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ORIGINAL ARTICLE

Transcriptomes from German shepherd dogs reveal differences
in immune activity between atopic dermatitis affected
and control skin
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Abstract
Canine atopic dermatitis (CAD) is an inflammatory and pruritic allergic skin disease with both genetic and environmental risk
factors described. We performed mRNA sequencing of non-lesional axillary skin biopsies from nine German shepherd dogs.
Obtained RNA sequences were mapped to the dog genome (CanFam3.1) and a high-quality skin transcriptome was generated
with 23,510 expressed gene transcripts. Differentially expressed genes (DEGs) were defined by comparing three controls to five
treated CAD cases. Using a leave-one-out analysis, we identified seven DEGs: five known to encode proteins with functions
related to an activated immune system (CD209, CLEC4G, LOC102156842 (lipopolysaccharide-binding protein-like),
LOC480601 (regakine-1-like), LOC479668 (haptoglobin-like)), one (OBP) encoding an odorant-binding protein potentially
connected to rhinitis, and the last (LOC607095) encoding a novel long non-coding RNA. Furthermore, high mRNA expression
of inflammatory genes was found in axillary skin from an untreated mild CAD case compared with healthy skin. In conclusion,
we define genes with different expression patterns in CAD case skin helping us understand post-treatment atopic skin. Further
studies in larger sample sets are warranted to confirm and to transfer these results into clinical practice.

Keywords Canine atopic dermatitis . mRNA sequencing . Differential gene expression . Skin transcriptome

Introduction

Canine atopic dermatitis (CAD) is an inflammatory and pru-
ritic allergic skin disease with a strong genetic predisposition
and is also influenced by environmental risk factors (Meury
et al. 2011; Nodtvedt et al. 2007). Onset of clinical signs is
typically between 6 months and 3 years of age in affected
dogs. Clinical signs of CAD include eczematous skin, pre-
dominantly in the flex and friction areas of the body (Griffin
and DeBoer 2001), strikingly similar to symptoms of atopic
dermatitis (AD) in humans (Rhodes et al. 1987; Willemse
1988). The immune response during an atopic reaction is pri-
marily a lymphocytic skin infiltration and plasma cell class
switching to form immunoglobulin E (IgE) antibodies that
recognize otherwise harmless environmental allergens.
These IgE antibodies bind to IgE receptors expressed on the
cell surface of mast cells and basophils and when IgE are
cross-linked by the offending allergen, degranulation and re-
lease of inflammatory mediators occur. This leads to vasodi-
lation and activation of further inflammatory responses. The
overall prevalence of CAD typically ranges from 3 to 15%
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(Hillier and Griffin 2001;Williams 2001) and high-risk breeds
include boxer, bull terrier, West Highland white terrier,
German shepherd dog (GSD), and Labrador retriever (Jaeger
et al. 2010; Nodtvedt et al. 2006; Sousa and Marsella 2001;
Vilson et al. 2013). Heritability of CAD in Labrador and gold-
en retrievers was estimated to be 0.47 (± 0.17) (Shaw et al.
2004).

The severity of clinical signs, the effect of different treat-
ment protocols, and disease progression differ greatly between
different CAD-affected dogs (Olivry et al. 2015). Moreover,
many treatments may have adverse side effects (Bloom 2006).
Anti-allergic drugs include antihistamines and immune sup-
pressive drugs, e.g., cyclosporine A, glucocorticoids or
oclacitinib. Secondary overgrowth or infections with
Malassezia or Staphylococcus spp. are well-recognized flare
factors; thus, infection control and prevention is important for
successful disease management. Allergen-specific immuno-
therapy (ASIT) has been developed also for dogs and may,
in some patients, be effective in inducing allergen tolerance,
hence reducing or even controlling allergic symptoms
(reviewed in (DeBoer 2017)). Therapies used for treating dogs
with CAD are comparable to treatment of human AD patients
(Werfel et al. 2014). The similarities between AD in human
and dog both regarding disease presentation (Marsella and
Girolomoni 2009), as well as treatment options, make the
results obtained from CAD studies potentially useful also for
human AD research. The variations between patients in dis-
ease progression and severity as well as response to treatment
emphasize the need to develop new therapies and personalized
treatment strategies in both human and dog AD patients
(Cabanillas et al. 2017; Olivry et al. 2015). To further under-
stand the mechanisms underlying CAD, including genetic risk
factors, cell types, and molecular pathways, studies of skin in
subclinical and active CAD stages are highly warranted.

