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We perform a complete analysis of the spectrum of all the states in the N ¼ 2 quark model harmonic
oscillator band with Nf ¼ 3 in the large Nc limit including the often disregarded antisymmetric multiplet
½20; 1þ�. We include configuration mixing effects. We find that the states in the ½56; Lþ� and ½70; Lþ� with
L ¼ 0, 2 fall into nine towers of degenerate states. We find that nonstrange antisymmetric states fall into
three towers and respond to the same structure as the states in the ½70; 1−�multiplet. We also show explicitly
the compatibility of these results and the scattering resonance picture.
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I. INTRODUCTION

Baryon spectroscopy has been essential for our under-
standing of QCD in the low-energy, strong-coupling
regime. In this context, the quark model for baryons has
for a long time been a useful tool to analyze the spectrum
and properties of excited baryons [1]. In the quark model,
baryon resonances belong to SUð2NfÞ ×Oð3Þ representa-
tions that are accommodated intoN bands of the harmonic
oscillator. Recent studies of lattice QCD calculations [2,3]
seem to confirm this classification scheme, strongly sug-
gesting a connection between QCD and the quark model.
The main advantage of these numerical lattice calculations
is that they rely entirely on the fundamental QCD theory.
On the other hand, the lattice QCD method lacks the
transparency and simplicity of an analytic approach. To
unravel a physical picture in terms of effective degrees of
freedom, effective interactions and symmetries is still a
challenging task. Thus, despite the continuing improve-
ments in the lattice QCD techniques, the understanding of
resonant state properties from first principles remains a
very hard problem.
The large Nc QCD approach suggested by ’t Hooft [4]

has become a powerful tool to understand the spectrum and
properties of ground-state baryons and their first excited
states. This approach is based on the result that in the sector
of the ground-state light flavored baryons, there is a
contracted SUð2NfÞc spin-flavor symmetry in the limit
of large Nc [5,6].
Since the large Nc picture was first used to describe

baryons by Witten [7], the 1=Nc expansion using effective
quark operators has been applied with great success to
describe properties of the ground-state baryons (see Ref. [8]
for a brief review and references therein). The ground-state
baryons belong to the N ¼ 0 band of the quark model

classification scheme and are described by the symmetric
representation 56 of SUð6Þ for Nf ¼ 3. Excited states
require a more complex treatment, as they also appear in
mixed-symmetric and antisymmetric representations of
SUð2NfÞ. Several detailed studies of the masses of excited
baryons in the N ¼ 1 band, which belong to the ½70; 1−�
multiplet with mixed spin-flavor symmetry, have been
carried out with great success using a mass operator built
with core and excited quark operators [9–15]. Multiplets
belonging to the N ¼ 2 band have also been separately
studied, namely, the ½56; 0þ� multiplet in Ref. [16], the
½56; 2þ� multiplet in Ref. [17], and the baryons of the
½70; Lþ� with L ¼ 0, 2 in Refs. [18,19]. In addition to
the analysis of the mass spectra, strong and electromagnetic
decays were also studied in the 1=Nc expansion approach
(see Ref. [20] for a recent review).
As already mentioned, the classification scheme for

baryon resonances based on irreducible representations
of SUð2NfÞ ×Oð3Þ originates from the quark model.
However, physical states appear as combinations of these
quark model irreducible representations; this fact is usually
known as configuration mixing. The SUð2NfÞ ×Oð3Þ
symmetry is not something that follows from the funda-
mental QCD theory. This is also manifest in large Nc QCD
where the configuration mixing effects are not Nc sup-
pressed [21–23]. Instead of what is predicted by the quark
model, states in the large Nc limit belong to irreducible
representations of a contracted SUð2NfÞc symmetry and
organize into towers labeled by the associated quantum
number K. Despite not being a suppressed effect, the works
in Refs. [16–19] do not include configuration mixing in the
large Nc limit. Only recently was such an effect included in
a study of the N ¼ 2 band nonstrange states [24].
However, the antisymmetric multiplet was not included
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in that work. In this context, the analysis for Nf ¼ 3 of the
complete set of multiplets of the N ¼ 2 band within the
1=Nc expansion and including the configuration mixing
effects appears to be relevant. This is, in fact, the main aim
of the present work.
The tower structure is well understood in the nonstrange

case; the K number that arises from the large Nc limit is the
spin vector K which is known as “grand spin” in chiral
soliton models. In the nonstrange case,K ¼ Jþ I where J
is the total spin and I is the isospin. The K number holds a
very simple relation with the orbital angular momentum
number L: K ¼ L for the symmetric representations and
K ¼ Lþ 1 for the mixed-symmetric ones [24]. However,
for Nf ¼ 3 the content of each tower cannot be found so
easily since the relation of K to the states’ quantum
numbers is more complicated.
In addition to the quark operator method mentioned

above, there is another natural approach to excited baryons
from a large Nc perspective known as the resonance picture
[25]. While ground-state baryons are stable in the large Nc
limit, excited baryons are all resonances. To analyze baryon
resonances, it is relevant to study scattering processes, such
as meson-nucleon scattering, in channels for which such
resonances may reveal themselves. It is important to point
out that, from an Nc counting point of view, the resonance
width of baryons scales as N0

c [7] so that the existence of
well-defined narrow baryon states is not ensured at large
Nc; however, we can rely on the fact that the empirical
evidence indicates detectable resonances. The resonance
picture is derived entirely from large Nc QCD and contains
information on the tower classification. This picture has
proven to be a fruitful method to obtain insight into aspects
of baryon resonances in a systematic and model-indepen-
dent way [26–28].
In this paper, we study the complete spectrum of the

N ¼ 2 band which contains five multiplets: ½56; 0þ�,
½70; 0þ�, ½56; 2þ�, ½70; 2þ�, and ½20; 1þ�. We first consider
states belonging to the ½56; Lþ� and ½70; Lþ�multiplets with
L ¼ 0, 2 extending the work of Ref. [24] to Nf ¼ 3 flavors.
We include configuration mixing by generalizing the
effective quark operators to mix the SUð6Þ ×Oð3Þ mul-
tiplets to leading order. The multiplet ½20; 1þ� is considered
separately since, as it will become clear in Sec. VII, no
configuration mixing between this multiplet and the others
is observed within the present scheme. Baryon states of the
antisymmetric representation are often dismissed based on
a lack of evidence. However, states which might be
identified with N1=2 have been detected in π þ N scatter-
ings, and J=ψ decay processes have shown some evidence
of the detection of nucleons N3=2 associated to the anti-
symmetric representation. These states correspond to the
three star Nð2100Þ1=2þ and the one star Nð2040Þ3=2þ
listed in Ref. [29]. For all the N ¼ 2 band states, we also
analyze the mass spectra with the resonant approach and
check the compatibility between the two pictures.

This paper is organized as follows. In Sec. II, we describe
the building of the symmetric and mixed-symmetric baryon
states; in Sec. III, we present the effective mass operator,
and in Sec. IV, we discuss the mass matrices found for
½56; Lþ� and ½70; Lþ� states and we present the spectrum
obtained. In Sec. V, we discuss the tower structure found
for the ½56; Lþ� and ½70; Lþ� states in the context of large
Nc QCD. In Sec. VI, we describe the method used to
analyze excited baryons with a meson scattering approach,
and we present our results and associate them with our
operator analysis results. Section VII presents the analysis
of the ½20; 1þ� multiplet. In Sec. VIII, we summarize our
conclusions. Appendix A provides details of the calcula-
tions performed to obtain the effective operators matrix
elements. In Appendix B, we list the partial-wave ampli-
tudes containing the resonances of the ½56; Lþ� and ½70; Lþ�
multiplets along with the large Nc mass eigenvalues found
in the 1=Nc expansion. In Appendix C, we present details
of the calculations to obtain the core composition of the
antisymmetric states. In Appendix D, we list the partial-
wave amplitudes containing the resonances of the anti-
symmetric states along with the large Nc mass eigenvalues
found for the nonstrange states in the 1=Nc expansion. In
Appendix E, we give the explicit expressions of the reduced
matrix elements for mixed-symmetric core states.

II. SYMMETRIC AND
MIXED-SYMMETRIC STATES

States of theN ¼ 2 band can be analyzed as three quark
systems with Nc ¼ 3. For Nf ¼ 3, these states belong to
irreducible representations of SUð6Þ ⊗ Oð3Þ where SUð6Þ
contains the flavor group SUð3Þ and the spin group SUð2Þ.
For Nc ¼ 3, only three spin-flavor representations occur:
completely symmetric (S), mixed symmetric (MS), and
completely antisymmetric (A). Each symmetry corre-
sponds to the SUð6Þmultiplets 56, 70, and 20, respectively.
In this section, we consider the S and MS representations,
the building of states in the antisymmetric representation is
described in Sec. VII.
The analysis of spin-flavor multiplets in large Nc is a

straightforward extension of methods familiar from Nc ¼ 3.
In theNc > 3 generalization, one assumes that the additional
Nc − 3 quarks appear in a completely symmetric spin-flavor
combination. This generalization of the quark model has the
same emergent symmetries as large Nc QCD. Thus, it is an
efficient way to deduce group-theoretical results.
In the large Nc approach, the multiplets have an infinite

number of baryons; the physical baryons can be identified
with states at the top of the flavor representations, while the
other states are spurious baryons that are not relevant when
Nc ¼ 3. In addition to these spurious states that appear in
the multiplets containing physical states, when Nc > 3
additional spin-flavor representations arise; these multiplets
contain only spurious states that also decouple in the
physical limit Nc ¼ 3. However, spurious states should
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be considered when Nc is arbitrary since with this approach
the states associated with physical baryons can result in a
combination that contains spurious states, as long as their
quantum numbers allow it. Relevant large Nc spin-flavor
multiplets are those having states with the same quantum
numbers as those associated with the physical states; this
means that we have to consider all multiplets containing

states with a (total) spin J, a hypercharge Y, and an isospin
number I that correspond to a baryon observed in nature.
To identify these states, we must analyze the decomposition
of SUð6Þ spin-flavor representations into separate SUð2Þ
spin and SUð3Þ flavor representations for Nc quark
baryons. Relevant SUð3Þ flavor representations that emerge
from the large Nc generalization are

“8”≡
�
1;
Nc − 1

2

�
; “10”≡

�
3;
Nc − 3

2

�
; “1”≡

�
0;
Nc − 3

2

�
; “S”≡

�
2;
Nc − 5

2

�
; ð1Þ

where we used the SUðNfÞ Dynkin label which consists of
a multiplet ðn1; n2;…; nNf−1Þ where the non-negative
integers nr stand for the number of boxes in row r of
the Young diagram that exceed the number of boxes in row
rþ 1. The labels chosen to dub flavor and spin-flavor
representations are given by the dimension of the repre-
sentation when Nc ¼ 3, hence, the quotation marks. The
representation “S” emerges only when Nc > 3 but contains
states that could potentially mix with those associated with
physical states if the flavor symmetry were broken, namely,
ΣS, ΞS, and ΩS. The supraindex indicates the flavor
representation; we shall omit quotation marks in these
cases to lighten notation. The “1” representation is a singlet

for Nc ¼ 3 but not for arbitrary Nc; in particular, for
Nc ¼ 5 this irreducible representation is ð0; 1Þ≡ 3̄. This
means that it also contains spurious states in addition to Λ1

associated with the physical state; in particular, Ξ1 has the
quantum numbers I, Y of physical states. Three extra
irreducible representations that have a counterpart in
Nc ¼ 3 also arise, “27”≡ ð2; Ncþ1

2
Þ, “1̄0”≡ ð0; Ncþ3

2
Þ,

and “35”≡ ð4; Nc−1
2
Þ, but as will be clear in the follow-

ing, they are not contained in the SUð6Þ multiplets of
interest.
The SUð6Þ decompositions relevant to this work for each

spin-flavor multiplet can be found using the general method
of Ref. [30] and are given by

½“56”; 0�∶ ½1=2; “8”�1=2 ⊕ ½3=2; “10”�3=2 ⊕ …;

½“56”; 2�∶ ½3=2; “8”�1=2 ⊕ ½5=2; “8”�3=2 ⊕ ½1=2; “10”�3=2 ⊕ ½3=2; “10”�3=2 ⊕
½5=2; “10”�3=2 ⊕ ½7=2; “10”�3=2 ⊕ …;

½“70”; 0�∶ ½1=2; “8”�1=2 ⊕ ½3=2; “8”�3=2 ⊕ ½1=2; “10”�1=2 ⊕ ½1=2; “1”�1=2 ⊕
½1=2; “S”�1=2� ⊕ ½3=2; “S”�3=2� ⊕ ½3=2; “10”�3=2� ⊕ ½5=2; “10”�5=2� ⊕ …;

½“70”; 2�∶ ½3=2; “8”�1=2 ⊕ ½5=2; “8”�1=2 ⊕ ½1=2; “8”�3=2 ⊕ ½3=2; “8”�3=2 ⊕
½5=2; “8”�3=2 ⊕ ½7=2; “8”�3=2 ⊕ ½3=2; “10”�1=2 ⊕ ½5=2; “10”�1=2 ⊕
½3=2; “1”�1=2 ⊕ ½5=2; “1”�1=2 ⊕ ½3=2; “S”�1=2� ⊕ ½5=2; “S”�1=2� ⊕
½1=2; “S”�3=2� ⊕ ½3=2; “S”�3=2� ⊕ ½5=2; “S”�3=2� ⊕ ½7=2; “S”�3=2� ⊕
½1=2; “10”�3=2� ⊕ ½3=2; “10”�3=2� ⊕ ½5=2; “10”�3=2� ⊕ ½7=2; “10”�3=2� ⊕
½1=2; “10”�5=2� ⊕ ½3=2; “10”�5=2� ⊕ ½5=2; “10”�5=2� ⊕ ½7=2; “10”�5=2� ⊕ …; ð2Þ

where the notation adopted is ½J;R�S with R being the
flavor representation, J the total spin given by the vector
sum J ¼ SþL, and S the spin of the multiplet. A complete
list of the representations contained in the “56” and “70”
multiplets can be found in a general form in Eqs. (3.1) and
(3.2) of Ref. [27] for arbitrary Nf. Irreducible representa-
tions marked with an * contain only spurious states; note
that these are not only “S” multiplets but also “8” and
“10” with high spin which also decouple in the physical

limit [31]. We only show irreducible representations that
contain at least one state with the same Y, I, J quantum
numbers as a state of Nc quarks associated with a physical
baryon, hence, the ellipses. So, we have 40 spin-flavor
multiplets containing 146 isospin degenerate states to be
considered.
Baryons are assigned to states belonging to SUð6Þ ⊗

Oð3Þ, then their wave functions can be expressed with the
use of Clebsch-Gordan coefficients as
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jðL; SÞJ; Jz;R; Y; I; Izi ¼
X
Lz;Sz

�
S L J
Sz Lz Jz

�
jS; Sz;R; Y; I; IzijL; Lzi: ð3Þ

In this approach, as explained in detail in Ref. [12], excited baryons with Nc quarks of the S and MS representations are
composed of a symmetric core of Nc − 1 quarks and an orbitally excited quark. Note, however, that the spin-flavor wave
functions with defined core spin Sc do not have definite symmetry. Every baryon state with definite spin-flavor symmetry is
a linear combination of states with a different core spin Sc that satisfies the relation S ¼ Sc þ 1=2. Then, we have

jS; Sz; ðp; qÞ; Y; I; Izi ¼
X

η¼�1=2

csymðp; S; ηÞjS; Sz; ðp; qÞ; Y; I; Iz; Sc ¼ Sþ ηi; ð4Þ

where ðp; qÞ stands for representationR in Dynkin notation. The coefficients csymðp; S; ηÞ depend on the SUð6Þ symmetry
of the considered baryon. Since the core is in an SUð6Þ symmetric irreducible representation with Nc − 1 quarks, the
Dynkin weights corresponding to the flavor symmetry of the cores are completely determined by Sc and are given by
ðpc; qcÞ ¼ ð2Sc; Nc−1

2
− ScÞ. The coefficients giving the correct linear combination to build symmetric and mixed-

symmetric states in Eq. (4) are given by [10]

cMSðp; S;�1=2Þ ¼

8>><
>>:

1 if p ¼ 2S� 1 or p ¼ 2S� 2;

0 if p ¼ 2S ∓ 1 or p ¼ 2S ∓ 2;

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Sþ1∓1ÞðNcþ1�ð2Sþ1ÞÞ

2Ncð2Sþ1Þ
q

if p ¼ 2S;

cSðp; S;�1=2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2Sþ 1� 1ÞðNc þ 1 ∓ ð2Sþ 1ÞÞ

2Ncð2Sþ 1Þ

s
: ð5Þ

This implies that only MS multiplets with p ≠ 2S have core states with well-defined spin.

III. MASS OPERATORS

We build the mass operators as described in Ref. [12] but
considering a generalization similar to the one used for
decay processes and used in Ref. [24]. This generalization
consists of considering a generic spatial operator ξ (instead
of the orbital excitation operator l) which admits L → L0
transitions. This allows us to include the leading order
effects of configuration mixing of spin-flavor representa-
tions with different orbital angular momentum.
The building blocks for the construction of the effective

mass operators are the SUð6Þ ⊗ Oð3Þ generators: the
generic spatial operator of rank k that we denote ξðkÞ

and the S½1;1�i , T ½0;8�
a , G½1;8�

ia operators associated to the spin-
flavor symmetry group. The supraindex in brackets over the
spin-flavor operators indicates how they transform in the
spin and flavor spaces, respectively. The SUð2NfÞ Lie
algebra commutation relations are given by

½Si; Ta� ¼ 0;

½Si; Sj� ¼ iϵijkSk; ½Ta; Tb� ¼ ifabcTc;

½Si; Gja� ¼ iϵijkGka; ½Ta; Gib� ¼ ifabcGic;

½Gia; Gjb� ¼
i
4
δijfabcTc þ

i
2Nf

δabϵijkSk þ
i
2
ϵijkdabcGkc:

ð6Þ

As explained in the previous section, in the present
scheme, large Nc baryons arise from a generalization
in which the states have a symmetric core coupled to
an excited quark. Then, one can define separate one-
body operators that act on the core ðScÞi, ðTcÞa, ðGcÞia
and operators denoted with lower case si, ta, gia that
act on the excited quark. Since the cores are sym-
metric, core operators satisfy the operator reduction
rules for the ground state [32] by replacing Nc
by Nc − 1.
The Hamiltonian can be expressed as a linear combi-

nation of effective operators up to order OðN0
cÞ:

H ¼
X5
i¼1

cT;T
0

i Oi þOð1=NcÞ; ð7Þ

where T;T0 stand for the SUð6Þ ×Oð3Þ irreducible
representations ½“56”; Lþ� and ½“70”; Lþ� which we
indicate as SL and MSL, respectively, to lighten
notation. Each Oi operator in Eq. (7) is constructed
using the building blocks mentioned above and con-
sidering the reduction rules for the core operators.
There are five spin-singlet flavor-singlet operators that
contribute to the baryon masses up to order OðN0

cÞ
given by
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O1 ¼ ðNc1Þ½0;1�;
O2 ¼ ðξð1ÞsÞ½0;1�;

O3 ¼
1

Nc
ðξð2ÞðgGcÞ½2;1�Þ½0;1�;

O4 ¼
1

Nc
ðξð1ÞðtGcÞ½1;1�Þ½0;1�;

O5 ¼
1

Nc
ðtTcÞ½0;1�: ð8Þ

Operators in Eq. (8) are a generalization of the opera-
tors in Ref. [26] in a slightly modified basis, as we

favored a simpler form of the expressions for O4 and
O5 instead of subtracting the contributions to the
nonstrange matrix elements.

IV. MASS MATRICES

In this section, we present the calculations of the mass
matrix elements of Eq. (7) for the states in the multiplets
given in Eq. (2).
TheOi operators of Eq. (8) can all be written in a general

form as ðξðlÞG½s;r�Þ½j;r�, where G½s;r� acts on the spin-flavor
part of the wave function. The matrix element in its most
general form can be written as

hðL; SÞJ; Jz;R; Y; I; IzjðξðlÞG½s;r�Þ½j;r�jðL0; S0ÞJ0; J0z;R0; Y 0; I0; I0zi

¼ ð−1ÞJ0−J0z
 

J J0 j
Jz −J0z jz

!X
γ

 
R0 r R

Y 0; I0; I0z ν Y; I; Iz

!
γ

1ffiffiffiffiffiffiffiffiffiffiffiffi
DðRÞp

× ĴĴ0

8<
:

L L0 l

S S0 s

J J0 j

9=
;hLjjξðlÞjjL0ihS;RjjG½s;r�jjS0;R0iγ; ð9Þ

where Ĵ ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2J

p
, DðRÞ is the dimension of the

representation R, the second term in parentheses is a
Clebsch-Gordan coefficient in SUð3Þ [defined by Eq. (A1)],
and the term in braces is an ordinary SUð2Þ 9j symbol. In
the cases of mass operators, j ¼ 0 and r ¼ 1. The deduc-
tion of this expression can be found in Appendix A.
Reduced matrix elements of ξðlÞ are left undetermined to
maintain generality. As described in detail in Appendix A,
reduced matrix elements for each G½s;r� operator can be
expressed in terms of reduced matrix elements of core
operators whose explicit expressions can be found at the
end of that Appendix.
States in Eq. (2) with same spin and isospin can

mix, giving rise to 24 mass matrices: eight nonstrange
mass matrices N, Δ, with J ¼ 1=2; 3=2; 5=2; 7=2 and 16

matrices Σ, Λ, Ξ,Ωwith J ¼ 1=2; 3=2; 5=2; 7=2 containing
strange states. Some constants in the matrix elements can
be absorbed in the cT;T

0
i coefficients, including reduced

matrix elements of ξð1Þ and ξð2Þ in such way that
cMS2
2 ;cS2;MS2

2 ;cMS2
4 ;cS2;MS2

4 ∼h2jjξð1Þjj2i, cMS2
3 ∼h2jjξð2Þjj2i,

and cMS0;MS2
3 ∼ h0jjξð2Þjj2i.

After a simple inspection of the matrix expressions, we
found that a more convenient way of writing the nonstrange
matrices is by making the replacements c̄T;T

0
1 ¼ cT;T

0
1 þ

1
Nc
cT;T

0
5 and c̄S2;MS2

2 ¼cS2;MS2
2 −cS2;MS2

4 , c̄MS2
2 ¼cMS2

2 þcMS2
4 .

Since all mass matrices are symmetric, when presented, we
show only the upper right part. To illustrate the nonstrange
case, we show here the N3=2 mass matrix with these
redefinitions:

MN3=2
¼

0
BBBBB@

c̄S21 Nc 0 c̄S2;MS2
2 −c̄S2;MS2

2

c̄MS0
1 Nc −cMS0;MS2

3 −cMS0;MS2
3

c̄MS2
1 Nc − c̄MS2

2 − 1
2
c̄MS2
2 − cMS2

3

c̄MS2
1 Nc − c̄MS2

2

1
CCCCCA ð10Þ

in the f½“56”; 2þ�½12;8�; ½“70”; 0þ�½32;8�; ½“70”; 2þ�½12;8�; ½“70”; 2þ�½12;8�g basis where the superscripts indicate the spin and
flavor representations, respectively. The diagonalization of this matrix leads to four eigenvalues we denote as mK , with
K ¼ 1�, 2�, in this case. The mK are given in terms of the cT;T

0
i coefficients in the next section. The corresponding

eigenvectors are
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NK¼1þ
3=2 ¼ ð−ηMS0 ; 0;

ffiffiffiffiffiffiffiffi
1=2

p
;
ffiffiffiffiffiffiffiffi
1=2

p
Þ;

NK¼1−

3=2 ¼ ð1; 0;
ffiffiffiffiffiffiffiffi
1=2

p
ηMS0 ;

ffiffiffiffiffiffiffiffi
1=2

p
ηMS0Þ;

NK¼2þ
3=2 ¼ ð0;−ηS2 ;−

ffiffiffiffiffiffiffiffi
1=2

p
;
ffiffiffiffiffiffiffiffi
1=2

p
Þ;

NK¼2−

3=2 ¼ ð0; 1;−
ffiffiffiffiffiffiffiffi
1=2

p
ηS2 ;

ffiffiffiffiffiffiffiffi
1=2

p
ηS2Þ; ð11Þ

where ηT can be expressed in terms of the cT;T
0

i coefficients
and will be given explicitly in the next section. All
matrix elements for the nonstrange states can be written
in terms of the coefficients c̄T;T

0
1 , c̄T;T

0
2 , and cT;T

0
3 and were

found to have the same expressions as the matrices
of Ref. [24].
As an illustrative case for the strange states, we present

here the results for the Σ7=2 states in the large Nc limit. The
mass matrix in the basis f½“56”; 2þ�½32;10�; ½“70”; 2þ�½32;8�;
½“70”; 2þ�½32;S�; ½“70”; 2þ�½32;10�; ½“70”; 2þ�½52;10�g can be ex-
pressed as MΣ7=2

¼ MLO
Σ7=2

þMNLO
Σ7=2

where

MLO
Σ7=2

¼ diagðc̄S21 ; c̄MS2
1 ; c̄MS2

1 ; c̄MS2
1 ; c̄MS2

1 ÞNc;

and the OðN0
cÞ contribution is given by

MNLO
Σ7=2

¼

0
BBBBBBBBBB@

0 0 0 − 2ffiffi
5

p c̄S2;MS2
2 −

ffiffi
6
5

q
c̄S2;MS2
2

c̄MS2
2 − 2

7
cMS2
3 0 0 0

c̄MS2
2 − cMS2

4 − 3cMS2
5 0 0

2
5
c̄MS2
2 þ 8

35
cMS2
3

9
35

ffiffiffi
6

p
cMS2
3 − 3

5

ffiffi
3
2

q
c̄MS2
2

1
10
c̄MS2
2 þ 17

35
cMS2
3

1
CCCCCCCCCCA
:

In contrast with the nonstrange cases, mass matrices of
strange states have contributions from coefficients cT;T

0
4 and

cT;T
0

5 . The Σ7=2 mass matrix has four eigenvalues mK , with
K ¼ 2þ, 2−, 3, 5=2. The corresponding eigenvectors are
given by

ΣK¼5
2

7=2 ¼ ð0; 0; 1; 0; 0Þ;
ΣK¼3
7=2 ¼ ð0; 0; 0;−

ffiffiffiffiffiffiffiffi
3=5

p
;
ffiffiffiffiffiffiffiffi
2=5

p
Þ;

ΣK¼3
7=2 ¼ ð0; 1; 0; 0; 0Þ;

ΣK¼2−

7=2 ¼ ðηS2 ; 0; 0;−
ffiffiffiffiffiffiffiffi
2=5

p
;−

ffiffiffiffiffiffiffiffi
3=5

p
Þ;

ΣK¼2þ
7=2 ¼ ð1; 0; 0;

ffiffiffiffiffiffiffiffi
2=5

p
ηS2 ;

ffiffiffiffiffiffiffiffi
3=5

p
ηS2Þ:

Note that there are two states with K ¼ 3, each
one corresponding to states with “8” and “10” flavor
symmetry.
As mentioned before, even if the SUð6Þ symmetry of the

quark models does not hold in large Nc QCD, we did not

expect all states in the multiplets listed in Eq. (2) to mix.
The spin number S is not a good quantum number in nature;
namely, ðI; JÞ states are a linear combination of states with
different S number. Also, since we are neglecting the
breaking of the SUð3Þ symmetry, all members of the same
flavor multiplets are degenerate, and states from different
multiplets “8”, “10”, “1”, and “S” do not mix. However, we
allowed for configuration mixing to occur so that the states
from different SUð6Þ multiplets mix as well as states with
different L.
We found that operators O2 ¼ ðξð1ÞsÞ½0;1� and O4 ¼

1
Nc
ðξð1ÞtGcÞ½0;1� allow for the ½“56”; 2þ� and ½“70”; 2þ�

multiplets to mix, while O3 ¼ ðξð2ÞgGcÞ½0;1� allows for
the ½“70”; 0þ� and ½“70”; 2þ� multiplets to mix. Operator
O5 ¼ 1

Nc
ðtTcÞ½0;1� does not contribute to the mixing of

configurations.
By calculating the eigenvalues of the 24 mass matrices,

we found that all the S and MS states of the N ¼ 2 band
have only nine masses, which can be expressed as

m0 ¼ c̄S01 Nc; m1
2
¼ c̄MS0

1 Nc − 3cMS0
5 ;

m1� ¼ m̄1 � δ1; m3
2
¼ c̄MS2

1 Nc −
3

2
c̄MS2
2 þ 3cMS2

4 − 3cMS2
5 ;

m2� ¼ m̄2 � δ2; m5
2
¼ c̄MS2

1 Nc þ c̄MS2
2 − 2cMS2

4 − 3cMS2
5 ;

m3 ¼ c̄MS2
1 Nc þ cMS2

2 −
2

7
cMS2
3 ; ð12Þ
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where

δ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

2
ðc̄MS0

1 − c̄MS2
1 ÞNc þ

3

4
c̄MS2
2 þ 1

2
cMS2
3

�
2

þ 2ðcMS0;MS2
3 Þ2

s
;

δ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1

2
ðc̄S21 − c̄MS2

1 ÞNc þ
1

4
c̄MS2
2 −

1

2
cMS2
3

�
2

þ 2ðc̄S2;MS2
2 Þ2

s
;

and

m̄1 ¼
1

2
ðc̄MS0

1 þ c̄MS2
1 ÞNc −

3

4
c̄MS2
2 −

1

2
cMS2
3 ;

m̄2 ¼
1

2
ðc̄MS2

1 þ c̄S21 ÞNc −
1

4
c̄MS2
2 þ 1

2
cMS2
3 :

All 24 mass matrices and their eigenvalues can be
expressed in terms of only 11 coefficients corresponding
to c̄S01 , c̄MS0

1 , c̄S21 , c̄MS2
1 , c̄MS2

2 , cMS2
3 , cMS2

4 , cMS0
5 , cMS2

5 , c̄S2;MS2
2 ,

cMS0;MS2
3 . The first nine coefficients are associated to the
nine towers, while the coefficients c̄S2;MS2

2 and cMS0;MS2
3

parametrize the mixing of the spin-flavor multiplets.
When writing the eigenvalues mK obtained in terms of

the mass eigenvaluesm
∘
K that we would have in the absence

of configuration mixing (which is equivalent to setting

cMS0;MS2
3 ¼ c̄S2;MS2

2 ¼ 0), we find that mK ¼ m
∘
K for K ¼ 0,

3 and for K ¼ 1
2
; 3
2
; 5
2
, while for the K ¼ 1, 2 states

we obtain the same result as in the Nf ¼ 2 case,
namely,

mK� ¼ m
∘
Kþ þm

∘
K−

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m
∘
Kþ −m

∘
K−

2

�2

þ ðμKÞ2
s

; ð13Þ

where μ1 ¼ −
ffiffiffi
2

p
cMS0;MS2
3 and μ2 ¼ −

ffiffiffi
2

p
c̄S2;MS2
2 . With

these expressions, ηMS0 ; ηS2 can be written as

ηMS0 ¼
2μ1

m
∘
10 −m

∘
1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm∘ 10 −m

∘
1Þ2 þ 4ðμ1Þ2

q ;

ηS2 ¼
2μ2

m
∘
20 −m

∘
2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm∘ 20 −m

∘
2Þ2 þ 4ðμ2Þ2

q :

The SUð3Þ multiplets considered organize into nine
towers as follows:

m0∶ ðN1=2;Λ8
1=2;Σ

8
1=2;Ξ

8
1=2Þ; ðΔ3=2;Σ10

3=2;Ξ
10
3=2;Ω

10
3=2Þ;

m1�∶ ðN1=2;Λ8
1=2;Σ

8
1=2;Ξ

8
1=2Þ; ðN3=2;Λ8

3=2;Σ
8
3=2;Ξ

8
3=2Þ; ðΔ1=2;Σ10

1=2;Ξ
10
1=2;Ω

10
1=2Þ;

ðΔ3=2;Σ10
3=2;Ξ

10
3=2;Ω

10
3=2Þ; ðΔ5=2;Σ10

5=2;Ξ
10
5=2;Ω

10
5=2Þ;

m2�∶ ðN3=2;Λ8
3=2;Σ

8
3=2;Ξ

8
3=2Þ; ðN5=2;Λ8

5=2;Σ
8
5=2;Ξ

8
5=2Þ; ðΔ1=2;Σ10

1=2;Ξ
10
1=2;Ω

10
1=2Þ;

ðΔ3=2;Σ10
3=2;Ξ

10
3=2;Ω

10
3=2Þ; ðΔ5=2;Σ10

5=2;Ξ
10
5=2;Ω

10
5=2Þ; ðΔ7=2;Σ10

7=2;Ξ
10
7=2;Ω

10
7=2Þ;

m3∶ ðN5=2;Λ8
5=2;Σ

8
5=2;Ξ

8
5=2Þ; ðN7=2;Λ8

7=2;Σ
8
7=2;Ξ

8
7=2Þ; ðΔ3=2;Σ10

3=2;Ξ
10
3=2;Ω

10
3=2Þ;

ðΔ5=2;Σ10
5=2;Ξ

10
5=2;Ω

10
5=2Þ; ðΔ7=2;Σ10

7=2;Ξ
10
7=2;Ω

10
7=2Þ;

m1
2
∶ ðΛ1

1=2;Ξ
1
1=2Þ; ðΣS

1=2;Ξ
S
1=2;Ω

S
1=2Þ; ðΣS

3=2;Ξ
S
3=2;Ω

S
3=2Þ;

m3
2
∶ ðΛ1

3=2;Ξ
1
3=2Þ; ðΣS

1=2;Ξ
S
1=2;Ω

S
1=2Þ; ðΣS

3=2;Ξ
S
3=2;Ω

S
3=2Þ; ðΣS

5=2;Ξ
S
5=2;Ω

S
5=2Þ;

m5
2
∶ ðΛ1

5=2;Ξ
1
5=2Þ; ðΣS

3=2;Ξ
S
3=2;Ω

S
3=2Þ; ðΣS

5=2;Ξ
S
5=2;Ω

S
5=2Þ; ðΣS

7=2;Ξ
S
7=2;Ω

S
7=2Þ; ð14Þ

where we grouped states by flavor multiplet. All nonstrange
states appear in the m0, m1� , m2� , m3 towers (and the
results are consistent with Ref. [24]) and so do their strange
multiplet partners. These expressions for m0, m1� , m2� , m3

are the same as for the nonstrange case. On another hand,
the m1=2, m3=2, and m5=2 towers contain only Λ ⊃ “1” and
spurious Σ;Ξ;Ω ⊃ “S” and Ξ ⊃ “1” states. The classifica-
tion of states listed in Eq. (14) reveals a remarkable
structure; it indicates that all 146 isomultiplets considered
have only nine distinct eigenvalues [in the SUð3Þ limit].

It is easy to see from Eq. (12) that nonstrange states can
be described by using only operators O1, O2, O3 since in
SUð2Þ subspace O5 is proportional to O1 and O4 is
proportional to O2; however, the proportionality constant
is different when considering the T;T0 ¼ S2;MS2 or the
T;T0 ¼ MS2 subspace indicated by the replacements

c̄S2;MS2
2 ¼ cS2;MS2

2 − cS2;MS2
4 , c̄MS2

2 ¼ cMS2
2 þ cMS2

4 that we
did in Sec. IV.
Expressions of matrix elements in the case of finite Nc

are long. Thus, we limit ourselves only to mention that in
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all cases, spurious states decouple from the physical states
in the limit Nc ¼ 3.
It is interesting at this point to present a brief discussion

about the possible determination of the mass scale of the
towers in Eq. (14). From purely large Nc considerations, the
energy differences between towers inside a band are of order
OðN0

cÞ. However, as observed from fits of the ½70; 1−�
multiplet (see, e.g., Ref. [10]), the towers in a given band are
closer than expected from this 1=Nc argument (e.g., the spin-
orbit operator is particularly small). This can be seen as a
consequence of the fact that, in nature, resonances respond to
an approximated quark model symmetry. Since this same
outcome is expected for the band N ¼ 2 multiplets, the
assignment of quark model energies to the large Nc [i.e.,
OðN0

cÞ] towers is problematic. Namely, to be able to
reasonably match the expansion coefficients to some quark
model parameters as done in, e.g., Ref. [33], one needs to go
beyond the N0

c approximation considered in the present
work. This requires us to consider 1=Nc and flavor SUð3Þ
breaking corrections that would break the large Nc towers
giving a more similar spectrum as the one obtained from
quark models as was done in Ref. [34] for ½70; 1−�. It would
be particularly interesting to include 1=Nc contributions to
match the results to quark models that include chiral
symmetry breaking following the lines of the mapping
performed in Ref. [35].

V. TOWERS IN SUð3Þ
As mentioned in the Introduction, in the large Nc limit, a

classification of the baryons into towers arises. As a
consequence, when using a generalized quark model basis,
only states with the same K value can mix. And compared
to the no-mixing case, the configuration mixing only shifts
the energies of towers.
For a given state in an SUð6Þ ×Oð3Þ representation,

towers for nonstrange states are given by fairly simple
relations between the K number and the orbital angular
momentum, i.e., K ¼ L for the symmetric representations
andK ¼ Lþ 1 for the mixed-symmetric ones [24]. If there
is no symmetry breaking, these relations must hold for the
strange states in the corresponding SUð3Þ flavor multiplets.
For states belonging to SUð3Þ flavor representations “S”

and “1”, which do not have nonstrange states, we asso-
ciated a half-integer K value which indicates that the K

number and the orbital angular momentum relations found
for Nf ¼ 2 do not hold in the SUð3Þ case in general.
We found that in an SUð3Þ generalization, one can

consider the lower strangeness number ns;min of the flavor
multiplet. Defining M ¼ 1 − ns;min

2
, the K relation for the

mixed-symmetric representations is K ¼ LþM. In con-
trast with the SUð2Þ case, there are no general expressions
for K depending only on the Oð3Þ representation; we also
need the flavor representation term. Since there are no “S”
or “1” flavor multiplets contained in ½“56”; 0� and ½“56”; 2�,
the relationK ¼ L still holds for the S representations, and
their states fall into K ¼ 0 and K ¼ 2 towers, respectively.
It is easy to see with the generalized relation proposed for
the MS representations that states in ½“70”; 0� belonging to
“8” or “10” flavor multiplets have K ¼ 1, while states from
the “S” or “1” flavor representations have K ¼ 1

2
. States

from ½“70”; 2� with “8” or “10” flavor symmetry have
K ¼ 1, 2, 3, and states from “S” or “1” have K ¼ 3

2
; 5
2
. This

is consistent with having two K ¼ 1 and two K ¼ 2 values.

VI. NUCLEON-MESON SCATTERING PICTURE

As discussed in the Introduction, another method to
uncover the properties of excited states is to study the
scattering processes deduced exclusively from large Nc.
The compatibility of the patterns of degeneracy obtained
from the large Nc quark model and the resonances directly
obtained from large Nc was shown explicitly in Ref. [26]
for the ½“70”; 1−� multiplet.
In this section, we want to show explicitly, on one hand,

that the compatibility also holds for the ½“56”; 0þ�,
½“70”; 0þ�, ½“56”; 2þ�, ½“70”; 2þ� multiplets and, on the
other hand, that the K values we attributed to the strange
states are consistent with this picture. In particular, we
assigned half-integer K values to the “S” and “1”
representations.
In order to analyze a resonance with Is, Js quantum

numbers, we study the meson-baryon scattering ϕðSϕ;
Rϕ; Iϕ; YϕÞ þ BðSB;RB; IB; YBÞ → ϕ0ðSϕ0 ;Rϕ0 ; Iϕ0 ; Yϕ0 Þþ
B0ðSB0 ;RB0 ; IB0 ; YB0 Þ, where ϕ and B stand for the meson
and baryon, respectively. A resonance is a pole in the
scattering amplitude at unphysical kinematics. The phe-
nomenologically relevant cases are the ones with 0−

mesons, so we use the spinless meson expression given
by [26]

Sll0SBSB0JsRsγsγ
0
sIsYs

¼ ð−1Þl−l0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðRBÞDðRB0 Þp

DðRsÞ
X
I;I0 ;Y∈8;
I00∈Rs

ð−1ÞIþI0þY Î00
� RB 8 Rsγs
SB

Nc
3

IY I00Y þ Nc
3

�

×

� RB 8 Rsγs
IBYB IϕYϕ IsYs

�� RB0 8 Rsγ
0
s

SB0 Nc
3

I0Y I00Y þ Nc
3

�� RB0 8 Rsγ
0
s

IB0YB0 Iϕ0Yϕ0 IsYs

�

×
X
K

K̂

�
K I00 Js
SB l I

��
K I00 Js
SB0 l0 I0

�
τII

0Y
Kll0 ; ð15Þ
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where RB ¼ ð2SB; Nc
2
− SBÞ is the representation corre-

sponding to baryons in the ground state “56” with spin
SB, for which the nonstrange states have isospin IB ¼ SB
and YB;max ¼ Nc

3
. States with hypercharge Ymax ¼ Nc

3
, “8”

and “10” states, decay via π and η, while “1” and “S”
states which have Ymax ¼ Nc

3
− 1 decay via K̄0 and K−. [To

see a detailed example of how Eq. (15) is applied in this
context, see Ref. [25].]
A resonant pole appearing in one of the physical

amplitudes must appear in at least one reduced amplitude
τII

0Y
Kll0 . This reduced amplitude contributes, in turn, to a
number of other physical amplitudes. For a given resonance
with Rs, Ys, and Is quantum numbers, we find the τII

0Y
Kll0

amplitudes that contain that pole, the only characteristic
number associated with the resonance being K.
For our purposes, we only need to consider a small set of

scattering processes. Namely, those for which the desired
poles can be accessed so that the possible K values
associated to a given resonance can be determined.
Following the lines of Ref. [26], all quantum numbers
are chosen diagonal (B ¼ B0, ϕ ¼ ϕ0, l ¼ l0), and we
analyze only “8” → “8” transitions except for the cases in
which this scattering does not access all poles; in that case,
we also show the “10” → “10” transitions. The obtained
results are presented in Tables I–VI of Appendix B where
we also include the results obtained with the operator
method. We can read that a state found to have a massmi in
the 1=Nc expansion with quark operators can be associated
with a resonance that occurs in the K ¼ i scattering

channel. Resonant poles are obtained if the poles are
located at the values mK; thus, the states described in
Eq. (2) organize as the pattern found on Eq. (14).
From the tables of Appendix B, we observe that some K

values found from the resonance picture do not have a
counterpart in the results using the 1=Nc expansion. As
noted in Ref. [36], this does not mean the pictures are not
compatible but rather that the higher K amplitudes corre-
spond to resonances of higher orbital momentum (with the
same parity) that reveal themselves in the same channel.
It is interesting to note that the consequence of breaking

SUð3Þ symmetry in the resonance picture is that only τ with
different Y become distinct (even if they have the same K
number). So the resonance picture suggests that states with
the same hypercharge in the same K tower will remain
degenerate even if SUð3Þ symmetry is arbitrarily broken.

VII. THE ANTISYMMETRIC CASE:
THE ½“20”;1+ � MULTIPLET

As mentioned in Sec. II, in theNc > 3 generalization, we
assume that the additional Nc − 3 quarks appear in a
completely symmetric spin-flavor combination. The
denoted antisymmetric representation is only fully anti-
symmetric for Nc ¼ 3. As for the MS and S multiplets, to
analyze the masses of antisymmetric states, we need to
know the SUð2Þ and SUðNfÞ contents of the SUð2NfÞ
states. Using the general method described in Ref. [30], we
obtained the SUð6Þ decomposition into spin and flavor
representations in the antisymmetric case:

A≡ ðNc − 3; 0; 1; 0;…; 0Þ ¼ ⨁
ðNc−5Þ=2

n¼0

�
nþ 3

2
;

�
2nþ 1;

1

2
ðNc − 1Þ − n; 1; 0; 0;…; 0

��

⨁
ðNc−7Þ=2

n¼0

�
nþ 1

2
;

�
2nþ 1;

1

2
ðNc − 7Þ − n; 1; 0; 0;…; 0

��

2 ⨁
ðNc−5Þ=2

n¼0

�
nþ 1

2
;

�
2nþ 2;

1

2
ðNc − 5Þ − n; 0; 0;…; 0

��

⨁
ðNc−5Þ=2

n¼0

�
nþ 1

2
;

�
2nþ 3;

1

2
ðNc − 3Þ − n; 0; 0;…; 0

��

⨁
ðNc−3Þ=2

n¼0

�
nþ 1

2
;

�
2nþ 1;

1

2
ðNc − 3Þ − n; 0; 0;…; 0

��

⨁
ðNc−7Þ=2

n¼0

�
nþ 1

2
;
�
2nþ 4;

1

2
ðNc − 7Þ − n; 0; 0;…; 0

��

⨁
ðNc−5Þ=2

n¼0

�
nþ 1

2
;

�
2nþ 2;

1

2
ðNc − 5Þ − n; 0; 0;…; 0

��

⨁
ðNc−5Þ=2

n¼0

�
nþ 1

2
;

�
2n;

1

2
ðNc − 3Þ − n; 0; 0;…; 0

��

⨁
ðNc−3Þ=2

n¼0

�
nþ 3

2
;

�
2n;

1

2
ðNc − 3Þ − n; 0; 0;…; 0

��
: ð16Þ
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For low values of Nc, some terms in Eq. (16) vanish as the
sum labels have to be non-negative, and the nr entries in the
Dynkin symbols have to be null when r > Nf − 1 (or else
we would need more flavors to obtain the wanted sym-
metry); any term that does not fulfill these conditions
vanishes. It is worth noting that according to Eq. (16), the

first three terms in Eq. (3.3) of Ref. [27] should not be
present.
After a straightforward examination of the states

of each multiplet, we find that the SUð6Þ decompositions
useful to this analysis for each spin-flavor multiplet are
given by

½“20”; 1�∶½1=2; “8”�1=2 ⊕ ½3=2; “8”�1=2 ⊕ ½1=2; “1”�3=2 ⊕ ½3=2; “1”�3=2 ⊕
½5=2; “1”�3=2 ⊕ ½1=2; “8”�3=2� ⊕ ½3=2; “8”�3=2� ⊕ ½5=2; “8”�3=2� ⊕
½1=2; “1”�1=2� ⊕ ½3=2; “1”�1=2� ⊕ …: ð17Þ

There are two physical octets with J ¼ 1=2; 3=2 and three
singlet Λ states with J ¼ 1=2; 3=2; 5=2 associated with the
baryons expected to appear in nature.

A. Antisymmetric wave functions

To build the antisymmetric wave functions, we assume
that the cores are mixed-symmetric states of Nc − 1 quarks.
Antisymmetric states are, therefore, a linear combination of
mixed-symmetric cores coupled to a quark which can be
written as

jS;RiA ¼
X
i

cijð½Sci ;Rci �MS qÞ½S;R�i; ð18Þ

where q≡ ½1=2; 3� represents the single quark, and the MS
label in the core representation indicates that the core has

mixed symmetry in the spin-flavor space. The MS core and
the excited quark quantum numbers are coupled in such a
way that the overall symmetry corresponds to the spin and
flavor representations S and R. The coefficients ci in
Eq. (18) have to be set to those that give the antisymmetric
spin-flavor representation.
The MS cores, in turn, are a combination of a symmetric

state of Nc − 2 quarks coupled to a quark, which can be
written as

jSc;RciMS ¼
X
j

djjð½Sc̃j ;Rc̃j �S qÞ½Sc;Rc�i; ð19Þ

where dj are known coefficients [given by the cMS of
Eq. (5) with the replacement Nc → Nc − 1].
The found decomposition of the mixed-symmetric cores

for arbitrary Nc and Nf is given by

MScore ≡ ðNc − 3; 1; 0; 0;…; 0Þ ¼ ⨁
ðNc−3Þ=2

n¼0

�
n;

�
2nþ 2;

1

2
ðNc − 3Þ − n; 1; 0; 0;…; 0

��

⨁
ðNc−5Þ=2

n¼0

�
nþ 1;

�
2nþ 2;

1

2
ðNc − 3Þ − n; 1; 0; 0;…; 0

��

⨁
ðNc−3Þ=2

n¼0

�
nþ 1;

�
2n;

1

2
ðNc − 1Þ − n; 0; 0;…; 0

��

⨁
ðNc−5Þ=2

n¼0

�
n;

�
2nþ 1;

1

2
ðNc − 5Þ − n; 0; 0;…; 0

��

⨁
ðNc−5Þ=2

n¼0

�
nþ 1;

�
2nþ 1;

1

2
ðNc − 5Þ − n; 0; 0;…; 0

��
: ð20Þ

At this point, the only parameters left to determine in
order to express the antisymmetric wave functions in the
uncoupled basis are the ci coefficients of Eq. (18).
To find the appropriate linear combination of MS cores,

we use the quadratic Casimir operator. The SUð6Þ quad-
ratic Casimir operator, whose matrix elements are known,
can be broken down into SUð2Þ and SUð3Þ core and

excited quark contributions. By calculating the matrix
elements of these contributions, a matrix of the Casimir
operator can be obtained which, when diagonalized, will
give the core composition of the states with definite
symmetry. Details of these calculations can be found in
Appendix C. The core composition for the antisymmetric
representations of interest in this work is given by
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				 12 ; “8”



A
¼ −

1ffiffiffi
2

p jð½1;R0�MSqÞ½12;8�i þ
1ffiffiffi
2

p jð½0;R2�MSqÞ½12;8�i;
				 32 ; “8”



A
¼ −

1

2
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc − 3

Nc

s
jð½1;R0�MSqÞ½32;8�i −

3

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc − 1

Nc

s
jð½1;R2�MSqÞ½32;8�i þ

ffiffiffi
5

p

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc þ 3

Nc

s
jð½2;R2�MSqÞ½32;8�i;

				 32 ; “1”



A
¼ −

1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc þ 1

Nc − 1

s
jð½1;R0�MSqÞ½32;1�i þ

1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc − 3

Nc − 1

s
jð½1;R1�MSqÞ½32;1�i;

				 12 ; “1”



A
¼ 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNc − 3ÞðNc þ 1Þ

NcðNc − 1Þ

s
jð½1;R0�MSqÞ½12;1�i −

1

2

ffiffiffi
3

2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc − 1

Nc

s
jð½0;R1�MSqÞ½12;1�i

þ 1

2
ffiffiffi
2

p Nc þ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NcðNc − 1Þp jð½1;R1�MSqÞ½12;1�i; ð21Þ

where Rh ≡ ðh; Nc−1−7hþ3h2

2
Þ. These coefficients have been

checked against those in Ref. [37] for Nc ¼ 5.

B. Operator expansion

Since we are not considering SUð3Þ symmetry breaking,
the energy spectrum for large Nc for all states belonging to
“8” flavor multiplets will be given by the K value that
follows from the K ¼ Iþ J relation for nonstrange states
presented in the Introduction. This implies that there are
three towers with K ¼ 0, 1, 2. Then, only three operators
are needed to describe the states of flavor multiplets that
contain nonstrange baryons of the ½“20”; 1þ� multiplet. The
mass operators for the expansion at order OðN0

cÞ can be
chosen to be

O1 ¼ ðNc1Þ½0;1�;
O2 ¼ ðξð1ÞsÞ½0;1�;

O3 ¼
1

Nc
ðξð2ÞðgGcÞ½2;1�Þ½0;1�: ð22Þ

The mass operator can be written as a linear combination of
these operators as in Eq. (7) where the sum goes up
to i ¼ 3.
The building blocks of the mass operators are, as in the S

and MS cases, the SUð6Þ generators acting on the excited
quark and on the core. This clearly implies that the matrix
elements of these operators between states containing cores
of different symmetry vanish. Therefore, as mentioned in
the Introduction, there is no mixing between baryons of the
½“20”; 1þ� and the other states of the N ¼ 2 band.
Using the operators of Eq. (22) for the nucleon with

J ¼ 1=2, we obtain

MN1=2
¼
� c1Nc − 2

3
c2 − 1

3
ffiffi
2

p c2 − 5

24
ffiffi
2

p c3

c1Nc − 5
6
c2 − 5

48
c3

�
: ð23Þ

This matrix has two eigenvalues that we label m0, m1.

For N3=2, we have

MN3=2
¼
�
c1Nc þ 1

3
c2 −

ffiffi
5

p
6
c2 −

ffiffi
5

p
48
c3

c1Nc − 5
6
c2 − 5

48
c3

�
; ð24Þ

with eigenvalues m1, m2, and

MN5=2
¼ c1Nc þ

1

2
c2 −

1

48
c3 ð25Þ

for the N5=2 state, which we call m3.
Eigenvalues found for the strange partners in these flavor

multiplets are the same as the ones found for the corre-
sponding nucleon.
The eigenvalues’ expressions found in terms of the

expansion coefficients are

m0 ¼ c1Nc − c2 −
5

24
c3;

m1 ¼ c1Nc −
1

2
c2 þ

5

48
c3;

m2 ¼ c1Nc þ
1

2
c2 −

1

48
c3:

The tower structure found for the nonstrange antisym-
metric states and their strange partners in the flavor
multiplet is given by

m0∶ ðN1=2;Λ8
1=2;Σ

8
1=2;Ξ

8
1=2Þ;

m1∶ ðN1=2;Λ8
1=2;Σ

8
1=2;Ξ

8
1=2Þ; ðN3=2;Λ8

3=2;Σ
8
3=2;Ξ

8
3=2Þ;

m2∶ ðN3=2;Λ8
3=2;Σ

8
3=2;Ξ

8
3=2Þ; ðN�

5=2;Λ
�ð8Þ
5=2 ;Σ

�ð8Þ
5=2 ;Ξ

�ð8Þ
5=2 Þ:

ð26Þ

This structure is the same as the one found for the
½“70”; 1−� multiplet at large Nc where the spin-flavor
multiplets containing nonstrange states organize into three
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towers with K ¼ 0, 1, 2 [26], and it also agrees with the
remark in Ref. [27], where using a hedgehog-based
analysis, the authors argue that the MS and A configura-
tions have the same spectrum of nonstrange states for large
Nc. Furthermore, not only the tower structure coincides but
also the mi and the matrices expressions are identical to the
ones found for the MS states which can be obtained from
expressions in Refs. [9,12] (in particular, the matrices in
this work are identical to those in Ref. [36]). Then, the
matrices found imply, as in the MS case, that the mixing
angle in the unitary matrix that diagonalizes MN1=2

and
MN3=2

is surprisingly simple, as it is independent of the ci
coefficients. Given the fact that we only have three
operators involved and two matrices, it is not clear if this
is a coincidence or if it suggests that there is a deeper
connection between the MS and A symmetries.

C. Towers for antisymmetric states

We corroborated that multiplets of ½“20”; 1þ� containing
nonstrange baryons organize as the MS states of ½“70”; 1−�;
the states fall into three towers labeled with K ¼ 0, 1, 2.
The large Nc spectrum of the strange flavor multiplets
appears to have a different structure. The states’ content no
longer matches the MS case (½“70”; 1−� has only
½1=2; “1”�1=2, ½3=2; “1”�1=2). In Appendix D, we present
the partial amplitudes containing resonances with quantum
numbers corresponding to A states. As can be deduced
from Table VII, the resonance picture indicates that baryons
contained in the ½“20”; 1þ� representation belonging to
½1=2; “1”�1=2, ½1=2; “1”�3=2, ½3=2; “1”�1=2, ½3=2; “1”�3=2,
½5=2; “1”�3=2 multiplets organize as follows:

K ¼ 1

2
∶ ðΛ1

1=2;Ξ
1
1=2Þ;

K ¼ 3

2
∶ ðΛ1

3=2;Ξ
1
3=2Þ;

K ¼ 5

2
∶ ðΛ1

5=2;Ξ
1
5=2Þ: ð27Þ

But, for large Nc there are two Λ1
1=2 states with intrinsic

spin 1=2 and 3=2 that mix, resulting in two Λ1
1=2 eigenstates

of the large Nc QCD. When considering the resonance
picture, only one state with a given J can be assigned to a
given energy; the other state has to be identified to a
different energy level of the same K. Then, in the case of
Λ1
1=2 there are two towers K ¼ 1

2
and K ¼ 1̃

2
. There is an

analogous situation for the Λ1
3=2. When extending the

analysis to all nonstrange states of ½“20”; 1þ�, five towers
seem to appear in addition to the ones containing non-
strange states, namely, K ¼ 1

2
; 1̃
2
; 3
2
; 3̃
2
; 5
2
. Nevertheless, at

this point we turn our attention to the phenomenological
relevance of such an analysis; two towers seem to arise with
a same given K value (these towers with the same K value

should not be confused with the ones of the case of the S
and MS states described in previous sections where K
towers with � labels arise exclusively from configuration
mixing), but only one of these two towers contains the
physical state, the other is a “spurious tower”; i.e., this
entire tower decouples in the physical limit. Then, it is clear
that from a phenomenological point of view there is no
interest in including these two extra spurious towers. Only
three nonspurious towers arise, which indicates that to
consider these states in a 1=Nc expansion framework, one
should considerate three extra operators in addition to those
in Eq. (22).
When building the mass operator for antisymmetric

states, the reduction rules of Ref. [32] cannot be used
for core operators since cores are no longer symmetric.
However, the rules apply to the inner core operators since
they are ðNc − 2Þ-quark symmetric cores. Core operators
can be decomposed as a sum of an ðNc − 2Þ-quark core
operator plus a single quark operator Λc ¼ Λc̃ þ λ̃; the
reduction rules can then be applied to the Λc̃ operators. On
another hand, using the Casimir invariant for the antisym-
metric representation given by Eq. (C2) and the Casimir
invariant for the mixed-symmetric representation with
ðNc − 1Þ quarks and for the fundamental representation
of a single quark given by CSUð6ÞðNc − 3; 1; 0; 0; 0Þ ¼
1
12
ðNc − 1Þð5Nc þ 13Þ and CSUð6Þð1; 0; 0; 0; 0Þ ¼ 35

12
, res-

pectively, we can express the quadratic Casimir identity for
the antisymmetric representation as

2

3
sSc þ tTc þ 4gGc ¼ −

Nc þ 11

6
: ð28Þ

Then, as in the case of the “56” and “70” multiplets, the
gGc operator can always be eliminated in favor of sSc
and tTc.
Considering the reduction rules for symmetric represen-

tations applied as described above and the Casimir identity
found for A states with MS cores, additional operators
O4 ¼ 1

Nc
ðξð1ÞðtGcÞ½1;1�Þ½0;1� and O5 ¼ 1

Nc
ðtTcÞ½0;1� seem to

be a good choice of basis for an operator expansion that
includes all nonstrange states as they have been used in
½“70”; 1−� analysis in theNf ¼ 3 case. The extra operator to
consider could be O6 ¼ 1

Nc
ðξð1ÞðgTcÞ½1;1�Þ½0;1�, which in the

case of antisymmetric states is not linearly dependent on
the other operators since the cores are mixed symmetric.
With these operators, one can take a phenomenological
approach and calculate the spectra for finite Nc once the
empirical data about these states become available.
Even if there are no data about the strange antisymmetric

states, as mentioned in the Introduction, the nonstrange
resonances Nð2100Þ1=2þ and Nð2040Þ3=2þ have been
tentatively assigned to the antisymmetric multiplet [38]. In
fact, there is a continuing experimental effort in establish-
ing the actual existence of these states. In particular, in
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Ref. [39] the authors find that they are necessary to
describe the cross-section data. Moreover, very recently
Nð2100Þ1=2þ has been upgraded from one to three stars in
the 2018 edition of Ref. [29]. In the large Nc picture, the
Nð2100Þ1=2þ would be associated as the physical state
arising from the mixture of N1=2 states belonging to the
K ¼ 0, 1 towers in Eq. (26) (note that the other combina-
tion turns out be unphysical for Nc ¼ 3). Similarly,
Nð2040Þ3=2þ would be associated to the physical mixture
of N3=2 states belonging to the K ¼ 1, 2 towers.

VIII. CONCLUSIONS

In this work, we performed a complete large Nc analysis
of the masses of all states belonging to the N ¼ 2 quark
model band for Nc ¼ 3.
We first studied baryons of theN ¼ 2 band in multiplets

½“56”; Lþ� and ½“70”; Lþ� in the large Nc limit allowing for
the states belonging to the irreducible representation
SUð6Þ ×Oð3Þ to mix. This representation arises from
the quark models, but it is not a symmetry of QCD nor
is it a symmetry of large Nc QCD. To analyze the spectrum
of these baryons in the large Nc limit, we considered a
1=Nc expansion using core and excited quark operators
with a generic spatial operator which allows for the quark
model states to mix. We found that configuration mixing
effects appear only on flavor multiplets containing non-
strange states; it has no effect over states in the “1” or “S”
flavor representations. The 146 isomultiplets of the S and
MS representations fall into only nine towers predicted by
large Nc QCD.We found that only the SUð6Þ ×Oð3Þ states
with the same K label can mix, which is a direct
consequence of the contracted symmetry of the large Nc
limit. Multiplets with nonstrange baryons were found to
belong to five towers labeled with K ¼ 0; 1�; 2�; 3, while
strange flavor multiplets were associated with K ¼ 1

2
; 3
2
; 5
2

towers. We generalized the relation between the K and L
numbers for MS states in the Nf ¼ 3 case, finding that it
cannot be stated as simply as in the nonstrange case since it
acquires a dependence on the flavor representation. In
addition to the operator analysis, we showed explicitly that
the compatibility of this method and the resonance picture
holds for the entire ½“56”; Lþ� and ½“70”; Lþ� multiplets,
and, in particular, we showed it still holds when considering
configuration mixing.
Using a similar 1=Nc expansion with effective quark

operators (with a smaller basis), we also showed that
½“20”; 1þ� configurations from flavor multiplets containing
nonstrange states also fall into the towers predicted by the

large Nc symmetries. In addition, we found that the
resonance picture gives a compatible classification. Our
results explicitly show that the A states have the same
spectrum of nonstrange states as the MS with L ¼ 1 in the
large Nc limit. Furthermore, we observed that nonstrange
mass matrices belonging to ½“20”; 1þ� are identical to those
from ½“70”; 1−�. The tower structure was expected to be the
same, but considering the nontrivial building of the anti-
symmetric wave functions, the result that every matrix
element is proportional to the MS case was not obvious.
Given the content of these multiplets, we could only
compare two matrices; it would be very interesting to test
this for higher angular momentum states, where there will
be more matrices to compare, to further understand if this
effect is an overview of a more profound relation between
the A and MS representations. We assumed A states can be
described as a MS core coupled to excited quarks, and we
found the nontrivial spin-flavor composition of the states
belonging to the ½“20”; 1þ�multiplet. This building of the A
states gives results compatible with the large Nc predictions
suggesting that effects from more complex constructions
are Nc suppressed. The baryon-meson scattering picture
indicates that the strange multiplets of ½“20”; 1þ� fall into
towers with K ¼ 1

2
; 3
2
; 5
2
. However, as explained in Sec. VII,

there are three towers containing one physical baryon
each and two additional spurious towers we labeled
with K ¼ 1̃

2
; K ¼ 3̃

2
.

Using core and excited quark operators, we obtained
results predicted in large Nc QCD and that are compatible
with the resonance picture, even when including configu-
ration mixing. This indicates that this approach is appro-
priate to analyze states in the largeNc limit and effects from
other operators must be subleading.
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APPENDIX A: CONVENTIONS AND DETAILS
OF THE CALCULATION OF RELEVANT

MATRIX ELEMENTS

In addition to the usual definition of reduced matrix
element for SUð2Þ (in this paper, we follow the conventions
of Ref. [40]), we also use the Wigner-Eckart theorem for
SUð3Þ, which is given by

hR; fY; I; IzgjTr
fYop;Iop;Iopz gjR0; fY 0; I0; I0zgi

¼
X
γ

� R0 r R
fY 0; I0; I0zg fYop; Iop; Iopz g fY; I; Izg

�
γ

1ffiffiffiffiffiffiffiffiffiffiffiffi
DðRÞp hR0jjTrjjR0iγ; ðA1Þ
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where DðRÞ is the dimension of the representation, and the parentheses indicate a Clebsch-Gordan coefficient
for SUð3Þ.
The Wigner-Eckart theorem in both its SUð2Þ and SUð3Þ versions leads to the general expression for the mass matrix

elements

hðL; SÞJ; Jz;R; Y; I; IzjðξðlÞG½s;r�Þ½j;r�jðL0; S0ÞJ0; J0z;R0; Y 0; I0; I0zi

¼ ð−1ÞJ0−J0z
� J J0 j
Jz −J0z jz

�
1

ĵ

X
γ

� R0 r R
Y 0; I0; I0z ν Y; I; Iz

�
γ

1ffiffiffiffiffiffiffiffiffiffiffiffi
DðRÞp

× hðL; SÞJ;RjjðξðlÞG½s;r�Þ½j;r�jjðL0; S0ÞJ0;R0iγ; ðA2Þ

where ĵ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2j

p
. In the cases of mass operators, we will have j ¼ 0 and r ¼ 1. The orbital and spin-flavor contributions

in the reduced matrix element above can be written in an uncoupled basis as

hðL; SÞJ;RjjðξðlÞG½s;r�Þ½j;r�jjðL0; S0ÞJ0;R0iγ

¼ ĵ Ĵ Ĵ0

8<
:

L L0 l

S S0 s

J J0 j

9=
;hLjjξðlÞjjL0ihS;RjjG½s;r�jjS0;R0iγ; ðA3Þ

where the term in braces is an ordinary SUð2Þ 9j symbol. A simple replacement of the expression in Eq. (A3) into Eq. (A2)
gives Eq. (9). The terms hLjjξðlÞjjL0i are left undetermined in this paper to maintain the generality over the orbital operator.
Then, the terms to determine are the reduced matrix elements hS;RjjG½s;r�jjS;R0iγ .
The G operator can be written as

G½s;r� ¼ ðλ½sa;ra�Λ½sb;rb�Þ½s;r�;γ2 ; ðA4Þ

where λ andΛ are quark and core operators, respectively, λ ¼ s, t, g, andΛ ¼ Sc; Tc; Gc. Then, the matrix elements of G can
be written in the uncoupled basis as

hð½Sc;Rc�qÞ½S;R�jjðλ½sa;ra�Λ½sb;rb�Þ½s;r�;γ2 jjð½S0c;R0
c�qÞ½S0;R0�iγ

¼ ð−1Þsaþsb−s
ŝ Ŝ Ŝ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3DðRÞDðRcÞ
p

8<
:

Sc S0c sb
1=2 1=2 sa
S S0 s

9=
;
X
γa

8<
:

R0
c rb Rc; γa
3 ra 3

R0 r; γ2 R

9=
;

γ

× hSc;RcjjΛ½sb;rb�jjS0c;R0
ciγahqjjλ½sb;rb�jjqi; ðA5Þ

where the second term in braces represents an SUð3Þ 9j symbol, which is defined in the following.
The SUð3Þ 9j symbols are defined by the reduced matrix element of a two-body operator in the SUð3Þ space written as

hðR1;R2ÞR;γjjðTra
1 T

rb
2 Þr;αjjðR0

1;R
0
2ÞR

0;γ0 iβ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðRÞDðR1ÞDðR2Þ

p X
βa;βb

8<
:

R0
1 ra R1; βa

R0
2 rb R2; βb

R0; γ0 r; α R; γ

9=
;

β

hR1jjTra
1 jjR0

1ihR2jjTrb
2 jjR0

2i: ðA6Þ

The SUð3Þ 9j symbol can be calculated by evaluating
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X
β

� R0 r R
fY 0; I0g fy; ig fY; Ig

�
β

8<
:

R0
1 ra R1; βa

R0
2 rb R2; βb

R0; γ0 r; α R; γ

9=
;

β

¼
X

I1 ;I
0
1
;I2 ;I

0
2
;ia;ib;

Y1 ;Y
0
1
;Y2 ;Y

0
2
;ya;yb

fðI01; ia; I1; I02; ib; I2; I0; i; I; I0z; izÞDðRÞ
� R0

1 R0
2 R0

fY 0
1; I

0
1g fY 0

2; I
0
2g fY 0; I0g

�
γ0

×

� ra rb r
fya; iag fyb; ibg fy; ig

�
α

� R1 R2 R
fY1; I1g fY2; I2g fY; Ig

�
γ

×

� R0
1 ra R1

fY 0
1; I

0
1g fya; iag fY1; I1g

�
βa

� R0
2 rb R2

fY 0
2; I

0
2g fyb; ibg fY2; I2g

�
βb

; ðA7Þ

where the SUð3Þ isoscalar factors are defined by

� ra rb r
fya; ia; iazg fyb; ib; ibzg fy; i; izg

�
α

¼
� ia ib i
iaz ibz iz

�� ra rb r
fya; iag fyb; ibg fy; ig

�
α

:

The f function in Eq. (A7) is given by

fðI01; ia; I1; I02; ib; I2; I0; i; I; I0z; izÞ ¼
X
I0
1z;iaz

� I01 I02 I0

I01z I0z − I01z I0z

�� ia ib i
iaz iz − iaz iz

�

×

� I1 I2 I
I01z þ iaz I0z − I01z þ iz − iaz I0z þ iz

�� I01 ia I1
I01z iaz I01z þ iaz

�

×

� I02 ib I2
I0z − I01z iz − iaz I0z − I01z þ iz − iaz

�� I0 i I
I0z iz I0z þ iz

�
−1
: ðA8Þ

The required explicit expression for the SUð3Þ isoscalar factors has been obtained in Refs. [41,42].
Expressions for hSc;RcjjΛ½sb;rb�jjS0c;R0

ciγa in Eq. (A5) are given explicitly for ðNc − 1Þ-quark symmetric cores in the
following.
The matrix elements of the Gc operator for symmetric cores are given by

hSc;RcjjGcjjS0c;R0
ciγb ¼

8<
:

hγbðScÞ if Sc ¼ S0c;

fðSc; S0cÞ if jSc − S0cj ¼ 1 and γb ¼ 1;

0 otherwise;

ðA9Þ

where

h1 ¼ ð−1Þδ2Sc;Nc−1
ð2Sc þ 1ÞðNc þ 2Þffiffiffi

6
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ScðSc þ 1ÞðNc þ 1 − 2ScÞðNc þ 3þ 2ScÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ScðSc þ 1Þ þ ðNc þ 5ÞðNc − 1Þp ;

h2 ¼ −
ð1 − δSc;0Þ

8
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNc þ 3Þ2 − 4S2c

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N2

c − 1 − 4ScðSc þ 1Þ
q

× ð2Sc þ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNc þ 1 − 2ScÞðNc þ 5þ 2ScÞ

12ScðSc þ 1Þ þ ðNc þ 5ÞðNc − 1Þ

s
;

f ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2S0c þ 1Þð2Sc þ 1Þp

8
ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðNc þ 1 − 2S0cÞðNc þ 3þ 2S0cÞðNc þ 1 − 2ScÞðNc þ 3þ 2ScÞ

p
: ðA10Þ
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On another hand, for Tc we have

hSc;RcjjTcjjS0c;R0
ci ¼ δScS0c ŜcδRR0 ð−1Þδq;0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðRÞCSUð3ÞðRÞ

q
; ðA11Þ

where CSUð3ÞðRÞ is the quadratic Casimir operator for SUð3Þ given by CSUð3Þðp; qÞ ¼ p2þq2þpqþ3pþ3q
3

.
The Sc matrix elements for symmetric cores are

hSc;RcjjScjjS0c;R0
ci ¼ δRR0

ffiffiffiffiffiffiffiffiffiffiffiffi
DðRÞ

p
δScS0c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ScðSc þ 1Þð2Sc þ 1Þ

p
: ðA12Þ

APPENDIX B: PARTIAL-WAVE AMPLITUDES FOR SYMMETRIC
AND MIXED-SYMMETRIC STATES

In this Appendix, we list the partial-wave amplitudes containing resonances with quantum numbers corresponding to the
S and MS states of the N ¼ 2 band in the large Nc quark picture.

TABLE I. Large Nc mass eigenvalues in the 1=Nc expansion corresponding to states in the ½56; Lþ� and ½70; Lþ�
multiplets with L ¼ 0, 2 and the partial-wave amplitudes containing resonances with the same quantum numbers.
Since I ¼ I0 in all the partial waves, to lighten notation we replaced the II0Y labels in τ to those of a meson having
the corresponding quantum numbers. Partial-wave amplitudes containing the nonstrange resonances were
calculated before in Ref. [27] and are listed here for the reader’s convenience.

State Pole mass Partial wave, K amplitudes

N1=2 m0, m1� PπN
11 ¼ 1

3
ðτπ01 þ 2τπ11Þ

PηN
11 ¼ τη11

N3=2 m1� , m2� PπN
13 ¼ 1

6
ðτπ11 þ 5τπ21Þ

PηN
13 ¼ τη11

N5=2 m2� , m3 FπN
15 ¼ 1

9
ð5τπ23 þ 4τπ33Þ

FηN
15 ¼ τη33

N7=2 m3 FπN
17 ¼ 1

4
ðτπ33 þ 3τπ43Þ

FηN
17 ¼ τη33

Δ1=2 m1� , m2� PπN
31 ¼ 1

6
ðτπ11 þ 5τπ21Þ

Δ3=2 m0, m1� , m2� , m3 PπN
33 ¼ 1

12
ð2τπ01 þ 5τπ11 þ 5τπ21Þ

PπΔ
33 ¼ 1

15
ð5τπ01 þ 2τπ11 þ 8τπ21Þ

FπΔ
33 ¼ 1

5
ðτπ23 þ 4τπ33Þ

PηΔ
33 ¼ τη11

FηΔ
33 ¼ τη33

Δ5=2 m1� , m2� , m3 PπN
35 ¼ 1

126
ð10τπ23 þ 35τπ33 þ 81τπ43Þ

PπΔ
35 ¼ 1

10
ð3τπ11 þ 7τπ21Þ

FπΔ
35 ¼ 1

1260
ð512τπ23 þ 343τπ33 þ 405τπ43Þ

PηΔ
35 ¼ τη11

FηΔ
35 ¼ τη33

Δ7=2 m2� , m3 FπN
37 ¼ 1

56
ð20τπ23 þ 21τπ33 þ 15τπ43Þ

TABLE II. Continuation of Table I.

State Pole mass Partial wave, K amplitudes

Λ8
1=2

m0, m1� PπΣ
01 ¼ 1

3
ðτπ01 þ 2τπ11Þ

PηΛ
01 ¼ τη11

Λ8
3=2

m1� , m2� PπΣ
03 ¼ 1

6
ðτπ11 þ 5τπ21Þ

PηΛ
03 ¼ τη11

(Table continued)
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TABLE II. (Continued)

State Pole mass Partial wave, K amplitudes

Λ8
5=2

m2� , m3 FπΣ
05 ¼ 1

9
ð5τπ23 þ 4τπ33Þ

FηΛ
05 ¼ τη33

Λ8
7=2

m3 FπΣ
07 ¼ 1

4
ðτπ33 þ 3τπ43Þ

FηΛ
07 ¼ τη33

Λ1
1=2 m1

2
PK̄N
01 ¼ τK̄1

2
1

Λ1
3=2 m3

2
PK̄N
03 ¼ τK̄3

2
1

Λ1
5=2 m5

2
FK̄N
05 ¼ τK̄5

2
3

State Pole mass Partial wave, K amplitudes

Σ8
1=2

m0, m1� PπΛ
11 ¼ 1

3
ðτπ01 þ 2τπ11Þ

PπΣ
11 ¼ 1

3
ðτπ01 þ 2τπ11Þ

PηΛ
11 ¼ τη11

Σ8
3=2

m1� , m2� PπΛ
13 ¼ 1

6
ðτπ11 þ 5τπ21Þ

PπΣ
13 ¼ 1

6
ðτπ11 þ 5τπ21Þ

PηΛ
13 ¼ τη11

Σ8
5=2

m2� , m3 FπΛ
15 ¼ 1

9
ð5τπ23 þ 4τπ33Þ

FπΣ
15 ¼ 1

9
ð4τπ23 þ 5τπ33Þ

FηΣ
15 ¼ τη33

Σ8
7=2

m3 FπΛ
17 ¼ 1

4
ðτπ33 þ 3τπ43Þ

FπΣ
17 ¼ 1

4
ðτπ33 þ 3τπ43Þ

FηΣ
17 ¼ τη33

TABLE III. Continuation of Table II.

State Pole mass Partial wave, K amplitudes

Σ10
1=2

m1� , m2� PπΛ
11 ¼ 1

6
ðτπ11 þ 5τπ21Þ

PπΣ
11 ¼ 1

6
ðτπ11 þ 5τπ21Þ

Σ10
3=2

m0, m1� , m2� , m3 PπΛ
13 ¼ 1

12
ð2τπ01 þ 5τπ11 þ 5τπ21Þ

PπΣ
13 ¼ 1

12
ð2τπ01 þ 5τπ11 þ 5τπ21Þ

PπΣ�
13 ¼ 1

15
ð5τπ01 þ 2τπ11 þ 8τπ21Þ

FπΣ�
13 ¼ 1

5
ðτπ23 þ 4τπ33Þ

PηΣ�
13 ¼ τη11

FηΣ�
13 ¼ τη33

Σ10
5=2

m1� , m2� , m3 FπΛ
15 ¼ 1

126
ð10τπ23 þ 35τπ33 þ 81τπ43Þ

FπΣ
15 ¼ 1

126
ð10τπ23 þ 35τπ33 þ 81τπ43Þ

PπΣ�
15 ¼ 1

10
ð3τπ11 þ 7τπ21Þ

FπΣ�
15 ¼ 1

1260
ð512τπ23 þ 343τπ33 þ 405τπ43Þ

PηΣ�
15 ¼ τη11

FηΣ�
15 ¼ τη33

Σ10
7=2

m2� , m3 FπΛ
15 ¼ 1

126
ð10τπ23 þ 35τπ33 þ 81τπ43Þ

FπΣ
15 ¼ 1

126
ð10τπ23 þ 35τπ33 þ 81τπ43Þ

ΣS
1=2

m1
2
, m3

2
PK̄N
11 ¼ 1

9
ðτK̄1

2
1
þ 8τK̄3

2
1
Þ

ΣS
3=2

m1
2
, m3

2
, m5

2
PK̄N
13 ¼ 1

9
ð4τK̄1

2
1
þ 5τK̄3

2
1
Þ

PK̄Δ
13 ¼ 1

9
ð5τK̄1

2
1
þ 4τK̄3

2
1
Þ

FK̄Δ
13 ¼ τK̄5

2
3

(Table continued)
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TABLE III. (Continued)

State Pole mass Partial wave, K amplitudes

ΣS
5=2

m3
2
, m5

2
FK̄N
15 ¼ 1

21
ð5τK̄5

2
3
þ 16τK̄7

2
3
Þ

PK̄Δ
15 ¼ τK̄3

2
1

FK̄Δ
15 ¼ 1

21
ð16τK̄5

2
3
þ 5τK̄7

2
3
Þ

ΣS
7=2

m5
2

FK̄N
17 ¼ 1

7
ð4τK̄5

2
3
þ 3τK̄7

2
3
Þ

TABLE IV. Continuation of Table III.

State Pole mass Partial wave, K amplitudes

Ξ8
1=2

m0, m1� PπΞ
11 ¼ 1

27
ðτπ01 þ 2τπ11Þ

PηΞ
11 ¼ τη11

Ξ8
3=2

m1� , m2� PπΞ
13 ¼ 1

54
ðτπ11 þ 5τπ21Þ

PηΞ
13 ¼ τη11

Ξ8
5=2

m2� , m3 FπΞ
15 ¼ 1

81
ð5τπ23 þ 4τπ33Þ

FηΞ
15 ¼ τη33

Ξ8
7=2

m3 FπΞ
17 ¼ 1

36
ðτπ33 þ 3τπ43Þ

FηΞ
17 ¼ τη33

Ξ10
1=2

m1� , m2� PπΞ
11 ¼ 4

27
ðτπ11 þ 5τπ21Þ

Ξ10
3=2

m0, m1� , m2� , m3 PπΞ
13 ¼ 2

27
ð2τπ01 þ 5τπ11 þ 5τπ21Þ

PπΞ�
13 ¼ 5

108
ð2τπ01 þ 5τπ11 þ 5τπ21Þ

PηΞ�
13 ¼ τη11

FηΞ�
13 ¼ τη33

Ξ10
5=2

m1� , m2� , m3 FπΞ
15 ¼ 8

1134
ð10τπ23 þ 35τπ33 þ 81τπ43Þ

FπΞ�
15 ¼ 5

1134
ð10τπ23 þ 35τπ33 þ 81τπ43Þ

PηΞ�
15 ¼ τη11

FηΞ�
15 ¼ τη33

Ξ10
7=2

m2� , m3 FπΞ
17 ¼ 1

63
ð20τπ23 þ 21τπ33 þ 15τπ43Þ

TABLE V. Continuation of Table IV.

State Pole mass Partial wave, K amplitudes

Ξ1
1=2 m1

2
PK̄Σ
11 ¼ τK̄1

2
1

PK̄Λ
11 ¼ τK̄1

2
1

Ξ1
3=2 m3

2
PK̄Σ
13 ¼ τK̄3

2
1

PK̄Λ
13 ¼ τK̄3

2
1

Ξ1
5=2 m5

2
FK̄Σ
11 ¼ τK̄5

2
3

FK̄Σ
11 ¼ τK̄5

2
3

ΞS
1=2

m1
2
, m3

2
PK̄Σ
11 ¼ 1

9
ðτK̄1

2
1
þ 8τK̄3

2
1
Þ

PK̄Λ
11 ¼ 1

9
ðτK̄1

2
1
þ 8τK̄3

2
1
Þ

(Table continued)
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APPENDIX C: CORE COMPOSITION OF
ANTISYMMETRIC STATES

To find the core composition of the antisymmetric states
of theN ¼ 2 band, we used the quadratic Casimir operator
which can be defined as CR ¼PaΛaΛa, where Λa are the

generators of the representation R. When working with
SUð6Þ, it is useful to recall the relationCSUð6Þ ¼ 2GiaGia þ
1
2
CSUð3Þ þ 1

3
CSUð2Þ [10]. The SUð6Þ generators can be

expressed in terms of core and quark operators
Si ¼ si þ ðScÞi, Ta ¼ ta þ ðTcÞa, Gia ¼ gia þ ðGcÞia, then

TABLE V. (Continued)

State Pole mass Partial wave, K amplitudes

ΞS
3=2

m1
2
, m3

2
, m5

2
PK̄Σ
13 ¼ 1

9
ð4τK̄1

2
1
þ 5τK̄3

2
1
Þ

PK̄Λ
13 ¼ 1

9
ð4τK̄1

2
1
þ 5τK̄3

2
1
Þ

PK̄Σ�
13 ¼ 1

9
ð5τK̄1

2
1
þ 4τK̄3

2
1
Þ

FK̄Σ�
13 ¼ τK̄5

2
3

ΞS
5=2

m3
2
, m5

2
FK̄Σ
15 ¼ 1

21
ð5τK̄5

2
3
þ 16τK̄7

2
3
Þ

FK̄Λ
15 ¼ 1

21
ð5τK̄5

2
3
þ 16τK̄7

2
3
Þ

PK̄Σ�
15 ¼ τK̄3

2
1

FK̄Σ�
15 ¼ 1

21
ð16τK̄5

2
3
þ 5τK̄7

2
3
Þ

ΞS
7=2

m5
2

FK̄Σ
17 ¼ 1

7
ð4τK̄5

2
3
þ 3τK̄7

2
3
Þ

FK̄Λ
17 ¼ 1

7
ð4τK̄5

2
3
þ 3τK̄7

2
3
Þ

TABLE VI. Continuation of Table V.

State Pole mass Partial wave, K amplitudes

Ω10
1=2

m1� , m2� PηΩ
01 ¼ τη11

PπΩ0
01 ¼ 1

6
ð5τπ11 þ τπ21Þ

Ω10
3=2

m0, m1� , m2� , m3 PηΩ
03 ¼ τη11

FηΩ
03 ¼ τη33

PπΩ0
03 ¼ 1

15
ð5τπ01 þ 2τπ11 þ 8τπ21Þ

FπΩ0
03 ¼ 1

5
ðτπ23 þ 4τπ33Þ

Ω10
5=2

m1� , m2� , m3 PηΩ
05 ¼ τη11

FηΩ
05 ¼ τη33

PπΩ0
05 ¼ 1

10
ð3τπ11 þ 7τπ21Þ

FπΩ0
05 ¼ 128

135
τπ23 þ 49

180
τπ33 þ 9

28
τπ43

Ω10
7=2

m2� , m3 FηΩ
07 ¼ τη33

HηΩ
07 ¼ τη55

FπΩ0
07 ¼ 1

7
ð3τπ23 þ 4τπ43Þ

HπΩ0
07 ¼ 1

25
ð7τπ45 þ 18τπ55Þ

ΩS
1=2

m1
2
, m3

2
PK̄Ξ
01 ¼ 1

9
ðτK̄1

2
1
þ 8τK̄3

2
1
Þ

ΩS
3=2

m1
2
, m3

2
, m5

2
PK̄Ξ
03 ¼ 1

9
ð4τK̄1

2
1
þ 5τK̄3

2
1
Þ

PK̄Ξ�
03 ¼ 1

9
ð5τK̄1

2
1
þ 4τK̄3

2
1
Þ

FK̄Ξ�
03 ¼ τK̄5

2
3

ΩS
5=2

m3
2
, m5

2
FK̄Ξ
05 ¼ 1

25
ð5τK̄5

2
3
þ 16τK̄7

2
3
Þ

PK̄Ξ�
05 ¼ τK̄3

2
1

FK̄Ξ�
05 ¼ 1

21
ð16τK̄5

23
þ 5τK̄7

2
3
Þ

ΩS
7=2

m5
2

FK̄Ξ
07 ¼ 1

7
ð4τK̄5

2
3
þ 3τK̄7

2
3
Þ
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CSUð6Þ ¼ Cc
SUð6Þ −

1

2
Cc
SUð3Þ −

1

3
Cc
SUð2Þ þ 4giaðGcÞia

þ 2giagia þ
1

2
CSUð3Þ þ

1

3
CSUð2Þ; ðC1Þ

where giagia ¼ s2t2 so that hgiagiai ¼ 1 and Cc
R denote a

quadratic Casimir operator built with core generators. The
Casimir matrix element of a given representation can be
expressed in terms of the boxes in its Young tableau (see
Ref. [43]), in particular for the A representation of SUð6Þ
whose multiplet in Dynkin notation ðNc − 3; 0; 1; 0; 0Þ is
given by

CSUð6ÞðNc − 3; 0; 1; 0; 0Þ ¼ 5N2
c þ 6Nc

12
: ðC2Þ

Then, when calculating the matrix elements of the operator
in Eq. (C1), all terms in the lhs and rhs are determined
except for hgiaðGcÞiai. As mentioned before, the core can
be assumed to be an ðNc − 2Þ-quark core c̃ in a symmetric
representation coupled to a quark so that the overall
symmetry is mixed symmetric. We can write ðGcÞia ¼
ðGc̃Þia þ gia and using the Wigner-Eckart theorems for
SUð2Þ and SUð3Þ, we find that

AhS;RjgiaðGcÞiajS0;R0iA ¼
X
i;i0

cici0δR;R0δS;S0
12Ŝ

DðRÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3DðRciÞ

p
8<
:

Sci Sci0 1

1=2 1=2 1

S S0 0

9=
;

×
X
γa

8<
:

Rc0i
8 Rci ; γa

3 8 3

R0 1 R

9=
;hSci ;Rci jjG½1;8�

c jjSci0 ;Rci0 iγa ; ðC3Þ

where we used the relation between Cartesian and spherical basis given by giaðGcÞia ¼ −
ffiffiffi
3

p ffiffiffi
8

p ðgiaðGcÞiaÞ½0;1�0;0 . The second
term in braces is an SUð3Þ 9j symbol whose definition can be found in Appendix A. Details on how to calculate

hSci ;Rci jjG½1;8�
c jjSci0 ;Rci0 iγa can be found on Appendix E.

Three distinct symmetries can result from coupling one quark to a mixed-symmetric core, which can be written in Young
diagrams as

ðC4Þ

where the representations in Dynkin notation are
A ¼ ðNc − 2; 1; 1; 0; 0Þ, MS ¼ ðNc − 1; 1; 0; 0; 0Þ, and
MS2 ¼ ðNc − 2; 2; 0; 0; 0Þ. (Note that the MS2 configu-
ration is not possible for Nc ¼ 3.) The Casimir invariants
for the MS and MS2 representation are CSUð6ÞðNc − 2; 2;
0; 0; 0Þ ¼ 1

12
Ncð5Nc þ 6Þ þ 2 and CSUð6ÞðNc − 1; 1; 0; 0;

0; 0Þ ¼ 1
12
Ncð5Nc þ 18Þ so that when we diagonalize the

matrices, we obtain the core composition of the A, MS,
and MS2 representations. In Eq. (21) of Sec. VII, we list

the results for the A states which we used in the
calculations that follow in that section.

APPENDIX D: PARTIAL-WAVE AMPLITUDES
FOR ANTISYMMETRIC STATES

In this Appendix, we list the partial-wave amplitudes
containing resonances with quantum numbers corresponding
to the A states of the N ¼ 2 band in large the Nc quark
picture.
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TABLE VII. Large Nc mass eigenvalues in the 1=Nc expansion corresponding to states in the ½“20”; 1þ� multiplet
and the partial-wave amplitudes containing resonances with the same quantum numbers. Since I ¼ I0 in all the
partial waves, to lighten notation we replaced the II0Y labels in τ to those of a meson having the corresponding
quantum numbers. Partial-wave amplitudes containing the nonstrange resonances were calculated before in
Ref. [27] and are listed here for the reader’s convenience.

State Pole mass Partial wave, K amplitudes

N1=2 m0, m1 SπN11 ¼ τπ10
SηN11 ¼ τη00

N3=2 m1, m2 DπN
13 ¼ 1

2
ðτπ12 þ τπ22Þ

DηN
13 ¼ τη22

N5=2 m2 DπN
13 ¼ 1

9
ð2τπ22 þ 7τπ32Þ

DηN
13 ¼ τη22

Λ8
1=2

m0, m1 SπΣ01 ¼ τπ10
SηΛ01 ¼ τη00

Λ8
3=2

m1, m2 DπΣ
03 ¼ 1

2
ðτπ12 þ τπ22Þ

DηΛ
03 ¼ τη22

Λ8
5=2

m2 DπΣ
05 ¼ 1

9
ð2τπ22 þ 7τπ32Þ

DηΛ
05 ¼ τη22

Λ1
1=2 SK̄N

01 ¼ τK̄1
2
0

Λ1
3=2 DK̄N

03 ¼ τK̄3
2
2

Λ1
5=2 DK̄N

05 ¼ τK̄5
2
2

State Pole mass Partial wave, K amplitudes

Σ8
1=2

m0, m1 SπΛ11 ¼ 1
3
τπ10

SπΣ11 ¼ 2
3
τπ10

SηΣ11 ¼ τη00
Σ8
3=2

m1, m2 DπΛ
13 ¼ 1

6
ðτπ12 þ τπ22Þ

DπΣ
13 ¼ 1

3
ðτπ12 þ τπ22Þ

DηΣ
13 ¼ τη22

Σ8
5=2

m2 DπΛ
15 ¼ 1

27
ð2τπ22 þ 7τπ32Þ

DπΣ
15 ¼ 2

27
ð2τπ22 þ 7τπ32Þ

DηΣ
15 ¼ τη22

Ξ8
1=2

m0, m1 SπΞ11 ¼ 1
9
τπ10

SηΞ11 ¼ τη00
Ξ8
3=2

m1, m2 DπΞ
13 ¼ 1

18
ðτπ12 þ τπ22Þ

DηΞ
13 ¼ τη22

Ξ8
5=2

m2 DπΞ
15 ¼ 1

81
ð2τπ22 þ 7τπ32Þ

DηΞ
15 ¼ τη22

Ξ1
1=2 SK̄Σ

11 ¼ 1
4
τK̄1
2
0

SK̄Λ
11 ¼ 3

4
τK̄1
2
0

Ξ1
3=2 DK̄Σ

13 ¼ 1
4
τK̄3
2
2

DK̄Λ
13 ¼ 3

4
τK̄3
2
2

Ξ1
5=2 DK̄Σ

15 ¼ 1
4
τK̄5
2
2

DK̄Λ
15 ¼ 3

4
τK̄5
2
2
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APPENDIX E: REDUCED MATRIX ELEMENTS FOR
MIXED-SYMMETRIC CORES

In this Appendix, we present the expressions for the reduced matrix elements of the SUð6Þ generators for the mixed-
symmetric cores. We built the MS cores as a inner core of Nc − 2 quarks in a symmetric configuration coupled to an excited
quark. The core wave function is a linear combination of states with definite inner core spin, and it can be written as the
expression in Eq. (19). Given this expression, the matrix elements for the Sc operator can be expressed as

hSc;RcjjScjjS0c;R0
ci ¼

X
i;j

didjδRc̃j
;Rc̃i

δRc;R0
c
δSc̃j ;Sc̃i ð−1Þ

S0cþSc̃iþ3=2ŜcŜ
0
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðRcÞ

p

×

� Sc S0c 1

Sc̃j Sc̃i 1=2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sc̃iðSc̃i þ 1Þð2Sc̃i þ 1Þ

q
: ðE1Þ

In the case of the Tc operator, the reduced matrix elements for mixed-symmetric cores is given by

hSc;RcjjTcjjS0c;R0
ci ¼

X
i;j

didj
Ŝcffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðRcÞ

p δScS0cδSc̃i S
0
c̃j
δRc̃i

R0
c̃j

×

2
64ð−1Þδðqc̃i 0Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CSUð3ÞðRc̃iÞ
q 8><

>:
Rc̃i 8 Rc̃i

3 1 3

R0
c 8 Rc

9>=
>;þ 2

ffiffiffi
3

p

3

8><
>:

Rc̃i 1 Rc̃i

3 8 3

R0
c 8 Rc

9>=
>;
3
75; ðE2Þ

whereRc̃i ¼ ðpc̃i ; qc̃iÞ, andCSUð3ÞðRÞ is the quadratic Casimir operator for SUð3Þ given by CSUð3Þðp; qÞ ¼ p2þq2þpqþ3pþ3q
3

.
Reduced matrix elements for operator Gc for mixed-symmetric cores can be expressed as

hSci ;Rci jjGcjjSci0 ;Rci0 iγa ¼
X
j;j0

djdj0

ffiffiffi
6

p
Ŝci Ŝci0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DðRciÞ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

DðRc̃jÞ
q

×

2
664−δSc̃j Sc̃j0 δRc̃j

Rc̃j0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðRc̃jÞ

q
Ŝc̃j

8>><
>>:

Sc̃j Sc̃j0 0

1=2 1=2 1

Sci Sci0 1

9>>=
>>;

8>><
>>:

Rc̃j0 1 Rc̃j

3 8 3

Rci0 8 Rci

9>>=
>>;

þ

8>><
>>:

Sc̃j Sc̃j0 1

1=2 1=2 0

Sci Sci0 1

9>>=
>>;
X
γb

8>><
>>:

Rc̃j0 8 Rc̃j

3 1 3

Rci0 8 Rci

9>>=
>>;hSc̃j ;Rc̃j jjGc̃jjSc̃j0 ;Rc̃j0 iγb

3
775: ðE3Þ

The matrix elements of the Gc̃ operator hRc̃j ; Sc̃j jjGc̃jjRc̃j0 ; Sc̃j0 iγb are given by the expressions in Eqs. (A9) and (A10)
with replacement Nc → Nc − 1.
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