
University of Genoa
Department of Mathematics

Ph.D. in Mathematics and Applications
Curriculum Mathematics and Applications

Analysis and Generation of
Quality Polytopal Meshes

with Applications to the Virtual Element Method

Supervisors:
Dr. Silvia Biasotti
Dr. Michela Spagnuolo
Dr. Gianmarco Manzini

Ph.D. Student: Tommaso Sorgente
Freshman Number 3779635

August 2022

Abstract

This thesis explores the concept of the quality of a mesh, the latter being intended as the
discretization of a two- or three- dimensional domain. The topic is interdisciplinary in
nature, as meshes are massively used in several fields from both the geometry processing

and the numerical analysis communities. The goal is to produce a mesh with good geometrical
properties and the lowest possible number of elements, able to produce results in a target range
of accuracy. In other words, a good quality mesh that is also cheap to handle, overcoming the
typical trade-off between quality and computational cost.

To reach this goal, we first need to answer the question: “How, and how much, does
the accuracy of a numerical simulation or a scientific computation (e.g., rendering, printing,
modeling operations) depend on the particular mesh adopted to model the problem? And which
geometrical features of the mesh most influence the result?” We present a comparative study
of the different mesh types, mesh generation techniques, and mesh quality measures currently
available in the literature related to both engineering and computer graphics applications. This
analysis leads to the precise definition of the notion of quality for a mesh, in the particular
context of numerical simulations of partial differential equations with the virtual element
method, and the consequent construction of criteria to determine and optimize the quality of a
given mesh.

Our main contribution consists in a new mesh quality indicator for polytopal meshes, able
to predict the performance of the virtual element method over a particular mesh before running
the simulation. Strictly related to this, we also define a quality agglomeration algorithm that
optimizes the quality of a mesh by wisely agglomerating groups of neighboring elements. The
accuracy and the reliability of both tools are thoroughly verified in a series of tests in different
scenarios.

i

Dedication and Acknowledgements

I would like to dedicate this thesis to Drs. Silvia Biasotti and Michela Spagnuolo, which
have been so much more than tutors to me. Silvia has supported me unconditionally since
the day I first walked into her office, giving me the courage to carry on in all the natural

ups and downs of my Ph.D. Michela has been a constant source of inspiration and motivation,
she always motivated me to push further or to try again.

A critical acknowledgment is due to Dr. Marco Manzini, who widened my horizons intro-
ducing me to the VEM world and a rigorous research discipline. I thank all the members of
the ‘E. Magenes’ institute of CNR-IMATI for the numerous direct or indirect contributions,
with a particular mention to Dr. Daniela Cabiddu for the technical support. Thanks to the
reviewers of this manuscript, Prof. Natarajan Sukumar and Prof. Marcel Campen, for their
corrections and precious suggestions, and thanks to the Ph.D. course coordinator Prof. Stefano
Vigni. Thanks to every author and co-author that worked with me on my publications: these
collaborations meant a lot to me and have been milestones of my research activity. I would like
to thank the ERC Advanced Grant CHANGE, which partially funded my research during all
these years.

Finally, thanks to all the people who shared with me these last years and unconsciously
contributed to this work with unexpected hints, unsolicited aids, and undeserved patience. I avoid
citing anyone here explicitly because very few of you will ever read this, but each one of you
knows to be on the list.

iii

Table of Contents

Page

List of Tables ix

List of Figures xi

1 Introduction 1
1.1 Motivations . 2
1.2 Contributions . 4
1.3 Organization . 4

2 Meshes 7
2.1 Mesh Classification . 8

2.1.1 Cell Typology . 8
2.1.2 Mesh Structure . 14

2.2 Mesh Generation . 17
2.2.1 Structured Meshes . 17
2.2.2 Block-Structured Meshes . 20
2.2.3 Semi-Structured Meshes . 22
2.2.4 Unstructured Meshes . 26

2.3 Mesh Quality . 34
2.3.1 Element Indicators . 35
2.3.2 Mesh Indicators . 40
2.3.3 Mesh Quality Improvement . 42

3 A Mesh Quality Indicator for the Virtual Element Method 47
3.1 The Virtual Element Method . 47

3.1.1 Notation . 48
3.1.2 The Model Problem . 50
3.1.3 The Virtual Element Space . 51
3.1.4 The Virtual Element Functionals . 55

3.2 Geometrical Assumptions for the VEM . 56

v

TABLE OF CONTENTS

3.2.1 Assumption G1 . 57
3.2.2 Assumption G2 . 59
3.2.3 Assumption G3 . 60
3.2.4 Assumption G4 . 61

3.3 VEM Convergence Results . 62
3.3.1 “Basic Principles of Virtual Elements Methods”, Beirão Da Veiga et al.,

2013 . 63
3.3.2 “Equivalent Projectors for Virtual Element Methods”, Ahmad et al., 2013 64
3.3.3 “Stability Analysis for the Virtual Element Method”, Beirão Da Veiga et

al., 2017 . 64
3.3.4 “Some Estimates for Virtual Element Methods”, Brenner et al., 2017 . . 66
3.3.5 “Virtual Element Methods on Meshes with Small Edges or Faces”, Brenner

and Sung, 2018 . 67
3.3.6 “Sharper Error Estimates for Virtual Elements and a Bubble-Enriched

Version”, Beirão Da Veiga and Vacca, 2020 68
3.4 Mesh Quality Indicator . 69

3.4.1 The Kernel of a Polytope . 70
3.4.2 The G1-based Indicator . 72
3.4.3 The G2-based Indicator . 72
3.4.4 The G3-based Indicator . 73
3.4.5 The G4-based Indicator . 73
3.4.6 The Global Indicator . 74
3.4.7 The Elemental Indicator . 76

4 Verification of the Quality Indicator 77
4.1 Generation of the Datasets . 77

4.1.1 Generation of the 2D Datasets . 78
4.1.2 Generation of the 3D Datasets . 83

4.2 Correlations Between the Quality and the Performance 88
4.2.1 Analysis of the 2D Dataset . 90
4.2.2 Analysis of the 3D Dataset . 95
4.2.3 Discussion . 99

4.3 Mesh Quality Agglomeration . 100
4.3.1 Energy Functional . 101
4.3.2 Graph-cut . 102
4.3.3 Quality Agglomeration Algorithm . 103

4.4 Application to Discrete Fracture Networks . 110
4.4.1 Simulation on a Simple Network . 111
4.4.2 Simulation on a Complex Network . 114

vi

TABLE OF CONTENTS

4.4.3 Discussion . 114

5 Conclusions 117
5.1 Future Work . 118

A Algorithms for the Computation of the Kernel of a Polyhedron 121
A.1 Data Structure . 121
A.2 Polyhedron Kernel . 122
A.3 Polyhedron-Plane Intersection . 124
A.4 Polygon-Plane Intersection . 126
A.5 Line-Plane Intersection . 128
A.6 Tests and discussions . 128

A.6.1 Polyhedral meshes . 129
A.6.2 Refinements . 129
A.6.3 Complex models . 131

B Algorithms for the Generation of the 2D Datasets 135
B.1 Hybrid Datasets . 135
B.2 Mirroring Datasets . 138
B.3 Multiple Mirroring Datasets . 140
B.4 The Mirroring Algorithm . 142

Bibliography 145

vii

List of Tables

Table Page

2.1 Combinations between cell typology and mesh structure 18

4.1 Geometrical assumptions violated by 2D datasets 83
4.2 Geometrical assumptions violated by 3D datasets 89
4.3 VEM performance over 2D datasets . 94
4.4 Degrees of freedom for DMaze, Dλ1

Maze, and D
λ2
Maze in the case k = 3 106

4.5 Number of elements and computational time for Dtet-poisson and Dλtet-poisson 109
4.6 Quality agglomeration algorithm over Network1 113
4.7 Quality agglomeration algorithm over Network2 115

A.1 Computational times for polyhedral meshes . 130
A.2 Computational times for spiral and vase refinements 131
A.3 Computational times for complex models . 133

ix

List of Figures

Figure Page

2.1 Mesh classification according to the cell typology 9
2.2 k-simplex . 10
2.3 k-cube . 11
2.4 Conforming mesh . 13
2.5 Pure structured mesh . 15
2.6 Quad-mesh structure classification . 15
2.7 Sponge analogy for structured meshes . 18
2.8 Generation techniques for structured meshes . 19
2.9 Generation techniques for triangular structured meshes 20
2.10 Block-structured mesh . 21
2.11 Skeleton-driven hex-meshing . 22
2.12 Advancing front method . 24
2.13 Field-guided method . 25
2.14 Polycube method . 26
2.15 Voronoi tessellation . 28
2.16 Centroidal Voronoi tessellation . 29
2.17 Delaunay triangulation . 29
2.18 Delaunay criterion . 30
2.19 Quadtree method . 32
2.20 Mesh conversion . 34
2.21 Quality of tris and tets . 36
2.22 Quality of quads and hexes . 38
2.23 Quality of polys . 39
2.24 Mesh alignment to features . 41
2.25 Non-conforming mesh . 41
2.26 Anisotropic mesh . 42
2.27 Mesh quality improvement . 44
2.28 Elimination of a valence-three node . 45
2.29 Elimination of a valence-four node . 45

xi

LIST OF FIGURES

3.1 Star-shapedness . 58
3.2 Admissible elements according to assumption G42D 61
3.3 Polyhedron kernel . 71
3.4 The G42D-based indicator . 74

4.1 Initial polygons in DMaze and DStar . 79
4.2 Ratio r/hE for DStar and DJenga . 80
4.3 Datasets DMaze and DStar . 81
4.4 Datasets DJenga, DSlices, and DUlike . 82
4.5 3D sampling strategies . 84
4.6 Tetrahedral datasets . 87
4.7 Hexahedral and Voronoi datasets . 87
4.8 VEM performance over hybrid datasets . 91
4.9 VEM performance over mirroring datasets . 92
4.10 VEM performance over multiple mirroring datasets 93
4.11 Impact of the stability term . 95
4.12 Localization of the quality indicator . 96
4.13 VEM performance over tetrahedral datasets . 97
4.14 VEM performance over hexahedral datasets . 98
4.15 VEM performance over Voronoi datasets . 98
4.16 VEM performance over polyhedral datasets . 99
4.17 Quality agglomeration algorithm . 104
4.18 Test 1: datasets DMaze, Dλ1

Maze, and D
λ2
Maze . 105

4.19 Degrees of freedom of datasets DMaze, Dλ1
Maze, and D

λ2
Maze 105

4.20 VEM performance over test 1 . 106
4.21 Test 2 . 107
4.22 VEM performance over Test 2 . 108
4.23 Test 3: datasets Dtet-poisson and Dλtet-poisson . 109
4.24 VEM performance over Test 3 . 110
4.25 Quality agglomeration algorithm over Network1 112
4.26 VEM performance over Network1 . 112
4.27 Quality agglomeration algorithm over Network2 114
4.28 Computed solution over Network2 . 115

A.1 Scheme of the kernel algorithm . 121
A.2 Kernel computation for a polyhedron . 123
A.3 Intersection of a polyhedron with a plane . 125
A.4 Intersection between a plane and a polygon or a line. 127
A.5 Non-convex elements in polyhedral meshes, and relative kernels 129

xii

LIST OF FIGURES

A.6 Polyhedral meshes and time plots . 130
A.7 Original spiral and vase models, and their refinement 131
A.8 Computational times distribution in Thingi dataset 132
A.9 Kernels of complex models . 134

B.1 Initial polygons from datasets DMaze and DStar. 136
B.2 Non-mirrored base meshes from DJenga, DSlices, and DUlike 138
B.3 Non-mirrored base meshes from DUlike4 . 141

xiii

C
h

a
p

t
e

r 1
Introduction

The concept of a mesh as a discretization of space was originally developed in the
field of numerical analysis, where it could be used in association with computational
methods to obtain numerical solutions of partial differential equations [Richardson,

1922]. Generating a suitable mesh was long considered to be a rather tedious exercise and a
minor part of the effort involved in solving a numerical problem. However, mesh generation
has steadily evolved into a discipline in its own right, drawing on ideas from other fields,
and gradually developing a distinct identity. In particular, it is important to recognize the
growing interest and contribution of the computer science community in mesh-related problems
[Boissonnat, 1984, De Floriani et al., 1985, Bern and Eppstein, 1992, Edelsbrunner et al., 2001].
Not only has this synergy brought new ideas and ways of viewing mesh-related questions, but it
has also opened up whole new areas of application including medical imaging and segmentation,
computer graphics and animation, and data interpolation and compression [Baker, 2005].
Nowadays, there exist international conferences devoted to mesh generation, adaptation, and/or
analysis (e.g., International Meshing Roundtable), and almost all conferences on computational
methods have sessions that feature these topics (e.g., Symposium on Geometry Processing, or
Symposium on Computational Geometry).

Over the last fifty years, computer simulations of Partial Differential Equations (PDEs)
have dramatically increased their impact on research, design, and production, and are now an
indispensable tool for modeling and analyzing a number of phenomena arising in fields as diverse
as physics, engineering, biology, and medicine. The Finite Element Method (FEM) is by large
the most popular technique for the computer-based simulation of PDEs and relies on suitable
descriptions of geometrical entities, such as the computational domain and its properties. In
this context, increasing attention is being paid to adaptivity and multilevel modeling, which, in

1

CHAPTER 1. INTRODUCTION

real-life applications, are probably the only ways to efficiently obtain a solution with an accuracy
that is “certified” to be in a certain desired range. The discretization of the computational
domain is a key research topic in the ERC project CHANGE (New CHallenges for (adaptive)
PDE solvers: the interplay of ANalysis and GEometry), from the European Union’s Horizon
2020 research and innovation program, which has funded this work. CHANGE aims at

“Developing innovative mathematical tools for numerically solving PDEs and for
geometric modeling and processing, the final goal being the definition of a common
framework where geometrical entities and simulation are coherently integrated and
where adaptive methods can be used to guarantee optimal use of computer resources,
from the geometric description to the simulation.”

In this sense, the development of geometric tools to construct, manipulate and refine meshes is
the first step toward the design of such an innovative adaptive framework. The full exploitation
of the potential of adaptivity has been until now hindered, especially in 3D, by the difficulty in
performing mesh refinement and coarsening in the framework of tetrahedral and hexahedral
meshes. Indeed, there is a mismatch between what the analysis needs the geometry to do and
what the geometry can actually do. We believe that, in the medium term, this gap will be
filled by discretizations over polytopal partitions (or polytopal meshes), where polytopal means
polygonal or polyhedral, according to the context. The extreme flexibility of polytopal meshes
simplifies every mesh refinement or coarsening operation, giving a real boost to the concept of
adaptivity. Polytopal Element Methods (PEMs) can be considered as extensions of the classical
FEMs over polytopal meshes, and enhance enormously the current finite element analysis based
on mesh generation.

1.1 Motivations

The wide range of contexts and fields in which meshes are currently employed justifies the
vast (and often confusing, or even contradictory) vocabulary around this topic. The mesh itself
is often called with different terms (e.g., tessellation, discretization, or grid), which can be
simple synonyms but may even include additional information on the mesh typology, structure,
or connectivity. Even higher confusion can be found in the literature on concepts related to
the quality of a mesh, as visible in the several surveys on mesh quality metrics [Liu and Joe,
1994, Knupp, 2001, Stimpson et al., 2007]. What constitutes a good quality mesh, and exactly
how fine the mesh should be are questions that have been around since the first mesh was
generated. Only partial answers to these questions are currently available, and a comprehensive
understanding of how the accuracy of a PDE approximation depends on the mesh is still lacking.

At the same time, the breathtaking explosion of the computational power available in
modern computers seen in the last years opens up new possibilities, unimaginable so far. Since
one of the few concepts universally accepted about mesh quality is that the finer the mesh is,

2

1.1. MOTIVATIONS

the more accurate results it is likely to produce, the idea of generating finer and finer meshes,
regardless of the notion of quality, becomes terribly tempting. However, there are still situations
in which simply decreasing the size of the elements is not enough to guarantee accurate results.
Just to give a trivial example, let us imagine covering a triangular domain with some squared
cells: no matter how small the squares are, they will never exactly cover the domain. Decreasing
the size of the cells surely leads to a better approximation, but there is no way we could ever
reach the same result as if we used triangular cells instead. In a more realistic scenario, in
presence of particularly complex domains or problems, we may need to exponentially increase
the number of elements in order to slightly improve the accuracy of the approximation. In
such contexts, it may be worth considering spending some time analyzing the domain and the
problem, to generate meshes with higher quality (whatever it means) and fewer elements.

We face the problem of discretizing a domain with well-shaped cells, keeping their number
as low as possible, instead of massively generating a huge number of tiny identical cells. The
goal is to produce a good quality mesh that is also cheap to handle, overcoming the typical
trade-off between quality and computational cost. The first consideration is that, if we want
the mesh to somehow adapt to the domain or the solution, we cannot afford to use only one
type of element, as noted in [Shepherd and Johnson, 2008] for hexahedral meshes. Therefore,
we need to consider polytopal meshes, as opposed to pure meshes, that are typically triangular,
quadrangular, tetrahedral, or hexahedral. The study of polytopal meshes is overwhelmingly
emerging as a research trend: we now have methods for solving PDEs over meshes composed
of generic polygons/polyhedra [Beirão da Veiga et al., 2013, Cangiani et al., 2014, Di Pietro
and Droniou, 2019], methods for generating hybrid meshes, containing mainly one type of
element and few different ones in strategic positions [Gao et al., 2017, Schneider et al., 2019],
and polytopal mesh generators, based on suitably regularized Voronoi tessellations [Lévy and
Liu, 2010]. However, the extremely interesting results obtained through the usage of hybrid
meshes and Voronoi tessellations are just a taste of the potentialities of fully polytopal meshes.
In particular, hybrid mesh generators openly aim at producing the smallest possible number of
non-standard elements, thus not exploiting the potential flexibility of polytopal meshes to its
full.

We are scratching the surface of a brand new field of opportunities. What is currently still
lacking is a robust method to automatically generate a fully polytopal mesh tailored for a
particular domain. The main difficulty in this is that when we are asked to fill a domain or to
connect some points in it, with elements of any imaginable shape, we have extreme freedom
and infinite possible choices. A possible approach could be to build an initial pure mesh and
then agglomerate its elements to make it polytopal. This would give us a starting point and
limit the number of choices, at the additional cost of building the pure mesh. In any case, what
we need is a guide, a criterion that can help us in deciding the shape of the elements from time
to time. We believe that this guide should be nothing else but the concept of mesh quality.

3

CHAPTER 1. INTRODUCTION

1.2 Contributions

In this work, we study in-depth the concept of mesh quality. After a general overview of the
existing literature on this topic, we restrict our focus to numerical analysis and, in particular,
to the Virtual Element Method (VEM) [Beirão da Veiga et al., 2013]. Each method has its pros
and cons, but we believe that the method used for finding the solution to the problem should
be taken into great account when defining the concept of quality. In other words, when deciding
if a mesh is good or not, we should also consider who is going to work with that mesh, that is,
the numerical method.

We define a mesh quality indicator, i.e., a mathematical tool to quantitatively measure the
local and global quality of a mesh, specifically built for the VEM. In particular, this relationship
lies in the fact that the indicator is directly deduced by the theoretical results on the convergence
of the VEM. Besides the dependence on the numerical method, we want our indicator to be as
general as possible: we define it for both two and three-dimensional domains and any kind of
polygonal or polyhedral element (non-convex, non-star-shaped, with an undefined number of
vertices, edges, and faces).

A second contribution is the development of a quality agglomeration algorithm. We define a
polytopal mesh generation method, which takes an initial input mesh and agglomerates groups
of neighboring elements in order to optimize the global mesh quality. The quality indicator
drives the quality agglomeration algorithm. For each possible combination of adjacent elements,
it indicates if its agglomeration will increase or decrease the global quality, and therefore if
we should accept or reject it. Both the mesh quality indicator and the quality agglomeration
algorithm undergo a thorough series of tests and experiments, to verify their accuracy and
reliability. In particular, we exhibit their practical application in the context of Discrete Fracture
Networks.

In addition, we describe in detail the routines that we have developed for the implementation
of the above concepts, together with all the meshes built for the testing phase. In particular,
significant work has been done on the implementation of an algorithm for computing the kernel
of a polyhedron (i.e., the set of points from which the whole polyhedron is visible). The kernel
is crucial information for the quality indicator, and a routine for the efficient computation of
the kernel for high numbers of small polyhedra was not available in the literature.

1.3 Organization

The thesis is organized as follows. Chapter 2 introduces the reader to the wide world of two
and three-dimensional meshes, discussing how to define and classify them, presenting the
most developed methods for generating meshes of different types, and the most common tools
for measuring their quality. In Chapter 3, we begin the presentation of the work published
in [Sorgente et al., 2021b, Sorgente et al., 2022a, Sorgente et al., 2022b], defining the VEM

4

1.3. ORGANIZATION

and analyzing its peculiarities and limitations. From such an analysis, we deduce the mesh
quality indicators for two and three-dimensional meshes, specifically designed for this particular
numerical method. The routines developed for implementing the indicators, published in
[Sorgente et al., 2021a, Sorgente et al., 2022c], are reported in Appendix A. The quality
indicators are then carefully tested throughout Chapter 4, where we appositely build a collection
of two and three-dimensional meshes to investigate the correlation between the score provided by
the indicator and the actual performance of the VEM. The algorithms developed for generating
the two-dimensional datasets are reported in Appendix B. We then exploit the indicator to
drive the quality agglomeration algorithm, which is able to navigate a mesh and agglomerate
adjacent elements in order to optimize its global quality, and we exhibit several examples of the
usage of such an algorithm. Last, Chapter 5 draws the conclusions of this work and addresses
potential research directions for the future.

5

C
h

a
p

t
e

r 2
Meshes

In this chapter, we introduce the concept of mesh, often also called discretization, tessel-
lation, computational domain, or grid. A mesh is a discrete approximation of an object or
a domain Ω ⊂ Rd, partitioned into a finite collection of disjoint cells. The mesh is called

planar if d = 2, or volumetric if d = 3. The cells (or elements) of the mesh are d-dimensional
subsets of Rd (polygons if d = 2, or polyhedra if d = 3) with no holes and no self-intersections.
The boundary of a cell is composed of 2-dimensional faces (if d = 3), 1-dimensional edges and
0-dimensional nodes (or vertices), and two cells in a mesh can only share faces, edges, and
nodes. Cells are defined in an abstract Euclidean space and then embedded into Ω (or realized)
through proper mappings. There exists a half-way case, i.e., meshes in R3 made by polygonal
cells, also known as surface meshes. We consider them together with planar meshes, as they
are locally planar, and refer to both as “2D-meshes”, as opposed to “3D-meshes”, which refers
to volumetric meshes. The foundations of the above concepts can be found in [Mäntylä, 1987].

Meshes are used as a tool for running simulations in a wide range of contexts, from numerical
analysis to computer graphics, and come in a variety of types with different properties. The
scope of this chapter is to present a general overview of the literature concerning meshes, mesh
generation, and mesh quality. In Section 2.1, we propose a classification of the different mesh
classes, which will be helpful throughout the work. We treat 2D-meshes and 3D-meshes in
parallel throughout the chapter; distinctions will be made only at the bottom level. Section 2.2
is dedicated to mesh generation techniques currently available for each class. We include in our
analysis meshes and methods from different application fields, from engineering to computer
graphics. This may generate some confusion with notation, as mesh entities are often called
with different names, according to the application context, but we will try our best to keep
coherency and include all possible alternative terminologies from time to time. As these topics

7

CHAPTER 2. MESHES

are extremely wide, we align the treatment to the general focus of the thesis, which is the
concept of mesh quality. In this sense, for instance, we do not include methods for generating
meshes with curved cells, or cells with non-planar faces, as the quality analysis for such a type
of meshes is still an ongoing research topic. Sections 2.1 and 2.2 lay the foundations for the
introduction of the notions of mesh quality and mesh quality indicators. In Section 2.3 we
analyze the concept of mesh quality, introducing local and global quality indicators for the
different classes, and how they can be used in mesh quality optimization.

2.1 Mesh Classification

The mesh classification proposed in this section is based firstly on the typology of the cells,
and secondly on the connectivity of the mesh nodes, namely, the mesh structure. We stress the
fact that these two concepts are distinct and independent, i.e., a mesh with a certain structure
can be generated with different types of cells, and vice-versa. We will see, however, that some
topological constraints exist, and that some combinations are less common than others.

There is not a standard classification suited for every use one can have of a mesh, but
rather, several alternative approaches to the problem according to the context. For instance, in
the interesting paper [Ho-Le, 1988] the authors propose to classify meshes according to the
chronological order in which the cells of the mesh are created: nodes first, cells first, or other
hybrid approaches. Other works like [Baker, 2005] follow the historical order in which the several
mesh generation techniques have been developed. Since the topic has become increasingly wide
and complex in the last decades, some works only deal with particular types of meshes [Owen,
1998, Bommes et al., 2013b, Pietroni et al., 2022], focusing on specific application fields.

We anticipate the two following general definitions, which will be discussed more in detail
in the following sections.

Definition 2.1 (Structured Mesh). A mesh is said to be structured if every internal node has
the same (fixed) number of adjacent cells; otherwise, the mesh is called unstructured.

Definition 2.2 (Conforming Mesh). A mesh is said to be conforming if two adjacent cells can
only share a node, a whole edge, or a whole face. If the cells are allowed to overlap partially, the
mesh is called non-conforming, and the intersections inside edges or faces are called T-junctions,
or hanging nodes.

2.1.1 Cell Typology

By cell typology we mean the number of edges (for 2D-meshes) or faces (for 3D-meshes) of a cell.
This concept induces a straightforward classification of meshes into the following categories:

8

2.1. MESH CLASSIFICATION

• Simplicial Complexes contain only simplices: triangular elements (in the following also
noted tris) in 2D-meshes or tetrahedral elements (tets) in 3D-meshes. We call them, in
short, tri-meshes (or triangulations) and tet-meshes;

• Grid-Based Meshes contain only quadrangular elements (quads) in 2D-meshes or hexahe-
dral elements (hexes) in 3D-meshes. We call them, in short, quad-meshes and hex-meshes;

• Polytopal Meshes contain generic polytopes (polys): polygons in 2D-meshes or polyhedra
in 3D-meshes. This class basically contains all the meshes which do not fall into the two
above categories.

Visual examples of 3D-meshes belonging to these classes are given in Figure 2.1. We set out
the following definition in order to further distinguish between the different types of polytopal
meshes.

Definition 2.3 (Pure Mesh). A mesh is said to be pure if its cells are all of the same type.

Simplicial complexes and grid-based meshes are always pure, while polytopal meshes may
also be not.

(a) (b) (c)

Figure 2.1: Mesh classification according to the cell typology: (a) simplicial complex, (b)
grid-based mesh, (c) polytopal mesh.

Simplicial Complexes The name simplicial complex is due to the fact that triangles and
tetrahedra are formally simplices. From an algebraic topology point of view, we can reformulate
the definition of mesh through the following notions.

Definition 2.4 (k-simplex). A k−simplex in Rn, 0 ≤ k ≤ n, is the k−dimensional polytope
given by the convex hull of k + 1 affinely independent points.

In our case, mesh cells can be 3-simplices or 2-simplices, faces are 2-simplices, edges are
1-simplices, and nodes are 0-simplices, see Figure 2.2. A collection of 2-simplices (3-simplices)

9

CHAPTER 2. MESHES

Figure 2.2: From left to right: a 3-simplex, a 2-simplex, a 1-simplex, a 0-simplex, and the
(-1)-simplex.

defines a triangular (tetrahedral) mesh provided it satisfies some connectivity rules. In particular,
we call such structures simplicial complexes.

Definition 2.5 (Simplicial Complex). A simplicial complex K is a finite set of simplices that
satisfies:

1. every face of a simplex from K is also in K;

2. the non-empty intersection of any two simplices σ1, σ2 ∈ K is a face of both σ1 and σ2.

Conventionally, K also contains the empty set.

Each k-simplex has k + 1 distinct vertices, and each set of k + 1 vertices defines at most
one k-simplex. To better adhere to the domain shape, ∆-complexes were defined. Intuitively, a
∆-complex is a topological space constructed by gluing simplices together along their boundaries.
For more details on simplicial complexes refer to [Munkres, 2000, Biasotti et al., 2014, Hatcher,
2002].

Simplicial complexes have several good mathematical and geometrical properties, that make
them preferable over other types of meshes in many contexts. First of all, simplicial complexes
offer high flexibility in the domain representation, especially when arranged in unstructured
combinations. They are therefore by far the most common choice for meshing particularly
complicated geometric domains, where it could be difficult or impossible to compute a quad/hex-
mesh without introducing low-quality elements or drastically increasing their number. Secondly,
elements in a 2D simplicial complex and faces in a 3D simplicial complex are always planar,
which is not always true for other element types. On one side, this may simplify operations
on the mesh and can be a required property in some applications. In other contexts, however,
non-planar faces could be exploited to better adapt to curved boundaries, e.g., in surface meshes.
Last, every polygon can be easily triangulated and every polyhedron can be easily tetrahedrized
(decomposed into a finite number of disjoint tetrahedra), and every point inside a simplex is
expressible as a unique linear combination of its vertices, them being affinely independent. This
local coordinate system, which is independent of the embedding, can be exploited in several
geometric operations, for instance, intersection algorithms.

10

2.1. MESH CLASSIFICATION

Algorithms for triangular and tetrahedral mesh generation are the most developed and robust
among all the meshing techniques [Boissonnat, 1984, De Floriani et al., 1985, Edelsbrunner and
Mücke, 1994, Boissonnat et al., 2000, Edelsbrunner et al., 2001, Meyer et al., 2003, Botsch et al.,
2010]. A survey that illustrates the wide range of triangular and tetrahedral mesh generators
was conducted by Owen [Owen, 1998] and described in the handbook of grid generation edited
by Thompson et al. [Thompson et al., 1998]. More recent works can be found in the books of
Frey [Frey and George, 2007], Lo [Lo, 2014] and Liseikin [Liseikin, 2017].