Differentially expressed genes (DEGs) have previously
been reported in a custom-designed 22K gene expression mi-
croarray study of both lesional and non-lesional skin from
atopic dogs compared to skin from controls (Merryman-
Simpson et al. 2008). In that study, 54 DEGs were identified
and the most dysregulated gene was S100A8, encoding a
calcium-binding protein involved in regulating inflammatory
responses. Skin biopsies were taken from different parts of the
body and various breeds were jointly analyzed. A similar
study of human AD identified 217 DEGs of which the most
differentially expressed genes encoded proteins involved in
inflammatory responses (e.g. S100A8, -A9 and -A12, and
CXCL1) and the skin barrier (e.g., keratin 16, and claudin 8)
(Suarez-Farinas et al. 2015). In a meta-analysis (Ghosh et al.
2015) of five independent human AD microarray studies
(Gittler et al. 2012; Guttman-Yassky et al. 2009; Olsson
et al. 2006; Plager et al. 2007; Suarez-Farinas et al. 2011),
89 DEGs were identified as consistently dysregulated across
all five studies. The defined genes were functionally

imp l i c a t ed in immune re sponses , ke r a t i nocy te
differentiation/epidermal development, inflammation, and lip-
id metabolism (Ghosh et al. 2015).

In this study, we collected skin biopsies from the axillary
region, which is one of the typically affected body regions in
the active disease stage, from CAD-affected and healthy con-
trol GSDs. We identified seven significant DEGs comparing
treated CAD cases to controls. Post-study design identifica-
tion of an untreated mild CAD case allowed us to compare
untreated atopic versus healthy control skin and indicated in-
flammatory genes with high expression in the untreated mild
CAD dog.

Methods

Samples

Skin biopsies were collected from 10 GSDs. The dogs were
included in our previous genome-wide association study of
CAD in GSDs (Tengvall et al. 2013) and recruited based on
their genotypes (cases with risk alleles and healthy controls
with control alleles) at the Plakophilin-2 (PKP2)-locus. One
biopsy (6 mm in diameter) collected from axillary skin was
fixed within 10 min in RNAlater (Ambion Inc., Austin, TX,
USA) and stored at 4 °C overnight followed by storage in −
80 °C until RNA extraction.

CAD and control phenotype characterization

All six cases had been diagnosed with CAD. Clinical diagno-
ses were established by first ruling out other causes of pruritus
such as ectoparasite infestation, staphylococcal pyoderma,
and Malassezia dermatitis. Hypoallergenic dietary trials (at
least 8 weeks followed by a challenge period) were conducted
to evaluate the potential contribution of concurrent cutaneous
adverse food reactions to the clinical signs. A CAD diagnosis
was determined in dogs not adequately controlled on hypoal-
lergenic diet and with positive reactions on intradermal allergy
tests or IgE serology tests. The dogs were between 6 and
11 years old at the time of sampling. At the time point of
biopsy collections, CAD cases were under treatment with
ASIT (administered sub-cutaneous), methylprednisolone/
medrol (cortisone), and/or cetirizine (antihistamine)
(Table S1).

One dog was originally recruited as a control (control 2),
but at the time of sampling, the dermatologist observed mild,
non-infectious otitis externa at the examination. The clinical
findings warranted an in-depth interview with the owner,
which revealed that the dog had experienced summer erythe-
ma of inguinal skin and otitis externa at least twice during the
last 2 years. These signs are consistent with common clinical
signs of CAD (Favrot et al. 2010). An additional axillary skin
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biopsy from this dog was fixed in 4% PFA, paraffin embed-
ded, and later cut and stained with hematoxylin eosin. The
dermatologist observed mild perivascular infiltration of
mononuclear cells in superficial dermis. That dog (control 2)
was thus post-study design defined as an untreated CAD case
with mild skin lesions further referred to as untreated mild
CAD case. Less than 2 years after sampling, the dog was
euthanized due to heart problems and never underwent a com-
plete CAD investigation.

