2√
ξ2 + m2

,

ξ ≡ kl , ki, pi, m ≡ ml , mN , (3)

where in Eq. (2) the spin (ms) and isospin (mt ) projections
were omitted in the amplitudes M. Here �A is the nucleus

volume so the density reads ρA = A
�A

= 2k3
F

3π2 with kF the Fermi
momentum. Tl = El − ml is the lepton kinetic energy, and we
have assumed that the final nuclear states are npnh configu-
rations (not pions in final state are considered here) excited
from the GS being initial(final) nucleon momentum indicated
with ki (pi). Amplitudes will be schematized considering that
initial particles are represented as backward lines in Feyn-
man graphs. Note that Eq. (2) is the optical theorem applied
to the considered process, and it is valid if we include in
M(kνTlθl → kνTlθl ) all npnh intermediate contributions. We
will proceed choosing a determined 1p1h, 2p2h, etc., inter-
mediate state and evaluating its contribution to M(kνTlθl →
kνTlθl ) through the Feynman rules in quantum hadrodynamic,
as developed in the next subsections.

A. Perturbed nucleon propagator

We will need to evaluate contributions to
Im[M(kνTlθl → kνTlθl )], the relativistic perturbed N
propagator for infinite nuclear matter. The unperturbed
N propagator S0

N in nuclear matter reads

S0
N (p)= ( � p + mN )

2E (p)

[
(1 − θ (EF − p0))

(p0 − E (p)) + iε
+ θ (EF − p0)

(p0 − E (p)) − iε

]
,

(4)

being E (p) =
√

p2 + m2
N and where the negative energy con-

tribution was not included. The Heaviside function θ (EF −
(p0 = E (p))) = θ (kF − p) is the momentum distribution of
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the unperturbed ground state normalized as∫
d3kCθ (kF − |k|)=A/4, C = �A/(2π )3 = 3A

16πk3
F

.

(5)

The interaction of N with other N ′ is introduced in nu-
clear matter through a self-energy that from covariance
should be written as �N (p) = I�s(p) − γμ�μ(p) = �s(p) −
γ0�

0(p) + γ .p�v (p), where �s and �v are the scalar and
vector contributions [25]. Usually by rotational invariance
in nuclear matter or spin-zero nuclei we can take �i(p) =
0 (�v = 0). Then, the perturbed SN propagator should be
obtained as usual by solving the Dyson equation [31],

S−1
N = S0−1

N − �N ⇒ SN = S0
N + S0

N�SN = S0
N + SN�N S0

N ,

(6)

and it is achieved by using the Lehmann spectral representa-
tion [31] for the propagator,

SN (p) =
∫ +∞

−∞

[
Ap(ω, p)

p0 − ω + iη
+ Ah(ω, p)

p0 − ω − iη

]
dω, (7)

where p, h indicates particle and hole states regarding kF. As
shown in detail in Ref. [29], one gets

SN (p) =
˜� p + m̃N

p̃2 − m̃2
N + isgn(Re[ ˜� p0

])sgn(p0 − EF )ε
, (8)

where p̃μ = (p0 + �0(p), p(1 + �v (p))) is the nucleon per-
turbed momentum and m̃N (p) = mN + �s(p) its effective
mass, where the modifications introduced by the self-energy
are evident. Note that the unperturbed propagator (4) is re-
covered by making �N ≡ 0 ⇒ p̃ → pμ, m̃N (p) → mN in
Eq. (8).

The structure of the self-energy components depend on
the specific contributions considered to be built it. We can
include binding effects, FSI, π production, etc., through �N .
However, we can still get some general results by rearranging
the denominator in Eq. (8) as

p̃2 − m̃2
N = (p0 + Re�0 − Ẽ (p))(p0 + Re�0 + Ẽ (p))

− 2im̃N

(
Im�s − (p0 + Re�0)

m̃N
Im�0

)
, (9)

where we drop Im(�0,s)2 and make m̃N (p) ≈ mN + Re�s(p).
Equating (9) to zero we found the pole solutions, E (p)± =
±Ẽ (p) − Re�0(p)|p0=E (p)± with Ẽ (p) =

√
p̃2 + m̃2

N . Then,

developing the real self-energy parts around p0 = E+ and
keeping terms to first order we get

p̃2 − m̃2
N ≈ Z+−1

p (p0 + Re�0(E+) − Ẽ (E+))

× (p0 + Re�0(E+) + Ẽ (E+))

− 2im̃N (E+)

(
Im�s(p0) − Ẽ (E+)

m̃N (E+)
Im�0(p0)

)
,

(10)

Z+−1
p =

(
1 − p̃2

Ẽ
∂0Re�v − m̃N

Ẽ
∂0Re�s + ∂0Re�0

)
p0=E+

.

(11)

Now, if we make the approach E+ ≈ Ẽ (kF , �(EF )) −
Re�0(EF ) = EF , this defines the Fermi energy. Developing
self-energy imaginary parts around it, we get

Im�s(p0) − Ẽ (kF )

m̃N (EF )
Im�0(p0)

≈ −1/2[a0 − as](p0 − EF )2

≡
{−�N (p)/2Z+

p , p0 > EF

�N (p)/2Z+
p , p0 < EF

, (12)

where a0,s and Zp depend on the detailed contributions present
in the self-energy. Finally, introducing Eqs. (10)–(12) in (8)
we get an approximation ready to perform the calculations:

SN (p) = ( � p + mN )θ (p0)

[
Z+

p (1 − θ (EF − p0))

p02 − Ẽ2 + im̃N�N (p)

+ Z+
p θ (EF − p0)

p02 − Ẽ2 − im̃N�N (p)

]
, (13)

�N (p) = Z+
p [a0 − as](p0 − EF )2, (14)

where the real self-energy parts are evaluated at EF . As we
will see, Re[�0(EF )] varies slowly around p = kF and thus,
to simplify the calculation, we make the approach Ẽ (p, m̃N ) −
Re[�0(EF )] ≈ Ẽ (p, m̃′