Grid-Based Meshes The term “grid” is due to the fact that the development of finite-
difference techniques during the 1950s was confined to problems, typically two-dimensional,
with simple boundary shapes. The first discretizations were therefore computed over planar
rectangular regions, which can be naturally subdivided into smaller rectangles, and the resulting
subdivision will look like a grid. The term was later extended to the three-dimensional equivalent
of the quadrangular meshes, i.e. hexahedral discretizations. From the algebraic topology
perspective, grid-based meshes can be defined as follows [Kovalevsky, 1989, Kong and Rosenfeld,
1989].

Definition 2.6 (k-cube). A k−cube in Rn, 0 ≤ k ≤ n, is a k−dimensional polytope that is
combinatorially isomorphic to the standard cube �k = [0, 1]k.

Figure 2.3: From left to right: a 3-cube, a 2-cube, a 1-cube, a 0-cube, and the (-1)-cube.

In our case, mesh cells can be 3-cubes or 2-cubes, faces are 2-cubes, edges are 1-cubes, and
nodes are 0-cubes, see Figure 2.3.

Definition 2.7 (Cubical Complex). A cubical complex K is a finite set of k-cubes that satisfies:

1. every face of a k-cube from K is also in K;

2. the non-empty intersection of any two k-cubes σ1, σ2 ∈ K is a face of both σ1 and σ2.

Conventionally, K also contains the empty set.

The concept of cubical complex can be generalized to �-complexes exactly like ∆-complexes
generalize simplicial complexes, by simply replacing simplices with cubes. Despite this formal
definition, in the rest of the work, we will address cubical complexes with the more familiar

11

CHAPTER 2. MESHES

term of grid-based meshes. We report, however, that it is not uncommon to find hexahedral
meshes treated as polytopal meshes in the literature, due to the possible presence of non-planar
faces.

Grid-based meshes are preferred in many applications for several reasons. Most geometry has
two dominant local directions, typically associated with either principal curvature directions,
or local sharp features. Quadrangular cells can be naturally aligned with such directions,
while the use of triangular cells necessitates an arbitrary choice of a third edge direction.
Analogous considerations can be done for hexahedral and tetrahedral cells. In computer
graphics applications, the cell alignment to given directions (for instance, the dominant surface
directions) is useful to capture shape features, as well as the semantics of the modeled objects,
especially if they need to be segmented or animated [Bommes et al., 2013b]. Grid-based meshes
are also well-suited to support tensor-product structures (e.g., tensor-product B-splines, or
Catmull-Clark surfaces), even if extensions can be found also for tri- and tet-meshes. Moreover,
quads and hexes allow for very large aspect ratios, while the same aspect ratio in tris and
tets may lead to a very large skewness (see Section 2.3.1), which degrades the accuracy and
convergence of the simulation. Grid-based meshes are also more economic than simplicial
complexes with respect to the number of cells needed to tessellate a domain, with prescribed cell
size. Since every quad can be split into two triangles, and every hex into six tets, the number
of edges, faces, and cells (and therefore of degrees of freedom, in finite element analysis) in a
grid-based mesh is significantly lower than in a simplicial complex. In the context of numerical
simulations, linear hex-meshes are often superior to linear tet-meshes in terms of convergence
time and accuracy of the simulation [Benzley et al., 1995, Tadepalli et al., 2011]. When it comes
to quadratic elements, however, it has been shown that tet-meshes produce a given target error
in less time with respect to hex-meshes [Schneider et al., 2022].

Grid-based meshes have been used for many years as the computational domain to solve
partial differential equations (PDEs) that are relevant for the automobile, naval, aerospace,
medical, and geological industries to name a few, and are at the core of prominent software tools
used by such industries, such as [MeshGems, 2020, CoreForm, 2021, Cubit, 2021]. However,
despite the huge effort that various scientific and industrial communities have spent so far (see
the recent surveys [Bommes et al., 2013b, Pietroni et al., 2022]), the computation of high-quality
quadrilateral and hexahedral meshes conforming to (or approximating) a target geometry
remains a challenge with various open aspects for which no fully satisfactory solutions have
been provided yet. Some of the known methods are extremely robust and scale well on complex
geometries; some others produce high-quality meshes; some others are fully automatic. But no
known method successfully combines all these properties into a single product.

Polytopal Meshes The definition of polytopal meshes is built around the concept of polytope
(geometrical figure bounded by portions of lines, planes, or hyperplanes [Coxeter, 1973]).

12

2.1. MESH CLASSIFICATION

Definition 2.8 (Polytopal Complex). A polytopal complex K is a finite set of polytopes in
some Euclidean space Rn that satisfies:

1. every face of a polytope from K is also in K;

2. the non-empty intersection of any two polytopes σ1, σ2 ∈ K is a face of both σ1 and σ2.

Conventionally, K also contains the empty set.

The most general notion of polytopal complex is called closure finite complexes with weak
topology, or more simply CW -complexes [Whitehead, 1949]. Technically, simplicial and cubical
complexes are as well polytopal complexes, because tris, tets, quads, and hexes are all polytopes.
Indeed, some authors refer to ∆-complexes as simplicial CW -complexes. We conventionally
define the class of polytopal meshes as the collection of all the polytopal complexes that do
not fall in the two previous categories. Examples of polytopal meshes are therefore hybrid
tri/quad-meshes and tet/hex meshes, quad/hex-dominant meshes, pure hexagonal meshes, or
meshes with mixed generic polytopal cells.

The main advantage of polytopal meshes is that they allow achieving a flexibility level
analogous to that of simplicial complexes, but using a significantly smaller number of cells.
This can become crucial in the treatment of complex geometries, as it allows to incorporate
complex features at different scales without triggering mesh refinement. Moreover, not having
to care about cell typology drastically simplifies refinement and coarsening operators, and
automatically includes T-junctions [Myles et al., 2010]. A practical example of this property
is given in Figure 2.2: according to the interpretation of the rightmost cell, the mesh can
be conforming or not. If we need a pure quad-mesh, we are forced to insert a T-junction in
correspondence of the red node, while, if we accept to have a polygonal mesh, we can simply
have a pentagon with two adjacent quads.

Figure 2.4: If the rightmost cell is defined as acbde, then the mesh is conforming. If it is defined
as abde instead, the mesh is non-conforming, and the node c is a T-junction.

The origins of the concept of polytopal meshes can be traced back to two independent
works by Nakahashi [Nakahashi, 1987] and Weatherill [Weatherill, 1988b] about hybrid meshes.
They observed that the real advantages of grid-based meshes coincide with the disadvantages
of simplicial complexes. Promoters of grid-based meshes highlight the efficiency and accuracy
that is attained through the employment of regularly arranged quads and hexes. Supporters of

13

CHAPTER 2. MESHES

simplicial complexes emphasize the geometric flexibility and suitability for adaptation inherent
to the use of irregularly connected tris and tets. Hybrid meshes contain both triangular and
quadrangular (tetrahedral and hexahedral) cells, in a combination of the two approaches that
try to capitalize on the merits of both of them. Hybrid mesh generators produce a structured
quad/hex-mesh that covers the majority of the domain, and in correspondence of boundaries or
singularities, few tris or tets are inserted. Some mesh generators also accept a limited number
of other notable cell types, such as pyramids and prisms [Geuzaine and Remacle, 2009]. For this
reason, such tessellations are often called quad/hex-dominant. In the last years, people started
to think outside the strict “tet-hex” binomial and began to produce hex-dominant meshes,
that, besides a high percentage of hexes, contain some generic polyhedra [Gao et al., 2017].
Meanwhile, thanks to the development of extremely general numerical methods, fully polygonal
and polyhedral meshes have become increasingly studied. While finite elements methods were
only designed to work on standard elements like tris/tets or quads/hexes [Ciarlet, 2002], recent
literature widely explored Polytopal Element Methods (PEMs), i.e., methods for the numerical
solution of PDEs based on polytopal grids. The PEM family already counts quite a few methods,
such as Mimetic Finite Differences [Brezzi et al., 2005, Beirão da Veiga et al., 2014], Virtual
Elements Method (VEM) [Beirão da Veiga et al., 2013], Discontinuous Galerkin-Finite Element
Method (DG-FEM) [Cangiani et al., 2014, Antonietti et al., 2016], Hybridizable and Hybrid
High-Order Methods [Cockburn et al., 2008, Di Pietro and Droniou, 2019], Weak Galerkin
Method [Wang and Ye, 2013], BEM-based FEM [Rjasanow and Weiser, 2012], Poly-Spline FEM
[Schneider et al., 2019], and Polygonal FEM [Sukumar and Tabarraei, 2004] to name a few.

Last, a significant example of pure polytopal meshes is represented by hexagonal meshes,
also called honeycombs, that have been studied, among others, in the context of communication
algorithms [Stojmenovic, 1997].

2.1.2 Mesh Structure

The structure of the mesh reflects the way in which its cells are organized. Recalling Definition 2.1,
in a structured mesh, every internal node has the same number of adjacent cells. The number
of adjacent cells (equivalently, incident edges in 2D, or incident faces in 3D) is called the
valence of the node. Structured meshes are typically pure (see Definition 2.3), and the fixed
valence is commonly assumed to be 4 for quad-meshes and tet-meshes, and 6 for tri-meshes and
hex-meshes. In pure structured meshes, the local organization of the nodes, and the type of the
cells, do not depend on their position, but are constant across the domain, see Figure 2.5.

As soon as we relax the connectivity constraint, singular nodes begin to appear, whose
valence is different from that of the majority of the other nodes (called regular). When the
connection of the nodes varies from point to point, the mesh is generically called unstructured,
even if we can further distinguish between different types of unstructured meshes, see for
instance [Alliez et al., 2008]. A very general consideration is that, historically, structured meshes

14

2.1. MESH CLASSIFICATION

Figure 2.5: Examples of pure structured 2D-meshes, with different cell types.

have been associated with finite difference methods, since a regular lattice structure provides
easy identification of neighboring points to be used in the representation of derivatives. On the
other side, the finite element approach has always been, by the nature of its construction on
discrete cells of general shape, considered well-suited for unstructured meshes. Indeed, a network
of irregular cells can be made to fill any arbitrarily-shaped region, and the representation of
the finite element functions is built independently on each cell, not across them.

Figure 2.6: Quad-mesh structure classification according to [Bommes et al., 2013b]: (a) struc-
tured, (b) block-structured, (c) semi-structured, (d) unstructured.

The classification presented in [Bommes et al., 2013b] for quadrangular meshes can be
extended to the general case, see Figure 2.6:

• A mesh is structured if its nodes are all regular. Structured meshes are suitable, for
instance, to model 2-manifolds of genus 0 and 1 only (a mesh with toroidal topology can
be obtained by identifying the opposite sides of a structured mesh, without introducing
singular nodes).

• A mesh is block-structured if it is obtained by gluing, in a conforming way (see Defini-
tion 2.2), several structured arrays of adjacent elements, called blocks. In 2D-meshes, all
nodes that are internal to blocks or lie along their boundary edges are regular, while only
nodes that lie at corners of blocks may possibly be singular. For 3D-meshes, regularity is

15

CHAPTER 2. MESHES

required also for nodes internal to block boundary facets, and nodes at block edges may
be singular.

• A mesh is semi-structured if most of its nodes are regular. All block-structured meshes
are semi-structured, but not every semi-structured mesh can be partitioned into a small
number of blocks.

• A mesh is completely unstructured if a large fraction of its nodes is singular. Note that
block-structured and semi-structured meshes are technically unstructured as well, but
have a limited number of singular nodes. We reserve the term “unstructured” for meshes
whose nodes are mainly singular.

As explained in [Pietroni et al., 2022], where a similar classification is proposed for hexahedral
meshes, “the whole taxonomy can be understood in terms of the ratio between the number of
singular nodes and the total amount of mesh nodes rV , and the ratio between the number of
blocks and the total number of mesh elements rB”. In fact, when both rV and rB are high,
the mesh is unstructured; if rV is low and rB is high, the mesh is semi-structured; if both rV
and rB are low the mesh is block-structured; if the number of blocks is exactly 1, the mesh is
structured. Providing actual thresholds to precisely define what high and low mean, however, is
an application-dependent matter. In the literature, the term structured is sometimes replaced
by the term regular, and semi-structured meshes are also called valence semi-structured (or
valence semi-regular). From an applicative perspective, there is a substantial difference between
these three classes and there exists a variety of structure enhancement algorithms that are
specifically designed to improve mesh regularity.

Given a mesh M , the total numbers of cells E, faces F , edges E, and nodes V in M are
regulated through the Euler formula [Richeson, 2012]:

χ(M) =

V − E + C if M is a 2D-mesh;

V − E + F − C if M is a 3D-mesh.
(2.1)

The quantity χ(M), called Euler characteristic, is defined by the alternating sum of the Betti
numbers χ(M) := ∑∞

i=0(−1)iBi [Munkres, 2000]. In the case of 2D-meshes, χ(M) is a topological
invariant (i.e., it only depends on the topology of M and not on the particular discretization),
and we have χ(M) = 2 − 2g − b, where g is the genus of M and b the number of boundary
components [Biasotti et al., 2014]. Therefore, b = 0 for any closed surface mesh, and b = 1
in the case of planar, or open surface meshes. When applying the above formulas to meshes
with small genus and significant numbers of cells, faces, edges, and nodes, the approximation
χ(M) ≈ 0 is typically assumed for both 2D-meshes and 3D-meshes.

When the number of singular nodes in a mesh is limited, we can make assumptions about
the average node valence. In a tri-mesh with fixed valence 6, we have 3 nodes in each cell and

16

2.2. MESH GENERATION

approximately 6 cells incident to each node, hence it holds 3C ≈ 6V , and C ≈ 2V . Moreover,
we have exactly 2 cells around each edge and 3 edges in each cell, therefore 2E = 3C ≈ 6V , and
E ≈ 3V . Formula (2.1) is satisfied because V −E+C ≈ V −3V + 2V = 0, and we discover that
the ratio between the numbers of edges, cells, and nodes is approximately E : C : V = 3 : 2 : 1
(if the genus of the domain is reasonably low). This result holds for structured, block-structured
and semi-structured tri-meshes, even though the estimate becomes less precise as the number of
singular nodes increases. The same reasoning for quad-meshes leads to C ≈ V and E = 2C ≈ 2V
(in accordance to (2.1)). The ratio in a quad-mesh with low genus is E : C : V = 2 : 1 : 1, and
this gives a hint on the smaller number of edges and cells required by a structured quad-mesh
with respect to a structured tri-mesh with the same number of nodes. In 3D-meshes, we can only
obtain relationships between cells and nodes, or cells and faces, because we have no information
on the valence of the edges, nor on the number of faces incident to a node. For a tet-mesh
with fixed valence 4 we obtain C ≈ V and F = 2C ≈ 2V . However, we can substitute these
relations into equation (2.1) and isolate the E term, to get E ≈ 2V . The ratio C : F : E : V for
tet-meshes is therefore 1 : 2 : 2 : 1, and a similar count for hex-meshes leads to 0.5 : 1.5 : 2 : 1. As
for the 2D case, structured hex-meshes require fewer elements, faces, and edges than structured
tet-meshes.

2.2 Mesh Generation

This section presents an overview of the different existing techniques for the generation of two
and three-dimensional tessellations. In Table 2.1 we summarize the combinations between cell
typology and mesh structure obtainable with the most common generation methods. Simplicial
complexes can be arranged in any type of structure, even though they are more commonly found
in unstructured meshes. Grid-based meshes are preferably generated in structured (or almost
structured) configurations, due to their intrinsic geometrical properties. There is one major
exception, given by quad/octree grid generation methods [Yerry and Shephard, 1984, Shephard
and Georges, 1991]. These methods produce grids with a high number of singular nodes but
are still used because, at least, they guarantee the construction of topologically-valid meshes.
On the other hand, polytopal meshes containing generic-shaped elements cannot present fixed
patterns in their structure and are intrinsically unstructured. The only known example of
structured polytopal mesh is represented by hexagonal meshes, while some methods for the
generation of semi-structured meshes produce hybrid tessellations.

2.2.1 Structured Meshes

An easy way to visualize the correspondence of a structured curvilinear grid in the physical field
with a logically rectangular grid in the computational field is through the “sponge” analogy
[Thompson, 1982]. Consider a rectangular sponge within which an equally spaced Cartesian grid

17

CHAPTER 2. MESHES

Table 2.1: Most common combinations between cell typology and mesh structure.

Simplicial Grid-Based Polytopal
Structured X X

Block-Structured X X
Semi-Structured X X X

Unstructured X X

has been drawn, Figure 2.7(a). Now wrap the sponge around a circular cylinder and connect
the two ends of the sponge together, as shown in Figure 2.7(b). The original Cartesian grid
inside the sponge has now become a curvilinear grid fitted to the cylinder, but the rectangular
logical form of the grid lattice is still preserved. Such a sponge could just as well be enclosing
a cylinder of non-circular cross-section, regardless of the cross-sectional shape, or it could be
expanded and compressed to fill any region (e.g. a sphere), again producing a curvilinear grid
filling the region and having the same correspondence to a logically rectangular grid.

Figure 2.7: Rectangular sponge (a) wrapped around a circular cylinder (b).

Structured meshes are typically generated through a mapping approach [Mäntylä, 1987]. The
basic idea, common to all structured mesh generation methods, consists of meshing a reference
n−dimensional domain Ξn of a simple shape and mapping this mesh to a physical n−dimensional
domain or geometry Xn through some transformation x(ξ) : Ξn → Xn, ξ = (ξ1, . . . , ξn). Even
though there are in principle no limitations on the shape of Ξn, it is very common to use a
rectangular or hexahedral reference domain, and this choice leads to the generation of structured
quad and hex-meshes. It is a standard requirement for the resulting mesh to be conformal
to the boundary of the domain. A boundary-conforming coordinate grid in the region Xn is
commonly generated first on the boundary of Xn with a map ∂x(ξ) : ∂Ξn → ∂Xn, and then
successively extended from the boundary to the interior of Xn. Since this process is analogous
to the interpolation of a function from a boundary or to the solution of a differential boundary
value problem, we can divide the mapping methods into three basic groups [Liseikin, 2017]:

• algebraic methods, where points of the reference domain are directly mapped onto the

18

2.2. MESH GENERATION

physical domain through various forms of transfinite interpolation [Gordon and Hall,
1973, Gordon and Thiel, 1982] or special sweeping [Shepherd et al., 2000] or dragging
[Park and Washam, 1979] functions;

• differential methods, based on the solution of elliptic [Thompson, 1982], parabolic [Naka-
mura, 1982], or hyperbolic [Cordova and Barth, 1988] equations to generate contours
where points can be located;

• variational methods, based on the optimization of grid quality properties like smoothness,
departure from orthogonality or conformality, cell skewness, and cell volume [Warsi and
Thompson, 1990].

A visual overview of the differences between meshes resulting from the different methods is
given in Figure 2.8. Basically, the algebraic generation systems are faster, but meshes generated
from partial differential equations are generally smoother. The hyperbolic generation systems are
faster than the elliptic systems but are more limited in the geometries that can be treated. The
elliptic systems are the most generally applicable with complicated boundary configurations, but
transfinite interpolation is also effective in a multi-block framework (Section 2.2.2). Variational
methods are particularly powerful in generating high-quality meshes, with the disadvantage
that some effort is required to solve the equations related to the mesh [Thompson et al.,
1985, Thompson et al., 1998].

(a) (b)

Figure 2.8: Meshing of a two-dimensional domains [Liseikin, 2017]: (a) on the left a quad-mesh
obtained by means of transfinite interpolation; on the right a quad-mesh obtained by means of
elliptic equations. (b) Variational meshing: on the left an harmonic quad-mesh; on the right a
quasi-isometric quad-mesh.

Even though less used, there exists a whole class of triangular and tetrahedral structured
meshes. The mapping methods presented above can be easily extended to generate triangular
or tetrahedral grids by mapping a standard triangular or tetrahedral domain, respectively
(Figure 2.9).

19

CHAPTER 2. MESHES

(a) (b)

Figure 2.9: (a) Example of a structured triangular mesh (right) and the corresponding mesh
on the parametric domain (left) generated by the algebraic method; (b) Quadrilateral and
triangular structured meshes generated with the hyperbolic method [Liseikin, 2017].

Structured meshing is particularly effective in generating a large number of elements
over regular domains, where the quality and the speed of mesh generation are guaranteed.
A structured mesh requires significantly less memory -say a factor of three less- than an
unstructured mesh with the same number of elements because array storage can define neighbor
connectivity implicitly [Bern and Plassmann, 2000]. In fact, it does not need the storage of
any connectivity table, as the mesh is defined according to a specified pattern. The storage
and computational costs for different mesh representations are analyzed in [Garimella, 2002],
where the authors compute the relative storage cost (i.e., divided by the number of nodes) of a
mesh, in terms of the number of entities Me (cells, faces, edges, and nodes) and the number of
connections between them Mc. It turns out that, with the most efficient mesh representations,
an unstructured tet-mesh occupies 25Me + 119Mc, while a structured hex-mesh only takes
8Me + 42Mc, thus obtaining the factor 3 stated above. A more detailed discussion on mesh
representation can be found in [Beall and Shephard, 1997, Cignoni et al., 2003]. A structured
mesh can also save time: to access neighboring cells when computing a finite-difference stencil,
the software simply increments or decrements array indices, as data for elements that are close
geometrically is also close in memory by design. Compilers produce quite efficient code for
these operations; in particular, they can optimize the code for vector machines. However, this
approach is rather restrictive for mesh generation in several ways: (i) the number of divisions has
to be equal on opposite edges or faces; (ii) the elements may be distorted due to the mapping;
(iii) a progressive change of element size is less flexible as element connections are fixed; and (iv)
element distortion at the corner and in the interior of the physical domain cannot be predicted
before the application of the mapping.

2.2.2 Block-Structured Meshes

Recalling the sponge analogy, it is not hard to see that, for some shapes with particularly
complex boundary, the sponge may have to be greatly deformed. In such cases, the curvilinear
grid of Figure 2.7(b) could become so highly skewed and twisted to be unusable. One solution

20

2.2. MESH GENERATION

to this problem is to use not one, but rather a group of sponges to fill the physical field: each
sponge has its own logically rectangular grid that deforms into a curvilinear grid when the
sponge is put in place in the field.

The block-structured (or multi-block) strategy [Lee et al., 1980, Armstrong et al., 2015] is
based on this multiple-sponge analogy, with the physical field being filled with a group of grid
blocks with correspondence of grid lines, and in fact complete continuity, across the interfaces
between blocks. Grids of this kind can thus be considered as locally structured at the level of an
individual block, but globally unstructured when viewed as a collection of blocks (Figure 2.10).
All nodes that are internal to blocks or lie along their boundary edges are regular, while only
nodes that lie at corners of blocks may possibly be singular. This procedure is equivalent to
the extraction of a parametrization of the domain [Botsch et al., 2010]. In several works on
block-structured mesh generation, however, the parametrization is not explicitly defined.

Figure 2.10: A block-structured hexahedral mesh of a submarine, showing the block structure
and a vertical slice through the mesh [Bern and Plassmann, 2000]

The generation problem is split into two independent steps: first, the domain is divided
without holes or overlaps into a few contiguous sub-domains. Then, a separate structured
mesh is generated in each block with any of the methods from Section 2.2.1, allowing the most
appropriate mesh configuration to be used in each region. The most common techniques for
automatically splitting the domain into blocks typically rely on the geometry or the topology of
the shape. The key idea is to divide the domain in correspondence to shape features or topological
changes. For two-dimensional domains, the decomposition can consist of a clustering of the
nodes based on their normal orientation [Boier-Martin et al., 2004]. A successful class of methods
for quad-mesh generation are those based on an integer-grid map [Tong et al., 2006, Kälberer
et al., 2007, Bommes et al., 2013a]. Another strategy is to induce the decomposition through a
Morse-Smale complex [Dong et al., 2006], a Reeb graph [Sorgente et al., 2018], or discrete Ricci
flow [Chen et al., 2019]. The polycube strategy (Section 2.2.3) can be applied to a surface model
in order to generate a quadrangular block-decomposition. In multi-charts decompositions, cells
are clustered into “charts” (just another word for “blocks”) according to their distance from a

21

CHAPTER 2. MESHES

set of seeds on the surface [Carr et al., 2006, Sander et al., 2003]. For three dimensional domains
instead, more advanced topological tools are needed, such as medial descriptors: geodesic
functions [Dey and Sun, 2006], skeletons [Livesu et al., 2016], foliations [Campen et al., 2016],
or the recent decomposition called motorcycle complex [Brückler et al., 2022].

Figure 2.11: Skeleton driven hex-meshing [Livesu et al., 2016] starts from an input surface mesh
and line skeleton (left), around which a tubular structure composed of hexahedral blocks is
initialized (middle left). Refining this structure and projecting it on the target surface yields a
hexahedral mesh (middle right) where the distribution of the mesh elements aligns with the
skeleton guiding curves (right closeup).

Block-structured meshes are considerably more flexible than the structured ones in handling
complex geometries. Since these meshes retain the simple regular connectivity pattern of a
structured mesh on a local level, they maintain nearly the same compatibility with efficient
finite-difference or finite-volume algorithms as structured meshes. The few singular nodes define
a coarse block layout that can be exploited by dedicated data structures for cheaper storage
and fast querying [Tautges, 2004], and it is also useful in a variety of applications that exploit
the tensor product structure of its elements (e.g., IGA [Hughes et al., 2005]). This type of mesh
is particularly suited if the physical problem is heterogeneous relative to some of the physical
quantities, so that different mathematical models are required in different zones of the domain
to adequately describe the physical phenomena. They are also particularly indicated when
the solution to the problem behaves non-uniformly, as zones of smooth and rapid variation
of different scales may exist. Unfortunately, the mentioned methods for the generation of
block-structured meshes do not always succeed in generating topologically valid meshes. A fair
amount of user interaction may be required for particularly complex models.

2.2.3 Semi-Structured Meshes

A mesh is semi-structured (or valence semi-structured) if most of its nodes are regular. In these
cases, nodes are not connected in a way that induces a coarse block decomposition into a few

22

2.2. MESH GENERATION

regular blocks. All block-structured meshes are semi-structured, but not every semi-structured
mesh can be partitioned into a small number of blocks. The distinction is important as the
difference between these two classes can be really dramatic and has a significant impact on
possible applications. Differentiating these two classes of meshes allows us to differentiate more
precisely the algorithms that aim at producing meshes with a block structure, from those
algorithms that minimize the number of singular nodes only.

Advancing Front Methods A common approach to the generation of semi-structured
meshes is through advancing front methods, also called moving or marching front. They allow
the generation of triangular and tetrahedral meshes [Lo, 1985, Lo, 2013] as well as quadrangular
(also referred to with the term paving [Blacker and Stephenson, 1991]) and hexahedral ones
(also referred to with the term plastering [Staten et al., 2010]).

Such techniques define a mesh on the domain in the form of advancing layers, starting from
the boundary and proceeding until the whole region has been covered with grid cells. The
region separating the part of the domain already meshed from those that are still unmeshed is
referred to as a front (Figure 2.12(a)). The name of this class of methods refers to a strategy
that consists of creating the mesh sequentially, element by element, creating new points, and
connecting them with previously created elements, thus advancing into as-yet-unmeshed space
and sweeping a front across the domain. Advancing-front techniques need some discretization
of the boundaries of the geometry, which constitutes the initial front which remains intact
throughout the mesh generation process. In two dimensions, the boundary discretization consists
of the initial placement of nodes offsetting from a boundary edge, while in three dimensions it
can be a triangular or quadrangular mesh. New elements are built by connecting the nodes of a
front face to either other points on the front or some inserted new points. A new mesh point is
placed at a position that is determined to result in an element with prescribed optimal quality
features. For instance, an advancing front approach can be combined with a Delaunay criterion
(Section 2.2.4) which drives the insertion of new points [Marcum and Weatherill, 1995]. The
process stops when the front is empty, i.e., when the domain is entirely meshed.

The advancing-front approaches offer the advantages of high-quality point placement and
integrity of the boundary. The efficiency of the marching process largely depends on the
arrangement of mesh points in the front, especially at sharp corners. A particular difficulty
of this method occurs in the closing stages when the front is collapsing on itself and the last
vestiges of empty space are replaced by new elements. In such cases, poor elements have to
be used to fill up the interior just for building up a mesh of correct topological structure, and
sometimes existing elements already placed have to be removed or modified from time to time
to cater to the formation of new elements (Figure 2.12(c)). In practice, there is rarely any
difficulty in completing the process for a planar domain. In three dimensions, however, the
remaining region of space can have an extremely complicated shape, which may not yield an

23

CHAPTER 2. MESHES

acceptable covering by tets or hexes, thus preventing the tessellation from filling the entire
region to be meshed.

(a) (b)

Figure 2.12: Planar meshes generated by the advancing front method: (a) initial and final stage
for a quadrangular mesh: deformed quads are found at the interior of the domain; (b) closing
stage for a triangular mesh [Baker, 2005].

Field-Guided Methods A promising research direction for semi-structured mesh generation
is offered by field-guided methods, presented in Figure 2.13. They are characterized by explicit
control over the local properties of elements in the mesh by means of some guiding fields. Due
to their formulation, they are specific to grid-based mesh generation.

For two-dimensional grids, the most interesting local properties are the orientation and the
size of elements, which can be specified by a cross (or frame) field which smoothly varies over
the entire surface [Alliez et al., 2003, Bommes et al., 2009, Ray et al., 2009, Zhang et al., 2010].
A cross-field exhibits the same types of singularities that can be observed in a quad-meshes and
consequently the generation of a highly regular quad-mesh is strongly related to the generation
of a cross-field with few singular points. In the three-dimensional case, a frame consists of
three linearly independent vectors that represent a parallelepiped, i.e., the orientation and
shape of a linearly deformed cube. In a typical hex-generation algorithm, the initial step is the
computation and optimization of a boundary-aligned frame field [Palmer et al., 2020]. Then we
can generate an integer-grid map that resembles the frame field [Nieser et al., 2011], and extract
the integer level-sets that form the explicit hexahedral mesh [Lyon et al., 2016]. A particular
class of field-guided methods are the ones based on a distance field [Martin et al., 2009, Chen
et al., 2019]. In this case, the field is defined by the geodesic distance from particular shape
features or from the model boundary towards its interior.