Healthy controls (n = 3) were recruited at ages between 9
and 11 years and had no history of either pruritus, repeated
otic inflammation, or evidence of skin lesions compatible with
CAD, neither prior to nor at the time of sampling. The infor-
mation was based on owner statement and questionnaire, and
later clinical examination at sampling by a boarded
dermatologist.

RNA isolation, library preparation, and sequencing

RNA was isolated using Qiagen RNeasy Mini Kit, Quick-
Start Protocol Part 1 and 2 (Jan 2011, www.qiagen.com)
with a DNase I digestion step included and the optional step
after step 6 in Part 1 excluded (i.e., no new collection tubes
were used). Prior to RNA isolation, tissues were homogenized
using a bead beater at 4 °C. Beads were washed in 99.9%
EtOH for 20 min and then sprayed with RNaseZap RNase
Decontamination Solution (Applied Biosystems, Foster City,
CA, USA). Poly-A selected/paired-end libraries and sequenc-
ing of 100 bp paired-end reads (three lanes) using Illumina
HiSeq 2000 were performed at the SNP&SEQ Technology
Platform at Science for Life Laboratory, Uppsala University,
Sweden. RNA concentration and quality of each sample was
assessed at the SNP&SEQ Technology Platform and one sam-
ple (case 6 in Table S1) was excluded in the quality control.

Mapping procedures and quality controls

We used the tool Trimmomatic (v. 0.32) (Bolger et al.
2014) to trim the sequence ends. In total, 93–96% of the
input read pairs survived trimming using the Illumina
adaptors provided in the TruSeq3-PE.fa with the follow-
ing set t ings: 2:30:10 LEADING:3 TRAILING:3
SLIDINGWINDOW:4:15 MINLEN:36. FastQC (v.
0.11.2) (Andrews 2010) was used for evaluating se-
quence quality and read depth per sample. Bowtie2 (v.
2.2.3) (Langmead and Salzberg 2012) and tophat (v.
2.0.12) (Trapnell et al. 2009) were used to map the reads
to the canine genome version CanFam3.1 (Hoeppner
et al . 2014) (Ensembl gene annotat ion released
July 2012) and SAMtools view (v. 1.3) (Li et al. 2009)
to quality filter the output bam files (−q 15). The func-
tions cuffquant and cuffdiff from the cufflinks (v. 2.2.1)
software (Trapnell et al. 2010) were used to quantify the

number of aligned transcripts (measured in FPKM, i.e.,
fragments per kilobase of exon per million reads
mapped).

Definition and visualization of differentially
expressed genes

The base 2 log of the fold change for cases FPKM/controls
FPKM and a test statistic were calculated using cuffdiff to
compute significance of the observed change in FPKM
(GitHub commit 15d2c6b). We used the default (0.05) set-
ting for significant FDR in cuffdiff. Analyses for defining
DEGs were performed by comparing all five CAD cases
with three healthy controls and also by using a leave-one-
out approach defining DEGs in common between eight
comparisons of cases and controls, where one dog was
subsequently omitted to avoid effects from individual var-
iation in gene expression. We also performed a comparison
between the untreated mild CAD case with the healthy
controls. As quality control, we excluded DEGs with <
1.5 log2 fold change and DEGs with < 10 FPKM in more
than 50% of the samples. In the comparison between the
untreated CAD case compared to controls, we applied an
additional quality control by subsequently excluding
DEGs with less than double/half FPKM difference be-
tween the untreated case and any of the other individual
FPKM (both controls and treated cases). R package
CummeRbund (v. 2.14.0) (Goff L 2013) was used to eval-
uate and visualize the expression results returned by
cuffdiff. R package gplots (v.3.0.3) (Warnes R G 2020)
and Adobe Illustrator 2019 (v. 23.0.6) was used for creat-
ing final figures.

Results

Total mRNA expression in dog skin

In total, expression of 23,510 gene transcripts (including
6440 LOC genes), 48,265 isoforms, 36,295 transcription
start sites (TSS), and 23,509 promoters were detected in
the dog skin samples. All samples remaining after quality
control at the sequencing platform passed the threshold of
sequence quality (mean PHRED score > 31), and aligned
reads per sample ranged from 36.8 to 45.6 million.
Control samples showed higher within-group variation
(coefficient of variation, CV2) in comparison to cases
(Fig. S1A). Multi-dimensional scaling (MDS) and princi-
pal component analyses (PCA) visualizing the overall
gene expression per individual showed no grouping based
on cases and control status (Fig. S1B-C) and FPKM was
similar across individual samples (Fig. S1D).
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Differential gene expression in treated CAD cases
versus controls

In the comparison between five CAD cases and three controls,
135 DEGs (Table S2) were identified and no expression dif-
ferences between CAD cases and controls were detected for
the PKP2 gene, previously reported associated with CAD
(Tengvall et al. 2013). Seven DEGs were defined after two
quality controls. The first quality control resulted in eight
DEGs (> 1.5-fold change and with FPKM > 10 in at least
50% of the samples). The second quality control was a
leave-one-out analysis resulting in 10 DEGs. The seven
DEGs overlapping between both quality controls were
CD209, CLEC4G, LOC102156842 (lipopolysaccharide-
binding protein like), LOC480601 (regakine-1-like),
LOC479668 (haptoglobin-like), LOC607095 (lysine-rich
arabinogalactan protein 19-like), and OBP (Fig. 1). OBP
showed lower gene expression levels whilst the other genes
showed higher gene expression levels in cases compared to
controls.

Differential gene expression in untreated mild CAD
case versus controls

One dog (control 2) was recruited as a control but later iden-
tified as an untreated mild CAD case post-study design (see
“Methods” and Table S1). We compared the mRNA expres-
sion levels of this single dog to three healthy controls and
identified 45 DEGs after exclusion of DEGs with log2 fold
change < 1.5 and with < 10 FPKM in > 50% of samples
(Table S3). Extracting DEGs with at least half/double
FPKM in the untreated case compared to the other individuals

(both controls and treated cases) resulted in 12 DEGs, all with
higher expression in the untreated case (Fig. 2). These were
S100A8, S100A9, S100A12, LOC102152183 (uncharacterized
ncRNA), IL36G, LOC483068 (IL36B), DLA-79, PSMB9,
IGJ, ARSF, DLA-64, and PSMB.

Discussion

Dog skin transcriptome

The primary aim of this study was to analyze differential gene
expression changes specific for CAD skin. By using high-
quality RNA and low density of samples (n = 3) per lane in
sequencing, thus yielding a high number (37–46 M) of reads
per sample, a high-quality canine skin transcriptome was ob-
tained. Gene expression data from skin of nine individual dogs
of high quality and coverage can now be used to update both
the current dog genome annotation version (Hoeppner et al.
2014), which has been lacking high-quality data from the
canine skin transcriptome, and the recently developed data-
base for genetic and epigenetic data from dog tissue samples
(Megquier et al. 2019).

Unique study design

In contrast to previous atopic skin gene expression studies, we
collected biopsies from the same skin location (axillary re-
gion) in both cases and controls from a single dog breed, to
limit changes in gene expression due to body location and
inter-breed variation. The treatment protocols for the five
CAD cases were comparable including allergen-specific
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Fig. 1 Differentially expressed genes in CAD cases compared to
controls. Expression levels for seven DEGs from the leave-one-out
analysis of CAD cases compared to controls are presented as FPKM
(fragments per kilobase of exon per million reads mapped) in a
heatmap, color coded based on log10-transformed values and the actual

values presented as numbers in each square (a). Mean FPKM in the case
and control groups are presented as staple bars (b). Description of LOC
gene transcripts is referred to with superscripts a–d. OBP showed higher
expression in cases whereas the others presented with lower expression
levels in cases

318 Immunogenetics (2020) 72:315–323



immune therapy (ASIT) aimed at inducing allergen tolerance,
systemic corticosteroids, and/or antihistamines. At the time of
sampling, CAD cases were clinically in remission as a result
of the treatment protocol, with no active skin lesions and
without pruritus or just mild pruritus; thus, the skin from these
treated atopic cases was visually similar to control dog skins.
Treatment protocols included methylprednisolone used in the
dose range of 0.2–0.35 mg/kg every other day, and it is well
known that corticosteroids have immunosuppressive proper-
ties (Bonagura 1995). Moreover, cetirizine was used in the
dose 1 mg/kg BID and antihistamine blocks histamine recep-
tors and stabilizes mast cells (Ekstrand et al. 2018). The over-
all gene expression profiles provided from this study showed
that cases had a lower within-group variation compared to
controls, which may be explained by the similar disease state
in cases (i.e., CAD cases were under similar treatment
protocols).

Activated immune response in subclinical atopic skin

Interestingly, non-lesional (i.e., clinically normal) skin from
CAD-affected dogs is not identical to skin from healthy dogs.
Non-lesional CAD skin has previously been characterized by
microscopic inflammation and presence of pro-inflammatory cy-
tokines, similar to lesional atopic skin (Nuttall et al. 2002a;
Nuttall et al. 2002b; Olivry et al. 1999; Olivry et al. 1997). T-
cells are known to play a crucial role in both the acute and
chronic phase of AD/CAD where acute inflammatory response
in AD is characterized by Th2-type cytokines (Bieber 2010).

Among the seven DEGs identified in treated CAD cases versus
controls, were genes encoding proteins that could account for
immunological alertness and sensitivity to relapse. CD209,
CLEC4G, and LOC102156842 (lipopolysaccharide-binding
protein like) encode proteins involved in early immediate defense
against pathogens, and LOC480601 (regakine-1-like) and
LOC479668 (haptoglobin-like) encode proteins involved in
monitoring inflammatory responses in the skin. LOC607095 en-
codes a novel long non-coding RNA, a potential newmarker for
skin inflammation, andOBP encodes an odorant-binding protein
potentially related to the AD-connected symptom rhinitis.

CD209 (alias:CLEC4L) encodes a pattern recognition recep-
tor, expressed on macrophages and dendritic cells, and binds to
mannose-type carbohydrates commonly found on pathogens.
The increased expression level of CD209 in CAD cases versus
healthy controls may reflect an activated interaction between
antigen-presenting cells and T-cells in CAD skin tissue.
Previously, a reduction of CD209+ dendritic cells in human skin
from atopic eczema patients was found associated with clinical
improvement (Hassan et al. 2007). CLEC4G is positioned in the
vicinity (~ 45 kb) of CD209 in the canine genome, and both
genes encode proteins with similar functions as detectors of anti-
gens. An upregulated expression of CLEC4G was also detected
in a previous study of gene expression in acute lesional AD skin
from dogs (Plager et al. 2012). LOC102156842 encodes a
lipopolysaccharide-binding (LPB)-like protein. LPBs are acute-
phase proteins that recognize lipopolysaccharide (LPS) on bacte-
ria and provide an early inflammatory response essential for de-
fense against invading microorganisms. High LPB

un
tre

at
ed

 c
as

e
co

nt
ro

l 1
co

nt
ro

l 3
co

nt
ro

l 4
ca

se
 1

ca
se

2
ca

se
 3

ca
se

 4

DLA−64

LOC483068

PSMB8

ARSF

IGJ

IL36G

PSMB9

DLA−79

S100A8

LOC102152183

S100A12

S100A9

0 50 100 150 200 250 300 350 400 450 500 550 600 

untreated case 
mean controls 

Gene transcript

FPKM 

ca
se

 5 ba

a

b

uncharacterized ncRNA 

IL36B

a
b0.5 1 1.5 2 2.5

Color Key

log10(FPKM)

28 6 2 12 2 6 6 7 11

30 10 7 12 7 9 10 6 7

131 39 54 31 10 48 27 38 24

349 43 68 66 72 54 35 28 49

583 88 54 55 23 29 43 39 92

286 55 7 28 5 8 14 31 32

309 54 10 37 8 10 26 19 41

67 16 33 11 28 24 28 20 24

72 20 12 20 11 21 23 24 21

64 16 15 19 10 18 20 10 16

51 14 14 17 12 14 25 13 10

67 17 17 17 10 17 20 10 9

Fig. 2 Differentially expressed genes in an untreated mild case compared
to controls. Expression levels for 12 DEGs are presented as FPKM
(fragments per kilobase of exon per million reads mapped) in a
heatmap, color coded based on log10-transformed values and the actual
values presented as numbers in each square (a). FPKM in the untreated

mild case and mean FPKM in controls are presented as staple bars with
the range from lowest to highest FPKM in the controls visualized as black
strokes (b). Description of LOC gene transcripts is referred to with super-
script a, b

319Immunogenetics (2020) 72:315–323



concentrations in human serum were shown to reduce LPS ac-
tivity (Zweigner et al. 2001). LOC480601 encodes a regakine-1-
like protein. Regakine-1 is a CC chemokine that synergizes with
IL-8 (CXC chemokine ligand 8) to chemoattract neutrophils and
potentiate the inflammatory response in blood circulation
(Gouwy et al. 2002). Higher gene expression levels of CXCL8
were detected in purified epidermal cells from AD patients com-
pared to normal skin (Kamsteeg et al. 2010). LOC479668 en-
codes a Haptoglobin-like protein. Haptoglobins are acute-phase
proteins shown to prevent epidermal Langerhans cells from func-
tionally maturing in the skin, which may be important for
preventing T cell–dependent inflammatory skin disease (Xie
et al. 2000). Patients with skin diseases, e.g., psoriasis, had a
significantly increased haptoglobin mRNA expression in epider-
mal keratinocytes compared to controls, and it was suggested that
keratinocyte-derived haptoglobinmay contribute to the downreg-
ulation of inflammatory responses in the skin (Li et al. 2005).
Different haptoglobin genotypes have been reported with higher
risk of disease in humans (Andersen et al. 2017) including aller-
gic contact dermatitis (Beckman et al. 1981), bronchial asthma
(Frohlander and Stjernberg 1989), and rhinitis (Piessens et al.
1984). LOC607095 corresponds to the Ensembl gene id:
ENSCAFG00000041925 and is described as a lysine-rich
arabinogalactan protein 19-like (Ensembl release 100, April
2020). The gene encodes nine splice variants of lncRNA where
one (ENSCAFG00000079341.1) matches the position to the
LOC607095 transcript (chr27:483,001-486,492, Table S2).
Recently, there has been an increased focus on how long non-
coding RNA species function as critical regulators of immune
cell development, differentiation, and effector function, and also
how they may be targeted therapeutically. Dysregulated lncRNA
has been suggested in both cancer, autoimmunity, and asthma
(reviewed in (Guidi et al. 2020)). OBP presented with lower
expression levels in CAD cases compared to controls. OBP en-
codes odorant-binding proteins, which are small and abundant
extracellular proteins detected in many species and specifically in
the human olfactory mucus. They are participating in odor detec-
tion by carrying, deactivation, and/or selecting odorant molecules
(Briand et al. 2002). Rhinitis, i.e., inflammation in the nasal pas-
sages, affects > 1/3 of human AD patients (Kapoor et al. 2008).
While not as common in dogs, this clinical feature still affected
around 7% of CAD-affected dogs (Favrot et al. 2010) and
showed breed variations with the highest proportions reported
in CAD-affected GSDs (8.8%) andWest Highland white terriers
(10.9%) but none of the Dalmatians (Wilhem et al. 2011). The
altered expression of OBP seen in CAD cases compared to con-
trols could potentially be a secondary effect from rhinitis.

Interestingly, the leave-one-out method defined 10 DEGs,
out of which seven were included among the eight DEGs
defined after the other quality control excluding DEGs with
< 1.5-fold change and FPKM below 10 in > 50% of the indi-
viduals. This approach confirmed the validity of the two cutoff
methods used to define DEGs.

Differentially expressed immune genes indicated in
untreated mild CAD skin

The majority of DEGs with higher expression in the untreated
mild CAD case compared to controls have known functions in
an activated immune response and inflammation. S100A8,
S100A9, and S100A12 encode proteins that are well-known
markers of acute inflammation and previously implicated in
several other inflammatory and autoimmune diseases includ-
ing systemic lupus erythematosus, rheumatoid arthritis, and
atherosclerosis (Austermann et al. 2018; Oesterle and
Bowman 2015). IL-36 cytokines, including IL-36B and IL-
36G, actively propagate skin inflammation by activating
keratinocytes, antigen-presenting cells, and indirectly T-cells
(Foster et al. 2014). IGJ encodes the immunoglobulin-joining
chain of multimeric IgA and IgM, DLA-79 and DLA-64 are
part of MHC class I, and PSMB8 and PSMB9 are located in
the MHC class II region and encode members of the
immunoproteasome that are critical for processing of MHC
class I peptides (www.ncbi.nlm.nih.gov, Gene database,
May 2020). ARSF belong to the family of sulfatases and has
been suggested as a new marker for psoriasis in a mRNA-seq
analysis of skin in humans (Li et al. 2020). LOC102152183 is
an uncharacterized ncRNA and has no previously known
functions but could potentially be a novel marker for skin
inflammation. Due to the inclusion of only one untreated
CAD case in this comparison, no certain conclusions can be
drawn, but these suggestive DEGs encoding proteins with
striking immunological functions and one novel ncRNA war-
rant further studies to confirm these findings.

No expression differences for CAD-associated
Plakophilin-2 gene

The dogs in this study were recruited based on their genotypes
at the PKP2-locus as this was previously found associated
with CAD in GSDs (Tengvall et al. 2013; Tengvall et al.
2016). However, we detected no difference in PKP2 gene
expression in the skin between the CAD cases carrying risk
alleles compared to the controls with the control genotype.
Two additional biopsies from axillary skin and three biopsies
from the back region of each dog were included at sampling
and were fixed for protein expression studies (Ardesjo-
Lundgren et al. 2017), which included a few more dogs com-
pared to the present study. In that study, T-cells and dendritic
cell infiltration were identified in canine axillary skin and high
PKP2 protein expression was reported in keratinocytes, T-
cells, and dendritic cells, but with no differences between
CAD cases and controls. The majority of the CAD cases had
been under long-term systemic corticosteroid treatment (>
1 year) at the time of sampling (Ardesjo-Lundgren et al.
2017), and corticosteroids are known to inhibit activation of
especially lymphocytes but also dendritic cells (Ashwell et al.
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2000; Ashworth et al. 1988; Gillis et al. 1979; Leung and
Bloom 2003). Since a skin biopsy consists of many cell types,
a difference in PKP2 gene expression in specific cell types
such as T-cells or dendritic cells may be undetectable.
However, no difference in PKP2 protein expression intensity
in dendritic cells was detected between CAD cases and con-
trols (Ardesjo-Lundgren et al. 2017). Nevertheless, we cannot
rule out that there is an altered PKP2 expression in CAD but
the right target tissue, cell type, and/or disease state need to be
defined. Overall, DEGs identified in this study may be caused
by genetic alterations associated with CAD; however, in a
small sample set like this, differential gene expression likely
reflect the actual skin status being either untreated mild CAD,
post-treatment subclinical CAD, or healthy tissue.

Future objectives

The majority of the top DEGs detected from the current anal-
yses were highly supported by previous studies in both dog
and human. We here define differential gene expression in
subclinical treated CAD skin. The DEGs identified here en-
code proteins that may represent suitable target molecules.
Further studies to detect additional DEGs and confirm the
currently defined DEGs are warranted and would preferably
involve skin samples frommore controls and cases at different
disease stages, including active lesional disease as well as
treated subclinical CAD cases. Identifying specific therapeutic
target molecules and biomarkers may improve the develop-
ment of future diagnostic tools and therapies to become per-
sonalized to increase efficiency and reduce side effects.

Conclusion

We here generate a high-quality canine skin transcriptome
from healthy controls and CAD-affected dogs representing a
subclinical phenotype as an effect of treatment. We provide
insights into immunological mechanisms that might account
for the relapsing nature of atopic disease. Our results empha-
size the striking similarities between canine and human AD
also at the level of perturbed gene expression profiles in af-
fected compared to healthy skin. These results will hopefully
contribute to the foundation of future treatment strategies.
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