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Abstract—Quaternion neural networks have been shown
to be useful in image and signal processing applications.
Herein, we propose a novel architecture of a neural unit
model characterized by its ability of encoding 3-dimensional
past information and that facilitates the learning of velocity
patterns. We evaluate the implementation of the network
in a study of the cardiac vector velocity and its usefulness
in early detection of patients with anterior myocardial
infarction. Experimental results show an improvement of the
performance in terms of convergence speed and precision
when comparing with traditional methods. Furthermore, the
network shows successful results in measuring the velocity
reduction that is usually observed in vectorcardiogram signals
in the presence of myocardial damage. Through a linear
discriminant analysis, a pair of 100% / 98% of sensitivity
/ specificity is met with only two velocity parameters. We
conclude that this method is a very promising development
for future computational tools devoted to early diagnosis of
heart diseases.

Resumen—Las redes neuronales cuaterníonicas han mostrado
ser de gran utilidad en aplicaciones de procesamiento de
sẽnales e iḿagenes. En este trabajo, proponemos una
arquitectura novedosa para el modelo de una unidad neuronal
caracterizada por su capacidad de codificar informacíon
tridimensional temporal que facilita el aprendizaje de
patrones de velocidad. Evaluamos la implementación de la red
en un estudio de la velocidad del vector card́ıaco y su utilidad
en la deteccíon temprana de pacientes con infarto anterior
de miocardio. Los resultados experimentales muestran una
mejora del rendimiento en t́erminos de precisíon y velocidad
de convergencia cuando se compara con redes tradicionales.
Adicionalmente, la red muestra resultados exitosos en la
medición de la ralentizacíon del vector que se observa
habitualmente en las sẽnales vectorcardiogŕaficas en presencia
de daños mioćardicos. Mediante un ańalisis discriminante
lineal, se alcanza un par de sensibilidad / especificidad
del 100% / 98% con śolo dos paŕametros de velocidad.
Concluimos que este ḿetodo es un desarrollo prometedor
para futuras herramientas computacionales dedicadas al
diagnóstico temprano de enfermedades cardı́acas.

I. INTRODUCTION

Quaternion algebra was discovered by Hamilton in 1843
and it has been extensively used in modern mathematics and

physics [1]–[3]. Quaternion neural networks had originally
been proposed in the mid-1990 with an architecture similar
to classical multilayered networks but with quaternary units
[4]. Since then, many applications have been shown ranging
from control systems, such us tracking operations, to image
and signal processing, such as affine transformations [5]–[8].

We have recently developed several quaternion markers of
myocardial infarction (MI) which are capable of computing
angular velocity during both ventricular loops of depolariza-
tion and repolarization [9]. This method has turned out to be
efficient and robust against noise but it requires a temporal
averaging of patterns that may produce a low-pass effect
with a possible loss of information. An accurate detection
is required to avoid unnecessarily treating subjects who did
not suffer a MI and to quickly begin treatment of patients
with early infarction. A MI is an irreversible process. A
delayed diagnosis causes a progressive muscle degeneration,
increasing the cardiac death risk. It is of crucial importance
to develop noninvasive markers that detect early MI as this
is the major cause of death in the world [10]. The gold
standard for MI diagnosis is actually the study of significant
rises of plasma troponin levels but unfortunately it is only
possible to be performed between 12 and 24 hours after the
damage. Electrocardiogram (ECG) studies complement the
diagnosis along with clinical judgment but acceptable values
of accuracy are not yet reached either in the enzymatic or
in the computational methods [11]. Our quaternion markers
have proved to be promising solutions for reaching high
values of sensitivity and specificity when combined with
linear velocity indices.

In this work, we propose a quaternion neural network with
temporal feedback calculation (QNNT) characterized by the
ability of encoding past information that facilitates the learn-
ing of velocity functions. Also, we show a direct application
to the learning of linear and angular cardiac velocity patterns
and its usefulness to differentiate between patients during
healing stage of anterior myocardial infarction and healthy
subjects with very high accuracy.
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II. MATERIALS AND METHODS

A. Dataset

We have proposed two study populations: healthy sub-
jects and patients with anterior myocardial infarction. All
the recordings have been extracted from the Physikalisch-
Technische Bundesanstalt (PTB) database which have been
acquired at the Department of Cardiology of University
Clinic Benjamin Franklin in Berlin, Germany [12], [13].
The database included 290 subjects. We have selected all
the patients with anterior MI (N=46) whose ECG and
vectorcardiogram (VCG) recordings were made until 7 days
after injury. An equivalent number of healthy volunteers was
randomly selected in order to achieve 50% of prevalence
rate. Ages ranged from 17 to 86 years with a mean of 52;
23% of the subjects were female. Each record includes 15
simultaneously measured signals: the conventional 12 ECG
leads together with the 3 Frank VCG leads. Each signal were
digitized at 1kHz.