The peculiarity of field-guided methods is that they can achieve superior mesh quality,
specifically if complex feature alignment is required. In particular, they are able to express
alignment not only to the boundary of a domain but also to arbitrary internal structures,
which is, for example, important in multi-material applications or in the simulation of fluid-
structure interaction. On the other hand, volumetric frame fields may exhibit additional types

24

2.2. MESH GENERATION

of singularities that cannot occur in hexahedral meshes [Viertel et al., 2016]. Such singularity
configurations are said to be “non-meshable”, and their fixing requires complex techniques or
user interaction. As a consequence, field-guided methods are successfully adopted when the
mesh to be generated is allowed to be hex-dominant [Gao et al., 2017, Sokolov et al., 2016] (i.e.,
to contain few non-hexahedral elements).

Figure 2.13: Prototype of a field-guided method from [Bommes et al., 2013b]: Given an input
triangle mesh (a) in the first step an orientation field (b) is computed which represents the
local rotation of quad elements. In the second step, a sizing field (c) is determined that specifies
the sample density, which in this example is isotropic and close to uniform. In the third step, a
consistent quad-mesh (d) is generated that closely reproduces both guiding fields.

Polycube Methods Another notable example of semi-structured grid-based mesh generation
is provided by polycube methods. This class of methods was originally designed for volumetric
tessellations, but they have also been applied to surface multi-block meshing as a tool to
decompose the domain into well-shaped patches with few irregular nodes and uniform tessellation
density (Section 2.2.2).

Polycube algorithms work by volumetrically mapping a shape to an orthogonal polyhe-
dron (or polycube [Tarini et al., 2004]) embedded in Z3. Sampling the polycube at a dense
integer lattice gives regular hexahedral connectivity, whose nodes can be positioned inside the
initial object following the inverse map, see Figure 2.14. Polycube methods are based on two
fundamental building blocks: the definition of the polycube structure, and the generation of
the volumetric map [Gregson et al., 2011, Livesu et al., 2013]. These two objectives can be
pursued separately (i.e., defining a valid polycube structure first, and then computing the map)
or together, using mesh deformation to explore the space of shapes and find the orthogonal
polyhedron closest to the input object [Fang et al., 2016].

Polycube methods have received increasing attention from the meshing community and
have now reached a discrete maturity level [Pietroni et al., 2022]. The most recent algorithms
allow to process big datasets (containing more than a hundred shapes), producing hex-meshes
of good quality [Fu et al., 2016]. In terms of structure, meshes resulting from these methods are
typically semi-structured, or occasionally block-structured if singularities (i.e., polycube corners)

25

CHAPTER 2. MESHES

align [Cherchi et al., 2016]. A particular feature of polycube-based hex-meshes is that their
singular structure is confined to the surface and consists of all polycube edges and corners. This
inability to position singularities in the interior inherently limits the map, and may occasionally
be the source of unnecessary distortion.

Figure 2.14: Polycube pipeline from [Gregson et al., 2011]: (a) initial shape; (b,c) definition of
the polycube structure; (d) generation of the volumetric map.

2.2.4 Unstructured Meshes

Unstructured meshes are preferable when the shape of the domain does not exhibit much
regularity, making it useless to exploit a coarse block structure which would cause a very
high number of singular nodes. Among them, the most used and studied are undoubtedly the
simplicial meshes. Triangular and tetrahedral unstructured mesh generation is an extensively
studied topic, with spectacular theoretical and practical achievements obtained in the last years.
Generic polytopal discretizations also fall in the class of unstructured meshes. They constitute
an interesting field, that is being explored in the very last years and it is yielding interesting
results.

As we have already seen, in contrast to structured or partially-structured meshes, the major
feature of unstructured meshes consists of much larger flexibility in terms of cell types, mesh
organization or mesh structure. The concept of unstructured mesh allows one to place the nodes
locally, irrespective of any prescribed coordinate directions, so that curved boundaries can be
handled with ease. Moreover, local regions in which the solution is turbulent or its variations
are large can be resolved with a selective and local insertion of new points without unduly
affecting the resolution in other parts of the physical domain. This matches perfectly with
the versatility of simplicial and polytopal elements, which, differently from quadrangles and
hexahedra, do not need to be aligned to specific directions. The advantages of these meshes
lie in their ability to deal with complex geometries while allowing to provide natural mesh
adaptation through the insertion of new nodes.

Simplicial meshes have been studied extensively in the literature related to computational
geometry [Preparata and Shamos, 2012] together with other geometric constructs, Voronoi

26

2.2. MESH GENERATION

tessellations, that are particularly well suited to partition domains into polytopal elements with
good geometric properties. In the following, we will review briefly the definitions and relations
among the most important geometric structures in this context. A survey on data structures
for unstructured meshes is given in [Löhner, 1988].

Voronoi Tessellations Let P = {p1, . . . ,pl} be a set of points (so-called sites) in Rn. We
associate to each site pi its Voronoi cell, or region, V (pi) such that

V (pi) := {x ∈ Rn : ‖x− pi‖ ≤ ‖x− pj‖,∀j 6= i}.

The collection of the nonempty Voronoi regions and their faces, together with their incidence
relations, constitute a polytopal complex called the Voronoi tessellation, or diagram, of P
[Aurenhammer, 1991, Fortune, 1995, Boissonnat and Yvinec, 1998]. The Voronoi tessellation
of P is a partition of Rn because any point of Rn belongs to at least one Voronoi region. A
Voronoi cell of a site pi is also defined as the intersection of closed half-spaces bounded by
bisectors (the locus of points that are equidistant to two sites pi and pj). This implies that
all Voronoi cells are convex since the intersection of convex sets remains convex. Note that,
when a site pi is on the boundary of the convex hull of P, the relative Voronoi cell V (pi) is
unbounded (Figure 2.15(b)). A clipped Voronoi tessellation [Boots et al., 2009, Yan et al., 2013]
is the intersection between the Voronoi tessellation and a domain Ω ⊂ Rn (Figure 2.15(c)).
Voronoi tessellations have been used extensively for the geometric properties of their cells,
whose definition encapsulates important information about relative distance among points. This
notion has also been used to produce very well-balanced partitions of the space into polytopal
elements by the introduction of the Centroidal Voronoi Tessellation (CVT) [Du et al., 1999]. A
CVT is a special type of clipped Voronoi tessellation, where the site of each Voronoi cell is also
its center of mass. CVTs are used to partition the space into a given number n of polytopes:
intuitively, n points are cast into the space, the Voronoi tessellation is constructed (n polytopes
are created) and the n points are moved to the centroids of their relative cell. The process
is repeated until the tessellation converges to an almost balanced set of polytopes covering
the space. The computation of a CVT consists of the following three steps, summarized in
Figure 2.15 [Wang et al., 2016]:

• Initialization: sample a user-defined number of sites P inside Ω. Sites can be generated
randomly or with apposite techniques [Moriguchi and Sugihara, 2006, Quinn et al., 2012].

• Clipping: compute the intersection between the Voronoi tessellation of P and Ω. This is
not an easy problem, in particular for volumetric domains [Lévy, 2014, Abdelkader et al.,
2020].

• Optimization: update the position of the sites for obtaining a tessellation with uniform
and regular cells. This is obtained by minimizing a CVT energy function which expresses,

27

CHAPTER 2. MESHES

to some extent, the compactness of the cells. Finding an optimal CVT appears difficult
since the energy function is usually non-linear and non-convex [Liu et al., 2009].

Figure 2.15: Overview of the computation of a Voronoi-based tessellation in two dimensions
[Wang, 2017]. (a): Initialization: sample the sites inside the input shape. (b): Voronoi tessellation
of the sites. (c): Clipping: compute the clipped Voronoi tessellation. (d): Optimization: update
the position of the sites by minimizing the CVT energy function.

CVTs are widely used to generate uniform discretizations of shapes and structures in
various scientific domains that include quantization, sensor networks, crystallography, and
shape modeling, among others [Du et al., 1999]. Since the dual of a Voronoi tessellation is a
Delaunay triangulation (defined in the next paragraph), algorithms for computing the Voronoi
tessellations are also widely used for tri and tet-mesh generation, see Figure 2.16. Moreover,
extensions of the Voronoi tessellation can be defined by replacing the Euclidean distance with
other distance metrics, such as the weighted Voronoi tessellation [Boots et al., 2009], the
power diagram [Aurenhammer, 1987], and the Lp Voronoi tessellation [Lévy and Liu, 2010]. In
particular, the Lp Voronoi tessellation produces a set of (mostly) square Voronoi cells from which
a quad-dominant semi-structured mesh can be extracted by triangle merging [Boier-Martin
et al., 2004]. A downside to Voronoi-based mesh generation methods is the fact that they do not
allow for full control over the node placement in the mesh. In fact, the user can only specify the
location of the centroids, the optimization criterion, and, possibly, some boundary constraints,
but it is not possible to ensure that the generated mesh will contain a node in a particular
position in the interior of the domain.

Delaunay Triangulations By far the most popular among the triangle and tetrahedral
meshing techniques are those derived by a Delaunay triangulation, which is the dual structure of
the Voronoi tessellation [Weatherill, 1988a, Botsch et al., 2010]. More specifically, the Delaunay
triangulation of a set of sites P is a simplicial complex such that k + 1 points in P form a
Delaunay simplex if their Voronoi cells have non-empty intersection. Note that, like the Voronoi
tessellation, the Delaunay triangulation is defined for any space dimension; therefore the term
“triangulation” here may refer to both tri- and tet-meshes. In two dimensions, each Delaunay

28

2.2. MESH GENERATION

Figure 2.16: 2D CVT-based meshing from [Yan et al., 2013]. (a) The clipped Voronoi tessellation
of initial sites; (b) the result of CVT; (c) the result of constrained optimization, with boundary
seeds constrained on the border; (d) the dual triangle mesh.

triangle (p,q, r) is dual to a Voronoi vertex where V (p), V (q), and V (r) meet; each Delaunay
edge (p,q) is dual to a Voronoi edge where V (p) and V (q) meet; and each Delaunay vertex p
is dual to its Voronoi face V (p), see Figure 2.17. Another key notion used in Delaunay-based
meshing algorithms is the restricted Delaunay triangulation [Edelsbrunner and Shah, 1994, Dey,
2006]. Let Ω denote a subset of Rn; P a point set of Rn; and D(P) the Delaunay triangulation
of P. We call the Delaunay triangulation restricted to Ω the sub-complex of D(P), denoted
DΩ(P), whose dual Voronoi faces intersect Ω. The 3D Delaunay triangulation restricted to a
surface S is the set of Delaunay facets (triangles) whose dual Voronoi edges intersect S.

Figure 2.17: Delaunay triangulation (full lines) obtained as the dual of a Voronoi tessellation
(dotted lines).

The Delaunay triangulation is shown to enjoy several local and global properties due to
its duality with the Voronoi diagram: (i) Delaunay triangles are nearly equilateral; (ii) the
minimum angle is maximized; (iii) the triangulation is unique if the points are in a general
position, i.e., no four points are cyclic; (iv) if every triangle in a triangulation is non-obtuse, it

29

CHAPTER 2. MESHES

is a Delaunay triangulation; (v) any two-dimensional triangulation can be transformed into
a Delaunay triangulation by locally flipping of the diagonals of adjacent triangles; (vi) the
restricted Delaunay triangulation has optimal approximation properties (both in terms of
geometry and topology) when sites are sufficiently dense [Boissonnat and Oudot, 2005]. These
properties give some grounds to expect that the grid cells of a Delaunay triangulation are not
too deformed, explaining the success of the Delaunay triangulation for mesh generation, as small
angles cause numerical problems in finite element methods. In dimension three, however, the
solid angle of the triangulation may not be maximized, as degenerated and almost degenerated
tetrahedral elements known as slivers with zero or very small solid angles can be found in a
Delaunay tetrahedrization [Attene and Spagnuolo, 2000]. Hence, methods based on the Delaunay
criterion may not be optimal in terms of shape quality for volumetric meshes.

Figure 2.18: Delaunay criterion: since the circumcircles of the triangles in (a) do not contain
the other triangle’s nodes, the empty circle property is maintained, while in (b) it is not.

Delaunay triangulations satisfy the Delaunay criterion, also called the “empty sphere”
property, illustrated in Figure 2.18 in the two-dimensional case: the circumsphere of any cell
does not enclose any node of the mesh. Although the Delaunay criterion has been known for
many years, it was not until the work of Lawson [Lawson, 1977] and Watson [Watson, 1981]
that the criterion was utilized for developing algorithms to triangulate a set of nodes. This is
because the Delaunay criterion in itself is not an algorithm for generating a mesh. It merely
characterizes the connections among a set of points in space, but if we want to mesh a given
domain using the Delaunay criterion, it is necessary to devise a method for generating node
locations within the geometry and then optimizing the connections to satisfy the Delaunay
criterion. Moreover, if an existing boundary discretization is required to be maintained, a
Delaunay tessellation conforming to that boundary may not exist at all (e.g., if the boundary
discretization violates the Delaunay criterion). For this reason, boundary-constrained Delaunay
triangulations/tetrahedrizations were introduced [Weatherill and Hassan, 1994].

A common methodology to build a Delaunay mesh of a bounded domain is to first mesh
the domain boundary nodes: this step provides an initial set of triangles, or tetrahedra, which
satisfy the Delaunay criterion. Once the boundary is meshed, nodes are inserted incrementally

30

2.2. MESH GENERATION

into the existing mesh, redefining the elements locally as each new node is created while keeping
the Delaunay criterion. This is typically done with a Bowyer-Watson algorithm [Baker, 1989].
The various methods for Delaunay meshing can be distinguished according to the criteria used
for placing new interior nodes:

• The simplest point insertion approach is to define nodes from a regular grid of points
covering the domain at a specified nodal density. In order to provide for varying element
sizes, a user-specified sizing function can be defined and nodes inserted until the underlying
sizing function is satisfied [Weatherill and Hassan, 1994]. Another approach is for nodes to
be recursively inserted at triangle or tetrahedral centroids [Ruppert, 1993], or at element
circumcircle/sphere centers [Shewchuk, 1996], or with advancing front techniques [Marcum
and Weatherill, 1995].

• In the so-called Voronoi-segment method [Rebay, 1993], the new node is introduced at a
point along the line segment connecting the circumcircle centers of two adjacent cells,
according to a local size criterion. This method tends to generate very structured-looking
meshes with six triangles at every internal node.

• Another straightforward method is point insertion along edges [Borouchaki et al., 1995].
A set of candidate nodes is generated by marching along the existing internal edges of the
triangulation at a given spacing ratio. Nodes are then inserted incrementally, discarding
nodes that would be too close to an existing neighbor. This process is continued recursively
until a background sizing function is satisfied.

A Delaunay triangulation of n points can be computed in time O(n logn) [Preparata and
Shamos, 1985]. Based on a sound geometrical concept and the optimality properties, Delaunay
triangulation has important applications in many fields, including data visualization, terrain
modeling, mesh generation, surface reconstruction, and structural networking for arbitrary point
sets. The popularity of Delaunay triangulation is attributed to its nice geometric properties as
a dual of Voronoi tessellation, its connection to the concept of alpha shapes [Edelsbrunner and
Mücke, 1994], and the speed with which it can be constructed in two or higher dimensions with
well-developed libraries (e.g., Triangle [Shewchuk, 2005] and Tetgen [Si, 2015]).

Quadtree-Octree Methods Quadtree-octree meshing is based on the idea of partitioning
a domain progressively to produce cells of a size compatible with the node spacing requirement.
The use of quadtree and octree decompositions for mesh generation was developed in the 1980s
[Yerry and Shephard, 1984, Shephard and Georges, 1991].

In this approach, applied to mesh generation, the n-dimensional domain to be gridded is
first enclosed in a bounding root box (an n-dimensional parallelepiped) which is approximated
with a collection of disjoint and variably sized cells whose union constitutes the final mesh

31

CHAPTER 2. MESHES

of the domain (Figure 2.19). The cells are obtained from a recursive refinement of the root
parallelepiped:

• 2-refinement splits each edge in two, thus obtaining 4 equally sized sub-cells for each
adjacent rectangle or 8 equally sized sub-cells for each adjacent hexahedron;

• 3-refinement splits each edge in three, thus obtaining 9 and 27 sub-cells, respectively.

In both cases, the sequence of splits is encoded in a hierarchical tree structure, which corresponds
to a quad/octree for the 2-refinement, and a 9/27-tree for the 3-refinement. However, methods
based on 3-refinements are commonly considered to be in the quad/octree class. The stopping
criterion used to subdivide a cell can be based on normal similarity [Ito et al., 2009], local
thickness [Livesu et al., 2021, Maréchal, 2009], surface approximation [Gao et al., 2019] or a
combination of these and other indicators [Bawin et al., 2021]. To ensure element sizes do not
change too dramatically, a maximum difference in the tree subdivision level between adjacent
cells can be limited to 1. After the refinement stage, smoothing and cleanup operations can
be employed to improve element shapes and global connectivity. For instance, the removal
of hanging nodes is obtained by substituting elements of the grid with templated topological
transitions that locally restore mesh conformity. As the last step, the boundary nodes are
projected onto the target geometry. Differently from other approaches, this technique does
not match a pre-defined surface mesh, rather surface edges or facets are formed wherever the
internal structure intersects the boundary.

Figure 2.19: Quadtree meshing of an airfoil, with two different refinement levels [Thompson
et al., 1998].

When combined with a conversion strategy or a Delaunay-based method (see next paragraph),
the quadtree/octree method becomes a powerful method for generating unstructured simplicial
complexes. The conversion of a quad/octree grid into a tri/tet-mesh may be useful for two

32

2.2. MESH GENERATION

reasons: first, the accuracy of the boundary representation can be significantly increased by the
use of triangular elements. Moreover, simplicial elements allow generating conformal meshes
(i.e., meshes without hanging nodes), which is one of the drawbacks of quadtree/octree grids.

From a mesh quality standpoint, tree-based generation techniques are typically considered
inferior to other methods because: (i) the grid is fixed in space and the result depends on the
orientation of the model; (ii) the connectivity they generate is intricate and rich of singular
edges with high valence; (iii) the resulting meshes are highly unstructured and do not endow a
coarse block decomposition. Nevertheless, when compared with alternative options tree-based
generation methods really stand out in terms of robustness. To date, they are the only fully
automatic methods capable of successfully hex-meshing any input shape, regardless of its
geometric or topological complexity [Pietroni et al., 2022]. For this reason, they are the only
automatic methods currently implemented in professional software [MeshGems, 2020, CoreForm,
2021, Cubit, 2021].

Mesh Conversion We can imagine generating a mesh starting from a given tessellation and
operating a sequence of local operations on its connectivity to convert it into a new discretization
with different properties. The reason for such conversion could be, for instance, that we need
to work on our mesh with tools that only support particular cell topologies, as frequently
happens with numerical methods. Operations on the connectivity of the mesh can be basically
the splitting of a cell into a number of smaller elements or the aggregation of a number of cells
into a bigger one. In the literature, we can find efficient strategies for splitting and aggregating
polygons and polyhedra of any type into any type.

For instance, a triangular mesh can be converted into a quadrangular mesh by merging two
original triangles into one quad [Tarini et al., 2010]. An hex-mesh can be generated from a
tet-mesh by splitting each tetrahedron into four hexahedra via midpoint refinement [Li et al.,
1995]. Such techniques are trivial to implement and always guarantee a correct result, but
they produce in general unstructured meshes with overly dense singular structures and highly
deformed elements. They are therefore not particularly suited for quad/hex-mesh generation.

A grid-based mesh can be converted into a simplicial mesh following simple refinement
rules for quad-to-tri or from hex-to-tet subdivision [Bern and Plassmann, 2000]. However, it is
immediate to see how it is not possible to convert a grid into a simplicial complex by elements
agglomeration.

A similar operation can be performed starting from any kind of pure mesh and refining or
aggregating its elements according to certain rules. The resulting mesh will in general be polyg-
onal/polytopal, and the key ingredient, in this case, is the refinement or agglomeration driving
criterion, see Figure 2.20. The driving criterion can be based on some general quality indicator,
it can be appositely designed to prevent or remove particular pathological configurations, it can
contain any kind of hand-made heuristics [Antonietti et al., 2021b]. Recent works [Antonietti
and Manuzzi, 2022] also employ convolutional neural networks.

33

CHAPTER 2. MESHES

(a) (b) (c) (d)

Figure 2.20: (top) Example of mesh refinement [Antonietti and Manuzzi, 2022]: an initial
polygonal mesh (a) is multiply refined with the midpoint strategy (b) and with two different
CNN-based strategies (c,d). (bottom) Example of mesh coarsening [Antonietti et al., 2021b]: the
initial triangular mesh (a) is iteratively agglomerated (b,c,d) according to a custom strategy.

2.3 Mesh Quality

In this section, we turn our attention to the quality of a discretization. The goodness of a
tool principally depends on what that tool is used for, therefore a mesh considered “good”
for one specific application may not work as fine for another. As we are mainly interested in
finite element simulations, the quality of a mesh will be here related to the performance of a
numerical scheme over it, in terms of speed and accuracy. It is also important to note that the
relation between mesh quality and the quality of a numerical solution of a PDE may heavily
depend on the specific PDE, as well as on the solver at hand.

Definition 2.9 (Quality Indicator). A quality indicator is a function defined over the cells of
a mesh, capable of giving insights on the accuracy and the convergence speed of a finite element
scheme applied on that mesh, before solving any numerical problem.

We can distinguish between indicators that measure the quality of a single element (e.g., based
on the presence of small edges) and indicators that measure the quality of the mesh altogether
(e.g., based on the nodes distribution across the domain). While a common requirement is that
all mesh elements are non-degenerate, different numerical schemes may demand the fulfillment
of additional requirements. In the literature on PDE solvers, there are plenty of definitions
and criteria to measure the quality of elements and meshes: the following review is intended to
cover the various flavors proposed, also in relation to the context in which these are defined

34

2.3. MESH QUALITY

and used. This review lays the basis for the definition of the new indicator, which is one of the
main contributions of the thesis work.

2.3.1 Element Indicators

Element quality indicators are defined element-wise and then collected into a single mesh quality
score in some kind of average. As a consequence, they are often specific to particular types
of element typology. One common operator that is used in several contexts is the Jacobian.
Consider a triangle with vertices x0, x1 and x2. The matrix

J0 :=
[
x1 − x0 y1 − y0

x2 − x0 y2 − y0

]

is called the Jacobian matrix of the triangle relative to the vertex x0, and analogous matrices
can be defined for a tetrahedron. The determinant of the Jacobian matrix for simplicial elements
is invariant to the choice of the vertex x0 [Freitag, 1997], therefore we omit the subscript and
note it det(J), the Jacobian of the element.

The concept can be extended to quads and hexes, but in this case, the invariance is not
guaranteed. A possible solution is to consider the different matrices Ji at the corners and
at the center of the element, and define the Jacobian as mini det(Ji) [Knupp, 2001]. The
Jacobian provides useful information on the quality of an element (e.g., skew, length ratio,
shape, distortion, volume change, and orientation) [Knupp, 2001]. For instance, if det(J) ≤ 0
(or mini det(Ji) ≤ 0), the implied element is said to be irregular, and it is considered invalid
in the context of finite element methods [Knupp, 2000, Mitchell et al., 1971]. Sometimes a
distinction is made between degeneration (det(J) = 0) and inversion or fold-over (det(J) < 0).
Depending on the concrete setting, such elements may lead to “inaccurate solutions or no
solutions at all” [Barrett, 1996], “invalidated” solutions [Roca et al., 2011], or situations in
which“calculations cannot be continued” [Salagame and Belegundu, 1994]. Detailed formulations
for the majority of the element quality indicators presented in this section can be found in the
Verdict library [Stimpson et al., 2007].

Triangles We start our analysis from triangular elements because several indicators are firstly
defined over them and then extended to quads, tets, or hexes. There are two main quantities
to measure in a triangle: edge lengths and angles, and the quality is typically intended as its
deviation from an equilateral triangle. Pathological triangular elements can be either of the
type of Figure 2.21(a) or Figure 2.21(b).

Edge lengths, or aspect regularity, can be controlled by the ratio between the inradius and
the circumradius of the triangle (respectively, the radii of the inscribed and circumscribed
circles). The edge ratio instead, is not an interesting quality measure as it does not vanish for
all the degenerate cases, for instance, the flattening of Figure 2.21(b).

35

CHAPTER 2. MESHES

The angle regularity instead, can be devised by measuring the sine of the minimum or
maximum angle, or a ratio between these two. Alternatively, it can be formulated as the ratio
between the maximum edge and the inradius.

More sophisticated indicators try to measure edges and angles together with a single shape
regularity function based on the Jacobian matrix. The algebraic shape metric from [Knupp,
2001], also called mean ratio, is defined as the ratio of the geometric mean to the arithmetic
mean of the eigenvalues of J . An equivalent version is the Frobenius ratio, which consists of
the inverse of the condition number of J in the Frobenius norm, but can be also computed as
the sum of the edge lengths squared divided by the area.

Figure 2.21: Examples of poorly shaped triangles and tetrahedra.

Tets The major difference between a triangle and a tet is that a new entity comes to play in
the latter, namely, the solid angle. The solid angle θi at vertex xi of tetrahedron T (x1,x2,x3,x4)
is given by the surface area formed by projecting each point on the face opposite to xi to the
unit sphere centered at xi. It measures how large an object appears to an observer looking at it
from a point, with a natural geometrical relationship to object visualization. A collection of
tetrahedral shape measures is given in [Au et al., 1998], and a systematical comparison between
tetrahedral quality measures is provided in [Liu and Joe, 1994].

The aspect regularity can be computed by the radius ratio, as for triangles, and it helps
avoid situations like Figure 2.21(c),(d) but not (e). We recall that the edge ratio is not an
interesting quality measure, as it fails to detect degenerate tets like slivers. Numerous other
aspect ratios for tets are proposed in [Stimpson et al., 2007].

An angle regularity measure based on the solid angle is defined as the sine of the minimum
solid angle. The minimum dihedral angle can be measured as well, but it cannot detect the
degenerate case of a needle-shaped tet (Figure 2.21(c)). In fact, the dihedral angles of a
tetrahedron remain more or less the same as the triangular face opposite to the pointed node is
getting smaller and smaller.

Regarding shape regularity, both the mean ratio and the Frobenius ratio defined for triangles

36

2.3. MESH QUALITY

can be easily applied to tets. A simple formula for computing the mean ratio of a tet, involving
only the volume and the edge lengths, is provided in [Au et al., 1998].

Quads While quads may be more efficient than triangles from a computational point of view,
their properties make them a more difficult primitive to handle compared to triangles. The extra
degree of freedom given by the fourth vertex gives birth to many pathological configurations,
and even simple operations present a greater challenge.

First of all, a quad is not necessarily flat, and even planar quads may be non-convex. This
can be particularly crucial in architectural applications, where quad-meshes featuring this
property are often categorized as Planar-Quad. Planarity and convexity can be simply imposed
as pre-requisites for all the elements in a mesh. The warping of a quad measures its distance
from being planar, and it is measured through the curvatures of the coordinate surface on
which the quad lies (Figure 2.22(d)).

A formula for the aspect regularity of a quad can be derived from those for triangles, and it
is a measure of the departure of the cell from a rhombus (Figure 2.22(b)). The opposite sides of
each quad should have approximately equal length (this can be particularly crucial in contexts
like physical simulations), or, for anisotropic approximation, a ratio best for approximation
quality. A similar stretch measure is given by the ratio between the minimum edge and the
maximum diagonal.

Regarding the angle regularity (also skewness or orthogonality), internal angles should be
close to 90 degrees, therefore we need to characterize the departure of a quad from a rectangle
(Figure 2.22(c)). It can be described through the maximum/minimum angle (or their ratio),
or by the angle between the principal axes of the quad. In fact, it is the absolute value of the
cosine of the angle between the principal axes.

For the shape regularity, we already saw how the Jacobian can be extended by considering
the minimum between the values of det(J) at the vertices and at the center of the quad.
Alternative Jacobian-based indicators are the ratio between its minimum and maximum values
(weighted Jacobian) or the minimum determinant of Ji evaluated at each corner and the center
of the element, divided by the corresponding edge lengths (scaled Jacobian). Such indicators
provide a measure of the variation in the Jacobian across the element, and they can be used in
the same formulas as for triangles for a general measure of the quad shape. Note that skewness
can be maximized by a rectangle with any aspect ratio, whereas shape can only be maximized
by a square. Another possible shape indicator is the Oddy metric [Oddy et al., 1988], which
measures the maximum deviation of the metric tensor at the corners of the quad.

Hexes The quality indicators defined for quadrangular elements are straightforwardly ex-
tended to hexahedral cells. Warping, stretching, skewness, and aspect regularity of a hex can
be defined by the sum, the average, or the minimum/maximum of the respective measures on
its faces.

37

CHAPTER 2. MESHES

Figure 2.22: Quality of a quadrangular element: (a) ideal element, (b) low aspect ratio, (c)
skewed element, (d) warped element.

The shape regularity indicators based on the Jacobian matrix are probably the most common
in the literature. Shape measures can be the minimum between the Ji determinants, or the
maximum (or the average) between the Frobenius norms of their condition numbers. Weighted
and scaled Jacobians (defined as for quads) are also used. The determinant det(J) quantifies
to what extent a hex deviates (in terms of volume distortion) from the unit cube. However,
it is blind to angle distortion; therefore it cannot capture skewness. Additional angle-aware
measures are thus often taken into account.