N ), being m̃′
N fixed at p = kF . Because

usually Re[�0(EF )] < 0, we have m̃′
N > m̃N . This approach is

useful because it leads to p2 = m̃′2
N as for an on-shell nucleon,

avoiding any complication when one needs to make transfor-
mations to other frames different from the LAB one. Now,
from here and on, we understand Ẽ ≡ Ẽ (p, m̃′

N ), m̃N ≡ m̃′
N in

the calculations. For our calculations we need to look for the
Lehmann representation (7) of the approximated propagator
from Eq. (13), for which we get

Ap/h(p0, p) ≈ 1

π

θ (p0)( � p + m̃N )m̃N�(p0)

(p02 − Ẽ2)2 + (m̃N�N (p0))2

{
1 − n(p)

n(p)

}
,

�N (p0) =
{

1 − n(p)
n(p)

}
[a0 − as](p0 − EF )2, (15)

where we identify Z+
p θ (EF − p) ≡ n(p), Z+

p θ (p − EF )) ≡
1 − n(p), n(p) fulfilling Eq. (5) changing θ (kF − p) → n(p).
From Eqs. (11) and (12) we see how �N introduces naturally
GSC and a width �N that modulates the contributions of
the momenta regards Fermi level. From now and on we use
p̃ ≡ p = (Ẽ , p) to simplify expressions.

B. QE with 1p1h contributions

We begin with the QE response with 1p1h final states. For
ν scattering and when only n = 1 is considered in Eq. (2),
we have the amplitude shown in Fig. 1. For ν̄ scattering the
changes n, p,W + → p, n,W − must be done. This amplitude
is built in the Appendix, and after using trace technics and
integrations of time momentum components
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we get

2Im
∑
mν

M1p1h = 16

(2π )5

(
GF√

2

)2

cos2θcm̃N m̃Nf

∫
dk3

∫
dEl dcosθl

∫
dφl plθ (El − Eν )Lμν

×
∑
m′s

ū(k + q, m′)(−i)
√

2Ĵμ
H (q)u(k, m)

[
ū(k + q, m′)(−i)

√
2Ĵν

H (q)u(k, m)
]∗

×
∫ EF

Emin

m̃Nf �N (ω + q0)(1 − n(k + q))

π ((ω + q0)2 − Ẽ (k + q)2)2 + (
m̃Nf �N (ω + q0)

)2

m̃N�(ω)n(k)

π ((ω)2 − Ẽ (k))2 + (m̃N�N (ω))2
dω, (16)

with ωmin = max(0, EF − q0). Note that we have introduced
naturally GSC through the occupation numbers and that we
can have contributions from initial N with k > kF and with
final ones with p < kF , because now they have certain width.
We will return to this below. We have included m̃N and m̃Nf

with different values to account for the separation energy
between the initial and final nuclei.

Until this moment we have not mentioned any model to
calculate �N in nuclear matter. We will begin to develop it for
the QE 1p1h case. The original model for QHDI consisted of a
baryon field ψ of mass mN coupled to a scalar meson (σ ) field
φ of mass ms and coupling constant gs, and a vector meson
(ω) field Vμ of mass mv and coupling constant gv .

MFT and RHA correspond to adopt the tadpole graph
of Fig. 2(a) in �N [25]. The difference between MFT
and RHA is that in the first approach only the contribu-
tions from nucleons in the filled Fermi sea are retained in
the evaluation of the present N loop. Effective mass and
single particle energy read m̃N ≡ m∗

N = mN + �s, Ẽ (p) ≡
(E∗(p) ≡

√
m∗2

N + p2 ) − �0, �0 = − g2
v

m2
v
ρA. There are dif-

FIG. 1. QE 1p1h response for ν scattering. For ν̄ scattering we
change n, p,W + → p, n,W −. Here, the W boson emitted from the
weak vertex is absorbed by N = n, p from the 0p0h component of
GS and excited above the Fermi level.

ferent expressions for the nuclear matter energy density

EMFT,RHA( g2
s

ms2
,

g2
v

m2
v
, mN∗ ), due the mentioned different tad-

pole evaluations. Then, by the minimizing the condi-
tion ∂EMFT,RHA

∂m∗
N

= 0 and together the equilibrium property
E A−mN A

A |kF = −15.75 MeV we fix g2
s

ms2
,

g2
v

m2
v

and m∗
N . From the

above discussion it is clear that in the effective mass we
incorporate the binding of the nucleons.

When the cross graph of Fig. 2(b) is included, we get the
RHF approximation with solutions Ẽ (p) and m∗

N close to MFT
results at normal density. The values m∗

N = 0.56mN , �0 =
−300 MeV were obtained in the MFT and RHF approaches
(see Ref. [25]) while within the RHA approach one gets
m∗

N = 0.73mN , �0 = −180 MeV.
An important question is in order. Should we use the ef-

fective mass m̃N < mN also in the hadron current operator Ĵμ
H

(see Appendix) or not? If yes, we should have an enhancement
of the anomalous N magnetic moment inside the nucleus,
and consequently as was shown in Ref. [23] for 500-MeV
electron scattering data, the agreement with the cross section
is not possible. However, we can think that the effective mass
is an approximated way to introduce interaction effects in
the N wave function, while the current operator is the same
as for free nucleons in the spirit of the impulse approxima-
tion. Now, it is possible to describe QE scattering very well
[23]. Of course, this numerical agreement does not provide a
convincing justification of our choice. The main difficulty is
that, to answer the question definitely, we must be able to
calculate the electromagnetic form factors F1,2. This is clearly
beyond the range of the simple field theory we have used as
it assumes pointlike nucleons. To be more precise, nucleons
become “dressed” by a surrounding cloud of scalar and vector
mesons but this is not sufficient of course to explain the
observed N structure.

FIG. 2. Self-energy contributions in the QHDI. With dashed lines
we indicate the scalar (s) and vector (v) meson exchange.
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FIG. 3. 2p2h and 3p3p final states from FSI and GSC contri-
butions are shown. (a) 1p1h excitation generated on the 0p0h GS
component and then FSI generate an additional ph pair; (b) and
(c) the action on a 2p2h GS component. In (b) hole or particle
scattering leads to 2p2h final states while in (c) an additional 1p1h
excitation is produced to get 3p3h final states. Interference con-
tributions between excitation amplitudes from (a) and (b) are not
shown.

On the other hand Ref. [23], independently of the QHDI
results described above, kept the bare mN in the vertex, used
Eq. (16) with �N → 0 and ˜mN =m̃Nf = m∗

N considered as
a free parameter, and got the best-fit results for 12C, 40Ca,
and 208Pb in 500-MeV QE electron scattering data. A real-
istic momentum distribution function n(p) was adopted and
in the 1p1h energy E∗(p + q) − E∗(p), �0 was canceled
up. The prescription of using the effective mass also for the
final N ′, is a very simplified form to introduce some kind
of FSI. The values m∗

N = 0.70mN − 0.75mN were obtained,
which are much greater than the value m∗

N = 0.56mN in the
MFT or RHF approach. It is evident only in the interior
of the nucleus m∗

N/mN ≈ 0.56, but it approaches 1 near the
nuclear radius. We may thus conclude that the fitted val-
ues m∗

N = 0.70mN − 0.75mN , represent a suitable average
over the nucleus. The easiest and most natural way to per-
form such an average would be the Thomas-Fermi approach
[25].

To keep the simpler field theoretical model and taking
into account the QHDI and the phenomenological results
for m∗

N mentioned above, we assume the RHA approach
to treat the QE 1p1h response. Here the mass value is
m∗

N = 0.73mN and �0 = −180 MeV, and we have Ẽ (p) ≈√
p2 + m∗′2

N that led to m∗′
N ≈ 880 MeV while �N → 0 (be-

cause Im�RHA
N = 0). Finally, as Re[�RHA

N ] is constant and
from (11) Z+

p = 1, we have n(p) = Z+
p θ (kF − p) = θ (kF −

p). In summary, within this approach �N ≈ �RHF we fi-
nally treat with the form Eq. (4) for the propagator but
with effective masses through which the binding effect is
accounted.

C. 2p2h coming for FSI and GSC

As mentioned in Sec. I, we need to add the contribution
of 2h2h, 3p3h, etc., excitations to describe the MiniBoone
data. These have different sources. The FSI interaction of
the emerging primary N (excited from the 0p0h compo-
nent of the GS) with another one in the nucleus generates
an additional 2p1h excitation and thus a final 2p2h state,
which at the lowest order is shown in the Fig. 3(a). The

FIG. 4. Pion series modifying π propagation in nuclear matter.

interaction of the W meson with a 2p2h GSC (the 2p2h
admixture in the GS) to get by particle-particle (pp), hole-
hole (hh), or particle-hole (ph) scattering final 2p2h or 3p3h
states, respectively, was schematized in the Born ampli-
tudes of Figs. 3(b) and 3(c). Note the time ordering in the
figures.

A word of caution is in order because the imaginary part
of the diagram from Fig. 3(a) [and the interference ones
between the amplitude excitations from Figs. 3(a) and 3(b)]
presents a divergency as we explain here. When placing the
2p2h excitation on the mass shell, we have an intermediate N ′
unperturbed propagator [see Eq. (4)] with three momentum
k + q, which can be placed on shell for virtual W bosons and
we get a pole when k0 + q0 + iε = E (k) + q0 − E (k + q) in
the limit ε → 0. This divergence is not spurious; the Born
amplitude represents the probability per unit time of absorbing
a virtual W by N (initial) times the probability of collision
of N ′(intermediate) with other N ′′(initial) during its lifetime,
being ∞ since it became real. This problem was treated within
different approaches in the bibliography: (i) by taking an av-
erage constant value for |k|, keeping the angular integral over
k̂, and adding a constant fictitious width to the N ′ propagator
around of 10 MeV in Ref. [18]; (ii) after a detailed analysis
of the problem in Ref. [32], they cured the divergence by a
regularization procedure adding a width (within a different
interpretation as in Ref. [18]) of around 100 MeV; (iii) by
introducing a 2p1h self-energy coming from a NR calculation
as in Ref. [33], which would be unsuitable for the large mo-
menta transferred in the experiments under study. It is clear
that despite the fact that this contribution is considered small,
around 7% for the cross sections and a small shift of the
QE peak around 10 MeV, these different procedures could
introduce model dependence. Within our model the problem
is naturally solved, because we have the perturbed propagator
(13) in the amplitude (16), where now the denominator is
p02 − Ẽ2 + im̃N�N (p). The width �N (p) is generated by the
Im�N relativistic self-energy, now including 2p1h contribu-
tions in Fig. 3(a) which give a nonzero value as the difference
regarding the RHA.

We will adopt a relativistic self-energy model for �N

[29] to add the contribution of Fig. 3(a), which introduces
π exchange and maintains at the same time the binding ef-
fects introduced in the previous subsection by the σ and ω

mesons. In a first step, the MFT is supplemented by the pion
π -exchange Fock term similar to Fig. 2(b) (the tadpole one
gives zero by parity considerations) modified by π self-energy
contributions shown in Fig. 4 and the σπ interaction, within
a chiral-symmetric model [28]. Also, short-range NN,�N
correlation effects are considered. The minimization of the
energy density with respect to m∗

N as before is achieved, and
g2

s
ms2

,
g2

v

m2
v
, m∗

N are adjusted (as done in QHDI) so that equilib-
rium properties may be reproduced. The obtained results for
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FIG. 5. Contribution to �N that lead to 2p1h contribution. In
(a) the TPE not correlated are shown, while in (b) TPE correlated
with an intermediate � excitation are depicted. At lowest order �

indicates a ph bubble.

the effective mass and �0 were m∗
N ≈ 0.95, �0 ≈ −25 MeV.

Thus, the values obtained in the previous subsection for the
RHA were modified by the presence of π .

Then, TPE not correlated from Fig. 5(a) and correlated
from Fig. 5(b) are included [29] in �N to generate 2p1h
excitations by FSI on the final N ′. Now, despite the fact that
previously [28] the σ field provided only a small shift of the
Dirac mass mN , the new TPE effects cause an additional shift,
that is, 2p1h excitations will have effects on the single particle
properties. In addition, the imaginary part of the self-energy
coming only from Fig. 5(a) (see [29]) leads to a nonzero �N ,
preventing divergencies as mentioned above. In summary, we
will introduce the FSI between 1p1h and 2p2h final states to
all orders and fully relativistically. The proper π self-energy
� in Fig. 5 iterates ph, �h bubbles and contains the effect
of short-range correlations [29]. The calculation gave a value
Re[�s(EF )] ≈ −140 MeV and Re[�0] ≈ −50 MeV, which
accounts for a value m̃′

N = 0.9mN , very close to that of m∗′
N ≈

880 MeV in RHA. For the imaginary part of the self-energy
we adopt the form in Eq. (12) with −1/2[a0 − as] = 0.11
obtained by comparison with Ref. [29].

Note that in Eq. (16) because we have functions
m̃N �(ω)

π ((ω)2−Ẽ (p))2+(m̃N �N (ω))2 in place of δ sharp ones, we can ex-

cite a final N with Ẽ (p + q) < EF [suppressed by the factor

FIG. 6. �h primary excitation where the � decays into 2p1h and
3p2h configurations. The interference amplitude from 2p2h contri-
butions in (a) with those in Fig. 3 coming from FSI are not shown.

(1 − n(p + q))] from a h (hh scattering) or a p (ph annihi-
lation) belonging to a 2p2h GSC. When Ẽ (p + q) > EF we
have pp scattering from a 2p2h GSC or ph creation from the
0p0h GS component. The contribution in Fig. 5(b) enables the
contribution of �hph admixtures in the GS participating in hh
scattering. In Ref. [29], the � intermediate state [Fig. 5(b)]
does not contribute to Im�N nor the energy dependence of
Re�N .

Finally, we describe our model for the momentum dis-
tribution n(p). As mentioned at the end of Sec. II A, Z+

p
determines n(p) and depends on �N through Eq. (11). To
get n(p) from this scheme is not a trivial task. In place of
this, we will assume an independent model for it. This was
used in other calculations [23,26,27] with consistent results.
The distribution to be used was built from a perturbative
calculation in nuclear matter for a GS within 0p0h, 2p2h,
and 4p4h configuration space, which is the minimum one in
order for the cancellation with disconnected norm contribu-
tions to be complete, avoiding extensive effects in nuclear
matter [30]. The NN force employed contains exchange of
mesons and short-range correlations within a Landau-Midgal
parametrization.

D. � → 2p2h, 3p3h contributions

The alternative way of getting 2p2h (and also 3p3h) states,
is after a primary W N → � excitation when the � decays
into 2p1h or 3p2h configurations, by absorption of the emitted
virtual π . These contributions to M in Eq. (2) are shown
in Figs. 6(a) and 6(b), respectively. They are incorporated
into the resonance self-energy and thus in its width, that also
contains the main � → πN decay leading to a final real π

(not considered here).
We consider the �h intermediate state in Eq. (2). In

the Appendix we define this contribution and the following

015503-7



MARTINEZ, MARIANO, AND BARBERO PHYSICAL REVIEW C 103, 015503 (2021)

similar steps in getting Eq. (16); we now obtain

2Im
∑
mν,I

M�h = 8

(2π )5

(
GF√

2

)2

cosθ2
C

∫
dk3

∑
I

(
√

2)2C2
I

∫
mldcosθl dElpl d�l m̃N

Lβα

ml

×
∫ EF

ωmin

dω
∑
ms

[
ū
(
k, ms1

)
γ0Ĵ�βμ(q)†γ0Pμν (k + q)Ĵ�να (q)u(k, ms)

]
× (−i)

π
Im

[
1

(k + q)2 − m2
� + i��m�

]
m̃N�(ω)n(k)

π [((ω)2 − Ẽ (k))2 + (m̃N�N (ω))2]
, (17)

where we must sum over isospin states because for ν and ν̄ we
can excite on a n a �+,−, while on a p a �++,0, respectively.
Note that the Pμν (defined in the Appendix) is consistent from
the point of view of contact transformations with the usually
assumed �πN vertex fπN�

mπ
pμ

π , but not with its on-shell con-
tribution obtained by making � p = m� in the off-shell term.
Pμν (p) is in this case denominated on the on-shell spin 3/2
projector [36]. This is a common mistake, present in several
other models that can lead to a different evaluation for the �

contribution because the dropped term grows as p2 > m2
�. For

the width we use the model of Ref. [37], where it is analyzed
how to introduce � self-energy to account for 2p2h+3p3h
effects. The �� will be calculated as follows:

�� = �free
� − ��Pauli

� + �2p2h+3p3h, (18)

where the lowest order contribution of the 2p2h and 3p3h to
the � decay are shown schematically in Figs. 6(a) and 6(b),
while the �free

� is obtained from πN decay in the free space.
The other contributions are the Pauli-blocking contribution,
coming from the fact that when the resonance decays within
the nucleus, the N is Pauli blocked. We have fitted a second-
order polynomial to the results in [37]

�2p2h+3p3h(q0) = −2Im�2p2h+3p3h(q0)

= [40 − 4 × 10−4 × (q0 − 350)2]

× θ (600 − q0) + 16θ (q0 − 600),

��Pauli(q0) = −2Im�Pauli(q0)

= 48.30θ (q0 − 440) + 0.8(0.23q0

− 40.8)θ (440 − q0). (19)

For the bare value �free
� we assume that obtained within

the complex mass scheme (CMS) in our previous works
[34,35] on weak π production, and for m� we assume the
effective value m̃� ≡ m� − (1 − m̃′

N
mN

)mN which is known as
the universality approach [38]. Note that we have not made
the substitution m� → m� − i ��

2 on the unperturbed G0
μν =

Gμν (�� = 0) in every place as required by the CMS, only
in the p2 − m2

� denominator and thus Pμν is not affected. To
these considered energies, this approach should work well.
For this, we only take the imaginary part of 1

(k+q)2−m2
�+i��m�

and we keep the full �� from (19) in the denominator but only
�2p2h+3p3h in the numerator to consider only the 2p2h+3p3h
channel decay. Finally, we will discuss in the next section
the contributions of the interference between 2p2h amplitudes
coming from a primary N (FSI or GSC) with those from �

decay, as well as the two-body MEC as PF, CT, and PP.

III. CALCULATIONS AND RESULTS

In the beginning, only the total cross section as a function
of the ν and ν̄ energy was evaluated and compared with the
so-called “unfolded” data in Refs. [12,13]. The experimental
data include energy and angle distributions, and therefore pro-
vide more complete information. Furthermore, the unfolded
total cross section is not a very clean observable after discov-
ering the importance of multinucleon mechanisms, because
the unfolding itself is model dependent and assumes that the
events are purely QE [39]. The same limitation occurs for
the differential cross section, dσ/dQ2, given that Q2 comes
assuming only QE events. Thus, the proper observable to con-
trast theoretical models, and to constrain free parameters, is
the double differential cross section d2σ/dTμdcosθμ because
both the final lepton angle and energy are directly measured.
In addition, the uncertainties linked to the fact that the neu-
trino spectrum is broad are of experimental origin because
the extraction of the energy dependence of the cross section
involves a reconstruction of the neutrino energy, whereas in
the theoretical evaluation the neutrino energy is just an input.
The double differential cross section is free from the uncer-
tainty of neutrino energy reconstruction. However, it remains
a theoretical uncertainty because the measured double differ-
ential cross section corresponds to the broad flux of neutrino
energies. Theoretical predictions needs a convolution with this
flux, defined as

dσ 2

dTldcosθl
≡

〈
dσ 2

νA

dTldcosθl

〉
= 1∫

�(Eν )dEν

×
∫

dEν

dσ 2
νA

dTldcosθl
|Eν (Tl ,cosθl ) �(Eν ),

where the flux is obtained from the experiments in
Refs. [12,13], and could be a source of error. Nevertheless,
a good agreement with theory for the double differential cross
section supports the idea of multinucleon emission process.
For the QE FF we assume

FV
1 = 1

2

[
1 + (2.79 + 1.91)

Q2

4m2
N

]
1

1 + Q2

4mN2

1(
1 + Q2

0.71

)2 ,

FV
2 = 1

2
[1.79 + 1.91]

1(
1 + Q2

0.71

)2 ,

GA = 1.26

1 + (Q2/1.0322)
,
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FIG. 7. Left (right) panel double differential cross section for ν(ν̄) scattering at certain cosθμ(cosθμ+ ) selected bins. With dotted lines QE
1p1h response within the RHA is indicated. Dashed lines indicate QE 1p1h + 2p2h (coming from FSI and GSC). Finally full lines also include
the �h excitations that decay into 2p2h and 3p3h final states. Data are obtained from the MiniBooNE experiment of Refs. [12,13].

as in our previous work [34], where the axial parameters
for the � were determined, and use m̃′

N = 0.9mN , m̃′
N f =

0.80(0.85) for ν(ν̄) scattering.
We are going to calculate the unfolded and folded cross

section using the model described in the previous sections
that is fully relativistic within the frame of QHDI [25] with
primary one-body currents exciting nucleons and isobar �.
It introduces FSI through a relativistic self-energy that en-
close correlated and uncorrelated TPE with GSC introduced
through a realistic nucleon momentum distribution calculated
in the basis of 0p0h, 2p2h, and 4p4h configurations for the
GS. We use the Lehmann representation for the nucleon prop-
agator which leads to the expressions (16) and (17), where the
width in the nucleons enables ph, hh, pp, and hp excitations,
generated on the different components of the GS. Also, the
contribution shown in Fig. 5(b) with the hh scattering, enables
contributions with �h admixtures in the GS. We show in

Fig. 7 the double differential cross sections for ν and ν̄ scat-
tering for different selected bins for the cosθμ,μ+ as a function
of Tμ,μ+ energies. The left panel corresponds to ν scattering
while the right one to ν̄ scattering.

The dotted lines correspond to introduce only the contribu-
tion (16) in (2) and (1), making �N → 0, and n(k) → θ (kF −
k), this corresponding to the RHA (close to the relativistic
Fermi gas model). As it is well known, the data are under-
predicted in this case. When the self-energy contributions of
Fig. 5 are considered and the correlated n(k) is used, several
effects are illuminated. First, as mentioned previously, a small
change in m̃′

N is accounted for. Then, FSI of the emitted
nucleons, Fermi smearing effects together with the ph, pp,
hh, hp, and �h excitations because of the smooth weights
for the E (k) and E (k + q) single particle states around EF ,
are composed to give small effects resulting in a very tiny
energy shift and diminishing the cross section. It is important

015503-9



MARTINEZ, MARIANO, AND BARBERO PHYSICAL REVIEW C 103, 015503 (2021)

FIG. 8. Left (right) panel double differential cross section for ν(ν̄) scattering at certain Tμ(Tμ+ ) selected bins. Descriptions of lines and
data are the same as in Fig. 7.

to stress that all these effects must be considered together
because, as described in Sec. II, GSC are lighted on when
2p1h are considered in �N . These results have the tendency of
the comparison between the bare QE and QE+RPA achieved
in Refs. [14,18] but with a much minor diminishing effect
perhaps by the pp and hh contributions, coming for 2p2h plus
4p4h GS correlations. Nevertheless, an observation should be
done. To account for the contributions of 2p2h excited states
from N in all possible ways, the W N → N ′π amplitude with
N intermediate states is added to Ĵμ

H (q) in Ref. [18]. Then,
π is absorbed producing an additional ph state. In addition
to the CT, PF, and PP contributions, that in combination with
the produced ph are considered two-body MEC (we do not
enclose the amplitudes with �’s within this category in spite
of the fact that other authors do; see Ref. [20]), the one nu-
cleon pole (NP) and nucleon cross (NC) can generate all our
contributions mentioned above in our model. The difference
is that N and N ′ are not weighted by a correlated momentum
distribution which accounts for the depletion and the struc-
ture of the GS, because n(p) = θ (p). This should lead to
a different value for such induced contributions. The same
cross sections, except for different bins of the Tμ,μ+ energies

as a function of cosθμ,μ+ , are shown in Fig. 8 with a similar
behavior for the above mentioned RHA and with the nucleon
self-energy effects. When the �h amplitude from Eq. (17)
is considered in Eqs. (2) and (1), the full line is obtained,
showing a good coincidence with the data both for ν and ν̄

for the different cuts in the cross sections. Here, also we have
the weight of the correlated momentum distribution on the
h states in (17). Also, as mentioned in the previous section,
we are adopting a consistent treatment for the � amplitude
[34].

To be precise we must mention that we are omitting two
kinds of contributions: those from the interference of the 2p2h
amplitudes coming from the decay of a primary ph, and those
coming from the decay of a �h one. These contributions have
been evaluated in Ref. [14] giving a contribution around 1.5%,
which does not alter our conclusions. These contributions
were omitted because now we need to evaluate a contribution
like that of Fig. 6(a) but replacing the primary � by N , and to
avoid the above mentioned singularity with its propagator, the
dressed one should be replaced by the bare one. Also, in that
contribution � has a width as that described in Eq. (18). Then,
it is not clear how consistency is achieved because the π loop
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FIG. 9. Total unfolded and folded dσ/dQ2 cross sections. De-
scriptions of the lines and data are the same as in Fig. 7.

involved in this contribution should be calculated with the
same approach that was used n both the �N,� widths, which
is not a trivial or possible task. The other thing that we are
not including is the two-body MEC involving the nucleon,
the above mentioned CT, PF, and PP contributions. From
our previous calculation on π production in νN scattering
in Ref. [34], CT, PF, and PP amplitudes contribute around
5%–9% of the total π -production cross section. Calculations
done with the same model give for ν̄N around 1.5%–10%. As
the total π -production contribution induces around 30%(ν)–
40%(ν̄) of increase regarding the QE 1p1h cross section,
because the emitted π is what generates additional final nu-
cleons, when MEC are considered we await a contribution
around 1.5%–2.7%(ν) and 0.6%–4%(ν̄). For this reason, we
keep us within an approach only with one-body currents
and reserve the two-body MEC CT, PF, and PP for a future
refinement.

Finally, results for the unfolded total σ (Eν,ν̄ ) and folded
dσ/dQ2 are shown in Fig. 9. As can be seen the same be-
havior as in the double differential cross section is confirmed,
with a very small underprediction for dσν̄/dQ2 and the total
σ (Eν̄ ) around 5% which could be as a consequence of our
simplifications.

The total cross section was analyzed also in the antineu-
trino mode by Martini et al. [15], Nieves et al. [18] and Bodek
et al. [21]. The effect of npnh in the ratio σ (Eν )/σ (Eν̄ ) is
compared to one nucleon ejection QE case. This effect should
be somewhat less important for ν̄ because the spin-isospin re-
sponse which is affected by the 2p2h piece has less weight for
antineutrino, owing to the negative axial-vector interference.
This effect is evident in Martini et al. and Bodek et al., and not
so much in Nieves et al., where the ratio shows a value around
5% of more contributions for ν̄. Our results shown in Fig. 10
agree with the tendency of Refs. [15,21], with 4% greater for ν

in regard to ν̄ regarding the QE case. In Ref. [18], the relative
higher importance of the npnh contributions for ν̄ scattering
is justified mainly by the effects induced by the CT and PP
terms that help increase it. Nevertheless, because of the size

FIG. 10. Ratio of total unfolded cross sections of neutrinos
over antineutrinos for the QE 1p1h(dashed) approach and full with
QE+npnh contributions (full lines).

of these contributions we think that our approach should help
the QE+npnh ratio approach the QE one.

IV. CONCLUSIONS

We have implemented a new model to study ν and ν̄

scattering on nucleus that enables one to introduce npnh
contributions to the QE response, fully relativistically and
consistently. We work within a quantum hydrodynamics nu-
clear matter frame, producing QE ph excitations and �h
excitations through one-body meson exchange currents. We
begin with the RHA approach, and then to introduce FSI in
a relativistic fashion, we include pion ring series and TPE
correlated and uncorrelated in the nucleon self-energy. In this
way, FSI on the emerging nucleon are introduced to all or-
ders avoiding the mentioned singularity problem in the Born
amplitudes. The nucleon propagator is introduced through the
Lehmann representation, which enables us to treat FSI and
GSC on the same footing. GSC are also introduced through
a realistic nucleon momentum distribution that results ade-
quately for the nuclear matter frame. The � excitation is
introduced consistently, regarding the adopted πN� vertex
and � propagator. We add 2p1h and 3p2h contributions to
the � self-energy, because the emitted pion from its decay
can excite another ph excitation. Coincidently the data are
good and it seems that the descriptions of both ν and ν̄ are
consistent. We think that this is a step ahead, considering
the simplicity of the model. As we have discussed above,
many improvements should be achieved to introduce some
interference terms and CT, PP, and PF MEC, consistent with
a correlated nucleon propagator. Nevertheless, we have given
arguments to show that these effects do not affect our results.
Despite this, we plan to include them in a future calculation.
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APPENDIX

In this Appendix we show the basic expressions from where amplitudes are obtained. The amplitude (16), that corresponds
to the Fig. 1 is built by using the corresponding Feynman rules and reads

2Im
∑
mν

M1p1h = 2
∑
mν

∫
d p4

l

(2π )4
u(kνmν )(−i)γ0[γ β (1 − γ5)]†γ0iSl (pl )(−i)γ α (1 − γ5)u(kν, mν )

× i2

(
g

2
√

2MW

)4

cos2θcIm i
∫

dk4

(2π )4
Tr[(−i)γ0ĴHβ (k, q)†γ0iSN (k + q)(−i)ĴHα (k, q)iSN (k)], (A1)

where u(kν, mν ) is the neutrino spinor, Sl (pl ) = �pl +ml

p2
l −m2

l +iε
= �pl +ml

(p0
l −El +iε)(p0

l +El −iε)
the lepton propagator, V 2

ud = cos2θc and

GF /
√

2 = g2/8M2
W . We use the N perturbed propagator SN in the representation defined by Eqs. (7) and (15) to include the

contributions in Fig. 3. Finally we have the weak vertex,

Ĵμ
H (q) = −i

2

[
FV

1 (q2)γ μ + i
FV

2 (q2)

2mN
σμνqν − FA(q2)γ μγ5

]
(W · τ ), (A2)

W being the isospin wave function of the W boson, and the isospin factors read

〈p/n|W ± · τ|n/p〉 = ∓
√

2. (A3)

Now, we choose to integrate in (A1) p0
l clockwise in the lower complex plane, while k0 is counterclockwise in the upper one by

using the Cauchy’s residue theorem. Then, we use the N spinor relation
∑

ms
u(k, ms)ū(k, ms) = �k+mN

2mN
with k = (ω, k) and spin

and trace identities, ∑
mν

u(kν, mν )u(kνmν ) = �kν,

1
8 Tr[ �kνγ

β (1 − γ5)( � pl + ml )γ
α (1 − γ5)] = [

kα
ν pβ

l + kβ
ν pα

l − gαβkν · pl ∓ iεδβλα plδkνλ

] ≡ Lβα,

where the − sign corresponds to ν while + to ν̄ . After doing all these steps the final Eq. (16) is obtained.
Replacing SN (k + q) by the � propagator Gμν (k + q) and the corresponding hadronic vertex Ĵα

H by Ĵνα
� in Eq. (A1), we get

the �h amplitude in Eq. (2) as

2Im
∑
mν,I

M�h = 2
∑

I

C2
I

∑
mν

∫
d p4

l

(2π )4
u(kνmν )(−i)γ0[γ β (1 − γ5)]†γ0iSl (pl )(−i)γ α (1 − γ5)u(kν, mν )i2

(
g

2
√

2M2
W

)2

× cosθ2
C Im i

∫
dk4

(2π )4
Tr[(−i)γ0Ĵ�βμ(k, q)†γ0

√
2iGμν (k + q)(−i)Ĵ�να (k, q)

√
2iSN (k)], (A4)

where the currents are Ĵ�να (k, q) = Ĵ�να (k, q)(T † · W ), Ĵ�να being defined in Refs. [34,35] where we worked in the Sachs
parametrization for the vector part. In Eq. (A4) we have the � propagator Gμν = 1

(k+q)2−m2
�+i��m�

Pμν where

Pμν (p) = ( � p + m�)

{
− gμν + 1

3
γ μγ ν + 2

3m2
�

pμ pν − 1

3m�

(pμγ ν − γ μ pν )

− 2( � p − m�)

2m2
�

[γ μ pν − pμγ ν + ( � p + m�)γ μγ ν]

}
, (A5)

where the last term is usually called off-shell contribution because it grows as p2 − m2
�.

For the isospin coefficients we have (
√

2〈�+,�++|T † · W +|n, p〉)2 = √
2

2
C2

I = 2, 2/3, and because

〈�0,�−|T † · W − ≡ T †
−|p, n〉 = 〈T = 3/2, MT = −1/2,−3/2|T †

−|T = 1/2, MT = 1/2,−1/2〉

= 〈3/2||T †||1/2〉
〈1/2; 1/2,−1/2; 1 − 1|3/2; −1/2,−3/2〉

= 〈3/2||T †||1/2〉
±〈1/2; −1/2, 1/2; 1 + 1|3/2; 1/2,+3/2〉

= ±〈�+,�++|T +|n, p〉 = ∓〈�+,�++|T † · W +|n, p〉,
and for squared we have no difference between ν and ν̄ scattering. After doing similar steps described above for the ph case, we
get Eq. (17).

015503-12



DESCRIPTION OF ν AND ν SCATTERING WITHIN … PHYSICAL REVIEW C 103, 015503 (2021)

[1] We follow the conventions of J. D. Bjorken and S. D. Drell, Rel-
ativistic Quantum Mechanics (McGraw-Hill, New York, 1964).

[2] C. F. Perdrisat, V. Punjabi, and M. Vanderhaeghen, Prog. Part.
Nucl. Phys. 59, 694 (2007).

[3] V. Bernard, L. Elouadrhiri, and U. G. Meissner, J. Phys. G
28, R1 (2002); V. Lyubushkin et al., Eur. Phys. J. C 63, 355
(2009).

[4] A. Bodek, S. Avvakumov, R. Bradford, and H. S. Budd, Eur.
Phys. J. C 53, 349 (2008).

[5] L. Alvarez-Ruso et al., Prog. Part. Nucl. Phys. 100, 1 (2018).
[6] MicroBooNE Experiment, [http://www-microboone.fnal.gov].
[7] NOvA Experiment, [http://www-nova.fnal.gov].
[8] T2K Experiment, [http://t2k-experiment.org].
[9] MINER nA Experiment, [http://minerva.fnal.gov].

[10] Deep Underground Neutrino Experiment, [http://www.
dunescience.org].

[11] Hyper-Kamiokande, [http://www.hyperk.org].
[12] A. A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Phys.

Rev. D 81, 092005 (2010).
[13] A. A. Aguilar-Arevalo et al., Phys. Rev. D 88, 032001

(2013).
[14] M. Martini, M. Ericson, G. Chanfray, and J. Marteau, Phys.

Rev. C 80, 065501 (2009); 81, 045502 (2010).
[15] M. Martini, M. Ericson and G. Chanfray, Phys. Rev. C 84,

055502 (2011); M. Martini and M. Ericson, ibid. 87, 065501
(2013).

[16] J. E. Amaro, M. B. Barbaro, J. A. Caballero, T. W. Donnelly,
and J. M. Udías, Phys. Rev. D 84, 033004 (2011); J. E. Amaro,
M. B. Barbaro, J. A. Caballero, T. W. Donnelly, and C. F.
Williamson, Phys. Lett. B 696, 151 (2011).

[17] G. D. Megias, J. E. Amaro, M. B. Barbaro, J. A. Caballero,
T. W. Donnelly, and I. R. Simo, Phys. Rev. D 94, 093004
(2016).

[18] J. Nieves, I. Ruiz Simo, and M. J. Vicente Vacas, Phys. Rev.
C 83, 045501 (2011); Phys. Lett. B 721, 90 (2013); 707, 72
(2012).

[19] J. E. Sobczyk, J. Nieves, and F. Sánchez, Phys. Rev. C 102,
024601 (2020).

[20] N. Rocco, C. Barbieri, O. Benhar, A. De Pace, and A. Lovato,
Phys. Rev. C 99, 025502 (2019).

[21] A. Bodek, H. Budd, and M. E. Christy, Eur. Phys. J. C 71, 1726
(2011).

[22] W. M. Alberico, M. Ericson, and A. Molinari, Ann. Phys. 154,
356 (1984).

[23] R. Rosenfelder, Ann. Phys. 128, 188 (1980).
[24] L. G. Arnold, B. C. Clark, and R. L. Mercer, Phys. Rev. C 19,

917 (1979); L. G. Arnold and B. C. Clark, Phys. Lett. B 84,
46 (1979); M. Jaminon, C. Mahaux, and P. Rochus, Phys. Rev.
Lett. 43, 1097 (1979); H. P. Duerr, Phys. Rev. 103, 469 (1956).

[25] B. D. Serot and J. D. Walecka, Advances in Nuclear Physics,
Vol. 16 (Plenum, New York, 1986).

[26] A. Mariano and P. Podesta Lerma, Phys. Rev. C 69, 034606
(2004).

[27] A. Mariano and C. Barbero, J. Phys. G: Nucl. Part. Phys. 31,
119 (2005).

[28] H. Jung, F. Beck, and G. A. Miller, Phys. Rev. Lett. 62, 2357
(1989).

[29] H. Jung and G. A. Miller, Phys. Rev. C 43, 1958 (1991).
[30] A. Mariano, F. Krmpotic, and A. F. R de Toldedo Piza, Phys.

Rev. C 53, 1664 (1996).
[31] J. P. Jeukenne, A. Lejeune, and C. Mahaux, Phys. Rep. 25, 83

(1976).
[32] J. E. Amaro, C. Maieron, M. B. Barbaro, J. A. Caballero, and

T. W. Donnelly, Phys. Rev. C 82, 044601 (2010).
[33] J. Nieves, J. E. Amaro, and M. Valverde, Phys. Rev. C 70,

055503 (2004).
[34] C. Barbero, A. Mariano, and G. L. Castro, Phys. Lett. B 664, 70

(2008).
[35] A. Mariano et al., Nucl. Phys. A 849, 218 (2011).
[36] E. Hernandez, J. Nieves, and M. Valverde, Phys. Rev. D 76,

033005 (2007).
[37] E. Oset and L. L. Salcedo, Nucl. Phys. A 468, 631 (1987).
[38] M. R. Frank, Phys. Rev. C 49, 555 (1994); H. Kim, C. J.

Horowitz, and M. R. Frank, ibid. 51, 792 (1995).
[39] J. Nieves, F. Sánchez, I. Ruiz Simo, and M. J. Vicente Vacas,

Phys. Rev. D 85, 113008 (2012).

015503-13

https://doi.org/10.1016/j.ppnp.2007.05.001
https://doi.org/10.1088/0954-3899/28/1/201
https://doi.org/10.1140/epjc/s10052-009-1113-0
https://doi.org/10.1140/epjc/s10052-007-0491-4
https://doi.org/10.1016/j.ppnp.2018.01.006
http://www-microboone.fnal.gov
http://www-nova.fnal.gov
http://t2k-experiment.org
http://minerva.fnal.gov
http://www.dunescience.org
http://www.hyperk.org
https://doi.org/10.1103/PhysRevD.81.092005
https://doi.org/10.1103/PhysRevD.88.032001
https://doi.org/10.1103/PhysRevC.80.065501
https://doi.org/10.1103/PhysRevC.81.045502
https://doi.org/10.1103/PhysRevC.84.055502
https://doi.org/10.1103/PhysRevC.87.065501
https://doi.org/10.1103/PhysRevD.84.033004
https://doi.org/10.1016/j.physletb.2010.12.007
https://doi.org/10.1103/PhysRevD.94.093004
https://doi.org/10.1103/PhysRevC.83.045501
https://doi.org/10.1016/j.physletb.2013.03.002
https://doi.org/10.1016/j.physletb.2011.11.061
https://doi.org/10.1103/PhysRevC.102.024601
https://doi.org/10.1103/PhysRevC.99.025502
https://doi.org/10.1140/epjc/s10052-011-1726-y
https://doi.org/10.1016/0003-4916(84)90155-6
https://doi.org/10.1016/0003-4916(80)90059-7
https://doi.org/10.1103/PhysRevC.19.917
https://doi.org/10.1016/0370-2693(79)90645-2
https://doi.org/10.1103/PhysRevLett.43.1097
https://doi.org/10.1103/PhysRev.103.469
https://doi.org/10.1103/PhysRevC.69.034606
https://doi.org/10.1088/0954-3899/31/2/004
https://doi.org/10.1103/PhysRevLett.62.2357
https://doi.org/10.1103/PhysRevC.43.1958
https://doi.org/10.1103/PhysRevC.53.1664
https://doi.org/10.1016/0370-1573(76)90017-X
https://doi.org/10.1103/PhysRevC.82.044601
https://doi.org/10.1103/PhysRevC.70.055503
https://doi.org/10.1016/j.physletb.2008.05.011
https://doi.org/10.1016/j.nuclphysa.2010.11.002
https://doi.org/10.1103/PhysRevD.76.033005
https://doi.org/10.1016/0375-9474(87)90185-0
https://doi.org/10.1103/PhysRevC.49.555
https://doi.org/10.1103/PhysRevC.51.792
https://doi.org/10.1103/PhysRevD.85.113008