B. Quaternion algebra

Quaternions are hypercomplex numbers that constitute
a non-commutative field (H). They are very useful in the
study of rotations in three-dimensional space. Moreover,
they are very efficient in terms of uncertainty propagation
and computing time by comparison with traditional methods
such as Euler matrices [3]. Each quaternion (1) has a real
unit (associated with an amount of rotation) and three imag-
inary units (associated with the rotation axis) that satisfy the
Hamilton rule (i2 = j2 = k2 = ijk = −1).

qt = a1 + a2i + a3j + a4k , a1...4 ∈ R (1)

Similarly, qt can be written in terms of a rotation angle
α from a point Pt to another pointPt+1 in the three-
dimensional space:

qt = cos
(α

2

)

+ ~u.sin
(α

2

)

(2)

where ~u represents the rotation axis. Both trigonometric
functions can easily be obtained from dot and cross products
betweenPt andPt+1.

Then, if we take every point in a given three-dimensional
loop we can compute a sequence of quaternions and thereby
obtain the instantaneous angular velocity by solving the
Poisson equation [14]:

q̇t =
1

2
. ~ωt.qt (3)

Finally, the quaternion product can be useful in the
geometric interpretation. The mappingρq(x) := qxq−1 in
H defines a rotation of a real vectorx (purely imaginary
quaternion) about the axis ofq. Quaternion inverse can be
expressed in terms of its conjugate and its norm:q−1 =
q/‖q‖2.

C. Quaternion neural network with temporal feedback cal-
culation (QNNT)

In Fig. 1a we show the proposed network architecture
along with the neural unit model in Fig. 1b. The weights
q of each neuron in the input layer are quaternions and
both inputs and outputs are three dimensional vectors (purely
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Fig. 1: (a) Proposed neural network (QNNT). In each con-
nection the number of branches involved has been indicated;
(b) Quaternion neuron with temporal feedback calculation
model. xt = represents the point of the 3D space at the
instant t. q1−2 ∈ H. f1 is a split-type activation function
(Eq. 5).Z−1 implies a temporal displacement.

imaginary quaternions). At the input of the activation func-
tion we have the difference of the current point rotated by the
quaternionq1 from the output of the neuron at the previous
point rotated by the quaternionq2 (Fig. 1b).

o =
q1xtq1
‖q1‖2

−
q2yt−1q2

‖q2‖2
(4)

The activation function is defined in a split-type form
through a hyperbolic tangent.

f1(o) = tanh(oi)i + tanh(oj)j + tanh(ok)k (5)

In the output layer (Fig. 1a) there are three conventional
neurons with real weightsp. The geometric interpretation
of each output bears a relation to the velocity patterns
learned in eachxy, yz andzx plane. The neural network is
trained with a back propagation algorithm with the Summed
Squared Error (SSE) as the cost function. It is determined
by the differences between the desired outputud and the
output of the networku (in each plane). The weightsq and
p of the connections are updated by the gradient descent
method:

δs = f ′

2(s)(ud − u) (6)

δo = f ′

1(o)ωδs (7)

pt = pt−1 +∆p , ∆p = ηδsyt (8)

q∗t = (xt • δo; xt × δo) (9)

qt = qt−1 +∆q , ∆q = ηq∗t (10)

wheref2(s) = tanh(βs) andη is the learning coefficient.
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D. Application on cardiac vector loops

Myocardial tissue damage constantly changes the conduc-
tion velocity. We have previously shown that these changes
can be measured from VCG signals [9]. Thus, a suitable
combination of parameters may be able to early detect
the occurrence of MI. In Fig. 2, we show a T-wave loop
constructed by using XYZ signals. Typical patterns of both
angular and linear velocities are also shown. These patterns
have large magnitude peaks which are severely affected in
the presence of MI, considerably reducing their value. The
highest peaks of the angular velocity signal, that usually
appear in the next 50 ms after the T-wave peak, could be
associated with the fast rotations occurring in the cardiac
vector at the end of transmural repolarization.
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Fig. 2: Top panel: Typical VCG signals from a heartbeat.
Middle panel: Constructed loop through the selected T-
waves in each lead(x, y, z). Lower panel: 2-norm of both
angular and linear velocities in complete T-wave signal.

In the present work, the VCG signals are selected from
the populations of healthy subjects and patients during
healing stage of anterior MI. Then, a bidirectional high-pass
filter (0.5Hz, Butterworth) is applied for baseline wander
correction. High frequency noises are reduced by applying
a bidirectional low-pass filter (20 Hz, Butterworth, T-wave).

In order to show the improved ability of our QNNT on

the learning of velocity functions we have evaluated its
performance by computing both linear and angular velocities
patterns of T-wave loop in each coordinate plane. The
patterns are scaled to 1 for learning process and then
re-scaled to the original magnitude. The angular velocity
is obtained from Equation 3 while the linear velocity is
obtained by direct differentiation of the VCG signal. For
the purpose of ensuring a fair comparison, we have also
studied the traditional Multilayer Perceptron (MP) with back
propagation algorithm, whose architecture is described in
[15]. It should be noted that, in order to make a valid
computational comparison, the number of weights in both
methods were the same. That is, the neurons of the QNNT
are 10 whereas 22 units were used in the MP (a total of 111
weights).

For the statistical analysis we have selected the maximum
velocities:ωM

x , ωM
y , ωM

z , vMx ,vMy ,vMz . Using a two-sided
Wilcoxon signed rank test, each statistical significance is
obtained. Possible cross correlation between parameters is
evaluated by computing the correlation coefficient. Finally,
we can select a subset of parameters and apply a linear
discriminant analysis in order to classify both study groups.

III. RESULTS

In Figure 3a, we show an example of a velocity learning
in a window of 50 ms defined about the second half of
the T-wave immediately after the peak (where maximum
angular deflections are located in normal ECGs [9], [16]).
The graphs have been obtained after 150 iterations in both
methods. It can be seen that the fitting of the QNNT has bet-
ter accuracy than traditional MP network. In Figure 3b, the
mean error and standard deviation (30 trials) corresponding
to the learning of the prior T-wave are shown.

Following with the application described above (Section
II-D), maximum linear and angular velocities in each coor-
dinate plane have been obtained as follows: Ten consecutive
beats have taken from each VCG recording. Thus, the
network has fed with each pattern and the number of
iterations has increased with each pattern from 1 to 10.
Lastly, the maximum obtained for each signal has been
selected.ωM

y andvMy showed highest statistical significance:
p < 10−13 and p < 10−10 respectively. Consequently, the
linear discriminant analysis has been carried out with these
two parameters:

QINDEX = −17.0 ωM
y + 1.2 vMy (11)

Finally, the QINDEX has been evaluated in the com-
plete dataset. Herein, we show the confusion matrices for
both methods (See Tables IA and IB) and the statistical
comparison of MI diagnosis accuracy between QNNT and
a MP network with back propagation learning (See Table
IC). The former has -17 and 1.2 as discriminant coefficients
(QINDEX ) while the latter has -8 and 0.1. All values have
been obtained by seeking to minimize thep value of the
Wilcoxon test. AUC refers to Area Under the ROC curve. It
can be seen that QNNT reaches higher values of sensitivity
and specificity. Furthermore, the MP method has failed to
classify 4 controls and 4 patients while QNNT missed only
one control.
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0 10 20 30 40 50

0 10 20 30 40 50

0

1

0

1

0

0

10

20

30

20 40 60 80 100 120

S
S
E

Iteration

ω
(M

P
)

ω
(Q

N
N

T
)

Fig. 3: Example of angular velocity learning. Left panels show the fitting achieved by both QNNT and traditional MP
network with back propagation learning. Right panel plots summed squared error for each iteration in mean and standard
deviation. Red graphs corresponds to QNNT and it shows lowervalues than traditional network (green graph). A total of
30 trials has been carried out to obtain the statistical results.

TABLE I
MI DIAGNOSIS ACCURACY (HEALTHY VS . ANTERIOR MI
PATIENTS) FOR QNNT AND A MP NETWORK WITH BACK

PROPAGATION LEARNING.

NMI = 46 Predicted
NHealthy = 46 MI Healthy

A
ct

ua
l MI 46 0

Healthy 1 45

(A) QNNT CONFUSION MATRIX

NMI = 46 Predicted
NHealthy = 46 MI Healthy

A
ct

ua
l MI 42 2

Healthy 4 42

(B) MP CONFUSION MATRIX

Network Sensitivity Specificity AUC
QNNT 100 98 99.8
MP 92 92 98.0

(C) ACCURACY COMPARISON

IV. D ISCUSSION

We have presented a novel neural unit model character-
ized by its ability of encoding 3-dimensional past informa-
tion and that facilitates the learning of velocity patterns.
Following the results shown in Fig. 3, the performance of
QNNT in terms of convergence speed and precision seems to
be an improvement when comparing with MP networks with
back propagation learning [15]. The QNNT initial weights
has been randomly set. The learning coefficient as well as
the slope of the activation function have been optimally
selected for a single signal and then all the processes used
the same values. Traditional MP algorithm had to use lower
values to ensure convergence.

Several quaternion neural networks have been presented
previously and most of them use split-type functions [5],

[17], [18]. However, some authors have reported that func-
tions with local analyticity are more suitable for the activa-
tion in updating the neuron states [7], [19]. Further investi-
gations are needed to evaluate this possible improvement.

As for the problem of early MI detection, the network
shown successful results in measuring the velocity reduction
that has been previously observed in VCG signals in the
presence of myocardial damage [9], [20]. Furthermore,
through the linear discriminant analysis very high values of
sensitivity and specificity were met with only two parame-
ters in the discriminant function. Future work will involve
other MI locations and other non-cardiac pathologies that
usually reduce accuracy of the computational methods.

V. CONCLUSION

The quaternion neural network with temporal feedback
calculation has been shown to be highly efficient in the
learning of velocity patterns. The experimental results show
that its use in the computation of cardiac vector velocity
parameters may be an important tool in the early diagnosis
of myocardial infarction.
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