Polytopes The concept of the geometric quality of a cell becomes quite vague when the
cell is a generic polygon or polyhedron. Most of the quality indicators defined above become
meaningless when the elements have an undefined number of vertices, or at least very difficult
to extend. For instance, the Jacobian can be extended to generic polygons (similarly to how we
did for quads), but the Jacobian matrix in a polyhedron vertex is defined only if such vertex
has three incident edges (e.g., a prism is fine, but a pyramid is not).

Trying to delimit the field by excluding unlikely configurations, most mesh generators, and
most numerical schemes only allow convex or star-shaped elements. A polytope P is said to be
convex if, given any two points p1 and p2 in P , the line segment connecting p1 and p2 is entirely
contained in P . Two points p1 and p2 in P are said to be visible from each other if the segment
(p1, p2) does not intersect the boundary of P . Last, a polytope P is called star-shaped if there
exists a sphere from which all the points in P are visible, and the definition of visibility implies
that the sphere has non-zero radius. Star-shapedness is weaker than convexity, and it is often
used in the literature as many theoretical results in the theory of polynomial approximation in
Sobolev spaces rely on this condition [Dupont and Scott, 1980, Scott and Brenner, 2008].

Numerous attempts have been made to measure the quality of a polygon or polyhedron as
“how far it is from a regular n-gon or n-hedron” [Chalmeta et al., 2013, Coxeter, 1938, Zunic
and Rosin, 2004], because a unitary regular n-gon (or n-hedron) is usually considered to be of
high quality in the Euclidean metric. This implies, for instance, considering the ratio between
the area (volume) of an element P and the area (volume) of a regular n-gon (n-hedron) with

38

2.3. MESH QUALITY

the same perimeter (surface area) as P , or the difference between the angles of P and those of
the ideal element. Unlike triangles, however, n-gons with n > 3 generally are not affine similar
to a single reference n-gon. Hence the idea of measuring the quality of a polygonal mesh by
comparing its elements to regular n-gons through affine mappings does not work in general.
To make it work, one needs to build proper mappings connecting arbitrary polygons with the
reference ones, or re-define reference polygons of “good quality”, or do both [Huang and Wang,
2020]. Another drawback is that the initial assumption is not always true. Polytopal element
methods are defined to work over extremely generic elements, therefore there is apparently no
reason to believe that the quality of a regular n-gon is the highest possible, or that they are
the only configurations able to reach that quality level.

A shape regularity indicator for polytopes proposed in [Di Pietro and Droniou, 2019] is
the ratio between the inradius and the diameter of the element (the maximum point-to-point
distance), see Figure 2.23(a). It is an adaptation of the radius ratio obtained by replacing the
circumradius with the diameter, as for generic polytopes the circumradius does not always exist.
In other works, the circumradius is replaced by the minimum radius of all disks containing P ,
called outer-radius. In the same paper, a supplemental condition is presented, which requires
looking at the simplicial subdivision of the elements, i.e., the unique decomposition of the cell
into triangular or tetrahedral elements obtained connecting its vertices (see [Di Pietro and
Droniou, 2019] for a more rigorous definition). The contact regularity is the ratio between the
diameter of the cell and the maximum edge of the simplex with the highest area, shown in
Figure 2.23(b).

(a) (b)

Figure 2.23: Quality indicators for polygonal elements: (a) shape regularity and (b) contact
regularity.

Some works on polygonal shape quality also require that the element has no “short edges”.
Recently, researchers noticed that the no “short edge” requirement can be dropped in the
case of virtual element methods [Brenner and Sung, 2018]. But for other numerical methods,
the situation is not completely clear and no “short edges” are still required at least in some
theoretical analyses [Gillette et al., 2012].

The CVT energy defined in Section 2.2.4 is often used for evaluating the regularity of

39

CHAPTER 2. MESHES

Voronoi tessellations [Liu et al., 2009]. However, while this energy accounts for the compactness
of the cells, it is a metric that depends both on the number of cells and on the size of the shape.
To overcome this problem, in [Wang, 2017] the author proposes to define a quality indicator
derived from the second moment (or variance) of the polytope, which measures how far the
points inside P are spread out relative to its centroid (which is dimensionless). In this approach,
the optimal element is considered to be the hexagon in 2D and the truncated octahedron in 3D.

2.3.2 Mesh Indicators

Mesh quality indicators observe the features of the mesh from a more general perspective. In
addition to all the possible functions that we can define collecting element indicators in some
sort of average or weighted norm across all the cells, there are indicators related to features
that cannot be measured element-wise.

Consistency For the accurate computation of the numerical solution of a PDE defined over
the domain, the requirement of consistency with the geometry is indispensable [Liseikin, 2006].
The mesh nodes must adequately approximate the original geometry, that is, the distance
between any node of the domain and the nearest mesh node must not be too large, and this
distance must approach zero when the number of nodes tends to infinity. This is particularly
important for nodes, edges, or faces representing the boundary of the physical domain, as it
allows the boundary conditions to be applied more easily and accurately.

Another type of consistency is the one with the solution of the physical problem [Liseikin,
2006]. The distribution of the mesh nodes and the form of the mesh cells should be dependent
on the features of the solution, such as preferred directions (e.g., streamlines or vector fields),
localized regions of very rapid variations (i.e., regions of high gradients), boundary and interior
layers (e.g., in fluid dynamics, combustion, solidification, solid mechanics, and wave propagation),
areas of high solution error of the numerical approximation. In all these cases, it may be helpful
to subdivide the domain into smaller parts and mesh it locally because the uniform refinement
of the entire domain may be very costly for multidimensional computations. Features lines,
when present, should be explicitly represented as edge sequences. For example, sharp crease
lines in mechanical objects, or lines where some attribute other than normals (e.g., color) varies.
Incorporating an input feature network into the mesh is not possible if the connectivity does
not align to it, even refining the mesh [Livesu et al., 2020] (see Figure 2.24).

Consistency indicators should measure the distance between the mesh and the domain, or
the domain features. A simple example is given by the Hausdorff distance [Taha and Hanbury,
2015] between the mesh and the original geometry.

Structure In a sense, unstructured, semi-structured, block-structured, and structured meshes
can be seen as a continuum of cases, with an increasing degree of regularity. Depending on the

40

2.3. MESH QUALITY

Figure 2.24: Key to feature preservation is the ability to align surface edges to the input network,
carefully positioning mesh singularities (image from [Livesu et al., 2020]).

applications, either a lower or higher degree of regularity is required, and this can be measured
by the number of singular nodes in the mesh. A low number of singular nodes implies a simpler
singular structure, which is more likely to allow for a block-structured mesh. Often, also the
positioning of singular nodes is crucial: straight sequences of edges stemming from them (a.k.a.
separatrices) should connect them in a graph that is as simple as possible, and they should
appear in regions with a strong negative or positive Gaussian curvature (other than where it
is needed to change resolution) [Bommes et al., 2013b]. Other works weaken the concept of
regular node, considering as regular also nodes with valence close to the fixed value [Aghdaii
et al., 2012].

Mesh connectivity is typically assumed to be conforming (i.e., free from T-junctions) and
pure (i.e., all polytopes have the same typology). A T-junction is a spot where two elements
meet along the edge or face of another element, (see Figure 2.25): this leads to a configuration in
which it is not trivial to enforce continuity across the edge or face. The two above requirements
can sometimes be loosened, but such topological freedom is not unlimited and may be bounded
by the specific application [Pietroni et al., 2022]. Quality indicators, in those cases, are provided
by the number of T-junctions, or the number of non-standard elements (for instance, the number
of non-quad cells in a quad-dominant mesh).

Figure 2.25: Example of non-conforming planar mesh, with T-junctions colored in blue and
green.

41

CHAPTER 2. MESHES

Distribution Since nodes and elements represent the only contact points between the real
world and the approximated copy that we are trying to reproduce through the mesh, the way
they are distributed in the domain affects the quality of the final result. If we need a uniform
distribution of the information over the domain, the element size (area, volumes, or sum of
the faces areas) has to be similar across the mesh. If the mesh is pure, we can measure the
balance (or concentration, or density) through simpler quantities like edge lengths or diameters.
In particular, in structured meshes, we can measure the change of cell size in a certain direction
or along a curve [Liseikin, 2017].

However, it is often beneficial to let the tessellation density vary over the mesh, to adapt to
local shape complexity, or to the solution of the numerical problem. In this case, the elements
size cannot be required to be uniform across the mesh, but we can at least ask for a smooth
transition by imposing a gradual size change (neighboring elements cannot have too different
sizes) [Alliez et al., 2005]. Moreover, in order to allow for spatial transition through different
levels of resolution, extra singular nodes must be included, unless T-junctions are introduced.
Therefore, in many contexts, it is desirable to achieve the right trade-off between adaptivity and
connectivity. Moreover, if the physical problem itself is anisotropic, it requires mesh generation
to be guided by a prescribed anisotropy field. For instance, in computational fluid dynamics,
it is desired to squeeze the elements in the direction normal to the wing of a plane since the
most significant physics occurs in the limit layer. If the exact solution is of the type shown in
Figure 2.26(a), a discretization like Figure 2.26(c) is likely to perform much better than the
one in Figure 2.26(b), despite elements in the latter are more similar to regular polygons.

Figure 2.26: Example of anisotropic problem. (a) contour plot of the exact solution, (b,c) two
possible discretizations [Huang and Wang, 2020].

2.3.3 Mesh Quality Improvement

The local and global quality indicators presented in Section 2.3.1 and Section 2.3.2 are commonly
used to investigate and improve the mesh quality. Some of them can be integrated into the

42

2.3. MESH QUALITY

mesh generation process (e.g., in advancing front methods), so that at the end of the pipeline,
the output mesh already reaches a certain quality level. This is particularly true for 2D-meshes,
and for indicators concerning properties like structure or connectivity, which may be essential
requirements in some applications. The majority of volumetric meshing algorithms instead,
employ a two-step process [Pietroni et al., 2022]. The first step generates an initial mesh, which is
expected to be dominated by well-shaped elements, but often also contains some poorly-shaped
or even degenerate elements. This step is typically followed by an optimization step, whose goal
is to maximize the quality of the mesh elements and to remove any degeneracy while keeping
the meshed domain boundary intact. As a mesh is defined by the nodal connections of the
elements and the coordinates of the nodes, optimization methods can be broadly grouped into
two categories [Lo, 2014] - (i) geometrical methods: those that involve a change of element
shapes by means of shifting of nodal points; and (ii) topological methods: those that involve
a change in the element connections to the nodal points. However, there is no reason why
topological and geometrical operations cannot be put together to form even more effective and
well-balanced optimization schemes.

Optimization by Geometric Operations Improvement methods that keep the mesh
connectivity fixed while changing only the locations of the mesh vertices are commonly referred
to as geometric optimization, smoothing, or untangling methods [Owen, 1998, Shepherd and
Johnson, 2008]. The shape quality of a mesh can be improved by shifting the interior points within
the domain boundary, and usually, boundary points have to be kept intact for compatibility
with other meshes or for imposing the required boundary conditions for the finite element
analysis.

Before the development of valid shape measures, an early attempt to improve a triangular
mesh was to shift each interior node in turn to the centroid of the polygon formed by all the
nodes connected to it through an edge of the mesh, and this iteration process is known as
Laplacian smoothing [Herrmann, 1976]. This kind of heuristic smoothing technique has been
successfully employed for tri and quad-meshes [Erten et al., 2009, Xu and Newman, 2006].
Laplacian smoothing is computationally inexpensive and well suited for meshes combining
arbitrary element types. However, due to its mesh quality unaware node averaging scheme
Laplacian smoothing can lead to mesh quality deterioration and the generation of inverted
elements.

Alternatively, based on a shape measure, a cost function can be defined for a mesh, which
can be maximized as a local/global optimization problem to improve the overall quality of
the mesh [Freitag and Plassmann, 2000, Sastry and Shontz, 2009, Knupp, 2012]. Since this
results in a higher computational effort, a combined approach of Laplacian smoothing and
local optimization was proposed in [Freitag, 1997], where optimization is only accomplished in
problematic regions of the mesh. Theoretical developments on the local optimization problem
based on shape measures for triangular and tetrahedral elements were presented by Aiffa and

43

CHAPTER 2. MESHES

Flaherty [Aiffa and Flaherty, 2003]. Laplace smoothing and global optimization have been the
dominating techniques in mesh optimization based on node shifting in the early days of mesh
generation.

A breakthrough was made when Vartziotis et al. [Vartziotis et al., 2008] proposed the
Geometric Element Transformation Method (GETMe), which is a purely geometric process
to move the nodes of an element to improve its quality. The driving force behind GETMe
smoothing is regularizing element transformations which, if applied iteratively, lead to more
regular elements (i.e., with a higher mean ratio), see Figure 2.27. Such transformations for
polygons with an arbitrary number of nodes have been proposed and analyzed in [Vartziotis
and Wipper, 2010], and an extension to hexahedra and other general polyhedral elements is
detailed in [Vartziotis and Wipper, 2012].

Figure 2.27: Initial and smoothed aorta meshes with elements colored according to their mean
ratio [Vartziotis and Wipper, 2012]: (a) initial mesh with prismatic boundary layer; (b) Laplace
smoothing; (c) global optimization; (d) GETMe optimization.

Optimization by Topological Operations Local topological operations such as edge/face
swaps, elimination of nodes, edges/faces, and elements, are effective means to improve the
quality of a mesh. These operations can be carried out based on an appropriate shape measure,
and/or according to some topological considerations to create as much as possible a balanced
structure in the connection among nodes, edges, faces, and elements. The related literature
is wide, and we only report here some examples to give a hint on how shape measures can
be combined to mesh optimization (or also re-meshing). We address the interested reader to
[Alliez et al., 2008] for a more detailed treatment of the subject.

General optimization algorithms, for instance, automatically eliminate valence-three nodes
(nodes with three incident edges) from a triangle mesh (Figure 2.28(a)). This is commonly
considered a safe operation, as it reduces the number of elements and edges and the quality of
the newly created triangle is typically higher than those of the old ones. Similarly, short edges
smaller than a certain threshold are eliminated by shrinking the two related triangles to line
segments, and small triangles are eliminated by shrinking them to a point (Figure 2.29(b,c)).
Analogous automatic operations can be defined for quad, tet, and hex-meshes [Misztal et al.,
2009], but only if there is little or no ambiguity on how to adjust the connectivity after an
element is removed or modified.

44

2.3. MESH QUALITY

Figure 2.28: Elimination of a valence-three node (a), a short edge (b), and a small triangle (c)
from a triangle mesh.

The situation changes if we want to remove a valence-four node from a triangle mesh, as
in Figure 2.29(a). In this case, we obtain a quadrilateral element that can be triangulated in
two different ways (along the two diagonals), and we need a criterion to establish which one to
choose. Quality metrics are employed in topological optimizations every time in which multiple
configurations are acceptable, to indicate the best one. Other examples are the elimination of a
valence-three node in a quad-mesh and the diagonal swap between couples of adjacent triangles
or quads, see Figure 2.29(b,c).

Figure 2.29: Elimination of a valence-four node (a) from a tri-mesh, a short edge (b) from a
quad-mesh, and a small triangle (c) from a tri-mesh.

The preferred configurations for local transformations are those whose mean geometric
shape qualities are maximized. Although the resulting mesh would certainly be different, the
optimization by local transformations can be done with respect to any valid quality indicator.
In three dimensions, apart from tetrahedral meshes, optimization of non-simplicial meshes
by means of topological operations has not yet been formulated. Pure hexahedral meshes
are very often generated by mapping and sweeping methods, which are structures meshed
by the nature of their generation, and hence, there is no need to rebuild their topology. A
solution for the element connections, in general, is difficult enough to leave any room for
topological optimization by a change in element types for which other possible solutions would
have already been evaluated right at the spot when the problem first arises. In other words,
topological optimization of polyhedral meshes might be possible; however, it is unlikely to be
cost-effective as local element swaps can only be applied to very limited locations if any, even
after time-consuming rigorous analysis [Lo, 2014].

45

C
h

a
p

t
e

r 3
A Mesh Quality Indicator for the Virtual Element Method

In this chapter, we define a new mesh quality indicator specifically designed for the
Virtual Element Method (VEM). In Section 3.1 we formulate the VEM for two and
three-dimensional meshes. In Section 3.2 we report the main geometrical assumptions

typically made on polygonal and polyhedral meshes in order to ensure optimal convergence rates
of the VEM. We report in Section 3.3 a list of reference papers that prove some convergence
results for the VEM under different sets of the above geometrical assumptions. Based on these
assumptions, in Section 3.4 we present a new mesh quality indicator for polytopal meshes,
specifically designed to measure the geometrical quality of a tessellation from the particular
point of view of a VEM solver. This chapter is the summary of a collection of articles published
in the last years [Sorgente et al., 2021b, Sorgente et al., 2021a, Sorgente et al., 2022b, Sorgente
et al., 2022a, Sorgente et al., 2022c].

3.1 The Virtual Element Method

The Virtual Element Method [Beirão da Veiga et al., 2013] is a Galerkin projection method
such as the Finite Element Method. The major difference between VEM and FEM is that
VEM does not require the explicit evaluation of the basis functions and their gradients, which
are integrated into the variational formulation. In the VEM, the basis functions are formally
defined as the solutions to suitable partial differential equation problems formulated in every
mesh element, and they are dubbed as virtual since they are never explicitly evaluated. The
resulting schemes can be proved to be consistent with polynomials of a given degree, and this
property determines the accuracy of the discretization, while the stability of the method, which
implies its well-posedness, is ensured by introducing in the formulation a suitable stabilization
term.

47

CHAPTER 3. A MESH QUALITY INDICATOR FOR THE VIRTUAL ELEMENT
METHOD

This computational approach is extremely powerful and offers indeed several potential
advantages with respect to the FEM. In fact, we can easily build approximation spaces that
work on very general meshes, including meshes whose elements are generic-shaped polygons in 2D
and polyhedra in 3D. An incomplete list of significant applications on general meshes includes, for
example, the works of Refs. [Antonietti et al., 2018, Brezzi and Marini, 2013, Beirão da Veiga and
Manzini, 2014, Beirão da Veiga and Manzini, 2015, Beirão da Veiga et al., 2019b, Beirão da Veiga
et al., 2019a, Beirão da Veiga et al., 2021, Benedetto et al., 2014, Berrone et al., 2018, Benvenuti
et al., 2019, Cangiani et al., 2016, Cangiani et al., 2017a, Cangiani et al., 2017b, Certik et al.,
2018, Certik et al., 2019, Gardini et al., 2019, Mora et al., 2015, Natarajan et al., 2015, Paulino
and Gain, 2015, Perugia et al., 2016, Wriggers et al., 2016]. A detailed description of the state
of the art can also be found in the very recent collection of thematic articles [Antonietti et al.,
2021a].

We define the virtual element method for two and three-dimensional meshes for the elliptic
model problem with Dirichlet boundary conditions. There is no abuse of notation in adopting
the same notation for the 2D and the 3D case, as the two cases are totally disjoint.

3.1.1 Notation

We use the standard definition and notation of Sobolev spaces, norms, and seminorms, cf. [Adams
and Fournier, 2003]. Let k be a non-negative integer number. The Sobolev space Hk(ω) consists
of all square integrable functions with all square integrable weak derivatives up to order k that
are defined on the open, bounded, connected subset ω of Rd, d = 1, 2, 3. As usual, if k = 0, we
prefer the notation L2(ω). The norm and seminorm in Hk(ω) are denoted by || · ||k,ω and | · |k,ω,
while for the inner product in L2(ω) we prefer the integral notation. We denote the space of
polynomials of degree less than or equal to k ≥ 0 on ω by Pk(ω) and conventionally assume
that P−1(ω) = {0}.

Mesh Generalities The virtual element method is formulated on a mesh family T =
{
Ωh

}
h
,

where each mesh Ωh is a partition of the computational domain Ω into non-overlapping polygonal
(polyhedral) elements E, and it is labeled by the mesh size parameter h, defined below.

• In two dimensions, a polygonal element E is a compact subset of R2 with boundary ∂E,
area |E|, barycenter xE = (xE , yE)T , and diameter hE = supx,y∈E |x− y|. A mesh edge
e is a straight one-dimensional subset of R2 with length he, mid-point xe = (xe, ye), and
a local coordinate system s defined on it. A mesh vertex v has a two-dimensional position
vector xv.

• In three dimensions, a polyhedral element E is a compact subset of R3 with boundary ∂E,
volume |E|, barycenter xE = (xE , yE , zE)T , and diameter hE = supx,y∈E |x− y|. A mesh
face f is a planar, two-dimensional subset of R3 with area |f|, barycenter xf = (xf, yf, zf)T ,

48

3.1. THE VIRTUAL ELEMENT METHOD

diameter hf = supx,y∈f |x− y|, and a local coordinate system (ξ, η) defined on it. A mesh
edge e is a straight one-dimensional subset ofR3 with length he, mid-point xe = (xe, ye, ze),
and a local coordinate system s defined on it. A mesh vertex v has a three-dimensional
position vector xv.

We denote the set of mesh faces (only in three dimensions) by Fh, the set of mesh edges by Eh,
and the set of mesh vertices by Vh. The set of the mesh elements Ωh form a finite cover of Ω such
that Ω = ∪E∈Ωh

E, and the mesh size labeling each mesh Ωh is defined by h = maxE∈Ωh
hE . We

assume that the mesh sizes of the mesh family T are in a countable subset H of the segment
(0, h0) for some h0 <∞, and having 0 as its unique accumulation point.

Monomial Basis On every mesh Ωh, we denote the space of polyomials of degree k defined
on E, f, and e by Pk(E), Pk(f) and Pk(e), respectively, and the space of piecewise discontinuous
polynomials of degree k on the whole mesh Ωh by Pk(Ωh). Accordingly, if q ∈ Pk(Ωh) then it
holds that q|E ∈ Pk(E) for all E ∈ Ωh.

These polynomial spaces are expressed through an appropriate polynomial basis. In the 2D
implementation, we consider the orthogonal basis on every mesh edge through the univariate
Legendre polynomials, and inside every mesh cell provided by the Gram-Schmidt algorithm
applied to the standard monomial basis. In the 3D implementation, we consider the following
basis of Pk(E) in each element E:

m3D
0 (x, y, z) = 1, m3D

1 (x, y, z) = x− xE
hE

, m3D
2 (x, y, z) = y − yE

hE
,

m3D
3 (x, y, z) = z − zE

hE
, m3D

4 (x, y, z) =
(
x− xE
hE

)2
, . . .

Similarly, we consider the following basis of Pk(f) on each face f with center xf = (ξf, ηf)T , using
the local coordinate system (ξ, η):

m2D
0 (ξ, η) = 1, m2D

1 (ξ, η) = ξ − ξf
hf

, m2D
2 (ξ, η) = η − ηf

hf
, m2D

3 (ξ, η) =
(
ξ − ξf
hf

)2
, . . .

and the following basis of Pk(e) on every edge e with center xe = se, using the local coordinate
system s ∈ [0, he]:

m1D
0 (s) = 1, m1D

1 (s) = s− se
he

, m1D
2 (s) =

(
s− se
he

)2
, . . .

Note that these bases are orthogonal only for k = 1, and for k > 1 they can be orthogonalized
through a Gram-Schmidt procedure. In the one-dimensional case, the orthogonalization provides
the Legendre polynomials, up to a scaling factor [Funaro, 1997, Appendix A].

49

CHAPTER 3. A MESH QUALITY INDICATOR FOR THE VIRTUAL ELEMENT
METHOD

The Projection Operators The definition of the virtual element space requires two particu-
lar operators, that are used to approximate the virtual element functions in terms of polynomials.
As the virtual element space has not been presented yet, we generically define the operators
over the spaces H1(E) and L2(E). We will show in Section 3.1.3 how the virtual element space
is a subset of H1(Ω) and L2(Ω), and how we can therefore use and compute these operators.

Let Ωh be a two or three-dimensional mesh, and E ∈ Ωh a polytopal element. For any v ∈
H1(E), the elliptic projection operator of order k over E is a function Π∇,Ek : H1(E)→ Pk(E)
defined by: ∫

E
∇Π∇,Ek v · ∇q dV =

∫
E
∇v · ∇q dV ∀q ∈ Pk(E)(3.1) ∫

∂E

(
Π∇,Ek v − v

)
dS = 0.(3.2)

Equation (3.2) allows us to remove the kernel of the gradient operator from the definition of
Π∇,Ek , so that the k-degree polynomial Π∇,Ek v is uniquely defined for every v ∈ H1(E). Moreover,
projector Π∇,Ek is a polynomial-preserving operator, i.e., Π∇,Ek q = q for every q ∈ Pk(E). We
can also define a global projection operator Π∇k : H1(Ω) → Pk(Ωh), which is such that
(Π∇k v)|E = Π∇,Ek (v|E) ∀E ∈ Ωh.

The orthogonal projection operator of order k over E is the function Π0,E
k : L2(E)→ Pk(E),

solution of the variational problem:∫
E

Π0,E
k v q dV =

∫
E
v q dV ∀q ∈ Pk(E).(3.3)

As we have done for the elliptic operator, we can define a global projection operator Π0
k :

L2(Ω) → Pk(Ωh) onto the space of discontinuous polynomials of degree at most k built on
mesh Ωh. This operator is given by taking the elemental L2-orthogonal projection Π0,E

k v in
every mesh element E, so that

(
Π0
kv
)
|E = Π0,E

k (v|E).

3.1.2 The Model Problem

Let Ω ⊂ R2 (R3) be an open bounded domain with Lipschitz boundary Γ. For exposition’s
sake, we assume that Ω is a polygonal (polyhedral) domain and its boundary Γ is given by the
union of a subset of the edges in Eh (faces in Fh). We consider the diffusion problem

−∆u = f in Ω,

u = f on Γ,

where f ∈ L2(Ω) is the load term and g ∈ H 1
2 (Γ) the Dirichlet boundary data. The variational

form of this problem reads as:

Find u ∈ Vg such that a(u, v) = F (v) ∀v ∈ V0,(3.4)

50

3.1. THE VIRTUAL ELEMENT METHOD

where the bilinear form a(·, ·) : H1(Ω)×H1(Ω)→ R is given by

a(u, v) =
∫

Ω
∇u · ∇v dx,

and the right-hand side linear functional F : L2(Ω)→ R is given by

F (v) =
∫

Ω
fv dx,

where Vg = {v ∈ H1(Ω) : v|Γ = g} and V0 = {v ∈ H1(Ω) : v|Γ = 0}. The well-posedness of
this problem follows from the coercivity and continuity of the bilinear form on the left-hand
side of (3.4) and the boundedness on the linear functional of the right-hand side of (3.4). This
can be proved by an application of the Lax-Milgram theorem, see [Scott and Brenner, 2008,
Theorem 2.7.7].

The Virtual Element Approximation To ease the presentation, we consider the case
of homogeneous Dirichlet boundary conditions, i.e., g = 0 in (3.4), the extension to the
non-homogeneous case being deemed as straightforward. Such a case is also considered in
the numerical experiments carried out in this work. The virtual element approximation of
equation (3.4) reads as:

Find uh ∈ V h
k such that ah(uh, vh) = Fh(vh) vh ∈ V h

k ,(3.5)

where

• V h
k is the virtual element space, containing the virtual element functions vh that approxi-

mate the functions in H1
0 (Ω);

• the bilinear form ah : V h
k × V h

k → R is the virtual element approximation of the bilinear
form a(·, ·);

• the linear functional Fh : V h
k → R is the virtual element approximation of the linear

functional F (·) using fh, which is an element of the dual space (V h
k)∗.

We review the construction of these mathematical objects in the next sections.

3.1.3 The Virtual Element Space

There exist various ways of defining the virtual element space V h
k . In this work, we use the

conforming space defined through the enhancement strategy, following References [Ahmad
et al., 2013, Beirão da Veiga et al., 2013].

51

CHAPTER 3. A MESH QUALITY INDICATOR FOR THE VIRTUAL ELEMENT
METHOD

Two-Dimensional Virtual Element Space Let E ∈ Ωh be a generic element of a two-
dimensional mesh. The conforming virtual element space V h

k of order k built on Ωh is obtained
by gluing together the elemental approximation spaces denoted by V h

k (E), so that

V h
k :=

{
vh ∈ H1

0 (Ω) : vh|E ∈ V h
k (E) ∀E ∈ Ωh

}
.(3.6)

The local virtual element space V h
k (E) is defined in accordance with the enhancement strategy

introduced in [Ahmad et al., 2013]:

V h
k (E) =

{
vh ∈ H1(E) : vh|∂E ∈ C0(∂E), vh|e ∈ Pk(e) ∀e ∈ ∂E,

∆vh ∈ Pk(E), and∫
E

(vh −Π∇,Ek vh) q dV = 0 ∀q ∈ Pk(E)\Pk−2(E)
}
,

(3.7)

where the elliptic projection operator Π∇,Ek defined in (3.2) is here applied to V h
k (E) ⊂ H1

0 (E),
and Pk(E)\Pk−2(E) is the space of polynomials of degree equal to k − 1 and k. We recall that
Pk(E) and Pk(e) are the linear spaces Pk respectively defined over an element E or an edge e
according to our notation. By definition, the space V h

k (E) contains Pk(E) and the global space
V h
k is a conforming subspace of H1

0 (Ω).

The degrees of freedom (DOFs) of a virtual element function vh ∈ V h
k (E) are given by the

following set of values [Beirão da Veiga et al., 2013]:

(D1) for k ≥ 1, the values of vh at the vertices of E;

(D2) for k ≥ 2, the values of vh at the k − 1 internal points of the (k + 1)-point Gauss-Lobatto
quadrature rule on every edge e ∈ ∂E;

(D3) for k ≥ 2, the cell moments of vh of order up to k − 2 on element E:

1
|E|

∫
E
vh q dV ∀q in a basis of Pk−2(E).

These set of values are unisolvent in V h
k (E), cf. [Beirão da Veiga et al., 2013]; hence, every

virtual element function is uniquely identified by them. The degrees of freedom of a virtual
element function in the global space V h

k are given by collecting the elemental degrees of freedom
(D1)-(D3). Their unisolvence in V h

k is an immediate consequence of their unisolvence in every
elemental space V h

k (E).

Every projection Π∇,Ek vh of a virtual element function vh ∈ V h
k (E) is computable from the

degrees of freedom of vh associated with element E. From the degrees of freedom of a virtual
element function vh ∈ V h

k (E) we can also compute the orthogonal projections Π0,E
k vh ∈ Pk(E)

defined in (3.3), cf. [Ahmad et al., 2013].

52

3.1. THE VIRTUAL ELEMENT METHOD

Three-Dimensional Virtual Element Space Exactly as for the two-dimensional case, the
global virtual element space V h

k for Ω ⊂ R3 is defined by “gluing” all the elemental virtual
element spaces in a conforming way

V h
k :=

{
vh ∈ H1

0 (Ω) : vh|E ∈ V h
k (E) ∀E ∈ Ωh

}
.(3.8)

The difference, however, is that the three-dimensional conforming elemental spaces V h
k (E) are

built recursively on top of the virtual element spaces defined on the polyhedral faces.

Under the assumptions presented in Section 3.1.1, each polyhedral face f is a two-dimensional
planar polygon. The virtual element space V h

k (f) on f is defined through an intermediate
“extended” space Ṽ h

k (f):

Ṽ h
k (f) :=

{
vh ∈ H1(f) ∩ C0(f) : vh|e ∈ Pk(e) ∀e ∈ ∂f, ∆vh ∈ Pk(f)

}
.(3.9)

The degrees of freedom of the functions in Ṽ h
k (f) are obtained by replacing the two-dimensional

element E in (D1)-(D3) with a two-dimensional face f of a three-dimensional element, and
they are unisolvent. The elliptic (and the orthogonal) projection operator defined in (3.2) (and
(3.3)) can be restricted over Ṽ h

k (f) exactly as we did for the two-dimensional elements, and it
can be computed from the degrees of freedom of the functions vh ∈ Ṽ h

k (f). We can now restrict
the space Ṽ h

k (f), imposing the condition regarding Π∇,fk and get the virtual element space over
a face:

V h
k (f) :=

{
vh ∈ Ṽ h

k (f) :
∫

f
vhq =

∫
f

(
Π∇,fk vh

)
q ∀q ∈ Pk(f)\Pk−2(f)

}
.(3.10)

By definition, the k−degree polynomials over f are a subspace of V h
k (f); formally, we can write

that Pk(f) ⊆ V h
k (f) ⊆ Ṽ h

k (f). The projection Π∇,fk vh is computable from the degrees of freedom
of vh associated with f, cf. [Beirão da Veiga et al., 2013, Beirão da Veiga et al., 2014].

Once we have defined the virtual element spaces on the faces, we can build the ones for the
elements. Let E denote a generic three-dimensional element with boundary ∂E and f ∈ ∂E a
generic polygonal face of E. We introduce the elemental boundary space

Bh(∂E) :=
{
vh ∈ C0(∂E) : vh|f ∈ V h

k (f) ∀f ∈ ∂E
}
.(3.11)

The functions in Bh(∂E) are continuous polynomials across the face edges, and their restriction
to a given face f belong to the virtual element space V h

k (f) defined in (3.10). We use (3.11) to
introduce a preliminary “extended” space Ṽ h

k (E):

Ṽ h
k (E) :=

{
vh ∈ H1(E) : vh|∂E ∈ Bh(∂E), ∆vh ∈ Pk(E)

}
.(3.12)

The degrees of freedom of the functions in Ṽ h
k (E) are naturally derived from (D1)-(D3),

opportunely replacing edges with faces, and a further set of values over the faces is required:

53

CHAPTER 3. A MESH QUALITY INDICATOR FOR THE VIRTUAL ELEMENT
METHOD

(D1) for k ≥ 1, the values of vh at the vertices of E;

(D2) for k ≥ 2, the values of vh at the k − 1 internal points of the (k + 1)-point Gauss-Lobatto
quadrature rule on every edge e ∈ ∂E;

(D3) for k ≥ 2, the face moments of vh of order up to k − 2 on face f:

1
|f|

∫
f
vh q dS ∀q in a basis of Pk−2(f).

(D4) for k ≥ 2, the cell moments of vh of order up to k − 2 on element E:

1
|E|

∫
E
vh q dV ∀q in a basis of Pk−2(E).

They are unisolvent in Ṽ h
k (E), and allow the computation of elliptic and orthogonal projections

Π∇,Ek vh and Π0,E
k vh of the functions in this space. Then, as done for (3.10), we define the

elemental virtual element space on E:

V h
k (E) :=

{
vh ∈ Ṽ h

k (E) :
∫
E
vhq =

∫
E

(
Π∇,Ek vh

)
q ∀q ∈ Pk(E)\Pk−2(E)

}
.(3.13)

It holds that Pk(E) ⊆ V h
k (f) ⊆ Ṽ h

k (E). The projection Π∇,Ek vh of a virtual element function
vh ∈ Ṽ h

k (E) only depends on its degrees of freedom, which uniquely characterize any vh ∈ V h
k (E).

The unisolvence of the degrees of freedom in V h
k (E) is proved by using the same arguments as

in [Ahmad et al., 2013], and the unisolvence in the global space V h
k is a consequence of their

unisolvence in each elemental space.

Approximation Properties in the Virtual Element Space Under suitable regularity
assumptions on the mesh family used, we can prove the following estimates on the projection
and interpolation operators:

1. for every s with 1 ≤ s ≤ k + 1 and for every w ∈ Hs(E) there exists a wπ ∈ Pk(E) such
that

|w − wπ|0,E + hE |w − wπ|1,E ≤ Ch
s
E |w|s,E ;

2. for every s with 2 ≤ s ≤ k+ 1, for every h, for all E ∈ Ωh and for every w ∈ Hs(E) there
exists a wI ∈ V h

k (E) such that

|w − wI |0,E + hE |w − wI |1,E ≤ Ch
s
E |w|s,E .

In these inequalities, C is a real positive constant depending only on the polynomial degree k
and on some mesh regularity constants.

54

3.1. THE VIRTUAL ELEMENT METHOD

3.1.4 The Virtual Element Functionals

Over the virtual element space, through the elliptic and orthogonal projections, we define the
virtual element bilinear form ah(·, ·) : V h

k × V h
k → R, and the forcing term Fh : V h

k → R.

The Bilinear Form Following the “VEM gospel”, we write the discrete bilinear form ah(·, ·)
as the sum of elemental contributions

ah(uh, vh) =
∑
E∈Ωh

aEh (uh, vh),

where every elemental contribution is a bilinear form aEh (·, ·) : V h
k (E)× V h

k (E)→ R designed
to approximate the corresponding elemental bilinear form aE(·, ·) : H1(E)×H1(E)→ R,

aE(v, w) =
∫
E
∇v · ∇w dV, ∀v, w ∈ H1

0 (E).(3.14)

The bilinear form aEh (·, ·) on each element E is given by

aE
h (uh, vh) =

∫
E

∇Π∇,E
k uh · ∇Π∇,E

k vh dV + SE
h

((
I −Π∇,E

k

)
uh,
(
I −Π∇,E

k

)
vh

)
.(3.15)

The bilinear form SEh (·, ·) in the definition of aEh (·, ·) provides the stability term and can be
any computable, symmetric, positive definite bilinear form defined on V h

k (E) for which there
exist two positive constants σ∗ and σ∗ such that

σ∗a
E(vh, vh) ≤ SEh (vh, vh) ≤ σ∗aE(vh, vh) ∀vh ∈ V h

k (E) ∩ ker
(
Π∇,Ek

)
.(3.16)

The inequalities in (3.16) imply that SEh (·, ·) scales like aE(·, ·) with respect to hE , since we
assume that σ∗ and σ∗ are independent on the mesh parameter hE . Also, the stabilization term
in the definition of aEh (·, ·) is zero if at least one of its two entries is a polynomial of degree
(at most) k, since Π∇,Ek is a polynomial preserving operator. The stabilization term and, in
particular, condition (3.16), is designed so that aEh (·, ·) satisfies the two fundamental properties:

• k-consistency: for all vh ∈ V h
k (E) and for all q ∈ Pk(E) it holds that

aEh (vh, q) = aE(vh, q);(3.17)

• stability: there exist two positive constants α∗, α∗, independent of h and E, such that

α∗a
E(vh, vh) ≤ aEh (vh, vh) ≤ α∗aE(vh, vh) ∀vh ∈ V h

k (E).(3.18)

These properties are necessary for the well-posedness of problem (3.5).

Multiple choices exist in the literature for the stabilization term. In our implementation, we
consider the stabilization proposed in [Mascotto, 2018]:

SEh (vh, wh) =
Ndofs∑
i=1

σiDOFi(vh)DOFi(wh),(3.19)

55

CHAPTER 3. A MESH QUALITY INDICATOR FOR THE VIRTUAL ELEMENT
METHOD

where DOFi(vh) is the i-th degree of freedom of the basis function vh, σi = max{AEii , 1} and
AE =

(
AEij

)
is the matrix resulting from the implementation of the first term in the bilinear

form aEh (·, ·). Let φi be the i-th “canonical” basis functions generating the virtual element space,
which is the function in V h

k (E) whose i-th degree of freedom for i = 1, . . . , Ndofs (according to
a suitable renumbering of the degrees of freedom in (D1), (D2), (D3), and (D4) in dimension
three), has value equal to 1 and all other degrees of freedom are zero. These basis functions are
unknown in the virtual element framework, but their projections Π0,E

k−1∇φi (and ∇Π∇,Ek φi) are
computable from their degrees of freedom. With this notation, the i, j-th entry of matrix AE is
given by

AEij := aE
(
Π∇,Ek φi,Π∇,Ek φj

)
.

The stabilization in (3.19) is sometimes called the “D-recipe stabilization” in the virtual
element literature, and contains the so called “dofi-dofi (dd) stabilization” originally proposed
in [Beirão da Veiga et al., 2013] for the 2D case, as the special case with Aii = 1:

SE,dd
h (vh, wh) =

Ndofs∑
i=1

DOFi(vh)DOFi(wh).(3.20)

The formulation (3.19) generalizes (3.20) to the d−dimensional case, because it automatically
considers the proper scaling of SEh (·, ·) proportional to hd−2

E , with d = 2, 3.

The Forcing Term To approximate the right-hand side of (3.5), we split it into the sum
of elemental contributions, and every local linear functional is approximated by using the
orthogonal projection Π0,E

k vh:

Fh(vh) =
∑
E∈Ωh

(
f,Π0,E

k vh
)
E
, where

(
f,Π0,E

k vh
)
E

=
∫
E
f Π0,E

k vh dV.(3.21)

Estimates of such approximation are found in [Ahmad et al., 2013, Section 5.8].

3.2 Geometrical Assumptions for the VEM

Various geometrical (or regularity) assumptions have been proposed in the literature to ensure
the convergence of the VEM and optimal estimates of the approximation error with respect
to different norms. These assumptions guarantee that all elements of all meshes in a given
mesh family in the refinement process are sufficiently regular. In this section, we overview the
geometrical assumptions introduced in the VEM literature to guarantee the convergence of
the method, reporting the work proposed in [Sorgente et al., 2022b, Sorgente et al., 2022a].
We point out that, differently from the mesh quality indicators of Section 2.3, geometrical
assumptions are not meant to provide a quality score of a mesh or an element. Instead, they

56

3.2. GEOMETRICAL ASSUMPTIONS FOR THE VEM

simply delimit the class of meshes for which the VEM is ensured to converge with the optimal
rate.

We start by reviewing the geometrical assumptions that appeared in the VEM literature
since their definition in [Beirão da Veiga et al., 2013]. They are typically first defined for
two-dimensional meshes and then properly extended to the three-dimensional case. Note that
these assumptions are defined for a single mesh Ωh, but the conditions contained in them are
required to hold independently of the mesh size h. As a consequence, when an assumption is
imposed to a mesh family T = {Ωh}h, it has to be verified simultaneously by every Ωh ∈ T .

It is well-known from the FEM literature that the approximation properties of a method
depend on specific assumptions about the geometry of the mesh elements. Classical examples
of geometrical assumptions for a family of triangulations {Ωh}h→0, are the ones introduced in
[Ciarlet, 2002] and [Zlámal, 1968], respectively:

• Shape regularity condition: there exists a real number γ ∈ (0, 1), independent of h, such
that for any triangle E ∈ Ωh we have

rE ≥ γhE ,(3.22)

being hE the longest edge in E and rE its inradius;

• Minimum angle condition: there exists an angle α0 > 0, independent of h, such that for
any triangle E ∈ Ωh we have

αE ≥ α0,(3.23)

being αE the minimal angle of E.

When we turn our focus on polytopal meshes, a preliminary consideration is needed on the
definition of the polytopal elements. It is commonly accepted, even if not always explicitly
specified, that a mesh Ωh has to be made of a finite number of simple polytopes [Beirão da Veiga
et al., 2013], i.e. open simply connected sets whose boundary is a non-intersecting curve (or
surface) made of a finite number of straight line segments (or linear faces). The other regularity
assumptions proposed in the VEM literature to ensure approximation properties have been
deduced in analogy to the similar conditions developed for the FEMs.

3.2.1 Assumption G1

The main assumption, which systematically recurs in every VEM paper, is the so-called star-
shapedness of the mesh elements (Figure 3.1), introduced in Section 2.3.1 among the polytopal
quality indicators.

57

CHAPTER 3. A MESH QUALITY INDICATOR FOR THE VIRTUAL ELEMENT
METHOD

(a) (b)

Figure 3.1: The element in (a) is star-shaped with respect to the disk B but not with respect to
the disk B′, while the element in (b) is not star-shaped with respect to any disk [Scott and
Brenner, 2008]

Definition 3.1 (G12D). There exists a real number ρ ∈ (0, 1), independent of h, such that
every polygon E ∈ Ωh is star-shaped with respect to a disc with radius

rE ≥ ρhE .

We denote rE the radius of the greatest possible inscribed disk in E and star center the
center of such disk, where it exists. We stress the fact that, being both ρ and hE greater than
zero, the radius rE needs to be positive too, in accordance with the definition of star-shapedness.
We conventionally say that rE = 0 if E is not star-shaped. Assumption G12D is nothing but
the polygonal extension of the classical shape regularity condition for triangular meshes. In fact,
any triangular element E is star-shaped with respect to its maximum inscribed disk (the one
with radius rE), and the diameter hE coincides with its longest edge. Moreover, G12D can also
be stated in the following weak form, as specified in [Beirão da Veiga et al., 2013] and more
extensively in [Brenner et al., 2017]:

Definition 3.2 (G1w2D). There exists a real number ρ ∈ (0, 1), independent of h, such
that every polygon E ∈ Ωh can be split into a finite number N of disjoint polygonal subcells
E1, . . . , EN where, for j = 1, . . . , N ,

• element Ej is star-shaped with respect to a disc with radius rEj ≥ ρhEj ;

• elements Ej and Ej+1 share a common edge.

From a practical point of view, assumptions G12D and G1w2D are almost equivalent, and
they are treated equivalently in all papers reviewed in Section 3.3.

Assumption G12D is naturally extended by imposing the star-shapedness both to the
interior of an element and to each of its faces, with the same constant ρ. In the cited works, it
is not explicitly considered a weaker piece-wise version of G13D, but we can easily imagine
defining G1w3D exactly as we did for G1w2D.

58

3.2. GEOMETRICAL ASSUMPTIONS FOR THE VEM

Definition 3.3 (G13D). There exists a real number ρ ∈ (0, 1), independent of h, such that
every polyhedron E ∈ Ωh is star-shaped with respect to a ball with radius

rE ≥ ρhE ,

and every face f ∈ ∂E is star-shaped with respect to a disc with radius

rf ≥ ρhf.

Assumption G12D (and G13D) plays a key role in most of the theoretical results regarding
polytopal methods. It is needed by the Bramble-Hilbert lemma [Scott and Brenner, 2008], an
important result on polynomial approximation that is often used for building approximation
estimates, and also by the following lemma.

Lemma 3.1. If a mesh Ωh satisfies assumption G12D (or G13D), then for all polygons
(polyhedra) E ∈ Ωh there exists a mapping F : B1 → E, with the Jacobian J of F satisfying

||J ||2 . h, | det(J)| . h2 and ||J−1||2 . h−1,

and, for a sufficiently regular u, the following relations hold

||u||0,E ' hE ||u ◦ F ||0,B1 ||u||0,∂E ' h
1/2
E ||u ◦ F ||0,∂B1

|u|1,E ' |u ◦ F |1,B1 |u|1/2,∂E ' |u ◦ F |1/2,∂B1

where all the implicit constants only depend on the constant ρ from G12D (G13D).

The symbols . (and ') denote a bound (or an equality) up to a constant that is uniform
for all E ∈ Ωh. Thanks to the relations in Lemma 3.1, inequalities that we have on the unit
ball B1, such as the Poincaré inequality or the trace inequalities, may be transferred to the
polytope E by a “scaling” argument.

3.2.2 Assumption G2

In the very first VEM paper where the method was introduced [Beirão da Veiga et al., 2013],
assumption G12D was followed by another condition on the minimum point-to-point distance.

Definition 3.4 (G2s2D). There exists a real number ρ ∈ (0, 1), independent of h, such that
for every polygon E ∈ Ωh, the distance di,j between any two vertices vi, vj of E satisfies

di,j ≥ ρhE .

In fact, assumption G2s2D (the s stands for “strong”) was soon replaced in the following
works [Ahmad et al., 2013], [Beirão da Veiga et al., 2017] and [Brenner et al., 2017] by a
weaker condition on the length of the elemental edges. This new version allows, for example,
the existence of four-sided polygons with equal edges but one diagonal much smaller than the
other.

59

CHAPTER 3. A MESH QUALITY INDICATOR FOR THE VIRTUAL ELEMENT
METHOD

Definition 3.5 (G22D). There exists a real number ρ ∈ (0, 1), independent of h, such that for
every polygon E ∈ Ωh, the length he of every edge e ∈ ∂E satisfies

he ≥ ρhE .

The Authors consider a single constant ρ for both assumption G12D and G22D, and refer
to it as the mesh regularity constant or parameter. Under assumption G1w2D and G22D, it
can be proved [Brenner et al., 2017] that the simplicial triangulation of E determined by the
star-centers of E1, . . . , EN satisfies the shape regularity and the minimum angle conditions. The
same holds under assumptions G12D and G22D, as a special case of the previous statement.
Moreover, assumption G22D implies that for 1 ≤ j, k ≤ N it holds hEj/hEk

≤ ρ−|j−k|.

For a volumetric version of G22D, we set a condition hf ≥ ρhE on the element, and
substitute it into the analogous condition on the faces he ≥ ρhf, obtaining a triple inequality.

Definition 3.6 (G23D). There exists a real number ρ ∈ (0, 1), independent of h, such that for
every polyhedron E ∈ Ωh, the length he of every edge e of every face f satisfies

he ≥ ρhf ≥ ρ2hE .

As already mentioned in the very first papers, these assumptions are more restrictive than
necessary, but at the same time, they allow the VEM to work on very general meshes. For
example, Ahmad et al. in [Ahmad et al., 2013] state that:

“Actually, we could get away with even more general assumptions, but then it would
be long and boring to make precise (among many possible crazy decompositions that
nobody will ever use) the ones that are allowed and the ones that are not.”

3.2.3 Assumption G3

In the subsequent papers [Beirão da Veiga et al., 2017] and [Brenner and Sung, 2018], assump-
tion G12D is preserved, but assumption G22D is substituted by the alternative version:

Definition 3.7 (G32D). There exists a positive integer N , independent of h, such that the
number of edges of every polygon E ∈ Ωh is (uniformly) bounded by N .

The Authors show how assumption G22D implies assumption G32D, but assumption G32D

is weaker than assumption G22D, as it allows for edges arbitrarily small with respect to hE .
Both combinations G12D+G22D and G12D+G32D imply that the number of vertices of E
and the minimum angle of the simplicial triangulation of E obtained by connecting all the
vertices of E to its star-center are controlled by the constant ρ.

Assumption G33D extends the bound from the number of edges to the number of edges
and faces of every element.

60

3.2. GEOMETRICAL ASSUMPTIONS FOR THE VEM

Definition 3.8 (G33D). There exists a positive integer N , independent of h, such that the
number of edges and faces of every polyhedron E ∈ Ωh is (uniformly) bounded by N .

Also G33D can be derived from G13D and G23D [Ahmad et al., 2013, Remark 11].

3.2.4 Assumption G4

Another step forward in the refinement of the geometrical assumptions was made by Beirão Da
Veiga and Vacca in [Beirão da Veiga and Vacca, 2020]. Besides assuming G12D, the Authors
imagine to “unwrap” the boundary ∂E of each element E ∈ Ωh onto an interval of the real
line, obtaining a one-dimensional mesh IE . The mesh IE can be subdivided into a number of
disjoint sub-meshes I1

E , . . . , INE , corresponding to the edges of E. Then, the following condition
is assumed.

Definition 3.9 (G42D). There exists a real number δ > 0, independent of h, such that for
every polygon E ∈ Ωh:

• the one-dimensional mesh IE can be subdivided into a finite number N of disjoint sub-
meshes I1

E , . . . , INE ;

• for each sub-mesh IiE, i = 1, . . . , N , it holds that

maxe∈Ii
E
|e|

mine∈Ii
E
|e|
≤ δ.

Each polygon E corresponds to a one-dimensional mesh IE , but a sub-mesh IiE ⊂ IE might
contain more than one edge of E, cf. Figure 3.2. Therefore assumption G42D does not require
a uniform bound on the number of edges in each element and does not exclude the presence of
small edges. Mesh families created by agglomeration, cracking, gluing, etc.. of existing meshes
are admissible according to G42D.

Figure 3.2: Examples of admissible elements according to assumption G42D [Beirão da Veiga
and Vacca, 2020]. Red dots indicate the vertices of the element.

61

CHAPTER 3. A MESH QUALITY INDICATOR FOR THE VIRTUAL ELEMENT
METHOD

A condition similar to G42D is presented in [Bertoluzza et al., 2021] for the non-conforming
VEM formulation. We do not extend G42D to the three-dimensional case because, to the
best of our knowledge, such extension has not yet been considered in the analysis of the
three-dimensional formulation of the VEM. We point out that there is a fundamental difference
between G12D (G13D) on the one hand, and the other assumptions on the other hand. For
a fixed h, G22D, G32D, and G42D (or their respective 3D versions) are always satisfied, as
a suitable ρ, N , or δ always exists for any given element. Such assumptions are therefore all
about h-independent bounds for sequences of meshes. G12D and G13D, by contrast, can be
violated already by an individual non-star-shaped element. This difference will play a role in
the definition of the mesh quality indicator in Section 3.4.

3.3 VEM Convergence Results

In this section, we briefly overview the literature on the main results of the convergence analysis
of the conforming VEM method, both in two and three dimensions, following the approach
proposed in [Sorgente et al., 2021b]. For each article, we explicitly report (if available) the
theoretical results and highlight the geometric assumptions used, reporting the abstract energy
error, the H1 error estimate, and the L2 error. Some of the theoretical results involve a broken
H1-seminorm for functions v ∈ H1(Ωh), defined as follows:

|v|h,1 :=

 ∑
E∈Ωh

|∇v|20,E

1/2

.

For a greater uniformity of the presentation with the rest of the chapter, we have slightly
modified some notations and introduced minimal variations to some statements of the theorems.

For the sake of reference, we report below the main convergence results in the L2-norm and
the energy norm for the numerical approximation using the 2D virtual element space (3.6) or
the 3D virtual element space (3.8). This result follows from the general convergence theorem
that is proved in [Ahmad et al., 2013, Theorem 1]. Let u ∈ Hk+1(Ω) be the solution to the
variational problem (3.4) on a convex domain Ω with f ∈ Hk(Ω). Let uh ∈ V h

k be the solution
of the virtual element method (3.5) on every mesh of a mesh family T = {Ωh} satisfying a
suitable set of mesh geometrical assumptions. Then, a strictly positive constant C exists such
that

• the H1-error estimate holds:

||u− uh||1,Ω ≤ Chk (||u||k+1,Ω + |f |k,Ω) ;(3.24)

• the L2-error estimate holds:

||u− uh||0,Ω ≤ Chk+1 (||u||k+1,Ω + |f |k,Ω) .(3.25)

62

3.3. VEM CONVERGENCE RESULTS

Constant C may depend on the stability constants α∗ and α∗ from (3.18), on the size of the
computational domain |Ωh|, and on the approximation degree k. More importantly, C depends
on the mesh regularity constants ρ,N , and δ of the geometrical assumptions introduced in
Section 3.2. Constant C is normally independent of h, but, as for the constant ρ in assumption
G22D, it may depend on the ratio between the longest and shortest edge lengths.

Finally, we note that the approximate solution uh is not explicitly known inside the elements.
Consequently, in the numerical experiments of Section 4.2, we approximate the error in the
L2-norm as follows:

||u− uh||0,Ω ≈ ||u−Π0
kuh||0,Ω,(3.26)

where Π0
kuh is the global L2-orthogonal projection of the virtual element approximation uh to

u. In its turn, we approximate the error in the energy norm as follows:

|u− uh|1,Ω ≈ ||∇u−Π0
k−1∇uh||0,Ω,(3.27)

where Π0
k−1 is extended component-wisely to the vector fields.

3.3.1 “Basic Principles of Virtual Elements Methods”, Beirão Da Veiga et
al., 2013

This is the paper in which the VEM for two-dimensional domains was introduced and defined
[Beirão da Veiga et al., 2013]. In the original formulation, the paper introduced the so-called
regular conforming virtual element space. For simplicity and with a small abuse of notation, the
regular conforming virtual element spaces are denoted by V h

k and V h
k (E) as in Section 3.1.3,

even if the elemental space is different from (3.7):

V h
k := {vh ∈ H1(Ω) : vh|E ∈ V h

k (E) ∀E ∈ Ωh},

V h
k (E) := {vh ∈ H1(E) : vh|∂E ∈ C0(∂E), vh|e ∈ Pk(e) ∀e ∈ ∂E,

and ∆vh ∈ Pk−2(E)}

(3.28)

and the dofi-dofi formulation SE,dd
h defined in (3.20) is used for the stabilization bilinear form.

The authors introduce the concept of simple polygon and the geometric regularity assumptions
G12D and G2s2D. The following statement on the convergence of the VEM in the energy norm
is general and largely used in the VEM literature.

Theorem 3.2 (abstract energy error). Under the k-consistency and stability assumptions
(3.17) and (3.18) on the bilinear form aEh , the discrete problem (3.5) has a unique solution
uh. Moreover, for every approximation uI ∈ V h

k of u and every approximation uπ of u that is
piecewise in Pk(Ωh), we have

|u− uh|1,Ω ≤ C(|u− uI |1,Ω + |u− uπ|h,1 + Fh),

63

CHAPTER 3. A MESH QUALITY INDICATOR FOR THE VIRTUAL ELEMENT
METHOD

where C is a constant depending only on α∗ and α∗ from (3.18), and, for any h, Fh = |f−fh|V h
k

′

is the smallest constant such that

(f, v)− 〈fh − f, v〉 ≤ Fh|f |1, ∀v ∈ V h
k .

3.3.2 “Equivalent Projectors for Virtual Element Methods”, Ahmad et al.,
2013

The work [Ahmad et al., 2013] deals with both the two-dimensional and three-dimensional
formulations of the VEM. The enhanced conforming virtual element space (3.7), (3.6) is
introduced (in the paper it is named “modified VEM space”), as opposed to (3.28), and
the dofi-dofi stabilization (3.20) is adopted. In the two-dimensional formulation, under the
geometrical assumptions G12D and G22D, the paper re-considers Theorem 3.2 also for the
three-dimensional case, and presents explicit estimates of the errors using the H1 and L2 errors.

Theorem 3.3 (H1 error estimate). Assuming G12D, G22D, let the right-hand side f belong
to Hk−1(Ω), fh be defined by fh := Π0

k−2f for k ≥ 2 and fh := Π0
0f for k = 1, and the exact

solution u belong to Hk+1(Ω). Then, for uh ∈ V h
k defined in (3.7), we have

||u− uh||1,Ω ≤ C|h|k|u|k+1,Ω

with C a positive constant independent of h.

Theorem 3.4 (L2 error estimate). Assuming G12D, G22D and with Ω convex, let the right-
hand side f belong to Hk(Ω), fh be defined by fh := Π0

k−1f for k ≥ 1, and the exact solution u
belong to Hk+1(Ω). Then, for uh ∈ V h

k defined in (3.7), we have

||u− uh||0,Ω + |h| ||u− uh||1,Ω ≤ C|h|k+1|u|k+1,Ω,

with C a positive constant independent of h.

The authors also show how, in the three-dimensional formulation, analogous results hold if
we simply replace G12D and G22D with G13D and G23D.

3.3.3 “Stability Analysis for the Virtual Element Method”, Beirão Da
Veiga et al., 2017

The contribution [Beirão da Veiga et al., 2017] is based on the two-dimensional regular virtual
element space (3.28) defined in [Beirão da Veiga et al., 2013]. The paper provides a new estimate
of the abstract energy error, and an analysis of the H1 error with respect to two different

64

3.3. VEM CONVERGENCE RESULTS

stabilization techniques defined later on. Moreover, new analytical assumptions on the bilinear
form ah(·, ·) are introduced in place of (3.18):

aEh (vh, vh) ≤ C1(E)|||vh|||2E , for all vh ∈ V h
k (E);

|||q|||2E ≤ C2(E)aEh (q, q), for all q ∈ Pk(E),
(3.29)

being ||| · |||E a discrete semi-norm induced by the stability term, and C1(E), C2(E) positive
constants which depend on the shape and possibly on the size of E. The second inequality is
necessary only for the polynomials q ∈ Pk(E), while in the standard analysis of [Beirão da
Veiga et al., 2013] an inequality similar to (3.29) is required for every vh ∈ V h

k (E). Thus, even
when C1(E) and C2(E) can be chosen independent of E, the semi-norm induced on V h

k (E) by
the stabilization term may be stronger than the energy aEh (·, ·)1/2.

Theorem 3.5 (abstract energy error). Under the stability assumptions (3.29), let the continuous
solution u of the problem (3.5) satisfy u|E ∈ VE for all E ∈ Ωh, where VE ⊆ V h

k (E) is a
subspace of sufficiently regular functions. Then, for every uI ∈ V h

k and for every uπ such that
uπ|E ∈ Pk(E), the discrete solution uh satisfies

|u− uh|1,Ω . Cerr(h) (Fh + |||u− uI ||| + |||u− uπ||| + |u− uI |1,Ω + |u− uπ|h,1),

where the constant Cerr(h) is given by

Cerr(h) = max
{

1, C̃(h)C1(h), C̃(h)3/2
√
C∗(h)C1(h)

}
,

and the following quantities are derived from the constants in (3.29):

C̃(h) = max
E∈Ωh

{1, C2(E)}, C1(h) = max
E∈Ωh

{C1(E)},

C∗(h) = 1
2 max
E∈Ωh

{min{1, C2(E)−1}}.

The stability term SEh (·, ·) is considered as the combination of two contributions: the first,
S∂Eh , related to the boundary degrees of freedom; the second, SoEh , related to the internal
degrees of freedom. In the following statements, we restrict the analysis to S∂Eh without losing
generality. In this case, S∂Eh is expressed in the dofi-dofi form S∂E,dd

h defined in (3.20), or in
the trace form proposed in [Wriggers et al., 2016] both in the original “H1−version”:

S∂E,H
1

h (vh, wh) = hE

∫
∂E
∂svh∂swhds,(3.30)

where ∂svh denotes the tangential derivative of vh along ∂E. For completeness, we also report
the “L2−version” of the trace stabilization:

S∂E,L
2

h (vh, wh) =
∑

e∈∂E
h−1

e

∫
e
vhwhds.(3.31)

65

CHAPTER 3. A MESH QUALITY INDICATOR FOR THE VIRTUAL ELEMENT
METHOD

Theorem 3.6 (H1 error estimate with dofi-dofi stabilization). Assuming G12D, G32D, let
u ∈ Hs(Ω), s > 1, be the solution of the problem (3.5) with SEh = S∂E,dd

h . Let uh be the solution
of the discrete problem, then it holds

||u− uh||1,Ω . C(h)hs−1|u|s,Ω 1 < s ≤ k + 1,

with C(h) = maxE∈Ωh
(log(1 + hE/hm(E))), where hm(E) denotes the length of the smallest

edge of E.

The effect of assuming G32D instead of G22D is a deterioration of the convergence rate
proportional to log(h). This convergence loss is practically negligible in most of the experimental
cases.

Corollary 3.7. Assuming G12D and G22D instead, then c(h) . 1 and therefore

||u− uh||1,Ω . hs−1|u|s,Ω 1 < s ≤ k + 1.

Theorem 3.8 (H1 error estimate with trace stabilization). Under assumption G12D, let
u ∈ Hs(Ω), s > 3/2 be the solution of the problem (3.5) with SEh = S∂E,H

1

h . Let uh be the
solution of the discrete problem, then it holds

||u− uh||1,Ω . hs−1|u|s,Ω 3/2 < s ≤ k + 1.

3.3.4 “Some Estimates for Virtual Element Methods”, Brenner et al., 2017

In the paper [Brenner et al., 2017], the VEM in both two and three dimensions is re-formulated
to better suit the convergence analysis when using meshes with small edges and faces. This
topic is then considered in the successive paper [Brenner and Sung, 2018], and will be discussed
in the next section. The enhanced elemental virtual element space is defined in an equivalent
way to (3.13):

V h
k (E) :=

{
vh ∈ H1(E) : vh|∂E ∈ Pk(∂E),

∃ qvh
(= −∆vh) ∈ Pk(E) such that∫

E
∇vh · ∇wh dx =

∫
E
qvh

wh dx ∀wh ∈ H1
0 (E),

and Π0,E
k vh −Π∇,Ek vh ∈ Pk−2(E)

}
.

(3.32)

The Authors consider different types of stabilization, but the convergence results are independent
of the choice of the stabilization term.

Theorem 3.9 (abstract energy error). Assuming G12D, G22D, if f ∈ Hs−1(Ω) for 1 ≤ s ≤ k,
then there exists a positive constant C depending only on k and ρ from G12D such that

|u− uh|1,Ω ≤ C(inf
v∈V h

k

|u− v|1,Ω + inf
w∈Pk(Ωh)

|u− w|h,1 + hs|f |s−1,Ω).

66

3.3. VEM CONVERGENCE RESULTS

Theorem 3.10 (H1 error estimate). Assuming G12D, G22D, if u ∈ Hs+1(Ω) for 1 ≤ s ≤ k,
then there exists positive constants C1, C2 depending only on k and ρ from G12D such that

|u− uh|1,Ω + |u−Π∇k uh|h,1 ≤ C1h
s|u|s+1,Ω.

Theorem 3.11 (L2 error estimate). Assuming G12D, G22D, with Ω convex, if u ∈ Hs+1(Ω)
for 1 ≤ s ≤ k, then there exists a positive constant C depending only on Ω, k and ρ from G12D

such that

||u− uh||0,Ω ≤ Chs+1|u|s+1,Ω.

Afterward, the author state that these results can be extended to three dimensions through
identical arguments, based on assumptions G13D and G23D.

3.3.5 “Virtual Element Methods on Meshes with Small Edges or Faces”,
Brenner and Sung, 2018

In the paper [Brenner and Sung, 2018], error estimates of the VEM are yield for polygonal or
polyhedral meshes possibly equipped with small edges (in 2D) or faces (in 3D). The virtual
element space is formulated as (3.32) (i.e., the enhanced space). The local stabilizing bilinear
form is considered in both the dofi-dofi formulation SE,dd

h (3.20) and in the trace formulation
SE,trh (3.30). The following constants are defined:

H := sup
E∈Ωh

(maxe∈∂E he
mine∈∂E he

)
, αh :=

ln (1 +H) with SE,dd
h

1 with SE,trh

(3.33)

Moreover, a mesh-dependent energy norm || · ||h :=
√
ah(·, ·) and a functional Ξh : V h

k → Pk(Ωh)
are introduced. The function Ξh is defined as:

Ξh =

Π0
1 if k = 1, 2

Π0
k−1 if k ≥ 3.

In two dimensions, the geometrical assumptions considered are G12D and G32D.

Theorem 3.12 (abstract energy error). Assuming G12D, G32D, let u and uh be the solutions
of the continuous and discrete problems (3.4), (3.5). We have:

||u− uh||h . inf
w∈V h

k

||u− w||h + ||u−Π∇k u||h+

√
αh

||u−Π∇k u||h,1 + sup
w∈V h

k

(f, w − Ξhw)
|w|1,Ω

 .

67

CHAPTER 3. A MESH QUALITY INDICATOR FOR THE VIRTUAL ELEMENT
METHOD

Theorem 3.13 (H1 error estimate). Assuming G12D, G32D, if the solution u belongs to
Hs+1(Ω) for some 1 ≤ s ≤ k, we have:

||u− uh||h .
√
αh h

s|u|s+1,Ω, and

|u− uh|1,Ω +√αh
[
|u−Π∇k uh|h,1 + |u−Π0

ku|h,1
]
. αhh

s|u|s+1,Ω.

Theorem 3.14 (L2 error estimate). Assuming G12D, G32D, if the solution u belongs to
Hs+1(Ω) for some 1 ≤ s ≤ k, we have:

||u− uh||0,Ω ≤ C αhh
s+1|u|s+1,Ω.

In three dimensions, the Authors only consider stabilization SE,dd
h , and prove analogous

results under assumption G13D and G33D, replacing the constant αh with its volumetric
extension βh:

βh := ln
(

1 + sup
E∈Ωh

(maxf∈∂E hf
minf∈∂E hf

))
.

3.3.6 “Sharper Error Estimates for Virtual Elements and a
Bubble-Enriched Version”, Beirão Da Veiga and Vacca, 2020

The paper [Beirão da Veiga and Vacca, 2020] focuses on the 2D case, showing that the H1

interpolation error |u − uI |1,E on each element E can be split into two parts: a boundary
and a bulk contribution. The intuition behind this work is that it is possible to decouple the
polynomial order on the boundary and in the bulk of the element. Let ko and k∂ be two positive
integers with ko ≥ k∂ and let k = (ko, k∂). For any E ∈ Ωh, the generalized virtual element
space is defined as follows:

V h
k := {vh ∈ H1

0 (Ω) : vh|E ∈ V h
k (E), ∀E ∈ Ωh},

V h
k (E) := {vh ∈ H1

0 (E) : vh|∂E ∈ C0(∂E), vh|e ∈ Pk∂
(e) ∀e ∈ ∂E,

and ∆vh ∈ Pko−2(E)}.

(3.34)

For ko = k∂ , the space V h
k (E) coincides with the regular virtual element space in (3.28). In

addition, given a function v ∈ H1
0 ∩Hs(Ωh), on each element E ∈ Ωh the interpolant function

Ihv is defined as the solution of an elliptic problem as follows:∆Ihv = Π0,E
ko−2∆v in E

Ihv = vb on ∂E,

where vb is the standard 1D piecewise polynomial interpolation of v|∂E .

68

3.4. MESH QUALITY INDICATOR

Theorem 3.15 (abstract energy error). Under assumption G12D, let u ∈ H1
0 (Ωh) ∩Hs(Ωh)

with s > 1 be the solution of the continuous problem (3.4) and uh ∈ V h
k be the solution of the

discrete problem (3.5). Consider the functions

eh = uh − Ihu, eI = u− Ihu, eπ = u− uπ, eu = uπ − Ihu,

where uπ ∈ Pko(Ωh) is the piecewise polynomial approximation of u defined in Bramble-Hilbert
Lemma. Then it holds that

|u− uh|21,Ω + α ah(eh, eh) . α2 ∑
E∈Ωh

h2
E ||f − fh||20,E + α2|eπ|21,Ωh

+

α|eI |21,Ω + α
∑
E∈Ωh

σE

where α is the coercivity constant from (3.14) and σE := SEh ((I −Π∇,Ek0
)eu, (I −Π∇,Ek0

)eu).

Theorem 3.16 (H1 error estimate with dofi-dofi stabilization). Assuming G12D, G42D, let
u ∈ H1

0 (Ωh) be the solution of the continuous problem (3.4) and uh ∈ V h
k be the solution

of the discrete problem (3.5) obtained with the dofi-dofi stabilization. Assume moreover that
u ∈ H k̄(Ωh) with k̄ = max{ko + 1, k∂ + 2} and f ∈ Hko−1. Then it holds that

|u− uh|21,Ω . α
∑
E∈Ωh

(
(α+NE)1/2hko

E + hk∂
∂E

)2
,

where h∂E denotes the maximum edge length, α is the constant defined in (3.33), and NE is
the number of edges in E.

Theorem 3.17 (H1 error estimate with trace stabilization). Under assumption G12D, let
u ∈ H1

0 (Ωh) be the solution of the continuous problem (3.4) and uh ∈ V h
k be the solution of the

discrete problem (3.5) obtained with the trace stabilization. Assume moreover that u ∈ H k̄(Ωh)
with k̄ = max{ko + 1, k∂ + 2} and f ∈ Hko−1. Then it holds that

|u− uh|21,Ω .
∑
E∈Ωh

(
hko
E + hk∂

∂E

)2
.

3.4 Mesh Quality Indicator

We define our mesh quality indicator, that is, a scalar function capable of providing insights on
the behavior of the VEM over a particular sequence of meshes, before actually computing the
approximated solutions. The quality indicator for two-dimensional meshes has been introduced
in [Sorgente et al., 2022b], and its three-dimensional version in [Sorgente et al., 2022a]. We
start from the geometrical assumptions defined in Section 3.2. The driving idea is that, instead
of imposing an absolute condition that a mesh can only satisfy or violate, we want to measure

69

CHAPTER 3. A MESH QUALITY INDICATOR FOR THE VIRTUAL ELEMENT
METHOD

how much the mesh satisfies that condition. This approach is more accurate, as it captures
small quality differences between meshes, and it does not exclude a priori all the particular
cases of meshes only slightly outside the geometrical assumptions.

From each geometrical assumption for two-dimensional meshes Gi2D, i = 1, . . . , 4, we derive
a scalar function %2D

i : {E ⊂ Ωh} → [0, 1] defined element-wise, which measures how well a
polytope E ∈ Ωh meets the requirements of Gi2D. We set %2D = 0 if E does not respect
Gi2D, and the higher %2D the better E is shaped with respect to Gi2D. Similar scalar functions
are derived from the assumptions Gi3D, i = 1, . . . , 3 for three-dimensional meshes. In this
case, %3D

i : {E ⊂ Ωh} → [0, 1] measures both the quality of the interior of E (through a new
volumetric operator), and the quality of its faces ∂E using the indicators %2D

i .

3.4.1 The Kernel of a Polytope

We preliminarily define the notion of kernel of a polytope, that will be pivotal in the construction
of the quality indicators. Indeed, the concept of kernel is strictly connected to the one of star-
shapedness, already mentioned in Section 3.2.

A polytope P is said to be convex if, given any two points p1 and p2 in P , the line segment
connecting p1 and p2 is entirely contained in P . It can be shown that the intersection of convex
polytopes is a convex polytope [Preparata and Shamos, 1985].

Definition 3.10 (Kernel). The kernel of a polytope E, noted k(E), is the set of points in the
interior of E from which all the points in E are visible. Two points p1 and p2 in E are said to
be visible from each other if the segment (p1, p2) does not intersect the boundary of E.

The first obvious consideration is that the kernel of a polytope is a convex polytope. If P is
convex, its kernel coincides with its interior, because any two points inside a convex polytope are
visible from each other. A polytope may also not have a kernel at all; in this case, we say that its
kernel is empty. Last, as already mentioned in Section 3.2 when introducing assumption G12D,
a polytope E is called star-shaped if there exists a sphere, with a non-zero radius, completely
contained in its kernel. A polytope is star-shaped if and only if its kernel is not empty, therefore
star-shapedness can be thought of as an indicator of the existence of a kernel. Star-shapedness
is weaker than convexity, and it is often used in the literature as many theoretical results in
the theory of polynomial approximation in Sobolev spaces rely on this condition [Scott and
Brenner, 2008, Dupont and Scott, 1980]. A visual example of these concepts is presented in
Figure 3.3.

In the two-dimensional scenario, that is when the shape is a polygon, the standard way
of computing the kernel is by intersecting appropriate half-planes generated from its edges,
following a geometric approach. This problem has been tackled since the 70s, when Shamos and
Hoey [Shamos and Hoey, 1976] presented an algorithm able to perform the kernel computation
in O(e log e) operations, being e the number of edges of a polygon, as the intersection of e

70

3.4. MESH QUALITY INDICATOR

Figure 3.3: A sequence of polyhedra whose kernel is progressively shrinking. The kernel is the
polyhedron delimited by the red edges [Sorgente et al., 2022c].

half-edges. After that, an algorithm able to run in O(n) operations over an n−sided polygon,
has been proposed by Lee and Preparata [Lee and Preparata, 1979], which also proved its
optimality. Famous computational tools and libraries like Boost [Boost, 2021], Geogram [Lévy
and Filbois, 2015], CGAL [Fabri and Pion, 2009], or Libigl [Jacobson and Panozzo, 2017]
currently implement routines to compute intersections between polygons and planes, which can
be used to estimate the kernel.

The first attempts to solve the volumetric version of the problem date back to the 80s
[Preparata and Shamos, 1985]. The natural approach has been to extend the 2D method,
which is well studied and documented, to the higher dimension from a theoretical point of
view. The problem with the 3D case is that, whereas two convex polygons with respectively
n1 and n2 vertices can be intersected in time O(n), being n = n1 + n2, two convex polyhedra
with the same parameters are intersected in time O(n logn), thus the generalization of the
two-dimensional instance would yield an O(n log2 n) algorithm [Preparata and Shamos, 1985].
This is not optimal with respect to the result obtained in the same work, which established a
lower bound for the intersection of convex polyhedra at O(n logn). The geometric approach to
the 3D problem was therefore soon dismissed as unattractive, and alternative ways have been
explored. A new algorithm was formulated [Preparata and Shamos, 1985, Section 7.3.2], based
on the so-called “double duality trick”, which makes use of linear algebra (for solving a linear
system) and homogeneous coordinates. Thanks to this algebraic approach, it is possible to
compute the intersection of n half-spaces in time O(n logn). Recently, Hong and Elber [Hong
and Elber, 2022] formulated the inequality constraints that locate the interior of the kernel
domain as multivariates and extended the algebraic approach to the computation of the kernel
of free-form curves and free-form surfaces.

Algorithms based on the algebraic approach are state-of-the-art for computing 3D kernels,
and they are currently implemented by libraries like CGAL. In [Sorgente et al., 2021a, Sorgente
et al., 2022c] we presented an algorithm for the computation of the kernel of a volumetric model
(and, in particular, of a polyhedron), based on the extension to the 3D case of the geometric
approach commonly adopted in two dimensions. The geometric approach showed up to be
significantly faster than the algebraic one when dealing with models satisfying at least one of
the following conditions:

71

CHAPTER 3. A MESH QUALITY INDICATOR FOR THE VIRTUAL ELEMENT
METHOD

1. the size of the model is small;

2. the model contains a significant number of co-planar faces;

3. the kernel is empty.

The detailed algorithm and experimental results are reported in Appendix B.

3.4.2 The G1-based Indicator

From assumption G12D we derive the indicator %2D
1 , defined as the ratio between the area of

the kernel and the total area of the element:

%2D
1 (E) = |k(E)|

|E|
.

We have %2D
1 (E) = 1 if E is convex, %2D

1 (E) = 0 if E is not star-shaped and %2D
1 (E) ∈ (0, 1) if

E is concave but star-shaped. Therefore, %2D
1 can be interpreted as an estimate of the value

of the constant ρ from G12D on the polygon E. We stress the fact that %2D
1 is constant 0 for

non-star-shaped cells, regardless of how far they are from being star-shaped, as the regularity
constant ρ that we are approximating is zero in all those cases. It could be interesting to also
measure the entity of the eventual non-star-shapedness of an element, but this information
would have no relation with ρ. This function can be found in other works under the name of
kernel ratio [Attene et al., 2021].

From assumption G13D instead, we derive the three-dimensional counterpart %3D
1 of %2D

1 .
The volumetric component is expressed through a kernel ratio that involves the volume of
the kernel, computed with our geometric approach [Sorgente et al., 2022c], and the elemental
volume. We want to have %3D

1 (E) = 1 if E and all its faces are convex, %3D
1 (E) = 0 if E or

one of its faces are not star-shaped, and %3D
1 (E) ∈ (0, 1) if E and all its faces are concave and

star-shaped.

%3D
1 (E) = |k(E)|

|E|
∏

f∈∂E
%2D

1 (f).

The volumetric and the boundary components (the kernel ratio of each face) are multiplied so
that, even if only one of them is zero (if a single face is not star-shaped), the whole product
vanishes.

3.4.3 The G2-based Indicator

The function %2D
2 returns an estimate of the constant ρ introduced in G22D. It is expressed

through the ratio |e| /hE , with the insertion of the quantity
√
|E| in order to avoid pathological

situations. Note that this indicator was formulated differently in [Sorgente et al., 2021b, Sorgente

72

3.4. MESH QUALITY INDICATOR

et al., 2022b], the denominator being max(
√
|E| , hE). In fact, the max operator was useless,

because the diameter of a polygon is always greater or equal to the root of its area.

%2D
2 (E) = min(

√
|E| , mine∈∂E |e|)

hE
.

If E is an equilateral triangle, we have that
√
|E| =

4√3
2 |e| and mine∈∂E |e| = hE = |e|, that

lead to %2D
2 (E) =

4√3
2 ∼ 0.65. Likewise, in the case of a square, we have

√
|E| = mine∈∂E |e| = |e|

and hE =
√

2 |e|, obtaining %2D
2 (E) = 1√

2 ∼ 0.7. Therefore, from the point of view of this
indicator, the quality of a squared element is slightly higher than that of an equilateral triangle.
On the other side, %2D

2 (E)→ 0 if the length of at least one edge of E approaches 0 while the
diameter does not vanishes.

The function %3D
2 is an average of the volumetric constant ρ from G23D, expressed through

the ratio hf/hE , and all the boundary constants represented by the two-dimensional indicators
%2D

2 .

%3D
2 (E) = 1

2

min(3
√
|E|, minf∈∂E hf)

hE
+ 1

{f ∈ ∂E}
∑

f∈∂E
%2D

2 (f)

 .
Again, this formulation is different from the one presented in [Sorgente et al., 2022a], because
we simplified the denominator of the first term by removing the useless max operator.

3.4.4 The G3-based Indicator

Function %2D
3 is a simple counter of the number of edges of the polygon, which penalizes elements

with numerous edges as required by G32D:

%2D
3 (E) = 3

{e ∈ ∂E} .

It returns 1 if E is a triangle, which is therefore the optimal shape for this indicator, and it
tends to 0 as the number of edges increases.

Function %3D
3 measures the number of edges and faces of a polyhedron, penalizing elements

with numerous edges and faces as required by G33D. In analogy to %2D
3 , it returns 1 if E is a

tetrahedron, and it tends to 0 the number of faces and edges increases.

%3D
3 (E) = 1

2

 4
{f ∈ ∂E} + 1

{f ∈ ∂E}
∑

f∈∂E
%2D

3 (f)

 .
3.4.5 The G4-based Indicator

Last, we recall from the definition of G42D in Section 3.2 that the boundary of a polygon E can
be considered as a 1-dimensional mesh IE , which can be subdivided into disjoint sub-meshes

73

CHAPTER 3. A MESH QUALITY INDICATOR FOR THE VIRTUAL ELEMENT
METHOD

I1
E , . . . , INE , each one containing possibly more than one edge of E. In practice, we consider

as a sub-mesh the collection (or sequence) of all edges whose vertices lie on the same line.
An example is shown in Figure 3.4, where the boundary of element E in a polygonal mesh is
represented by the 1-dimensional mesh IE = {I1

E , I2
E , I3

E , I4
E}. The sub-meshes I1

E , I2
E and I3

E

contain, respectively, the left, top and right edge of E, while I4
E contains the sequence of all

the aligned edges in the bottom of E.

Figure 3.4: 1-dimensional mesh IE = {I1
E , I2

E , I3
E , I4

E} relative to element E of a polygonal
mesh [Sorgente et al., 2022b].

The indicator %2D
4 returns the minimum ratio between the smallest and the largest element

in every IE , which is a measure of the quasi-uniformity of IE imposed by G42D:

%2D
4 (E) = min

i

mine∈Ii
E
|e|

maxe∈Ii
E
|e| .

If an element E does not present aligned edges, every sub-mesh IiE contains exactly one edge,
and %2D

4 is constantly equal to 1. At the presence of at least one sequence of aligned edges,
%2D

4 (E) = 1 if all the edges in all the sequences have equal lengths. Last, %2D
4 (E)→ 0 as the

edges lengths in even one single sequence (as we are considering the minimum among all the
sequences) become more and more unbalanced.

We do not consider %3D
4 , since assumption G42D has not been extended to the three-

dimensional scenario.

3.4.6 The Global Indicator

Combining together %2D
1 , %2D

2 , %2D
3 and %2D

4 , we define a global function %2D : {Ωh}h → [0, 1],
which measures the overall quality of a polygonal mesh Ωh. In particular, we combine the
indicators with the formula %2D

1 %2D
2 + %2D

1 %2D
3 + %2D

1 %2D
4 , as it reflects the way in which these

74

3.4. MESH QUALITY INDICATOR

assumptions are typically imposed: G12D and G22D, G12D and G32D or G12D and G42D

(but not, for instance, G22D and G32D simultaneously):

(3.35) %2D(Ωh) =

√√√√ 1
{E ∈ Ωh}

∑
E∈Ωh

%2D
1 (E)%2D

2 (E) + %2D
1 (E)%2D

3 (E) + %2D
1 (E)%2D

4 (E)
3 .

We also tried alternative formulations for %2D, for instance considering only %2D
1 , %2D

3 and
%2D

4 (as, technically, G32D is meant to replace G22D), adding weights to give more importance
to a specific indicator, or multiplying all the indicators instead of summing them. Among
all these possible variants, however, the formulation (3.35) was the one providing the highest
correlation between the quality score of a mesh and the numerical results of the VEM over it.

Following the same philosophy, we can define a global function %3D : {Ωh}h → [0, 1] which
measures the overall quality of a polyhedral mesh Ωh. The formula for combining %3D

1 , %3D
2 and

%3D
3 is derived straightforwardly from (3.35), considering the fact that we do not have a 3D

version of G42D:

(3.36) %3D(Ωh) =

√√√√ 1
{E ∈ Ωh}

∑
E∈Ωh

%3D
1 (E)%3D

2 (E) + %3D
1 (E)%3D

3 (E)
2 .

We have %2D(Ωh)→ 1 if Ωh contains only perfectly-shaped elements like equilateral triangles
or squares, %2D(Ωh) = 0 if and only if Ωh contains only non star-shaped polygons, and
0 < %2D(Ωh) < 1 otherwise. Likewise, we have %3D(Ωh)→ 1 if Ωh is made only of well-shaped
polyhedra (e.g., equilateral tets or cubes), %3D(Ωh) = 0 if and only if Ωh is made only of non
star-shaped polyhedrons (or with non star-shaped faces), and 0 < %3D(Ωh) < 1 otherwise.

We point out that the indicators %2D and %3D only depend on the geometrical properties of
the mesh elements (because the same holds for all the %2D

i and %3D
i), and they are problem-

independent (but %2D
2 and %3D

2 penalize anisotropic configurations). Therefore, they can be
computed before applying the VEM or any other numerical scheme. Given a dataset D, we can
study the behavior of %2D(Ωh) (or %3D(Ωh)) for h→ 0 and determine the quality of the meshes
through the refinement process without having to solve the numerical problem from time to
time.

The construction of %2D and %3D is easily upgradeable to future developments. Whenever
new assumptions on the features of a mesh should come up, one simply needs to introduce a
new function %2D

i or %3D
i that measures the fulfillment of the new assumption and opportunely

insert it into equation (3.35) or (3.36). This could be done, for instance, if a valid extension
of G42D to the three-dimensional case should appear in the literature. Similarly, the global
indicators are easily extendable to other numerical schemes by substituting the assumptions
designed for the VEM with the assumptions on the new scheme, and defining new relative
indicators %2D

i and %3D
i .

75

CHAPTER 3. A MESH QUALITY INDICATOR FOR THE VIRTUAL ELEMENT
METHOD

3.4.7 The Elemental Indicator

In the next sections, we will also make use of the elemental quality indicator, i.e., the indicator
restricted to a single element E ∈ Ωh:

%2D(E) := %2D(Ωh)|E =

√
%2D

1 (E)%2D
2 (E) + %2D

1 (E)%2D
3 (E) + %2D

1 (E)%2D
4 (E)

3 ;

%3D(E) := %3D(Ωh)|E =

√
%3D

1 (E)%3D
2 (E) + %3D

1 (E)%3D
3 (E)

2 .

(3.37)

Note that, in the above definition, %2D(E) is defined for elements in a two-dimensional domain,
while %3D(E) is defined for elements in a three-dimensional domain. The elemental quality
indicators have all the good properties of their global versions, but allow us to investigate the
local quality of the elements of the mesh.

Related Publications

• T. Sorgente, D. Prada, D. Cabiddu, S. Biasotti, G. Patané, M. Pennacchio, S. Bertoluzza,
G. Manzini, and M. Spagnuolo. VEM and the mesh. In SEMA SIMAI Springer Series,
vol. 31(1), pages 1–54, Springer, 2021.

• T. Sorgente, S. Biasotti, G. Manzini, and M. Spagnuolo. The role of mesh quality and
mesh quality indicators in the virtual element method. In Advances in Computational
Mathematics, vol. 48(1) pages 1–34, 2022.

• T. Sorgente, S. Biasotti, G. Manzini, and M. Spagnuolo. Polyhedral mesh quality indicator.
In Computers and Mathematics with Applications, vol. 114, pages 151-160, Pergamon,
2022.

• T. Sorgente, S. Biasotti, and M. Spagnuolo. A geometric approach for computing the
kernel of a polyhedron. In Smart Tools and Apps for Graphics - Eurographics Italian
Chapter Conference, pages 11–19, P. Frosini, D. Giorgi, S. Melzi, E. Rodolà editors, 2021.

• T. Sorgente, S. Biasotti, and M. Spagnuolo. Polyhedron kernel computation using a
geometric approach. In Computers & Graphics, vol. 105, pages 94-104, 2022.

76

C
h

a
p

t
e

r 4
Verification of the Quality Indicator

In this chapter, we test the mesh quality indicators %2D and %3D defined in Section 3.4.
To this goal, in Section 4.1 we define a collection of both two and three-dimensional mesh
“datasets”. Then, in Section 4.2, we evaluate the indicators over the datasets and solve

the elliptic problem (3.4) with the VEM (3.5) defined in Section 3.1 over each of them. We
compare the quality score provided by the indicator for a dataset to the real performance of
the VEM over it, looking for correlations. We, therefore, present the first possible employment
of the indicators as a tool to classify two and three-dimensional meshes according to their
quality. In Section 4.3 we describe a second usage of the indicators, as a driving criterion for
a mesh coarsening algorithm. In the described algorithm, adjacent elements in a mesh are
agglomerated whenever their merging preserves the quality of the mesh, measured by %2D or
%3D. The resulting mesh contains a significantly smaller number of elements, being therefore
computationally cheaper to deal with. Section 4.4 concludes the chapter with ongoing work on
an application of the agglomeration algorithm to the context of Discrete Fracture Networks.

4.1 Generation of the Datasets

The quality indicators are defined for a single mesh, and they can therefore give an indication
of the accuracy of the VEM solution over that mesh. In addition to this, we are interested
in studying the indicator and the VEM over a sequence of meshes, in order to understand if
the indicator is also able to capture the asymptotic behavior of the VEM. We call dataset a
collection D := {Ωn}n=0,...,N of meshes Ωn covering the domain Ω ⊂ Rd, d = 2, 3, such that

• the mesh Ωn+1 has smaller mesh size than Ωn for every n = 0, . . . , N − 1;

77

CHAPTER 4. VERIFICATION OF THE QUALITY INDICATOR

• the meshes Ωn are built with the same technique, so that they contain similar elements
organized in similar configurations.

Note that each mesh Ωn is uniquely identified by its size as Ωh, therefore we can consider a
dataset D as a subset of a mesh family: D = {Ωh}h∈H′ ⊂ T where H′ is a finite subset of H.
The domain Ω of the datasets is the unit square (0, 1)2 in the 2D case and the unit cube (0, 1)3

in the 3D case.
Two and three-dimensional datasets are generated through different processes, and with

different goals. In the 2D case, we aim at generating extremely pathological meshes, in order to
stress the VEM to its limits. Accordingly, we appositely build datasets that do not fulfill any set
of geometrical assumptions required by the VEM convergence analysis found in the literature
(see Section 3.2). In the 3D case instead, we are more interested in generating ordinary meshes.
The theoretical analysis for the three-dimensional formulation of the VEM is less developed
than the 2D one. In fact, results on the VEM convergence over volumetric meshes are typically
derived from their 2D analogues without investigating too deeply over 3D-specific pathologies.
In addition, tools and libraries for generating and operating over generic polyhedral meshes are
still hard to find in the literature. Well-developed software exists related to tetrahedral and
hexahedral meshes [Livesu, 2019], but they support a very limited number of operations for
generic polyhedral meshes (e.g., standard mesh file formats do not exist). Three-dimensional
datasets will be therefore used to test the VEM at a smaller scale, in the attempt to understand
if the quality indicators are able to spot small quality differences between datasets.

4.1.1 Generation of the 2D Datasets

Experimental studies already showed how the VEM is able to converge at optimal rates also
on polygonal meshes that violate the geometrical assumptions [Attene et al., 2021, Sorgente
et al., 2021b]. For this reason, we aim at generating extremely pathological meshes, with an
high number of elements that violate one or more assumptions, to understand if the quality
indicator is able to identify such complicated tessellations, while also testing the stability of the
VEM in extreme situations. In addition to the violation of the geometrical assumptions, we are
also interested in the behavior of the VEM when the measures of mesh elements and edges
scale in a nonuniform way in the refinement process. To this end, for each mesh Ωn ∈ D we
define the following quantities and study their trend for n→ N :

An = maxE∈Ωn |E|
minE∈Ωn |E|

and en = maxe∈Ωn |e|
mine∈Ωn |e|

.(4.1)

We specifically designed our datasets in order to consider several possible combinations of the
geometrical assumptions of Section 3.2 and the scaling indicators An and en. For each of them,
we describe how they are built, which geometrical assumptions they fulfill or violate, and how
the indicators An and en depend on n in the limit for n → N . Each dataset is built around

78

4.1. GENERATION OF THE DATASETS

(and often named after) a particular polygonal element contained in it, which is meant to stress
one or more assumptions or indicators. Their construction was originally presented in [Sorgente
et al., 2021b]. The detailed construction algorithms, together with the explicit computations of
An and en for all datasets, can be found in Appendix B. All the meshes presented in this section
are publicly accessible at https://github.com/TommasoSorgente/vem-quality-dataset.

4.1.1.1 Hybrid Datasets.

We start by considering hybrid datasets, i.e., datasets whose meshes contain mainly triangular
elements, and occasionally some other polygons. The first one, DTriangle, contains only triangular
meshes that are built by inserting a number of points in the domain through the Poisson Disk
Sampling algorithm [Bridson, 2007], and connecting them in a Delaunay triangulation. The
refinement is obtained by increasing the number of points generated by the Poisson algorithm.
The meshes in this dataset do not violate any of the geometrical assumptions, and the indicators
An and en are almost constant. We use DTriangle as the reference dataset to evaluate the other
datasets by comparing the performance of the VEM over them.

Next, we consider some datasets characterized by a progressive insertion in Ω of one or more
identical polygonal elements (called the initial polygons, see Figure 4.1), the rest of the domain
being tessellated by triangles. These triangles are created by the library Triangle [Shewchuk,
2005], bounding the area of the triangular elements with the area of the initial polygons. Steiner
points [Shewchuk, 2005] can be added, and the edges of the initial polygons are split when
necessary by the insertion of new nodes. The refinement is iterative, with parameters to indicate
the size, shape, and number of the initial polygons; details on this process are provided in
Appendix B. The top and bottom panels of Figure 4.3 respectively show the datasets DMaze and
DStar, which we selected as they violate different geometrical assumptions. Other choices for
the initial polygons are possible, for instance considering the ones in the benchmark published
in [Attene et al., 2021].

(a) (b)

Figure 4.1: Evolution of the initial polygons in datasets DMaze(a) and DStar(b), as n→ N .

A “maze” is a 10-sided polygonal element E spiraling around an external point. Progressively,
each mesh in DMaze contains an increasing number of mazes E with decreasing thickness as
n→ N . Every E is obviously not star-shaped, challenging assumption G12D. Moreover, the
length of the shortest edge e of E decreases faster than the diameter hE of the polygon. This
fact implies, on one side, that the ratio |e|/hE of assumption G22D cannot be bounded from

79

https://github.com/TommasoSorgente/vem-quality-dataset

CHAPTER 4. VERIFICATION OF THE QUALITY INDICATOR

below by a constant ρ that is independent of h, and, on the other side, that assumption G1w2D

also fails. Indeed, even splitting E into a finite number of rectangles, it is not possible to define
a global radius ρ, independent of h, with respect to which the union of these rectangles is
star-shaped according to G13D, if the shortest edge of E is constantly decreasing. Concerning
the scaling indicators, we have An ∼ an for a constant e < a < 3 and en ∼ n log(n).

Dataset DStar is built by inserting star-like polygonal elements, still denoted by E. As
n → N , the number of spikes of each E increases, and the inner vertices of the star move
towards the barycenter of the element. In this case, assumption G32D is not satisfied because
the number of spikes in each E increases from mesh to mesh. Therefore, the total number of
vertices and edges in a single element cannot be bounded uniformly. Each star E is star-shaped
with respect to the maximum circle inscribed in it. However, as shown in Figure 4.2, the radius
r of such circle decreases faster than the elemental diameter hE , therefore it is not possible
to define a global ρ > 0 able to uniformly bound from below the quantity r/hE : this violates
assumption G12D. In order to satisfy assumption G1w2D, we should split each E into a
number of sub-polygons that are star-shaped according to G12D. Independently of the way we
partition E, the number of sub-polygons would always be bigger than or equal to the number
of spikes in E, which is constantly increasing. So, the number of sub-polygons would tend to
infinity violating condition G1w2D. Last, both An and en scale linearly.

Figure 4.2: Ratio r/hE for datasets DStar and DJenga.

4.1.1.2 Mirroring Datasets.

Another possible strategy to build a sequence of meshes whose elements are progressively
smaller is to adopt a mirroring technique. In practice, we start with the first base mesh Ω̂0,
which coincides with the first computational mesh Ω0. At every step n ≥ 1, we build a new base
mesh Ω̂n from the previous base mesh Ω̂n−1. The computational mesh Ωn is then obtained by
mirroring Ω̂n 4n times and resizing everything to fit the domain Ω. This construction allows us
to obtain a number of nodes and degrees of freedom in each mesh that is comparable to that of
the meshes at the same refinement level in datasets DMaze and DStar. Examples of meshes from

80

4.1. GENERATION OF THE DATASETS

Figure 4.3: Meshes Ω0,Ω2,Ω4,Ω6 from datasets DMaze (top) and DStar (bottom).

mirrored datasets are presented in Figure 4.4. Algorithms for the construction of the following
datasets, together with the mirroring algorithm are detailed in Appendix B.

In the case of the dataset DJenga, we build the n-th base mesh Ω̂n as follows. We start
by drawing two horizontal edges that split the domain (0, 1)2 into three horizontal rectangles
with area equal to 1/4, 1/2, and 1/4 respectively. Then, we split the rectangle with area 1/2
vertically, into two equally-sized rectangles with area 1/4. This provides us with base mesh
Ω̂0, which coincides with mesh Ω0. At each next refinement step n ≥ 1, we split the left-most
rectangle in the middle of the base mesh Ω̂n−1 by adding a new vertical edge, and apply the
mirroring technique to obtain Ωn. This process is shown in the top panels of Figure 4.4. This
mesh family breaks all assumptions G12D (and G1w2D), G22D, G32D, and G42D. In fact,
the length of the radius r of the biggest possible disc inscribed into a rectangle is equal to 1/2
of its shortest edge e. As shown in Figure 4.2, the ratio |e|/hE , decreases unboundedly in the
left rectangle E every time we split it, and consequently r/hE decreases at a similar rate. This
implies that a lower bound with a uniform constant ρ independent of h cannot exist for these
ratios, thus breaking assumptions G12D, G1w2D and G22D. In addition, the number of edges
of the top and bottom rectangular elements also grows unboundedly, against assumption G32D.
Last, the one-dimensional mesh of assumption G42D, which is built on the elemental boundary
of the top and bottom rectangular elements, cannot be subdivided into a finite number of
quasi-uniform sub-meshes. In fact, either we have infinite sub-meshes or an infinite edge ratio.

81

CHAPTER 4. VERIFICATION OF THE QUALITY INDICATOR

Figure 4.4: Meshes Ω0,Ω1,Ω2,Ω3 from datasets DJenga (top), DSlices (middle), and DUlike
(bottom).

Finally, we note that both An and en scale like 2n.

In the case of the dataset DSlices (Figure 4.4, middle), we build the n-th base mesh Ω̂n as
follows. First, we sample a collection of points along the diagonal (the one connecting the points
with coordinates (0, 1) and (1, 0)) of the reference square [0, 1]2, and connect them to the points
(0, 0) and (1, 1). In particular, at each step n ≥ 0, the base mesh Ω̂n contains the points (0, 0)
and (1, 1), plus the points with coordinates (2−i, 1− 2−i) and (1− 2−i, 2−i) for i = 1, . . . , n+ 2.
Then, we apply the mirroring technique. The dataset DSlices violates assumptions G12D and
G1w2D. In fact, up to a multiplicative scaling factor depending on h, the length of the radius
of the biggest inscribed disc in every element E is decreasing faster than the diameter of the
element, which is constantly equal to

√
2 times the same scaling factor, thus violating G12D.

Furthermore, the dataset also breaks assumption G1w2D because any finite subdivisions of its

82

4.1. GENERATION OF THE DATASETS

elements would suffer the same issue. Instead, the other geometrical assumptions are satisfied.
Since no edge is split, we find that en ∼ c, while An ∼ 2n.

In DUlike (Figure 4.4, bottom), we build Ω̂n at each step n ≥ 0 by inserting 2n equispaced
U -shaped continuous polylines inside the domain, creating as many U -like polygons. Then, we
apply the mirroring technique. For arguments similar to the ones brought for DMaze, DUlike

does not satisfy assumptions G12D, G1w2D and G22D. For connectivity reasons, the lower
side of the outer U -shaped polygon of every base mesh must be split into smaller segments
when we apply the mirroring technique. Therefore, the number of edges of such cells cannot
be limited from above, contradicting assumption G32D. Nonetheless, assumption G42D is
satisfied because this subdivision is uniform. Last, edge lengths scale exponentially and areas
scale uniformly, i.e., en ∼ 2n, An ∼ c.

4.1.1.3 Multiple Mirroring Datasets.

As a final test, we modified datasets DJenga, DSlices, and DUlike in order to stress the indicators
An and en harder. This is easily obtained by inserting four new elements at each step instead
of one, as explained in Appendix B. The resulting datasets, DJenga4, DSlices4, and DUlike4, are
qualitatively similar to the mirroring datasets above. These datasets fulfill the same assumptions
as their respective original versions, but the number of elements at each refinement step now
increases four times faster. The indicators An and en change from 2n to 24n, but An remains
constant for DUlike4, and en remains constant for DSlices4 (see Table 4.1).

Table 4.1: Summary of the geometrical assumptions violated and the asymptotic trend of
the indices An and en for two-dimensional datasets (a is a constant such that e < a < 3).
Assumption G1w2D is not explicitly reported because all the considered datasets that violate
G12D, also violate G1w2D.

DTriangle DMaze DStar DJenga DSlices DUlike DJenga4 DSlices4 DUlike4

G12D × × × × × × × ×
G22D × × × × ×
G32D × × × × ×
G42D × ×
An c an n 2n 2n c 24n 24n c
en c n log(n) n 2n c 2n 24n c 24n

4.1.2 Generation of the 3D Datasets

Three-dimensional datasets are characterized by a sampling strategy for generating a number of
points inside the unit cube Ω, and a meshing technique to connect them. Their construction
was originally presented in [Sorgente et al., 2022a]. Algorithms for generating all the samplings

83

CHAPTER 4. VERIFICATION OF THE QUALITY INDICATOR

strategies and the meshing techniques are built over the cinolib library [Livesu, 2019]; all
the generated datasets are publicly available at: https://github.com/TommasoSorgente/

vem-indicator-3D-dataset

4.1.2.1 Sampling Strategies

We defined six different sampling strategies, summarized in Figure 4.5. In order to create
multiple refinements for each dataset, each sampling takes an integer parameter t in input,
which determines the number of points to be generated, and consequently the size of the induced
mesh.

Figure 4.5: Summary of the sampling strategies.

The sampling strategies are as follows:

• Uniform sampling. The points are disposed along a uniform equispaced grid of size 1/t.

• Anisotropic sampling. A regular grid in which the distance between the points is fixed at
1/t along two directions while it linearly increases (1/t, 2/t, 3/t, . . .) along the third axis,
leading to anisotropic configurations.

• Parallel sampling. This sampling is obtained from a uniform sampling with parameter
t by randomly moving all the points belonging to a certain plane p1 to another plane
p2, parallel to p1. In practice, we pick all the points sharing the same x−coordinate and

84

https://github.com/TommasoSorgente/vem-indicator-3D-dataset
https://github.com/TommasoSorgente/vem-indicator-3D-dataset

4.1. GENERATION OF THE DATASETS

randomly change x by the same quantity; then, we repeat this operation for the y and
the z−coordinates.

• Body-Centered Lattice (BCL). A uniform equispaced grid of size 1/t is generated and one
more point is added to the center of each cubic cell, using the implementation proposed in
https://github.com/csverma610/CrystalLattice. This sampling produces equilateral
tetrahedra when combined with tetrahedral meshing and truncated octahedra when
combined with Voronoi meshing (defined below).

• Poisson sampling. The points are generated following the Poisson Disk Sampling algorithm
[Bridson, 2007]. First, we apply the algorithm to the cube (1/t, 1− 1/t)3 and the square
(1/t, 1 − 1/t)2 with radius 1/t, to generate points inside Ω and on its boundary. Then,
to cover the domain more uniformly, we add an equispaced sampling with distance 1/t
on each edge of Ω. The result is a collection of points disposed randomly, but at a fixed
distance (1/t) apart.

• Random sampling. The points are randomly placed inside Ω. In order to guarantee a
decent distribution, given the input parameter t we generate t points along each edge of
Ω, t2 points on each face and t3 points inside Ω.

We point out that, because of how the samplings are defined, the number of points generated
with the same parameter t in the different strategies may vary.

4.1.2.2 Meshing Techniques

We create meshes by connecting a set of points with different techniques: we considered the
three most common types of mesh connectivity found in the literature (tetrahedral, hexahedral,
and Voronoi) plus a generic polyhedral one. As soon as sampling points are connected into a
mesh, we call them nodes.

• Tetrahedral meshing. Points are connected in tetrahedral elements with TetGen library
[Si, 2015], enforcing two quality constraints on tetrahedra: a maximum radius-edge ratio
bound and a minimum dihedral angle bound.

• Voronoi meshing. Points are considered as centroids for the construction of a Voronoi
lattice using library Voro++ [Rycroft, 2009]. In this case, the sampled points will not
appear as nodes in the final mesh, and the number of nodes does not depend uniquely on
the number of points.

• Hexahedral meshing. Points are connected to form hexahedral elements. For ease of
implementation, the mesh is still generated as a Voronoi lattice, but we make sure that
points are placed in such a way that the final result is a pure hexahedral mesh.

85

https://github.com/csverma610/CrystalLattice

CHAPTER 4. VERIFICATION OF THE QUALITY INDICATOR

• Polyhedral meshing. We start from a tetrahedral mesh and we aggregate 20% of the
elements to generate possibly non-convex polyhedra. To avoid numerical problems, we
select the elements with the greatest volume and aggregate them with the neighboring
element sharing the widest face. Note that we only aggregate couples of elements and
merge eventual coplanar faces, therefore we do not remove or modify any node of the
original tetrahedral mesh.

It would also be possible to generate polyhedral meshes starting from hexahedral or Voronoi ones,
but we limit our tests to aggregations of the tetrahedral datasets for ease of implementation.

4.1.2.3 Verification Datasets

Each combination of sampling strategy and meshing technique gives a dataset. As not all
combinations are possible or meaningful, we selected the most diversified datasets, presented in
Figure 4.6 and Figure 4.7.

We generated datasets composed of five meshes each, with increasing number of nodes
(and, therefore, decreasing mesh size): they contain 60, 500, 4000, 32000, and 120000 nodes
approximately. For each n, the mesh Ωn+1 has about eight times more nodes than Ωn, except
for the last mesh which only has four times more nodes than the previous, for computational
reasons. We determine the number of nodes by opportunely setting the sampling parameter t,
and we have no constraints on the number of edges, faces, or elements. We label each dataset
to indicate the meshing technique and the sampling strategy. For example, Dtet-uniform is the
dataset that is built by combining the tetrahedral meshing and the uniform sampling.

• Tetrahedral datasets. We combined the tetrahedral meshing with all the considered
sampling methods, creating six tetrahedral datasets: Dtet-uniform, Dtet-anisotropic, Dtet-parallel,
Dtet-bcl, Dtet-poisson and Dtet-random;

• Hexahedral datasets. Among the six considered samplings, only the first three provide
regular grids suitable for the generation of hexahedral elements. Therefore our hexahedral
datasets are Dhex-uniform, Dhex-anisotropic, and Dhex-parallel;

• Voronoi datasets. The last three samplings instead have been used to generate Voronoi
datasets: Dvoro-bcl, Dvoro-poisson, and Dvoro-random;

• Polyhedral datasets. Finally, any of the tetrahedral datasets could have been modified to
obtain polyhedral meshes, but we observed that aggregating elements from Dtet-uniform,
Dtet-anisotropic, or Dtet-bcl would still generate convex elements, not so different from
the original ones. We, therefore, chose to consider only Dpoly-parallel, Dpoly-poisson and
Dpoly-random.

86

4.1. GENERATION OF THE DATASETS

Figure 4.6: Summary of the tetrahedral datasets

Figure 4.7: Summary of the hexahedral and Voronoi datasets

87

CHAPTER 4. VERIFICATION OF THE QUALITY INDICATOR

We point out that Dtet-uniform serves as a reference for the other 3D datasets, similarly to
DTriangle in the two-dimensional case. Comparing to the datasets defined over the unit cube
in [Beirão da Veiga et al., 2017], we could say that dataset Dvoro-random is analogous to the
“Random” discretization, dataset Dhex-uniform is equivalent to their “Structured” meshes and
dataset Dvoro-bcl can be considered as a particular case of “CVT” discretization.

In Table 4.2 we report some considerations about the datasets and the geometrical assump-
tions from Section 3.2. First, datasets originating from uniform and BCL samplings obviously
satisfy all three assumptions, independently of the meshing technique, and the same holds for
Dtet-poisson and Dpoly-poisson (elements in Dpoly-poisson are not all convex, but still star-shaped,
being the union of two tetrahedra). Dvoro-poisson instead, is not guaranteed to satisfy G23D:
the Poisson distribution of the points generates elements with bounded diameters, while it is
not possible to estimate in advance the length of the shortest edge in a Voronoi cell. Datasets
obtained through anisotropic sampling are guaranteed to violate G13D (despite containing
only convex elements) and G23D. In fact, a generic element E of a mesh Ωn belonging to
Dhex-anisotropic, is a square cuboid with basis 1/t × 1/t, height n/t, and therefore diagonal√

2 + n2 /t (we assume that E is not on the boundary of Ωn, and orient it as in Figure 4.7). The
radius of the maximum inscribed ball is rE = 1/2t, the smallest edge he = 1/t, and the diameter
hE =

√
2 + n2 /t, hence the ratios relative to assumptions G13D and G23D are, respectively,

1
2
√

2+n2 and 1√
2+n2 , that both go to zero as n grows. Similar reasoning holds for meshes in

Dtet-anisotropic. Datasets originating from parallel and random samplings have a random nature,
which makes it impossible to precisely estimate the above quantities. Obviously, for any finite
sequence of such meshes, it is possible to find a constant ρ such that it satisfies G13D and/or
G23D, no matter how close the nodes. However, such a constant cannot be defined a-priori, but
only computed afterward. Similarly, we cannot set an a-priori bound on the number of faces
and edges of the Voronoi cells in Dvoro-random, which therefore potentially violates assumption
G33D.

We recall from Section 3.2 that, to ensure the optimal behavior of the method, either
assumptions G13D and G23D or assumptions G13D and G33D need to be satisfied. Therefore,
we are allowed to expect optimal convergence rates only over Dtet-uniform, Dtet-bcl, Dtet-poisson,
Dhex-uniform, Dvoro-bcl, and Dpoly-poisson. On the other datasets, the VEM is not guaranteed to
converge properly, but we can expect different results according to the entity of the violation of
the assumptions.

4.2 Correlations Between the Quality and the Performance

In this section, we analyze the behavior of the quality indicators %2D and %3D defined in
Section 3.4. First, we evaluate them over the meshes of the datasets from Section 4.1, obtaining
some quality scores. Then, we solve the Poisson problem (3.5) with the VEM described in

88

4.2. CORRELATIONS BETWEEN THE QUALITY AND THE PERFORMANCE

Table 4.2: Summary of the geometrical assumptions violated by each three-dimensional dataset.

dataset G13D G23D G33D

Dtet-uniform
Dtet-anisotropic × ×
Dtet-parallel × ×
Dtet-bcl
Dtet-poisson
Dtet-random × ×

dataset G13D G23D G33D

Dhex-uniform
Dhex-anisotropic × ×
Dhex-parallel × ×
Dvoro-bcl
Dvoro-poisson ×
Dvoro-random × × ×
Dpoly-parallel × ×
Dpoly-poisson
Dpoly-random × ×

Section 3.1 over each mesh, and we study the relative H1-seminorm and L2-norm, as defined in
(3.26), (3.27):

|u− uh|1,Ω/|u|1,Ω, ||u− uh||0,Ω/||u||0,Ω,

and the relative L∞-norm

||u− uh||∞/||u||∞, where ||u||∞ = ess supx∈Ω|u(x)|,

of the approximation error u− uh as the number of degrees of freedom increases. The optimal
convergence rate of the method, provided by the estimates (3.24) and (3.25), is indicated for
each k by the slope of the reference triangle. In the case of the L∞-norm, we do not have such
theoretical results.

The exercise we propose is to first analyze the values of %2D (%3D) on a dataset, computed
before solving the problem and make some predictions on the behavior of the VEM over it
in terms of convergence rate and error magnitude. Then, looking at the approximation errors
actually produced by that dataset, search for correspondences between %2D (%3D) and the
errors, checking the accuracy of the prediction. Clearly, as %2D (%3D) does not depend on the
polynomial degree k nor on the type of norm used, we will compare it to an average of the
plots for the different k values and for the different norms. The mesh quality values are plotted
against the number of nodes in the mesh, while the approximation errors are plotted against
the degrees of freedom (DOFs). In the case k = 1, these quantities coincide.

We preliminarily observe that, for an ideal dataset made by meshes containing only perfectly-
shaped elements (e.g., equilateral triangles/tetrahedra), %2D and %3D would be almost constant,
and very close to 1. We assume this value as a reference for the other datasets: the closer is %2D

(%3D) on a dataset to the line y = 1, the smaller is the approximation error that we expect
that dataset to produce. Moreover, the %2D (%3D) slope is indicative of the convergence rate.

89

CHAPTER 4. VERIFICATION OF THE QUALITY INDICATOR

Since an ideal dataset would produce a horizontal line, the more negative is the slope, the worse
the convergence rate that we expect. A positive trend instead should indicate a convergence
rate higher than the one obtained with an equilateral triangular (tetrahedral) mesh, that is,
higher than the theoretical estimates.

4.2.1 Analysis of the 2D Dataset

For the analysis of the two-dimensional datasets, we solved the discrete Poisson problem (3.4)
with the VEM (3.5) for k = 1, 2, 3 over each mesh of each of the datasets defined in Section 4.1.1,
using as groundtruth the function

(4.2) u(x, y) = sin(πx) sin(πy)
2π2 , (x, y) ∈ Ω = (0, 1)2.

This function has homogeneous Dirichlet boundary conditions, and this choice was appositely
made to prevent the boundary treatment from having an influence on the approximation error.

We also consider the condition numbers of matrices G and H (with the notation adopted
in [Beirão da Veiga et al., 2014]) as numerical indicators of the good behavior of the method,
and identities |Π∇k D − I| = 0 and |Π0

kD − I| = 0 as an estimate of the approximation error
produced by projectors Π∇k and Π0

k, represented by matrices Π∇k and Π0
k, respectively. The

computation of the projectors is obviously affected by the condition numbers of G and H, but
the two indicators are not necessarily related. All of these quantities are computed element-wise
and the maximum value among all elements of the mesh is selected. Condition numbers and
identity values for k = 1, 2, 3 are reported in Table 4.3 (for k < 3 we have Π0

k = Π∇k).

4.2.1.1 Hybrid Datasets

Predictions Looking at the quality plot in Figure 4.8 (the leftmost), we note how the
%2D values for meshes belonging to dataset DTriangle are almost constant and very close to 1.
According to this information, we would say that the VEM should converge with the optimal
rate and small errors over dataset DTriangle. The quality of datasets DMaze and DStar are very
close to 1 as well, even if the latter decreases in the last couple of meshes. Note that the
differences between the three are minimal, i.e., in the range of 10−2. Therefore, we expect DMaze

and DStar to behave similarly to DTriangle in the first meshes, and DStar to perform worse in the
last ones.

Verification The performance of the VEM over the hybrid datasets is shown in the second,
third, and fourth plots of Figure 4.8. First, the reference dataset DTriangle performs perfectly,
according to the theoretical results, both in L2 and in H1 norms for all k values, maintaining
reasonable condition numbers and optimal errors on the projectors Π0

k and Π∇k (see Table 4.3).
For datasets DStar and DMaze, errors decrease at the correct rate for most of the meshes and
only start deflecting for very high numbers of degrees of freedom and very complicated meshes.

90

4.2. CORRELATIONS BETWEEN THE QUALITY AND THE PERFORMANCE

Figure 4.8: Mesh quality indicator %2D, H1-seminorm, L2-norm and L∞-norm of the approxi-
mation errors relative to the hybrid datasets. Solid, dashed and dotted lines relate to k = 1, 2, 3
respectively.

These deflections are not due to numerical problems, as in both datasets we have cond(G)
< 106 and cond(H) < 109, which are still reasonable values. Projectors seem to work properly:
|Π∇k D− I| remains below 10−8 and |Π0

kD− I| below 10−7. In a preliminary stage of this work,
we obtained similar plots (not reported here) using other hybrid datasets built in the same
way, with polygons surrounded by triangles. In particular, we did not see big differences when
starting with the other initial polygons of Benchmark [Attene et al., 2021], cf. the construction
discussed in “Hybrid datasets” in Section 4.1.1.

4.2.1.2 Mirroring Datasets

Predictions In Figure 4.9(left), the plot relative to dataset DJenga predicts a perfect conver-
gence rate but greater error values with respect to the hybrid datasets seen before. The curve
relative to DSlices is quite distant from the ideal value of 1, and it keeps decreasing from mesh to
mesh. However, the plot allows us to assume that it may flatten within a couple more meshes.
We, therefore, expect it to produce higher errors than DJenga, but still a decent convergence
rate. Last, the %2D values for DUlike are significantly lower than the others, and the plot is not
flattening at all. Hence we expect huge errors and a bad convergence rate.

Verification On the meshes from mirroring datasets, An or en may scale non-uniformly,
as reported in Table 4.1 (indeed, they can scale exponentially). This reflects to cond(G)

91

CHAPTER 4. VERIFICATION OF THE QUALITY INDICATOR

Figure 4.9: Mesh quality indicator %2D, H1-seminorm, L2-norm and L∞-norm of the approxima-
tion errors relative to the mirroring datasets. Solid, dashed and dotted lines relate to k = 1, 2, 3
respectively.

and cond(H), which grow up to 1010 and 1014 for DJenga in the case k = 3. Nonetheless,
the discrepancy of the projectors identities remains below 10−5, which is not far from what
happened with DMaze and DStar. Dataset DJenga exhibits an almost perfect convergence rate,
even though the errors in the different norms are bigger in magnitude than the ones measured
for hybrid datasets (for instance, in the case k = 1 with the H1 norm, DJenga remains above
10−2, while the hybrid datasets were all below). DSlices shows even bigger errors but still an
optimal convergence rate, and DUlike is the dataset with the poorest performance, exhibiting
incorrect convergence rates for all values of k and all types of norm (see in particular the case
k = 1 with H1 or L∞ errors).

4.2.1.3 Multiple Mirroring Datasets

Predictions As far as multiply mirrored datasets are concerned, we notice that the %2D plots
in Figure 4.10 have similar trends to the ones obtained for the single-mirrored datasets in
Figure 4.9. We should therefore expect DJenga4, DSlices4 and DUlike4 to perform similarly to
DJenga, DSlices and DUlike. However, dataset DSlices4 decreases faster than DSlices, reaching a
%2D value of ∼ 0.2 instead of ∼ 0.34 (these are the %2D values produced by the last meshes of
DSlices4 and DSlices in Figure 4.10 and Figure 4.9, respectively). Last, the %2D plot of DUlike4 is
significantly worse than the one of DUlike (and than any other), both in terms of distance from
y = 1 and slope.

92

4.2. CORRELATIONS BETWEEN THE QUALITY AND THE PERFORMANCE

Figure 4.10: Mesh quality indicator %2D, H1-seminorm, L2-norm and L∞-norm of the approxi-
mation errors relative to the multiple mirroring datasets. Solid, dashed and dotted lines relate
to k = 1, 2, 3 respectively.

Verification In this setting, all datasets diverge badly, and this is principally due to very
poor conditioning in the matrices involved in the calculations (see Table 4.3). Dataset DJenga4

and DSlices4 maintain a similar trend to the ones in Figure 4.9 until numerical problems cause
cond(G) and cond(H) to explode up to over 1030 for DJenga4 and 1018 for DSlices4. In these
conditions, projection matrices Π∇k and Π0

k become meaningless, and the method diverges. The
situation slightly improves for DUlike4: cond(H) is still 1016, but the discrepancy of Π∇k and
Π0
k remain acceptable. As a result, DUlike4 does not properly explode, but the approximation

error and the convergence rate are much worse than those seen in Figure 4.9. We notice that,
since it only depends on the geometry of the elements, %2D is not affected by numerical errors.
As a consequence, its predictions remain reliable as long as cond(G) and cond(H) remain low.
Dataset DJenga4 converges as expected, i.e., with optimal rate, until the last mesh for k = 3,
when numerical problems appear which %2D is not able to predict. As above, DSlices4 performs
similarly to DSlices until condition numbers explode, in the last two meshes for every value of
k. Last, we can observe how, even if DUlike4 does not properly explode (as it suffers less from
numerical problems, cf. Table 4.3), the approximation error and the convergence rate are the
worse among all the considered datasets.

93

CHAPTER 4. VERIFICATION OF THE QUALITY INDICATOR

Table 4.3: Summary of numerical performance for two-dimensional datasets. We report the log10
of the original values for the condition number of G and H and the discrepancy of projection
matrices Π∇k and Π0

k. Note that for k < 3 we have Π0
k = Π∇k .

dataset DTriangle DMaze DStar DJenga DSlices DUlike

k 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

cond(G) 0 2 5 2 3 6 1 3 6 1 5 10 2 4 6 1 4 7
cond(H) 2 5 7 2 5 8 3 6 9 4 9 14 2 8 10 3 7 10
|Π∇k D− I| -13 -11 -9 -12 -10 -8 -12 -10 -8 -12 -8 -5 -12 -10 -9 -13 -10 -8
|Π0

kD− I| -10 -8 -7 -5 -5 -7

dataset DJenga4 DSlices4 DUlike4

k 1 2 3 1 2 3 1 2 3

cond(G) 6 18 31 6 8 10 2 6 11
cond(H) 13 26 39 2 15 18 5 10 16
|Π∇k D− I| -9 3 13 -8 -6 -5 -13 -8 -5
|Π0

kD− I| 20 8 -4

4.2.1.4 Analysis of the Stability Term

In order to investigate the impact of the choice of the stability term on the performance of
the method, we compare the results obtained with four different formulations of SEh (·, ·). The
results shown in Figure 4.8, 4.9, and 4.10 were relative to the D-recipe stabilization (3.19). In
addition to this, we consider the particular case of the dofi-dofi stabilization (3.20), as well as
the H1 and L2 trace forms (3.30), (3.31). In Figure 4.11 we exhibit two representative cases
relative to DSlices and DMaze datasets, the others being very similar.

The stability terms, at least the considered ones, seem to have a very small impact on
the convergence of the method as long as the convergence rate remains optimal. This is the
case for DSlices (Figure 4.11(a)) and for the first meshes of DMaze (Figure 4.11(b)). On the
other side, when the method does not work properly, all types of stabilization lead to similar
misbehavior, as happens for the last meshes of DMaze. Analogous results were obtained for all
datasets: whenever the method works, all stabilizations lead to equally accurate approximations;
when the method does not work, there is not a particular stabilization providing better results
than the others. For example, in the case of DSlices the L2 trace stabilization seems to be more
problematic than the others, while for DMaze the H1 trace seems the least reliable, and in
general, the worst stabilization varies from datasets to dataset.

4.2.1.5 Error Localization

As a further investigation, we analyze the distribution of the approximation errors across the
elements of a mesh. In Figure 4.12 we consider two examples from datasets DMaze and DJenga:
we only report the H1 error because the L2 and the L∞ errors produce very similar results.
First, we color each element of the mesh with respect to the value of the elemental quality

94

4.2. CORRELATIONS BETWEEN THE QUALITY AND THE PERFORMANCE

(a) (b)

Figure 4.11: H1-seminorm and L2-norm of the approximation errors relative to DSlices (a) and
DMaze (b) datasets, with different stability terms.

indicator %2D(E) := %2D
|E(Ωh), defined in Section 3.4. Then, we visually compare this colored

mesh with the same mesh colored with respect to the H1 error, for k = 1, 2, 3, produced by the
VEM on it:

ε(E) = − log |u− uh|1,E
|u|1,Ω

, ∀E ∈ Ωh,

where the negative sign is introduced so that high error values correspond in color to low-
quality elements (remember that %2D(E) is 1 if E is an equilateral triangle and 0 if E is not
star-shaped). Moreover, ε values are re-scaled in the range (minE∈Ωh

ε(E),maxE∈Ωh
ε(E)) in

order to highlight differences between the elements. In particular, this means that there is no
relationship between a certain color in the figure for k = 1 and the same color in the case k = 2
or 3.

In the first column of Figure 4.12 we can observe how the quality indicator perfectly
“recognizes” the pathological elements, assigning them a deep blue color. Regarding the error,
we can see similar color patterns across the columns, which depend on the function we are
approximating. Being the ground-truth (4.2) a sinusoidal function, the error is naturally
distributed along “waves” which vary with the order of the method. Besides this, it is still
appreciable how poor quality elements produce higher errors than their neighbors, highlighting
once again a correlation between the quality indicator and the performance of the VEM.

4.2.2 Analysis of the 3D Dataset

For the analysis of the three-dimensional datasets, we solve the discrete Poisson problem (3.4)
with the VEM (3.5) over each mesh of each of the datasets defined in Section 4.1.2, using as
groundtruth the function

(4.3) u(x, y, z) = x3y2z + x sin(2πxy) sin(2πyz) sin(2πz), (x, y, z) ∈ Ω.

95

CHAPTER 4. VERIFICATION OF THE QUALITY INDICATOR

Figure 4.12: Localization of the quality indicator %2D and H1 error ε in meshes from DMaze
(top) and DJenga (bottom) datasets.

Differently from Section 4.2.1, we limit our analysis to the case k = 1. We focus on the linear
VEM for computational simplicity, because we think that this is the most interesting choice
in three-dimensional practical engineering applications. In fact, as stated in Section 4.1, the
3D datasets were defined with the goal of generating ordinary meshes, to understand if the
quality indicators are able to spot small quality differences between them. However, in the
two-dimensional case (Section 4.2.1), the lowest-order and higher-order VEM performance was
seen to be optimal or, at least, similar on the same mesh families. Based on such experience,
we expect the information given by the indicator to remain valid also for higher-order VEM
formulations.

4.2.2.1 Tetrahedral Datasets

Predictions Looking at the quality plot in Figure 4.13 (the leftmost) we would say that the
VEM should converge with the optimal rate over almost all tetrahedral datasets, as their %3D

tend to get horizontal. One exception is Dtet-anisotropic, which has a negative trend and therefore
is not expected to converge properly. We can also observe how the slope of Dtet-parallel becomes
positive in the last mesh: this should indicate a more than optimal convergence rate. Regarding
the error magnitude, represented by the overall distance from the top of the plot, we can predict
that Dtet-bcl will produce the smallest errors, being the one with the highest quality. This is
reasonable because this dataset is composed mainly of equilateral tetrahedra. We can then order
decreasingly the other datasets according to their quality: Dtet-poisson, Dtet-uniform, Dtet-random,

96

4.2. CORRELATIONS BETWEEN THE QUALITY AND THE PERFORMANCE

Dtet-parallel, and Dtet-anisotropic, and we expect the errors’ magnitudes to behave accordingly.

Figure 4.13: Mesh quality indicator %3D, H1-seminorm, L2-norm and L∞-norm of the approxi-
mation errors relative to the tetrahedral datasets.

Verification The convergence rates of the tetrahedral datasets in the error plots of Figure 4.13
faithfully respect all the above considerations. In both H1 and L2-norms, the method converges
with the optimal rate (the one suggested by the reference triangle) over almost all the datasets,
with Dtet-parallel even improving the rate in its last mesh. The only exception, as expected, is
dataset Dtet-anisotropic. We checked the condition numbers for the linear systems that are built
on the meshes of Dtet-anisotropic and we verified that their values are reasonably small, i.e., in the
range [1, 106]. These values are comparable to the condition numbers seen in the other datasets.
In the L∞-norm the situation is similar, even if Dtet-random has an unexpected peak in the
last mesh. The error magnitudes, i.e. the distance of the line from the y−axis, perfectly follow
the ordering suggested by the quality plot. The dataset which produces the smallest errors
is Dtet-bcl. After that, in the H1 and L2 plots we have Dtet-poisson, Dtet-uniform and Dtet-random,
which tend to become very close, then Dtet-parallel and last Dtet-anisotropic. The situation slightly
changes if we look at the L∞ error: in this case, Dtet-uniform performs better than Dtet-poisson,
probably due to a bunch of poor quality elements which do not particularly affect the overall
accuracy of the method.

4.2.2.2 Hexahedral Datasets

Predictions Results for the hexahedral datasets are shown in Figure 4.14. Similar to what
happened for the tetrahedral datasets, the meshes produced by the anisotropic sampling have
very poor quality. While Dhex-uniform and Dhex-parallel tend to flatten, with the second one
increasing in the last refinement, the %3D value for the meshes of Dhex-anisotropic keeps decreasing.
Our prediction is therefore to have optimal convergence on Dhex-uniform and Dhex-parallel and
bad results with Dhex-anisotropic. In addition, Dhex-uniform is expected to produce smaller errors
than Dhex-parallel.

97

CHAPTER 4. VERIFICATION OF THE QUALITY INDICATOR

Figure 4.14: Mesh quality indicator %3D, H1-seminorm, L2-norm and L∞-norm of the approxi-
mation errors relative to the hexahedral datasets.

Verification In the error plots of Figure 4.14, all the predictions are confirmed. The VEM
converges perfectly over Dhex-uniform and Dhex-parallel, with the second one producing higher
errors than the first one and improving its convergence rate in the last refinement. Instead,
Dhex-anisotropic does not produce a correct convergence rate in the H1 and L2 plots, and also in
the L∞ plot exhibits a significantly slower rate with respect to the other datasets. Also, in this
case, the condition numbers for the linear systems are not particularly bigger than the ones of
the other datasets.

4.2.2.3 Voronoi Datasets

Predictions In Figure 4.15, results relative to the Voronoi datasets are shown. The quality
of all three datasets tends to stabilize to a constant value, and this makes us presume a correct
convergence rate for all of them. We can expect Dvoro-bcl to produce smaller errors than the
other two, and Dvoro-random to be the less accurate.

Figure 4.15: Mesh quality indicator %3D, H1-seminorm, L2-norm and L∞-norm of the approxi-
mation errors relative to the Voronoi datasets.

Verification Looking at the H1 and L2 error plots we notice how all datasets converge
properly, and the accuracy of the approximation follows the order foreseen by the indicator:

98

4.2. CORRELATIONS BETWEEN THE QUALITY AND THE PERFORMANCE

Dvoro-bcl, Dvoro-poisson, and Dvoro-random. The L∞ plot is less similar to the other two in this
case, but still, we can recognize a common pattern.

4.2.2.4 Polyhedral Datasets

Predictions Last, in Figure 4.16 we report the analysis of the polyhedral datasets. The indi-
cator %3D suggests that Dpoly-poisson and Dpoly-random converge perfectly. Regarding Dpoly-parallel,
the indicator seems to flatten and then increase in the last refinement. The convergence should
therefore be optimal for the first meshes and more than optimal for the last one. The most
accurate dataset should be Dpoly-poisson and the least accurate Dpoly-parallel.

Figure 4.16: Mesh quality indicator %3D, H1-seminorm, L2-norm and L∞-norm of the approxi-
mation errors relative to the polyhedral datasets.

Verification The method performs essentially as expected. All datasets produce optimal
rates and Dpoly-parallel converges even faster than the reference in the last refinement. Dataset
Dpoly-random has a peak in the last mesh with the L∞ error: this is similar to what happened
with Dtet-random and it is probably due to the same bad-shaped element (remember that
tetrahedral and polyhedral meshes differ only for the 20% of their elements). Concerning the
errors’ magnitude, as foreseen by the indicator, Dpoly-poisson is the most accurate, and then we
have Dpoly-random and Dpoly-parallel.

4.2.3 Discussion

We conclude with some more general considerations on the results obtained in Section 4.2.1
and Section 4.2.2.

When a sufficient subset of the geometrical assumptions defined in Section 3.2 is respected,
that is, withDTriangle or with all datasets from uniform sampling and BCL, the VEM performance
is obviously optimal. We also built examples of datasets, like DUlike or Dtet-anisotropic, which
violate several regularity assumptions, and over which the VEM shows a sub-optimal convergence
rate, or diverges. However, the first important consideration is that we experimentally verified

99

CHAPTER 4. VERIFICATION OF THE QUALITY INDICATOR

how the VEM works, with a good convergence rate, also on datasets clearly outside the
assumptions. The most significant examples of this are probably DJenga and DSlices in 2D, or
Dvoro-random in 3D.

These results are not unexpected, as the geometrical assumptions are only sufficient
conditions for the convergence of the method, but confirm the suspicion that the current
restrictions on the meshes are probably more severe than necessary. For instance, dataset DJenga

violates all the 2D assumptions and still converges better than DMaze, DStar, and DSlices which
only violate a couple of them. Among the 3D datasets, the VEM seems not to particularly suffer
the violation of the assumptions due to random point distributions. Datasets from parallel
and random samplings produce correct convergence rates, even if the approximation errors are
higher than those relative to uniform sampling or BCL. In conclusion, the relationship between
the geometrical assumptions respected by a dataset and the performance of the VEM on it is
not so obvious, especially when we try to violate at least one of them.

In those situations, our mesh quality indicator turns out to be particularly useful in predicting
the result of the numerical approximation. Its effectiveness lies in the ability to capture a
qualitative measure of the fulfillment of each assumption. The mesh quality indicator has been
able to properly predict the behavior of the VEM, both in terms of convergence rate and
error magnitude, up to a certain precision. It showed up to be particularly accurate when
compared to the H1 and the L2-norms of the error, while it did not always manage to capture
the oscillations of the L∞-norm. The prediction may be inaccurate in presence of very similar
performance (the case of DMaze and DStar), or in extreme situations in which the numerical
problems become so significant to overcome any influence that the geometrical features of the
mesh could have on the performance (the last meshes of DJenga4 and DSlices4).

The results obtained are encouraging, showing a satisfactory correlation between the errors
and this indicator. Consequently, our approach provides an experimental score that is able
to predict if a tessellation of a domain can be critical for the VEM. Moreover, it is enough
accurate to be employed in a classification process, where a collection of meshes, or datasets,
have to be ordered according to their quality. For instance, it could be used to choose among
different tessellations of the same domain which one is likely to produce the most accurate
results when combined with the VEM.

4.3 Mesh Quality Agglomeration

Alongside the classification purposes, the mesh quality indicator can be exploited to optimize the
quality of a mesh, integrating it into adaptation or agglomeration algorithms. By agglomeration,
we mean a process in which some elements of a mesh get agglomerated to form bigger elements.
With quality agglomeration, we stress the fact that the purpose of the process is to optimize the
global mesh quality. In this sense, it differs from the concept of mesh coarsening, in which the

100

4.3. MESH QUALITY AGGLOMERATION

goal is simply to increase the average mesh size. In absence of particular constraints, quality
agglomeration also results in mesh coarsening. However, if the mesh contains nodes, edges,
faces, or elements which have to be preserved, or if the domain presents non-trivial geometrical
features, the effect of quality agglomeration can be localized in particular regions or limited to
a small number of elements. In particular, we are interested in operating over the two following
types of cells:

1. Elements located in areas of the domain that are poor of significant details or features. In
this case, the size of the elements can be increased without significantly impacting the
accuracy of the simulation;

2. Bad-shaped or pathological elements. The quality of such elements can be often improved
if we merge them with some neighboring cells.

We let the indicator “drive” the agglomeration process, indicating which elements in a mesh
should be merged in order to maximize its quality. In this sense, we define an energy functional
over the mesh, based on the quality indicator, that we want to minimize. In addition to the
driver, we need a “car”, i.e., a tool that allows us to navigate the mesh and move efficiently
from one element to the other. We interpret the mesh as a graph, where each element represents
a node, and any two nodes corresponding to neighboring elements are connected by an arc.
The car will be then represented by the graph-cut technique, which gives us an optimal order
for scouting all the possible combinations of element pairings and reaching a minimum of the
energy functional. Since the discussion will be independent of the dimension of the domain, we
generically note the quality indicator as % meaning the elemental quality indicators %2D(E) and
%3D(E) defined in Section 3.4 for every element E in a mesh.

4.3.1 Energy Functional

The energy functional E that we want to minimize is defined as:

(4.4) E :=
∑

E,E′∈Ωh

dc(E,E′) + λ
∑

E,E′∈Ωh

sc(E,E′),

where dc and sc are two cost functions, both defined from the product space Ωh × Ωh to the
unit interval [0, 1], and λ ∈ [0, 1] is an agglomeration parameter that balances the importance
of the two terms. Empirically, high values of λ lead to more aggressive agglomerations. The
cost functions are defined as follows:

• the data cost represents the cost of agglomerating two elements E,E′ ∈ Ωh, and measures

101

CHAPTER 4. VERIFICATION OF THE QUALITY INDICATOR

the potential quality of the element E ∪ E′. It is defined as:

dc(E,E′) :=


0 if E = E′

1− %(E ∪ E′) if E and E′ are adjacent

1 otherwise

(4.5)

where E ∪E′ is the boolean union of the two neighboring elements, and % is the elemental
quality indicator.

• the smoothness cost encodes information on the structure of the mesh, assigning zero
weight to the non-adjacent elements:

sc(E,E′) :=

1 if E and E′ are adjacent and E 6= E′

0 otherwise
(4.6)

For implementation reasons, both dc and sc are multiplied by the number of elements in Ωh

and then rounded off, in order to obtain integer values.

4.3.2 Graph-cut

The graph-cut (also known as maximum-flow, or minimum-cut [Goldberg and Tarjan, 1988])
is an efficient graph-based technique aimed at segmenting a graph into two or more parts,
minimizing a certain energy. It has been successfully employed for images [Boykov et al.,
2001, Kolmogorov and Zabin, 2004, Boykov and Kolmogorov, 2004] and to tackle problems
like image segmentation, object co-segmentation, and other problems that can be formulated
in terms of energy minimization [Yi and Moon, 2012]. There are also contributions towards
the extension of graph-cut to 3D data, mainly aimed at segmentation, reconstruction, and
generation: for example in [Liu et al., 2015] graph-cut is used to segment triangulated models.
We used the implementation provided by the Multi-label Optimization algorithm, available at
https://vision.cs.uwaterloo.ca/code/.

In our context, each node of the graph represents one element E of the mesh Ωh, and two
nodes are connected if their relative elements are adjacent (i.e., if they share an edge in 2D or
a face in 3D). Moreover, each node is equipped with a label: an integer number that provides
information about the node. We note L the set of all possible labels, and a labeling will be a
map L : Ωh → L that assigns a label l ∈ L to each node E ∈ Ωh. What graph-cut essentially
does, is to opportunely re-label the nodes: after one iteration, some nodes may share the same
label, and this will mean that we want to agglomerate the corresponding elements.

In the Multi-label Optimization algorithm, the cost functions are defined in the form
d̃c : Ωh×L→ [0, 1] and s̃c : L×L→ [0, 1]. To align to this notation, we set L := {1, . . . ,#Ωh},
and define the trivial labeling L̃ : Ωh → L that bijectively maps each element in the mesh to its
index, i.e., its position in the array of the mesh data structure containing all the elements. Then,

102

https://vision.cs.uwaterloo.ca/code/

4.3. MESH QUALITY AGGLOMERATION

we opportunely compose the cost functions (4.5) and (4.6) with the inverse map L̃−1 : L→ Ωh,
which, therefore, connects a label l ∈ L to the (unique) element E ∈ Ωh with index l:

d̃c(E, l) := dc(E, L̃−1(l)) = dc(E,E′)

s̃c(l1, l2) := sc(L̃−1(l1), L̃−1(l2)) = sc(E1, E2),

being E′, E1, and E2 the nodes whose relative elements have indices l, l1, and l2, respectively.
Substituting d̃c and s̃c into (4.4) we obtain a new energy functional, that depends on the
particular labeling:

Ẽ(L) :=
∑
E∈Ωh

d̃c(E, lE) + λ
∑

E,E′∈Ωh

s̃c(lE , lE′).

The minimization problem is then defined as follows, given P the set of all the possible labelings:

min
L∈P
Ẽ(L).(4.7)

We solve this problem with the alpha-beta swap algorithm [Boykov et al., 2001]. This technique
iteratively segments the nodes labeled with a given label α with respect to those with another
label β. The two given labels change after each iteration, scouting all the possible combinations.
Other algorithms exist in the literature, for example, the so-called alpha-expansion algorithm,
which requires the function sc to be a metric (i.e., to respect the triangular inequality). The
results obtained with alpha-expansion are less useful in our context because it generally leads
to uneven distributions of the labels. Indeed, this algorithm tries to expand each label as much
as possible, generating large portions of the domain with the same label and small isolated
areas with different ones, which leads to meshes with unbalanced elements.

4.3.3 Quality Agglomeration Algorithm

Based on the mesh quality indicator and the graph-cut algorithm, we can define our quality
agglomeration algorithm. Given an input mesh, we initialize the node labels with the trivial
labeling L̃ (Figure 4.17(a)). Then, we run the graph-cut algorithm with a certain value of the
parameter λ, and find new labels for the elements (Figure 4.17(b)). We run the graph-cut
algorithm until convergence, i.e. until the energy term Ẽ does not decrease anymore: this
typically takes less than 5 iterations. Last, all elements sharing the same label are merged
(Figure 4.17(c)), also merging aligned edges in the newly generated elements. At this stage, we
make sure to preserve eventual constraints found on nodes, edges, faces, or elements of the
initial mesh. We can compute different agglomerated versions of the same mesh by choosing
different values of the parameter λ (Figure 4.17(c,d)). A limitation of this approach is that it
only compares elements pairwise. Given an element E with neighboring elements E′ and E′′,
the algorithm will compute separately the potential quality of E ∪ E′ and that of E ∪ E′′. In
the case both qualities are considered good, E′ and E′′ will be assigned the same label of E,

103

CHAPTER 4. VERIFICATION OF THE QUALITY INDICATOR

without having checked the potential quality of E ∪E′ ∪E′′. This problem could be partially
controlled (but with an higher computational cost) by merging the elements with the same label
after each graph-cut iteration, instead of agglomerating only after the graph-cut convergence.

(a) (b) (c) (d)

Figure 4.17: (a) Initial mesh, colored w.r.t. element labels (in black), (b) mesh after graph-cut
with λ = 0.25, colored w.r.t. element labels (in black), (c) agglomerated mesh with λ = 0.25,
(d) agglomerated mesh with λ = 1.0.

In the following, we test the effects of the quality agglomeration algorithm over a selection
of datasets. We solve the discrete Poisson problem (3.4) with the two- or three-dimensional
VEM (3.5) (according to the context), on both the original and agglomerated datasets. Each
agglomerated mesh contains a smaller number of elements, faces, nodes, and therefore degrees
of freedom of the VEM space, with respect to its original version, thus requiring a smaller
computational cost for the VEM. At the same time, we expect the errors produced by the
agglomerated meshes to be slightly higher, as for every removed degree of freedom we have less
information on the numerical problem that we want to solve. We are interested in understanding
how this reduction of degrees of freedom impacts the accuracy of the VEM, and also if it
produces any effect on the convergence rate of the method.

Test 1 The first context in which we test the quality agglomeration algorithm is on the
two-dimensional dataset DMaze from Section 4.1.1. For computational reasons, while the orig-
inal dataset contained 11 meshes, we here reduce it to its first 7 meshes. We generate two
agglomerated datasets: Dλ1

Maze with parameter λ1 = 0.25 and Dλ2
Maze with parameter λ2 = 1.0,

presented in Figure 4.18. After the agglomeration, the number of nodes, edges, and elements in
each mesh significantly decreases, and consequently also the number of degrees of freedom, as
shown in Figure 4.19. While for k = 1 the degrees of freedom coincide with the mesh nodes,
for a higher order of the method they also depend on edges and elements. The agglomeration
process operates mainly on edges and elements, therefore the reduction of degrees of freedom is
particularly appreciable for k > 1. In Table 4.4 we report the differences between the degrees of
freedom of the three datasets in the case k = 3.

In Figure 4.20 we repeat the VEM analysis presented in Section 4.2.1, measuring the quality

104

4.3. MESH QUALITY AGGLOMERATION

Figure 4.18: Meshes Ω0,Ω2,Ω4,Ω6 from datasets DMaze (top), Dλ1
Maze (middle), and Dλ2

Maze
(bottom), with λ1 = 0.25 and λ2 = 1.0.

Figure 4.19: Degrees of freedom of datasets DMaze, Dλ1
Maze, and D

λ2
Maze, for k = 1, 2, 3. Solid,

dashed and dotted lines relate to k = 1, 2, 3 respectively.

105

CHAPTER 4. VERIFICATION OF THE QUALITY INDICATOR

Table 4.4: Degrees of freedom for the meshes in DMaze, Dλ1
Maze, and D

λ2
Maze in the case k = 3.

k = 3 Ω0 Ω1 Ω2 Ω3 Ω4 Ω5 Ω6

DMaze 424 846 1680 3216 6258 12921 26099
Dλ1

Maze 319 625 1195 2377 4553 9508 18811
Dλ2

Maze 155 332 694 1280 2429 5103 10338

indicator and the H1, L2, and L∞ errors over each mesh. We notice how the mesh quality
preserves its rate in the agglomerated datasets, even if the quality score is lower over Dλ1

Maze
and Dλ2

Maze. The lower quality levels are mainly due to the impact of indicator %2D
3 , because

agglomeration generates elements with a higher number of edges. Concerning the errors, the
convergence rates of Dλ1

Maze and Dλ2
Maze remain optimal (as foreseen by the quality indicator).

Moreover, there is almost no difference between the accuracy of the original dataset and those
of the agglomerated ones. This is particularly interesting if combined with the information
from Figure 4.19, i.e., the reduction of the number of degrees of freedom. In practice, after the
agglomeration process, we obtain meshes that produce a performance similar to those of the
original mesh, but with a lower computational cost. In particular, for k = 3, the number of
degrees of freedom in meshes from Dλ2

Maze is less than halved with respect to that of meshes
from DMaze (see Table 4.4), and the error plots in the three norms almost coincide.

Figure 4.20: Mesh quality indicator %2D, H1-seminorm, L2-norm and L∞-norm of the approxi-
mation errors relative to the datasets DMaze, Dλ1

Maze and Dλ2
Maze. Solid, dashed and dotted lines

relate to k = 1, 2, 3 respectively.

106

4.3. MESH QUALITY AGGLOMERATION

Test 2 As the second setting, we consider the four planar meshes defined in [Antonietti
and Manuzzi, 2022], obtained by recursive application of the midpoint strategy (we thank the
authors for kindly sharing these meshes). We denote themMP1,MP2,MP3, andMP4, and
agglomerate them with parameter λ = 0.5, see Figure 4.21. These meshes are particularly
complex, as they contain high numbers of skewed and deformed polygons.

Figure 4.21: Midpoint refined meshes (top) and their agglomerated version (bottom), with
parameter λ = 0.5. From left to right,MP1,MP2,MP3, andMP4.

In this case, we compare the quality and the errors of the original meshMP with those
relative to the agglomerated meshMPλ. In Figure 4.22 we inverted the x−axis, so that for
each plot we have the original mesh on the left and its agglomeration on the right. We report
the quality plot for completeness, even if, in this case, it is not particularly interesting as we
do not have a sequence of refinements. We can only notice how, as for dataset DMaze, the
quality score of the single mesh decreases after the agglomeration. Concerning the errors, we
cannot talk about convergence because we are only considering two meshes per time. However,
we can make some considerations according to the general error estimates (3.24) and (3.25).
If the original mesh MP has mesh size h, then (3.24) states that the order-k VEM should
produce an approximation error εH1 proportional to hk and to the term S := ||u||k+1,Ω + |f |k,Ω.
If we consider a mesh MPλ, similar to MP (i.e., with similar term S) but with mesh size
hλ = αh, we should have an approximation error εH1λ proportional to αkεH1 . The same holds
for the L2 error, using (3.25) and k+ 1, and we can translate these relationships in terms of the
degrees of freedom instead of the mesh size. In conclusion, we can draw the reference triangles
in Figure 4.22 for the different values of k. Note that, as we inverted the x−axis, the triangles
are flipped with respect to the reference triangles in the previous plots. We observe how the
H1 and L2 errors scale properly over all the midpoint meshes after the agglomeration. We are

107

CHAPTER 4. VERIFICATION OF THE QUALITY INDICATOR

significantly reducing the number of degrees of freedom (they are at least halving in each case)
and the approximation error consequently increases, but we maintain optimal error values. