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Towers of baryons of the A" =2 quark model band in the large N, limit
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We perform a complete analysis of the spectrum of all the states in the N' = 2 quark model harmonic
oscillator band with Ny = 3 in the large N, limit including the often disregarded antisymmetric multiplet
[20, 17]. We include configuration mixing effects. We find that the states in the [56, L*] and [70, L*] with
L =0, 2 fall into nine towers of degenerate states. We find that nonstrange antisymmetric states fall into
three towers and respond to the same structure as the states in the [70, 17] multiplet. We also show explicitly
the compatibility of these results and the scattering resonance picture.
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I. INTRODUCTION

Baryon spectroscopy has been essential for our under-
standing of QCD in the low-energy, strong-coupling
regime. In this context, the quark model for baryons has
for a long time been a useful tool to analyze the spectrum
and properties of excited baryons [1]. In the quark model,
baryon resonances belong to SU(2N) x O(3) representa-
tions that are accommodated into N bands of the harmonic
oscillator. Recent studies of lattice QCD calculations [2,3]
seem to confirm this classification scheme, strongly sug-
gesting a connection between QCD and the quark model.
The main advantage of these numerical lattice calculations
is that they rely entirely on the fundamental QCD theory.
On the other hand, the lattice QCD method lacks the
transparency and simplicity of an analytic approach. To
unravel a physical picture in terms of effective degrees of
freedom, effective interactions and symmetries is still a
challenging task. Thus, despite the continuing improve-
ments in the lattice QCD techniques, the understanding of
resonant state properties from first principles remains a
very hard problem.

The large N, QCD approach suggested by °t Hooft [4]
has become a powerful tool to understand the spectrum and
properties of ground-state baryons and their first excited
states. This approach is based on the result that in the sector
of the ground-state light flavored baryons, there is a
contracted SU(2Ny).. spin-flavor symmetry in the limit
of large N, [5,6].

Since the large N, picture was first used to describe
baryons by Witten [7], the 1/N. expansion using effective
quark operators has been applied with great success to
describe properties of the ground-state baryons (see Ref. [8]
for a brief review and references therein). The ground-state
baryons belong to the A/ =0 band of the quark model
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classification scheme and are described by the symmetric
representation 56 of SU(6) for N, = 3. Excited states
require a more complex treatment, as they also appear in
mixed-symmetric and antisymmetric representations of
SU(2Ny). Several detailed studies of the masses of excited
baryons in the A = 1 band, which belong to the [70, 1]
multiplet with mixed spin-flavor symmetry, have been
carried out with great success using a mass operator built
with core and excited quark operators [9-15]. Multiplets
belonging to the N' =2 band have also been separately
studied, namely, the [56,07] multiplet in Ref. [16], the
[56,2%] multiplet in Ref. [17], and the baryons of the
[70,L*] with L =0, 2 in Refs. [18,19]. In addition to
the analysis of the mass spectra, strong and electromagnetic
decays were also studied in the 1/N, expansion approach
(see Ref. [20] for a recent review).

As already mentioned, the classification scheme for
baryon resonances based on irreducible representations
of SU(2N,) x O(3) originates from the quark model.
However, physical states appear as combinations of these
quark model irreducible representations; this fact is usually
known as configuration mixing. The SU(2N,) x O(3)
symmetry is not something that follows from the funda-
mental QCD theory. This is also manifest in large N. QCD
where the configuration mixing effects are not N, sup-
pressed [21-23]. Instead of what is predicted by the quark
model, states in the large N. limit belong to irreducible
representations of a contracted SU(2N ). symmetry and
organize into towers labeled by the associated quantum
number K. Despite not being a suppressed effect, the works
in Refs. [16—19] do not include configuration mixing in the
large N, limit. Only recently was such an effect included in
a study of the N =2 band nonstrange states [24].
However, the antisymmetric multiplet was not included
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in that work. In this context, the analysis for N, = 3 of the
complete set of multiplets of the A/ =2 band within the
1/N. expansion and including the configuration mixing
effects appears to be relevant. This is, in fact, the main aim
of the present work.

The tower structure is well understood in the nonstrange
case; the K number that arises from the large N, limit is the
spin vector K which is known as “grand spin” in chiral
soliton models. In the nonstrange case, K = J + I where J
is the total spin and 7 is the isospin. The K number holds a
very simple relation with the orbital angular momentum
number L: K = L for the symmetric representations and
K =L + 1 for the mixed-symmetric ones [24]. However,
for Ny = 3 the content of each tower cannot be found so
easily since the relation of K to the states’ quantum
numbers is more complicated.

In addition to the quark operator method mentioned
above, there is another natural approach to excited baryons
from a large N perspective known as the resonance picture
[25]. While ground-state baryons are stable in the large N,
limit, excited baryons are all resonances. To analyze baryon
resonances, it is relevant to study scattering processes, such
as meson-nucleon scattering, in channels for which such
resonances may reveal themselves. It is important to point
out that, from an N, counting point of view, the resonance
width of baryons scales as N [7] so that the existence of
well-defined narrow baryon states is not ensured at large
N.; however, we can rely on the fact that the empirical
evidence indicates detectable resonances. The resonance
picture is derived entirely from large N. QCD and contains
information on the tower classification. This picture has
proven to be a fruitful method to obtain insight into aspects
of baryon resonances in a systematic and model-indepen-
dent way [26-28].

In this paper, we study the complete spectrum of the
N =2 band which contains five multiplets: [56,07],
[70,07], [56,2"], [70,27], and [20, 17]. We first consider
states belonging to the [56, L] and [70, L] multiplets with
L =0, 2 extending the work of Ref. [24] to N = 3 flavors.
We include configuration mixing by generalizing the
effective quark operators to mix the SU(6) x O(3) mul-
tiplets to leading order. The multiplet [20, 1] is considered
separately since, as it will become clear in Sec. VII, no
configuration mixing between this multiplet and the others
is observed within the present scheme. Baryon states of the
antisymmetric representation are often dismissed based on
a lack of evidence. However, states which might be
identified with N, /, have been detected in = + N scatter-
ings, and J/y decay processes have shown some evidence
of the detection of nucleons N3/, associated to the anti-
symmetric representation. These states correspond to the
three star N(2100)1/24 and the one star N(2040)3/2+
listed in Ref. [29]. For all the A/ = 2 band states, we also
analyze the mass spectra with the resonant approach and
check the compatibility between the two pictures.

This paper is organized as follows. In Sec. II, we describe
the building of the symmetric and mixed-symmetric baryon
states; in Sec. III, we present the effective mass operator,
and in Sec. IV, we discuss the mass matrices found for
[56, L] and [70, L] states and we present the spectrum
obtained. In Sec. V, we discuss the tower structure found
for the [56, L] and [70, L™] states in the context of large
N. QCD. In Sec. VI, we describe the method used to
analyze excited baryons with a meson scattering approach,
and we present our results and associate them with our
operator analysis results. Section VII presents the analysis
of the [20, 17| multiplet. In Sec. VIII, we summarize our
conclusions. Appendix A provides details of the calcula-
tions performed to obtain the effective operators matrix
elements. In Appendix B, we list the partial-wave ampli-
tudes containing the resonances of the [56, L] and [70, L]
multiplets along with the large N . mass eigenvalues found
in the 1/N. expansion. In Appendix C, we present details
of the calculations to obtain the core composition of the
antisymmetric states. In Appendix D, we list the partial-
wave amplitudes containing the resonances of the anti-
symmetric states along with the large N, mass eigenvalues
found for the nonstrange states in the 1/N. expansion. In
Appendix E, we give the explicit expressions of the reduced
matrix elements for mixed-symmetric core states.

II. SYMMETRIC AND
MIXED-SYMMETRIC STATES

States of the A/ = 2 band can be analyzed as three quark
systems with N. = 3. For N, = 3, these states belong to
irreducible representations of SU(6) ® O(3) where SU(6)
contains the flavor group SU(3) and the spin group SU(2).
For N. = 3, only three spin-flavor representations occur:
completely symmetric (S), mixed symmetric (MS), and
completely antisymmetric (A). Each symmetry corre-
sponds to the SU(6) multiplets 56, 70, and 20, respectively.
In this section, we consider the S and MS representations,
the building of states in the antisymmetric representation is
described in Sec. VII.

The analysis of spin-flavor multiplets in large N, is a
straightforward extension of methods familiar from N = 3.
Inthe N. > 3 generalization, one assumes that the additional
N, — 3 quarks appear in a completely symmetric spin-flavor
combination. This generalization of the quark model has the
same emergent symmetries as large N. QCD. Thus, it is an
efficient way to deduce group-theoretical results.

In the large N, approach, the multiplets have an infinite
number of baryons; the physical baryons can be identified
with states at the top of the flavor representations, while the
other states are spurious baryons that are not relevant when
N. = 3. In addition to these spurious states that appear in
the multiplets containing physical states, when N_. > 3
additional spin-flavor representations arise; these multiplets
contain only spurious states that also decouple in the
physical limit N. = 3. However, spurious states should
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be considered when N, is arbitrary since with this approach
the states associated with physical baryons can result in a
combination that contains spurious states, as long as their
quantum numbers allow it. Relevant large N, spin-flavor
multiplets are those having states with the same quantum
numbers as those associated with the physical states; this
means that we have to consider all multiplets containing
|

N.—1 N.-3
“8 ”” = 1, C , “10” = 3’ C ,
(55) = ()

where we used the SU(N ;) Dynkin label which consists of
a multiplet (n,n,, ..., an_l) where the non-negative

integers n, stand for the number of boxes in row r of
the Young diagram that exceed the number of boxes in row
r+ 1. The labels chosen to dub flavor and spin-flavor
representations are given by the dimension of the repre-
sentation when N, = 3, hence, the quotation marks. The
representation “S” emerges only when N . > 3 but contains
states that could potentially mix with those associated with
physical states if the flavor symmetry were broken, namely,
S, ES, and QS. The supraindex indicates the flavor
representation; we shall omit quotation marks in these
cases to lighten notation. The “1” representation is a singlet
|

states with a (total) spin J, a hypercharge Y, and an isospin
number / that correspond to a baryon observed in nature.
To identify these states, we must analyze the decomposition
of SU(6) spin-flavor representations into separate SU(2)
spin and SU(3) flavor representations for N. quark
baryons. Relevant SU(3) flavor representations that emerge
from the large N, generalization are

N.-3 N.-=5
“1” = 0’ C , “S” = 2’ C ,
p57) = ()
[

for N. =3 but not for arbitrary N,.; in particular, for
N, =5 this irreducible representation is (0, 1) = 3. This
means that it also contains spurious states in addition to Al
associated with the physical state; in particular, Z! has the
quantum numbers /, Y of physical states. Three extra
irreducible representations that have a counterpart in
N, =3 also arise, “27" = (2,NL‘2H), “10” = (0, N”ZH),
and “35” = (4,%), but as will be clear in the follow-
ing, they are not contained in the SU(6) multiplets of
interest.

The SU(6) decompositions relevant to this work for each
spin-flavor multiplet can be found using the general method
of Ref. [30] and are given by

(1)

56",0]: [1/2,8°% & [3/2,“10 & .,
[“56”, 2] . [3 “897]1/2 [5/2, “8”]3/2 @ [1/2’ 4410”]3/2 @ [3/2’ “1077]3/2 @
[5/2,“10"P2 @ [7/2,“10"> & ...,
[“70’9’ O] . [1 “897]1 [3/27 “8”]3/2 @ [1/2’ “10”]1/2 @ [1/2’ “1”]1/2 @
(172,812 @ [3/2,“S"13%* @ [3/2,“10")/%> & [5/2,“10"P/>* & ...,
[“70”’ 2] . [3 “879]1 [5/27 “8”]1/2 @ [1/2’ “8”]3/2 @ [3/2’ “8”]3/2 @
[5 448”]3 [7/2’ “8”]3/2 @ [3/2’ “1053]1/2 @ [5/2, “10”]1/2 @
[3 441”] ]/2 [5/27 “1”] 1/2 @ [3/2’ “Sn] ]/2* @ [5/27 usn] ]/2* ea
[1 usn}’ﬁ/z* [3/2’ 4‘555]3/2* @ [5/2, “S”]3/2* @ [7/2, césn}:i/Z* @
[1 “10”]3/2* [3/2, “10”]3/2* @ [5/2, “10”]3/2* @ [7/2’ A410’9]3/2* @
[1/2,°10"%/% @ [3/2,“10”]5/%* @ [5/2,“10"]/% @ [7/2,“10")/>* & ..., (2)

where the notation adopted is [/, R} with R being the
flavor representation, J the total spin given by the vector
sum J = S 4 L, and S the spin of the multiplet. A complete
list of the representations contained in the “56” and “70”
multiplets can be found in a general form in Egs. (3.1) and
(3.2) of Ref. [27] for arbitrary N . Irreducible representa-
tions marked with an * contain only spurious states; note
that these are not only “S” multiplets but also “8” and
“10” with high spin which also decouple in the physical

|
limit [31]. We only show irreducible representations that
contain at least one state with the same Y, I, J quantum
numbers as a state of N, quarks associated with a physical
baryon, hence, the ellipses. So, we have 40 spin-flavor
multiplets containing 146 isospin degenerate states to be
considered.

Baryons are assigned to states belonging to SU(6) ®
0O(3), then their wave functions can be expressed with the
use of Clebsch-Gordan coefficients as

034019-3



C.T. WILLEMYNS and N.N. SCOCCOLA PHYS. REV. D 98, 034019 (2018)

S L J
(L.S)J TR Y. LI =Y < 7 ;IS SaRY.LI)IL.L). (3)
LI,S: Z Z z

In this approach, as explained in detail in Ref. [12], excited baryons with N, quarks of the S and MS representations are
composed of a symmetric core of N. — 1 quarks and an orbitally excited quark. Note, however, that the spin-flavor wave
functions with defined core spin S, do not have definite symmetry. Every baryon state with definite spin-flavor symmetry is
a linear combination of states with a different core spin S, that satisfies the relation S = S_. 4 1/2. Then, we have

15,5 (pa). Y. LI) = Y cqm(p.S.m)|S. S5 (pq). Y. LI5S, = S + 1), 4)
n=+1/2

where (p, ¢) stands for representation R in Dynkin notation. The coefficients ¢y, (p. S, %) depend on the SU(6) symmetry
of the considered baryon. Since the core is in an SU(6) symmetric irreducible representation with N. — 1 quarks, the
Dynkin weights corresponding to the flavor symmetry of the cores are completely determined by S, and are given by

(Perq.) = (ZSC,N‘{l —S.). The coefficients giving the correct linear combination to build symmetric and mixed-

symmetric states in Eq. (4) are given by [10]

1 if p=25S+1 or p=25+2,
CMS(p,S,:l:l/z): 0 lfPZZS:Fl or pIZS:Fz,
QSTIFD(NF1EQ2S+L) o
j:\/ :FZNC(ZS+1) if p =28,
2S+1+1)(N.+1F(25+1))
cs(p,S,£1/2) = \/ IN.(25 1) . 5)

This implies that only MS multiplets with p # 2S5 have core states with well-defined spin.

III. MASS OPERATORS

We build the mass operators as described in Ref. [12] but
considering a generalization similar to the one used for
decay processes and used in Ref. [24]. This generalization
consists of considering a generic spatial operator £ (instead
of the orbital excitation operator £) which admits L — L’
transitions. This allows us to include the leading order
effects of configuration mixing of spin-flavor representa-
tions with different orbital angular momentum.

The building blocks for the construction of the effective
mass operators are the SU(6) ® O(3) generators: the
generic spatial operator of rank k that we denote &)
and the Sl[-l’l], T8, GEJ'SJ operators associated to the spin-
flavor symmetry group. The supraindex in brackets over the
spin-flavor operators indicates how they transform in the
spin and flavor spaces, respectively. The SU(2N;) Lie
algebra commutation relations are given by

[S i Ta] = Oa

[Si.S;] = i€ Sk

[Si, Gja] = ieijkaa’

[Tav Th] = ifabcTc’
[Ta’ Gib} = ifachica

i

2N

1

Sap€ijiSk + 3

eijkdachkc-

(6)

i
(Gia-Gjp] = ZfsijfabcTc +

As explained in the previous section, in the present
scheme, large N, baryons arise from a generalization
in which the states have a symmetric core coupled to
an excited quark. Then, one can define separate one-
body operators that act on the core (S.);, (T¢) (Ge)ia
and operators denoted with lower case s;, f,, g, that
act on the excited quark. Since the cores are sym-
metric, core operators satisfy the operator reduction
rules for the ground state [32] by replacing N,
by N.— 1.

The Hamiltonian can be expressed as a linear combi-
nation of effective operators up to order O(N?):

S
I

> Mo+ 0(1/N,), (7)

i=1

where T, T stand for the SU(6) x O(3) irreducible
representations  [“56”,L*] and [“70”,L"] which we
indicate as S; and MS;, respectively, to lighten
notation. Each O; operator in Eq. (7) is constructed
using the building blocks mentioned above and con-
sidering the reduction rules for the core operators.
There are five spin-singlet flavor-singlet operators that
contribute to the baryon masses up to order O(N?)
given by
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01 = (Nc]]>[OY1]’
0 = (&),
1
03 = 7 (EP(gGo) 1),
1
04 = N_L (g(U(,GC)[l-l])[OJ]’
1
Os = N (ch)[o'l]' (8)

c

Operators in Eq. (8) are a generalization of the opera-
tors in Ref. [26] in a slightly modified basis, as we
|

favored a simpler form of the expressions for O, and
Os instead of subtracting the contributions to the
nonstrange matrix elements.

IV. MASS MATRICES

In this section, we present the calculations of the mass
matrix elements of Eq. (7) for the states in the multiplets
given in Eq. (2).

The O; operators of Eq. (8) can all be written in a general
form as (f(l)g[”])[j’r], where GI acts on the spin-flavor
part of the wave function. The matrix element in its most
general form can be written as

(L, S)J, J R, Y, L I|(EDGs x| (L s J, R, Y, I, I)

(T j R r R |
=T o | ; Y. I, v | Y,II, D(R)
14
L L 1
xJI'3 s 8 s H(LIED||L) (S R]|GETIS R, 9)
JoJ g

where J =1+ 2J, D(R) is the dimension of the
representation R, the second term in parentheses is a
Clebsch-Gordan coefficient in SU(3) [defined by Eq. (A1)],
and the term in braces is an ordinary SU(2) 9; symbol. In
the cases of mass operators, j = 0 and r = 1. The deduc-
tion of this expression can be found in Appendix A.
Reduced matrix elements of £7 are left undetermined to
maintain generality. As described in detail in Appendix A,
reduced matrix elements for each GI** operator can be
expressed in terms of reduced matrix elements of core
operators whose explicit expressions can be found at the
end of that Appendix.

States in Eq. (2) with same spin and isospin can
mix, giving rise to 24 mass matrices: eight nonstrange
mass matrices N, A, with J =1/2,3/2,5/2,7/2 and 16

[

matrices X, A, B, Qwith J = 1/2,3/2,5/2,7/2 containing
strange states. Some constants in the matrix elements can
be absorbed in the ciT"T/ coefficients, including reduced

matrix elements of &1 and &2 in such way that

¢y ey R R~ 2 |E]12), 3~ (2116 2),

and c3"0" ~ (0][£0)]12).
After a simple inspection of the matrix expressions, we
found that a more convenient way of writing the nonstrange

matrices is by making the replacements ¢, ' = ¢ +
1T _S,MS, _ SHMS, S, MS, MS, _ MS, | MS,
v Cs and & =c, —Cy ,Cy =y Pty

Since all mass matrices are symmetric, when presented, we
show only the upper right part. To illustrate the nonstrange
case, we show here the N3, mass matrix with these
redefinitions:

_S, _S5,.MS, _S,.MS,
C’N, 0 ¢, -0,
MSop _ MSo.MS, _ MSo.MS,
1 c 3 3
M Nap = _MS, _MS, 1 =MS, MS, (10)
¢, *N,—c¢ —5C -
1 c T 6 26 ¢

_MS, _MS,
¢; *N.—0C,

in the {[56”,27]&8 [<70”,0"]E8 [<70”,2+]8] [<70”,2]28]} basis where the superscripts indicate the spin and
flavor representations, respectively. The diagonalization of this matrix leads to four eigenvalues we denote as mg, with

K = 1%, 2%, in this case. The my are given in terms of the ¢

eigenvectors are

T.T

;7 coefficients in the next section. The corresponding
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N?/Zzl+ = (=1us,» 0.1/1/2.4/1/2),

Né(/zzl_ = (1,0, \/1/7277114507 \/1/—2’7Mso),

Né(/zz+ (0, =ns,, —\/1/—2, \/1/—2)

NKS = (0.1.=V/1/215,.\/1/25,), (11)

where 71 can be expressed in terms of the cl-T’T/ coefficients
and will be given explicitly in the next section. All
matrix elements for the nonstrange states can be written

found to have the same expressions as the matrices
of Ref. [24].

As an illustrative case for the strange states, we present
here the results for the X, , states in the large N, limit. The
mass matrix in the basis {[“567,27]E10 [<707 21]E8],
[<70”,2+]28], [<707,2+]510 <70 2+)619} can be ex-

_ Lo NLO
pressed as My, L, =M S + My - where

LO MS, _MS, MSZ MSZ
My, = diag(e), &)™, &), &), e )N,

in terms of the coefficients cTT ch and c3T'T/ and were  and the O(N?) contribution is given by
|
0 0 0 — 2 g _ \/gz,gz,mz
R 0 0 0
5y = MS2 _ MS2 _ 3,15 0 0
% MS, +385 CZ%VISo \/’CMSZ 3 \ﬁ 6_3452

In contrast with the nonstrange cases, mass matrices of
. . . . /
strange states have contributions from coefficients ¢; ' and

/ . . .
CST‘T . The X7/, mass matrix has four eigenvalues my, with

K =2%, 27, 3, 5/2. The corresponding eigenvectors are
given by

=3
=2

=), = (0.0,1.0,0),
ZK 3 _

K3 =1(0.0.0.-1/3/5.1/2/5).

=
=
K33 = (0.1,0.0,0),
(
(

=K = (15,,0,0,—1/2/5,—1/3/5),
TS = (1,0,0,1/2/5ns,, \/3/51s,)-

Note that there are two states with K = 3, each
one corresponding to states with “8’ and “10” flavor
symmetry.

As mentioned before, even if the SU(6) symmetry of the
quark models does not hold in large N. QCD, we did not

L MS2 17 MSZ
10¢ +35 3

expect all states in the multiplets listed in Eq. (2) to mix.
The spin number S is not a good quantum number in nature;
namely, (1, J) states are a linear combination of states with
different S number. Also, since we are neglecting the
breaking of the SU(3) symmetry, all members of the same
flavor multiplets are degenerate, and states from different
multiplets “8”, “10”, “1”, and “S” do not mix. However, we
allowed for configuration mixing to occur so that the states
from different SU(6) multiplets mix as well as states with
different L.

We found that operators O, = (£)5)01 and O, =
- (WGP allow for the [567,27] and [+70”,27]
multiplets to mix, while O3 = (6@¢G )1 allows for
the [“70”,07] and [<70”,2%] multiplets to mix. Operator
Os :Nic(tTc)[O"] does not contribute to the mixing of
configurations.

By calculating the eigenvalues of the 24 mass matrices,

we found that all the S and MS states of the N = 2 band
have only nine masses, which can be expressed as

_MS, MS
my = ¢°N,, mp = ¢ 'N,—3c5 ™",
_MS, 3 s, MS, MS,
my= = my £ 6y, mz = ¢y N, c =50 +3cy 7 =3¢ 2,
_MS _MS MS MS
Myx = My £ 0y, ms=cy "N +¢;7 =2¢,7 = 3¢5,
_MSy L Ms 2 ms, 12
my=Cp Net 6 =56 (12)
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where
1 3 1
51 _ _(EIIWSO —E'IIWSZ)NC‘F__MS? 4 CMSZ +2( MSOMSZ)Z7
2 4 2
_ 1 s _MS2 1 M L s, _S,.MS,
0y = (e° - INe+ 8,7 =55 +2( )%,
2 4 2
[
and we obtain the same result as in the Ny=2 case,
: 3 namely,
_ _MS, | =MS, _MS MS
=g G AN B e . ;
) 1 ) ) 1_ 1 :mK++mK7i Mg+ — Mg~ 2 13
iy = 3 (215 4 eI, — S g el M 5 3 + (ug)? (13)

All 24 mass matrices and their eigenvalues can be
expressed in terms of only 11 coefficients corresponding

oS0 gMSo gS2 GMS: GMS MS; MS, MSy MS; 5S:MS;
toc;’, ¢y ,C17,C) .6y T,C3 ,C4 ,C5 ,C5 ,Ch

13”5 oM The first nine coefficients are associated to the
nine towers, while the coefficients 552 M2 and cMS“ M52
parametrize the mixing of the spin- ﬂavor multlplets

When writing the eigenvalues my obtained in terms of

the mass eigenvalues my that we would have in the absence
of configuration mixing (which is equivalent to setting

131/IS0 MS "gz’MSZ = 0), we find that my = 1;11( for K =0,
3 and for K=13 g, while for the K =1, 2 states
|

my: (Nl/z’A?/zﬂ 1/2’5?/2),@3/2»

My (N1/2’A§/2’ 1/2’:?/2)7(1\’3/2’

(A3)2, 2%/2, :%(/)27 Q%‘/’z)’ (s, 2L

s - (N3/2’A%/2’ 28/ E3)0)- (N572. A

(A3/2’ 3/2’ :é(/)z’ Q%‘/’z)’ (A5/2’

ms. (N5/27A5/2’ 5/2’~5/2)7 (N7/2. A3

(AS/Zv 5/2’~5/27 5/2),(A7/2,
mi. (A1/2’51/2)’(21/2’:1/2’91/2)’(
ms. (Ag/zv—%/z) (21/2,—1/2,Q§/2) (
ms. (A§/2’ :'5/2)’ (23/2’ 53/2’ Q3/2>’ (

where we grouped states by flavor multiplet. All nonstrange
states appear in the myg, m:, my:, my towers (and the
results are consistent with Ref. [24]) and so do their strange
multiplet partners. These expressions for mg, m =, my=, ms
are the same as for the nonstrange case. On another hand,
the m, s, ms/,, and ms,, towers contain only A D “1” and
spurious X, 2, Q D “S” and E D “1” states. The classifica-
tion of states listed in Eq. (14) reveals a remarkable
structure; it indicates that all 146 isomultiplets considered
have only nine distinct eigenvalues [in the SU(3) limit].

MSy,MS —~$,.MS .
where :—\/_c 772 and /42:—\/5022 >, With
these expressions, 7y, 75, can be written as

_ 2,
nMSO o o o o o 2 ’
my —my + \/(ml’ —m)” +4(u)?
_ 2uy
Ns, =

o o [} o 2 ’
My — my + \/(mz’ —my)” +4(p)?

The SU(3) multiplets considered organize into nine
towers as follows:

35 B3 )s)-

3/2’ 3/2,—3/2),(A1/2, 1/27:}(/)2’91/2)
5/2’ 5 Q5),)-

5/2° 5/2’—‘5/2)7(A1/2’ 1/27:}(/)2’9%(/]2)
5/2’:?/)2’Q )’(A7/2’ 7/2’:%(/)2794(/]2)
7/2’ 7/2’~7/2)7(A3/2, 3/27:%(;2’9%(/]2)
7/2’~7/2’ 7/2)’

Z3/2753/2’93/2)»

Zg/zv :g/z’ Qg/z)v (zg/z’ :g/z’ Qg/z)»

282 89025 0)s (252, B35, 95 )0), (14)

It is easy to see from Eq. (12) that nonstrange states can
be described by using only operators O, O,, O5 since in
SU(2) subspace Os is proportional to O; and O, is
proportional to O,; however, the proportionality constant
is different when considering the T, T' = S,, MS, or the

T, T = MS, subspace indicated by the replacements
_S,.MS S,.MS $,.MS,  -MS MS MS
CT = =T, 6y P =0¢, T4, that we

did in Sec. IV.
Expressions of matrix elements in the case of finite N,
are long. Thus, we limit ourselves only to mention that in
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all cases, spurious states decouple from the physical states
in the limit N, = 3.

It is interesting at this point to present a brief discussion
about the possible determination of the mass scale of the
towers in Eq. (14). From purely large N, considerations, the
energy differences between towers inside a band are of order
O(N?). However, as observed from fits of the [70,17]
multiplet (see, e.g., Ref. [10]), the towers in a given band are
closer than expected from this 1/N,. argument (e.g., the spin-
orbit operator is particularly small). This can be seen as a
consequence of the fact that, in nature, resonances respond to
an approximated quark model symmetry. Since this same
outcome is expected for the band N = 2 multiplets, the
assignment of quark model energies to the large N, [i.e.,
O(N?)] towers is problematic. Namely, to be able to
reasonably match the expansion coefficients to some quark
model parameters as done in, e.g., Ref. [33], one needs to go
beyond the N? approximation considered in the present
work. This requires us to consider 1/N,. and flavor SU(3)
breaking corrections that would break the large N, towers
giving a more similar spectrum as the one obtained from
quark models as was done in Ref. [34] for [70, 17]. It would
be particularly interesting to include 1/N, contributions to
match the results to quark models that include chiral
symmetry breaking following the lines of the mapping
performed in Ref. [35].

V. TOWERS IN SU(3)

As mentioned in the Introduction, in the large N, limit, a
classification of the baryons into towers arises. As a
consequence, when using a generalized quark model basis,
only states with the same K value can mix. And compared
to the no-mixing case, the configuration mixing only shifts
the energies of towers.

For a given state in an SU(6) x O(3) representation,
towers for nonstrange states are given by fairly simple
relations between the K number and the orbital angular
momentum, i.e., K = L for the symmetric representations
and K = L + 1 for the mixed-symmetric ones [24]. If there
is no symmetry breaking, these relations must hold for the
strange states in the corresponding SU(3) flavor multiplets.

For states belonging to SU(3) flavor representations “S”
and “1”, which do not have nonstrange states, we asso-
ciated a half-integer K value which indicates that the K

|
”,\/ D(Rz)D(Ry) (-

B B/J. slslststs l)
s sis s S)

LI'Yes,
I"eRy

B 1Yy

<IBY
I// J K I/l
0 P L

I+I’+Yi// ( SB N, Iy
3

RB/

Ry,
LY, ) (SB/%

number and the orbital angular momentum relations found
for Ny = 2 do not hold in the SU(3) case in general.
We found that in an SU(3) generalization, one can
consider the lower strangeness number 7, ,,;, of the flavor
multiplet. Defining M =1 — ”‘%, the K relation for the
mixed-symmetric representations is K = L. + M. In con-
trast with the SU(2) case, there are no general expressions
for K depending only on the O(3) representation; we also
need the flavor representation term. Since there are no “S”
or “1” flavor multiplets contained in [*56”, 0] and [“56”, 2],
the relation K = L still holds for the S representations, and
their states fall into K = 0 and K = 2 towers, respectively.
It is easy to see with the generalized relation proposed for
the MS representations that states in [“70”, 0] belonging to
“8” or “10” flavor multiplets have K = 1, while states from
the “S” or “1” flavor representations have K = % States
from [“70”,2] with “8” or “10” flavor symmetry have
K = 1,2, 3, and states from “S” or “1” have K = 3, 3. This
is consistent with having two K = 1 and two K = 2 values.

VI. NUCLEON-MESON SCATTERING PICTURE

As discussed in the Introduction, another method to
uncover the properties of excited states is to study the
scattering processes deduced exclusively from large N..
The compatibility of the patterns of degeneracy obtained
from the large N, quark model and the resonances directly
obtained from large N, was shown explicitly in Ref. [26]
for the [“70”, 17| multiplet.

In this section, we want to show explicitly, on one hand,
that the compatibility also holds for the [“56”,0"],
[707,07], [“56”,2%], [“70”,2"] multiplets and, on the
other hand, that the K values we attributed to the strange
states are consistent with this picture. In particular, we
assigned half-integer K values to the “S” and “1”
representations.

In order to analyze a resonance with /;, J, quantum
numbers, we study the meson-baryon scattering ¢(S,.
R¢, 14,, Y¢) + B(SB, RB? IB, YB) d ¢/(S¢/, qu, I¢f, Y¢/) +
B'(Sg, Ry, Iy, Yy), where ¢p and B stand for the meson
and baryon, respectively. A resonance is a pole in the
scattering amplitude at unphysical kinematics. The phe-
nomenologically relevant cases are the ones with 0~
mesons, so we use the spinless meson expression given
by [26]

RB 8 Rsys
Iy +%

8 ! R,/ Ry 8 ‘
Nc

'y ﬂY+T><@yy IyYy

J
II

R,y§
INg
II’Y

Kff”
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where Ry = (253, — Sp) is the representation corre-
sponding to baryons in the ground state “56” with spin
Sp, for which the nonstrange states have isospin Iz = Sp
and Yp 0 = N? States with hypercharge Y., = NT “8”
and “10” states, decay via x and #, while “1” and “S”
states which have Y, = NT — 1 decay via K° and K~. [To
see a detailed example of how Eq. (15) is applied in this
context, see Ref. [25].]

A resonant pole appearing in one of the physical

amplitudes must appear in at least one reduced amplitude

5(1/);’ This reduced amplitude contributes, in turn, to a
number of other physical amplitudes. For a given resonance
with R, Y, and /; quantum numbers, we find the rgg,,
amplitudes that contain that pole, the only characteristic
number associated with the resonance being K.

For our purposes, we only need to consider a small set of
scattering processes. Namely, those for which the desired
poles can be accessed so that the possible K values
associated to a given resonance can be determined.
Following the lines of Ref. [26], all quantum numbers
are chosen diagonal (B=B, ¢ =¢', £ =7¢"), and we
analyze only “8” — “8” transitions except for the cases in
which this scattering does not access all poles; in that case,
we also show the “10” — “10” transitions. The obtained
results are presented in Tables [-VI of Appendix B where
we also include the results obtained with the operator
method. We can read that a state found to have a mass m; in
the 1/N . expansion with quark operators can be associated
with a resonance that occurs in the K =i scattering

|

A=(N,=3,0,1,0,...,

(Nc_7)/2

D

n=0
(N.=5)/2

2 69

(N=5)/2 [

n=0
(N3 T

n=0
(N(r_7)/2

n=0
(NL.—S)/2

n=0
(Nr—5)/2

n=0
(Nc_3)/2

n=0

3 1
2(2n+1,-(N,
{n+2 <n+ 2(

1 1
—. (2 1, — - —n.1
{n+2,<n+ AN =T)=n.1.0.,0.

|:n+_7

2

channel. Resonant poles are obtained if the poles are
located at the values myg; thus, the states described in
Eq. (2) organize as the pattern found on Eq. (14).

From the tables of Appendix B, we observe that some K
values found from the resonance picture do not have a
counterpart in the results using the 1/N,. expansion. As
noted in Ref. [36], this does not mean the pictures are not
compatible but rather that the higher K amplitudes corre-
spond to resonances of higher orbital momentum (with the
same parity) that reveal themselves in the same channel.

It is interesting to note that the consequence of breaking
SU(3) symmetry in the resonance picture is that only 7 with
different Y become distinct (even if they have the same K
number). So the resonance picture suggests that states with
the same hypercharge in the same K tower will remain
degenerate even if SU(3) symmetry is arbitrarily broken.

VII. THE ANTISYMMETRIC CASE:
THE [“20”,1*] MULTIPLET

As mentioned in Sec. II, in the N, > 3 generalization, we
assume that the additional N.—3 quarks appear in a
completely symmetric spin-flavor combination. The
denoted antisymmetric representation is only fully anti-
symmetric for N. = 3. As for the MS and S multiplets, to
analyze the masses of antisymmetric states, we need to
know the SU(2) and SU(Ny) contents of the SU(2Ny)
states. Using the general method described in Ref. [30], we
obtained the SU(6) decomposition into spin and flavor
representations in the antisymmetric case:

—1)=n,1,0,0,...

1

(2n+2,§(Nc—5)—n,0,0,...,O)]

(2n—|—3 —3)—n,0,0,...,0>

<2n+1 —3)—n,0,0,...,0>

<2n—|—4 —7) - 00,...,0)

<2n—|—2 ~5)— 00,...,0)

A (N, =3) = n,0,0,....0

I’l2 n,u,u, ...,

<2n n,o,o,...,oﬂ. (16)
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For low values of N, some terms in Eq. (16) vanish as the
sum labels have to be non-negative, and the 7, entries in the
Dynkin symbols have to be null when r > N —1 (or else
we would need more flavors to obtain the wanted sym-
metry); any term that does not fulfill these conditions
vanishes. It is worth noting that according to Eq. (16), the

|

first three terms in Eq. (3.3) of Ref. [27] should not be
present.

After a straightforward examination of the states
of each multiplet, we find that the SU(6) decompositions
useful to this analysis for each spin-flavor multiplet are
given by

[“20”’ 1] : [1/2, “8”}1/2 @ [3/2, “8”]1/2 @ [1/2, “1”]3/2 @ [3/2’ “1”]3/2 @
[5/2, ‘41”}3/2 @ []/2, “8”]3/2* @ [3/2, “8”}3/2* @ [5/2’ “8”]3/2* o)
[1/2,°17V% @ [3/2, 1]/ @ ... (17)

There are two physical octets with J = 1/2,3/2 and three
singlet A states with J = 1/2,3/2,5/2 associated with the
baryons expected to appear in nature.

A. Antisymmetric wave functions
To build the antisymmetric wave functions, we assume
that the cores are mixed-symmetric states of N. — 1 quarks.
Antisymmetric states are, therefore, a linear combination of
mixed-symmetric cores coupled to a quark which can be
written as

|SRA—ZC [Se.s Re, Jus Q)[SR]> (18)

where q = [1/2, 3] represents the single quark, and the MS
label in the core representation indicates that the core has
|

1\/IscoreE (NL _3,170,0, eey

n=0
(NC_S)/Z

n=0
<N(:_3)/2 [

n=0
(Ne=5)/2 T

n=0
(N(.—S)/Z

n=0

At this point, the only parameters left to determine in
order to express the antisymmetric wave functions in the
uncoupled basis are the c; coefficients of Eq. (18).

To find the appropriate linear combination of MS cores,
we use the quadratic Casimir operator. The SU(6) quad-
ratic Casimir operator, whose matrix elements are known,
can be broken down into SU(2) and SU(3) core and

1
1, (2n,% (N,
_n+ (nz(

|
mixed symmetry in the spin-flavor space. The MS core and
the excited quark quantum numbers are coupled in such a
way that the overall symmetry corresponds to the spin and
flavor representations S and R. The coefficients ¢; in
Eq. (18) have to be set to those that give the antisymmetric
spin-flavor representation.

The MS cores, in turn, are a combination of a symmetric
state of N, —2 quarks coupled to a quark, which can be

written as
j{:d (S, Ry,

|SC’R MS —
where d; are known coefficients [given by the cyg of
Eq. (5) with the replacement N, — N_. — 1].
The found decomposition of the mixed-symmetric cores
for arbitrary N, and Ny is given by

s@)lRd), (19)

(Nc_3)/2 1
0): @ |:l’l, <2n+2,§(NL_3)_n’15050»’0):|

[ 1
n+1, (2n—|—2,§(NC -3) —n,l,0,0,...,O)]

—-1)—-n,0,0,“.,0)]

1
n, <2n+ I’E(NC -3) —n,0,0,...,O)]

[ 1
n+1, (2n+ 1’§<NC -5)-n,0,0, ...,0)}

(20)

|

excited quark contributions. By calculating the matrix
elements of these contributions, a matrix of the Casimir
operator can be obtained which, when diagonalized, will
give the core composition of the states with definite
symmetry. Details of these calculations can be found in
Appendix C. The core composition for the antisymmetric
representations of interest in this work is given by
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1 Q°°

38) ==l Rahusa*¥) + = (0. Roly) ),

3 3 N sy V3 IN.+3

) - ,/ =21 Rolusa) ) - 3 Y1 R+ P 2 R,
s N, +1 1 |N.
Do) = R Raasa) ) + 2 (RT3 Rils )
(1% k&l - 3 ) = 1 3 1 =

5.1 >A f\/ |([1. Rolys@) &) —g@ 1([0. R ]yisq) &)

1 N.+3
1,R] 211y, 21
[
where R, = (h, W) These coefficients have been For N3/, we have

checked against those in Ref. [37] for N. = 5.

B. Operator expansion

Since we are not considering SU(3) symmetry breaking,
the energy spectrum for large N, for all states belonging to
“8” flavor multiplets will be given by the K value that
follows from the K = I + J relation for nonstrange states
presented in the Introduction. This implies that there are
three towers with K = 0, 1, 2. Then, only three operators
are needed to describe the states of flavor multiplets that
contain nonstrange baryons of the [“20”, 1 7] multiplet. The
mass operators for the expansion at order O(N?) can be
chosen to be

0y = (N.1)P1,
0, = (5(1)S)[o,1]’
1
03 = 7 (E@(gGo )1, (22)

The mass operator can be written as a linear combination of
these operators as in Eq. (7) where the sum goes up
to i = 3.

The building blocks of the mass operators are, as in the S
and MS cases, the SU(6) generators acting on the excited
quark and on the core. This clearly implies that the matrix
elements of these operators between states containing cores
of different symmetry vanish. Therefore, as mentioned in
the Introduction, there is no mixing between baryons of the
[“20”,17] and the other states of the A = 2 band.

Using the operators of Eq. (22) for the nucleon with
J =1/2, we obtain

2 1 5
<C1NC—§C2 —3—\/§C2—m63 ) (23)

My, = 5 5
N, — 662715863

This matrix has two eigenvalues that we label m, m;.

48

<C1NC+%C2 _£C2—\/—§C3 ) (24)
5 )
TRk

MNs/z = 5
clNc —6C2

with eigenvalues m;, m,, and

1 1
= Ne+=¢y——=c3 (25)

My 27 48

for the N5/, state, which we call ms.

Eigenvalues found for the strange partners in these flavor
multiplets are the same as the ones found for the corre-
sponding nucleon.

The eigenvalues’ expressions found in terms of the
expansion coefficients are

5
my=ciN.— ¢, REVEES
1 5
m; =cN, —5024‘@03,
1
my = C]NC+§C2 —4—8C3.

The tower structure found for the nonstrange antisym-
metric states and their strange partners in the flavor
multiplet is given by

mo: (N1 AY 5. 285, B ),

myit (Nijp AY . 20 B ) (N3, AS) 255,83 ).

. = X #(8) $+(8) —=(8)
my . (N3/2’ Ag/zv Zg/z’ ~§/2), <N5/2v As/z 725/2 15500 )-

(26)
This structure is the same as the one found for the

[70”,17] multiplet at large N. where the spin-flavor
multiplets containing nonstrange states organize into three
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towers with K =0, 1, 2 [26], and it also agrees with the
remark in Ref. [27], where using a hedgehog-based
analysis, the authors argue that the MS and A configura-
tions have the same spectrum of nonstrange states for large
N.. Furthermore, not only the tower structure coincides but
also the m; and the matrices expressions are identical to the
ones found for the MS states which can be obtained from
expressions in Refs. [9,12] (in particular, the matrices in
this work are identical to those in Ref. [36]). Then, the
matrices found imply, as in the MS case, that the mixing
angle in the unitary matrix that diagonalizes My, , and
My, " is surprisingly simple, as it is independent of the c;
coefficients. Given the fact that we only have three
operators involved and two matrices, it is not clear if this
is a coincidence or if it suggests that there is a deeper
connection between the MS and A symmetries.

C. Towers for antisymmetric states

We corroborated that multiplets of [“20”, 17] containing
nonstrange baryons organize as the MS states of [“70”, 17;
the states fall into three towers labeled with K =0, 1, 2.
The large N, spectrum of the strange flavor multiplets
appears to have a different structure. The states’ content no
longer matches the MS case ([<70”,17] has only
[1/2,%17]"/2, [3/2,“17]"/?). In Appendix D, we present
the partial amplitudes containing resonances with quantum
numbers corresponding to A states. As can be deduced
from Table VII, the resonance picture indicates that baryons
contained in the [“20”,17] representation belonging to
(/2512 (12502, [3/2,1)2 [3/2.17,
[5/2,“1”]3/? multiplets organize as follows:

1 -
K = 5" (A}/z’:‘}/z)v
K = § . (Al =1 )
5+ 320 330)
5 -
K=3: (A5)2-B5)0)- (27)

But, for large N, there are two Al /o states with intrinsic
spin 1/2 and 3/2 that mix, resulting in two Al /, eigenstates
of the large N. QCD. When considering the resonance
picture, only one state with a given J can be assigned to a

given energy; the other state has to be identified to a
different energy level of the same K. Then, in the case of
Al P there are two towers K :% and K = % There is an
analogous  situation for the Al s> When extending the
analysis to all nonstrange states of [“20”, 17], five towers
seem to appear in addition to the ones containing non-
strange states, namely, K :%,%,%,%,% Nevertheless, at
this point we turn our attention to the phenomenological
relevance of such an analysis; two towers seem to arise with
a same given K value (these towers with the same K value

should not be confused with the ones of the case of the S
and MS states described in previous sections where K
towers with + labels arise exclusively from configuration
mixing), but only one of these two towers contains the
physical state, the other is a “spurious tower”; i.e., this
entire tower decouples in the physical limit. Then, it is clear
that from a phenomenological point of view there is no
interest in including these two extra spurious towers. Only
three nonspurious towers arise, which indicates that to
consider these states in a 1/N, expansion framework, one
should considerate three extra operators in addition to those
in Eq. (22).

When building the mass operator for antisymmetric
states, the reduction rules of Ref. [32] cannot be used
for core operators since cores are no longer symmetric.
However, the rules apply to the inner core operators since
they are (N, — 2)-quark symmetric cores. Core operators
can be decomposed as a sum of an (N, — 2)-quark core
operator plus a single quark operator A, = Az + 4; the
reduction rules can then be applied to the A; operators. On
another hand, using the Casimir invariant for the antisym-
metric representation given by Eq. (C2) and the Casimir
invariant for the mixed-symmetric representation with
(N, —1) quarks and for the fundamental representation
of a single quark given by Cgye)(N,—3,1,0,0,0) =
(N —=1)(5N. +13) and Cgp6)(1,0,0,0,0) =35, res-
pectively, we can express the quadratic Casimir identity for
the antisymmetric representation as

N, +11

2
=sS, + 1T, +49G,. = G

- (28)
Then, as in the case of the “56” and “70” multiplets, the
gG,. operator can always be eliminated in favor of sS.
and 1T,.

Considering the reduction rules for symmetric represen-
tations applied as described above and the Casimir identity
found for A states with MS cores, additional operators
0, = N%(«f(l)(th)“*”)[O’” and O5 = Nl(_(tTc)[O*l] seem to
be a good choice of basis for an operator expansion that
includes all nonstrange states as they have been used in
[“70”, 17] analysis in the Ny = 3 case. The extra operator to

consider could be Og = - (&1 (g7 )M 1)OY which in the

case of antisymmetric states is not linearly dependent on
the other operators since the cores are mixed symmetric.
With these operators, one can take a phenomenological
approach and calculate the spectra for finite N, once the
empirical data about these states become available.

Even if there are no data about the strange antisymmetric
states, as mentioned in the Introduction, the nonstrange
resonances N(2100)1/2+4 and N(2040)3/2+ have been
tentatively assigned to the antisymmetric multiplet [38]. In
fact, there is a continuing experimental effort in establish-
ing the actual existence of these states. In particular, in
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Ref. [39] the authors find that they are necessary to
describe the cross-section data. Moreover, very recently
N(2100)1/2+ has been upgraded from one to three stars in
the 2018 edition of Ref. [29]. In the large N, picture, the
N(2100)1/2+ would be associated as the physical state
arising from the mixture of N/, states belonging to the
K =0, 1 towers in Eq. (26) (note that the other combina-
tion turns out be unphysical for N, = 3). Similarly,
N(2040)3/2+ would be associated to the physical mixture
of N3, states belonging to the K = 1, 2 towers.

VIII. CONCLUSIONS

In this work, we performed a complete large N analysis
of the masses of all states belonging to the N/ = 2 quark
model band for N, = 3.

We first studied baryons of the A/ = 2 band in multiplets
[56”, L] and [“70”, L] in the large N, limit allowing for
the states belonging to the irreducible representation
SU(6) x O(3) to mix. This representation arises from
the quark models, but it is not a symmetry of QCD nor
is it a symmetry of large N, QCD. To analyze the spectrum
of these baryons in the large N, limit, we considered a
1/N, expansion using core and excited quark operators
with a generic spatial operator which allows for the quark
model states to mix. We found that configuration mixing
effects appear only on flavor multiplets containing non-
strange states; it has no effect over states in the “1” or “S”
flavor representations. The 146 isomultiplets of the S and
MS representations fall into only nine towers predicted by
large N, QCD. We found that only the SU(6) x O(3) states
with the same K label can mix, which is a direct
consequence of the contracted symmetry of the large N,
limit. Multiplets with nonstrange baryons were found to
belong to five towers labeled with K = 0, 1+,2%, 3, while
strange flavor multiplets were associated with K = 1,33
towers. We generalized the relation between the K and L
numbers for MS states in the N = 3 case, finding that it
cannot be stated as simply as in the nonstrange case since it
acquires a dependence on the flavor representation. In
addition to the operator analysis, we showed explicitly that
the compatibility of this method and the resonance picture
holds for the entire [“56”, L") and [70”, L] multiplets,
and, in particular, we showed it still holds when considering
configuration mixing.

Using a similar 1/N, expansion with effective quark
operators (with a smaller basis), we also showed that
[“207, 1] configurations from flavor multiplets containing
nonstrange states also fall into the towers predicted by the

|

(RAY L LY Ty
R’ r

_;<{Yc1c1;} {ron, 10, 1)

?P}|R/’ {Y/’I/’I

large N, symmetries. In addition, we found that the
resonance picture gives a compatible classification. Our
results explicitly show that the A states have the same
spectrum of nonstrange states as the MS with L = 1 in the
large N, limit. Furthermore, we observed that nonstrange
mass matrices belonging to [“20”, 1] are identical to those
from <707, 17]. The tower structure was expected to be the
same, but considering the nontrivial building of the anti-
symmetric wave functions, the result that every matrix
element is proportional to the MS case was not obvious.
Given the content of these multiplets, we could only
compare two matrices; it would be very interesting to test
this for higher angular momentum states, where there will
be more matrices to compare, to further understand if this
effect is an overview of a more profound relation between
the A and MS representations. We assumed A states can be
described as a MS core coupled to excited quarks, and we
found the nontrivial spin-flavor composition of the states
belonging to the [“20”, 17] multiplet. This building of the A
states gives results compatible with the large N, predictions
suggesting that effects from more complex constructions
are N, suppressed. The baryon-meson scattering picture
indicates that the strange multiplets of [“20”, 17] fall into
towers with K = 1,3 3. However, as explained in Sec. VII,
there are three towers containing one physical baryon
each and two additional spurious towers we labeled
with K =3, K =3.

Using core and excited quark operators, we obtained
results predicted in large N, QCD and that are compatible
with the resonance picture, even when including configu-
ration mixing. This indicates that this approach is appro-
priate to analyze states in the large N, limit and effects from
other operators must be subleading.
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APPENDIX A: CONVENTIONS AND DETAILS
OF THE CALCULATION OF RELEVANT
MATRIX ELEMENTS

In addition to the usual definition of reduced matrix
element for SU(2) (in this paper, we follow the conventions
of Ref. [40]), we also use the Wigner-Eckart theorem for
SU(3), which is given by

b

R 1
{KIJJ)V DR

(R||T*|[R),, (A1)

~—
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where D(R) is the dimension of the representation, and the parentheses indicate a Clebsch-Gordan coefficient
for SU(3).

The Wigner-Eckart theorem in both its SU(2) and SU(3) versions leads to the general expression for the mass matrix
elements

(L. S)T TR Y.L LIEDGE )| (L, §) ' T RV T 1)

! ] 1 R’ r
D) (v

7 R |
= (=1)" <J _J Y.I.1 )
z z 15 R D(R)

x (L. $)J:R||("GHUR|(L, $')T:R"),, (A2)

where j = /T + 2. In the cases of mass operators, we will have j = 0 and r = 1. The orbital and spin-flavor contributions
in the reduced matrix element above can be written in an uncoupled basis as

(L, S)J;R[[(EDGsH|(L', 8" R,

L L1
:]A'Aj’ s § <L||§<l>||L’><S,RIIQ[S’F]IIS’,R’>y, (A3)
JJ

where the term in braces is an ordinary SU(2) 9 symbol. A simple replacement of the expression in Eq. (A3) into Eq. (A2)
gives Eq. (9). The terms (L||E!||L’) are left undetermined in this paper to maintain the generality over the orbital operator.
Then, the terms to determine are the reduced matrix elements (S, R||Gl*"||S, R’ )y

The G operator can be written as
Gisrl = (ABaral Alsom]ylorlrz (A4)

where 1 and A are quark and core operators, respectively, A = s, ¢, g, and A = S, T, G,.. Then, the matrix elements of G can
be written in the uncoupled basis as

(1S R Ja) ool Al 12 5. R 1),
Sc SIL Sp R/L r, Rc »Ya

§S 8
= (=l 220 L1/ 1/2 5, 3403t 3
V3D(R)D(R,) / y
S S s « \R" 1,7, R ’
X (S, Re|[AFrml][Se, RE), (a]|ab "] ||q), (A5)

where the second term in braces represents an SU(3) 9 symbol, which is defined in the following.
The SU(3) 9/ symbols are defined by the reduced matrix element of a two-body operator in the SU(3) space written as

(R, R)RY||[(TT3 )| (R}, RY)R'T) 4
R, r, Ry,p,

1
— RBETBEI L]} Refs ¢ (RIITVIRDRITS R, (A6)
1 2) BBy RI,YI r,a R,]/ 5

The SU(3) 9j symbol can be calculated by evaluating
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R/l r, Rl ’ ﬂa

R’ r R
( ) R, 1, Ry,p

2oy v | ),
p R.Y ra Ry J,
o R, R; R’
= D fWhiedih iy D LEDDR) gy vy | (i) )
11.1].12.12.19.1b.
Yl.Y/I,Yz.Y’Z,yaAyb
ra rh r R] R2 R
X ({yavia} {yb’ib} {y’ i}>a<{yl’]1} {YZ’IZ} {le})y
Rll r, R1 R/z ry, R2 A7
Ay veid | ), (s i) | () (A7)

where the SU(3) isoscalar factors are defined by
r;, r ia ib i r, r, r
>a_ ( : )({ya,ia} {ypsip} {y’i}>a.

r,
({ya»iaviaz} {ybvilwibz} {y’ i7 iz} iaz Ipy iz

The f function in Eq. (A7) is given by

Ié - I/lz

T A N /ia i i
< I/><iaz iz_iaz iz)

Fh il By I BT = 30 z
1gtaz
I, I I I, I,
x I/lz+iaz Ilz_Illz_'—iz_iaz 12+i2 I,lz iaz Illz+iaz
1/2 ib 12 I/ i 1 -1 AS
X<I/Z_I,1z iz_iaz Ilz_l/lz+iz_iaz)<1/z iz I/z+iz> ’ ( )

The required explicit expression for the SU(3) isoscalar factors has been obtained in Refs. [41,42].
Expressions for (S,, R ||Al»r]||S", R{), in Eq. (A5) are given explicitly for (N, — 1)-quark symmetric cores in the
following.
The matrix elements of the G, operator for symmetric cores are given by
h, (S.) if S, =S,
=< f(S.S.) if|S.=S.]=1 and y,=1, (A9)

(Se. R.||G[|Sc. R,
0 otherwise,

where

By = (=1 (2S. + 1)(Ne +2) /Sc(S. + 1)(N. + 1 -25,.) (N, +3 +2S,)
L NG V2S5, + D+ N, t 9N, - 1)

_ (1_550,0) 2 2 2
™ B LR R Rt

(No +1-28,)(N, +5+25,)
x (25 + 1)\/1zsc(sc F1)+ (N +5)(N, 1)
. (Al0)

V(N +1-28)(N.+3+2S.)(N. + 1 =2S.)(N. + 3 +285,)

Foo V@2SL+1)(28. +1)
B 8v2
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On another hand, for 7. we have
(Se. R ||T.||S.. RL) = 85 5 8. Orr:(=1)%0, /D(R)Csy3)(R). (A11)

where Cgy(3)(R) is the quadratic Casimir operator for SU(3) given by Cgy3)(p.q) = w

The S, matrix elements for symmetric cores are

(Se. RIS S0, R.) = Srrr/D(R)3s 5 \/Sc(Se +1)(2S + 1). (A12)

APPENDIX B: PARTIAL-WAVE AMPLITUDES FOR SYMMETRIC
AND MIXED-SYMMETRIC STATES

In this Appendix, we list the partial-wave amplitudes containing resonances with quantum numbers corresponding to the
S and MS states of the A/ = 2 band in the large N, quark picture.

TABLE I. Large N, mass eigenvalues in the 1/N, expansion corresponding to states in the [56, L] and [70, L]
multiplets with L = 0, 2 and the partial-wave amplitudes containing resonances with the same quantum numbers.
Since I = I’ in all the partial waves, to lighten notation we replaced the /1'Y labels in 7 to those of a meson having
the corresponding quantum numbers. Partial-wave amplitudes containing the nonstrange resonances were
calculated before in Ref. [27] and are listed here for the reader’s convenience.

State Pole mass Partial wave, K amplitudes
N2 o, P =1 (xfy +27)
P}y =1},
LEY) Mz, Mo+ PR = %(711 +573)
Pl = h
Nspa Mo, M3 FIY = §(515 + 47%;)
Fllﬂsv = 71373
N7/ ms F’ltév :3’1(73% 37i3)
F717V = ’37%
A My, My Py =4 (tf, +575))
Az mg, M+, Mys, Ny P = %(2101 + 577, + 573,)

P§3A T (5701 + 27}, + 873,)
F§3A = %(723 + 4173[3)

PZ3A = 711
FZ? = 733

As) M=, Mye, M3 PIY = 732 (1073, + 357%; + 8117%;)
P3s :%(3 ™ +7173)
F’3’5A = # (512123 + 34375, + 405743)
PgsA 7,
Fis =

A1y My, M3 F = 55 (202, + 2173, + 1575,

TABLE II. Continuation of Table 1.

State Pole mass Partial wave, K amplitudes
A?/z Mo, Ny P§ = 3 (7§, + 277))

P g/l\ =1
A§/2 mys, Mo Piy =g (7}, +55))

P 813\ =1

(Table continued)
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TABLE II. (Continued)

State Pole mass Partial wave, K amplitudes
Ag/z My, N3 Fg;; = L(ST% +41%3)
Ad) ms3 F37 = 4(%% + 37%3)
F07 = T%z
Al my PiY =
A%/2 my PEN = T%Kl
A m R =
State Pole mass Partial wave, K amplitudes
Zff/z Mo, M= Pit =5 (a5, +27)
P =5 (2§, +277))
P7/1\ = 771
zg/z My, My PP = ¢ (e, +5%5))
Pi3 =g (e, +575))
P?é\ = 771
Z?/2 My, m3 FT? = % (5735 + 47%3)
F’% = %(475[3 + 57%3)
n
FIIS = 1]'23
Z§/2 ms Fi} =5 (75 + 37f)
F7|z7 = l(fﬂ + 3733)
F”7 = T)%
TABLE III. Continuation of Table II.
State Pole mass Partial wave, K amplitudes
Z}(/]2 my=, My= Pt = (¢f, +575))
Py = é(fu +513,)
2y N Mg, Mys, Mys, my P = L (2¢F, + 5¢F, + 545,
PTS = 15 (225, + 5¢f, +575))
P’f%: %(5701 + 277, +873)
F '1% %(723 + 41%3)
ne*
P{% =11
Fly =13
Y, Mys, Mys, ms Fri = 722 (1073, + 357%, + 817%)
Fr¥ = 1. (1073 + 3577, + 8177;)
P’% :1]*0(377111 +773,)
FiE = 2 5 (51277 + 3437%; + 4057%;)
nx*
P{% =1
F’115 = TZ%
z";(/)2 My, N3 F7 = 135 (1023, + 3575, + 8177;)
F7% = 35 (10255 4 35735 + 8177;)
= my, my PV =5 (eff +82f)
=5, my, msy, ms PRN :%(415 + 5151 )
PRA = 3(5151 +42f)
FEA = Tg

034019-17
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TABLE IIL. (Continued)

State Pole mass Partial wave, K amplitudes
Z?/2 ms, ms FKN %(STK + 16773)

P{(SA = Té(]

FA =L (161’s3 + 51'73)
=% ms FEN = 142k + 32K)

TABLE IV. Continuation of Table III.

State Pole mass Partial wave, K amplitudes
=8 72 1
=152 Mo, M+ Pt = 3 (15, + 277)
= n
. P]l_ = 711
=32 my=, Mo= PS5 =4 (7}, +57%))
"
. Pn = 711
=570 M=, M3 Fis = g1 (573, + 41;)
e __
. Fls_ = 7133
=72 3 F7 = 55 (153 + 3733)
e __
Fi7 =13
E}?z s My Py = %(Tllzl +573,)
=10 N 2 __ 2
=% my, Mys, Myx, M3 P73 = 275(2r61 + 577, + 54%,)
P’1[3 108 (275, + 577, + 573))
nEr _
Pli* =Tn
F?i =133
E;(/)z myx, Myz, m F2 = 52 (1072, + 35¢%, + 817%,)
= _ 5
F’l'5 = 1133 (10235 + 357%; + 8117;3)
n
P15 =T
F)17§ = Tg%
=10 2
B Mo, M3 Fi5 = 45 (2073, + 2175 + 157;)

TABLE V. Continuation of Table IV.

State Pole mass Partial wave, K amplitudes
Bl my PiF =1f
PRA = T%kl
P m3 PiY =1f
P{%A = Tg(l
=) " FiF =
FKZ — T%fg
=, my, ms PIF =5 (c), +8¢)
pPir =1 (‘L{(l + 81'%[(1)

034019-18
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TABLE V. (Continued)

State Pole mass Partial wave, K amplitudes
E§/2 my, ms, ms PK2 %(475 + 5151)
PRA = . (41?1 + 575)
prE =1 (STﬁ + 41?1)
FEE = 7512
5§/2 ms, ms F{(SE =5 (5153 + 161'73)
FRA = %(51’53 + 16173)
PRE = rfl
FY =4 (16153 + 5753)
E§/2 ms F{(7E = %( 753 + 3773)
FRA = L4 153 —5—31;3)
TABLE VI. Continuation of Table V.
State Pole mass Partial wave, K amplitudes
Q}(/)2 s Mo P01 = 711
PS? (5711 +173)
Q;(/)z mgy, Mmy+, My+, M3 P03 = 111
Fig 03,— T%%
PS? — 1 5 (575, + 27, + 845
Fig =1 (a5 +415,)
Qé(/)2 my+, Moy=, M;y Pg? = T’lll
F ’75,— 723
Pig = 15 (37}, +773,)
. ng gg’z% + 15575 + 25 703
Q7 My, m3 Fiy =13
Q
H 87, =15
Fig = 7 (377213 +47l3)
HE$ = 55 (775 + 187%)
Q?/Z my, ms P =5 (Tﬁ + 875)
Q) my, mg, my PiT =3 (4ef) + 57)
PKE = 5(51%’(1 + 41?1)
F ([)(35* = ‘L'%Ig
) ms, ms FIE = L (575 + 167F)
P(If;* = T%ﬁ
F(I)(S“ %(16153 +517I§)
S =
Q) s F(I)% = % (41%12 + 31'%12)
APPENDIX C: CORE COMPOSITION OF generators of the representation R. When working with
ANTISYMMETRIC STATES SU(6), itis useful to recall the relation Cgy6) = 2G;,G;, +

To find the core composition of the antisymmetric states

%CSU@) —I—%CSU(Q) [10]. The SU(6) generators can be

of the A = 2 band, we used the quadratic Casimir operator expressed in terms of core and quark operators
which can be defined as Cx = 3, A A,, where A, are the  Si = 8i + (Sc)i Ta = ta + (T¢) s Gia = gia + (Ge)jq» then
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1
CL

1
) SU(3 ) 5 C§ + 4gia(Gc)ia

Csuie) = C 3 SU()

su6)

1 1
+ 29i09ia + 5 Csu3) + 5 Csu)s

3 (C1)

where ¢;,9;, = s°1* so that {g;,9i,) = 1 and C% denote a
quadratic Casimir operator built with core generators. The
Casimir matrix element of a given representation can be
expressed in terms of the boxes in its Young tableau (see
Ref. [43]), in particular for the A representation of SU(6)
whose multiplet in Dynkin notation (N, —3,0,1,0,0) is
given by

5N2 4 6N,

C N
su(e)( 2

c_370’170’0): (C2)

Then, when calculating the matrix elements of the operator
in Eq. (Cl), all terms in the lhs and rhs are determined
except for (g;,(G.);,)- As mentioned before, the core can
be assumed to be an (N, — 2)-quark core ¢ in a symmetric
representation coupled to a quark so that the overall
symmetry is mixed symmetric. We can write (G,.);, =
(Gz)ia + 9iw and using the Wigner-Eckart theorems for
SU(2) and SU(3), we find that

) S. S, 1
A o 128 Lo
(S.R1gia(G.)jal S R') ZC cyoR, R/(SSS/(R)—3D(RCI_) 1/2 1//2 1
S0
R, 8 R..7,
x>0 3 30 08, RIIGEYS,, R,,),. (C3)
LR R

where we used the relation between Cartesian and spherical basis given by g,,(G.),, = —V3V8(g:a(G )m)O o] The second

term in braces is an SU(3) 9 symbol whose definition can be found in Appendlx A. Details on how to calculate

(S, Rci||GL1’s]HSC[,,RC[,>},Q can be found on Appendix E.

Three distinct symmetries can result from coupling one quark to a mixed-symmetric core, which can be written in Young

diagrams as

-0« O = -0, 04O 4 O
— ] — (C4)
A MS M52
where the representations in Dynkin notation are  the results for the A states which we used in the
=(N.-2,1,1,0,0), MS=(N.-1,1,0,0,0), and calculations that follow in that section.
MS2 = (N, —=2,2,0,0,0). (Note that the MS2 configu-

ration is not possible for N, = 3.) The Casimir invariants
for the MS and MS2 representation are Cgye) (N.-2,2,

0,0,0) = LN (5N, +6) +2 and Csye)(N, —1,1,0,0,
0,0) = 5N (5N, + 18) so that when we diagonalize the

matrices, we obtain the core composition of the A, MS,
and MS2 representations. In Eq. (21) of Sec. VII, we list

APPENDIX D: PARTIAL-WAVE AMPLITUDES
FOR ANTISYMMETRIC STATES

In this Appendix, we list the partial-wave amplitudes
containing resonances with quantum numbers corresponding
to the A states of the N' =2 band in large the N, quark
picture.
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TABLE VII. Large N, mass eigenvalues in the 1 /N, expansion corresponding to states in the [“20”, 1] multiplet
and the partial-wave amplitudes containing resonances with the same quantum numbers. Since I = I’ in all the
partial waves, to lighten notation we replaced the II'Y labels in 7 to those of a meson having the corresponding
quantum numbers. Partial-wave amplitudes containing the nonstrange resonances were calculated before in
Ref. [27] and are listed here for the reader’s convenience.

State Pole mass Partial wave, K amplitudes
N my, m SN _ o7
1/2 0> 1 11 = 10
nN
S = Tloo
aN __ 3
N3 my, my DH —2(712+722)
D13 = 722
N __ V3 V3
Ns2 e DY =5(275, +77%,)
D'7 =1
13 2
8 X __
Al/2 my, m; Sor = Tlo
N _ 1
. Sor = 700
X __ 3 3
Ay, my, np Dy =4 (77, + 75,)
nA
Dyy = 722
8 X __ 3
Asp 2 D5 =5(215, + 775)
na i
. Dys = 722
KN _
A S0 110
1 KN _ K
A3 Dys" =13,
1 KN _ 1'(
Aspp D5’ =75,
State Pole mass Partial wave, K amplitudes
3 TA _
21/2 my, m St = Tlo
X __ 2
Su = 5710
. S11 = 749
N __ 3
3, my, ny Di3 = *(7”2 +13)
ax
DTy =1 (71, + 75,)
nE __ 1
Di5 =1y
8 A _ 1
Z5), "y Di§ = 57 (275, + 71%,)
) 2
D5 =5 (225, +775,)
nE o __
D5 =13,
=8 my, m g8 — Lon
=1/2 0> 41 11 97%10
e __ 1
. Su_* T(l)o
— T T
=32 my, myp D5 =5 (th +75,)
e _
Dy = 722
—8 /=
=52 My Dff = §; (275, +77%,)
D15 = 722
—1 1 K
=12 SKE 2T
KA _ 3 K
ST =37
=1 K _1.K
=3/2 Dy =57y
KA 3K
D13 _ZT%Z
—1 K _1.K
=502 Dis =137y
KA 3K
Dis )
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APPENDIX E: REDUCED MATRIX ELEMENTS FOR
MIXED-SYMMETRIC CORES

In this Appendix, we present the expressions for the reduced matrix elements of the SU(6) generators for the mixed-
symmetric cores. We built the MS cores as a inner core of N, — 2 quarks in a symmetric configuration coupled to an excited
quark. The core wave function is a linear combination of states with definite inner core spin, and it can be written as the
expression in Eq. (19). Given this expression, the matrix elements for the S. operator can be expressed as

(Se.R|IS|ISe. RY) = D did 6r, v, Or.w.05, 5, (=1)728.5,/D(R,)

S,
X {SE/_ S.. 1/2}\/5

In the case of the T, operator, the reduced matrix elements for mixed-symmetric cores is given by

)(28;, + 1). (E1)

(S, R|[|Tc[[Se. Re)

Zd \/—)55 05,5, Or. R,

R; 8 R R; R;
9(gz,;0) 2v3
X (—1) Ci CSU(3)(RZ‘l-) 3 1 3 +T 3 8 3 s (EZ)
R, 8 R, R, 8 R,
where Rz, = (p;,, gz,), and Csy(3)(R) is the quadratic Casimir operator for SU(3) given by Csy3)(p, q) = w.
Reduced matrix elements for operator G, for mixed-symmetric cores can be expressed as
V6S,,S.,
(Se, R [GISe, R, )y, de, =
(Rc,) D(REJ)
SL‘] SC ! O RZ]/ 1 RZ]
X | =35, 5. Or, R, \/D(R)S;, 4 1/2 1/2 1 3 8 3
] Se S 1) R, 8 R,
Se, Sey 1 R; 8 R, ]
2 12 03)°0 3 1 3 4 (S, R; ||G:[ISz, Rz ), | - (E3)
SL‘,- SC‘./ 1 Yh RCir 8 RL‘,-

The matrix elements of the G; operator (R; . S [|G: ||RC S >n are given by the expressions in Egs. (A9) and (A10)
with replacement N, - N, — 1.
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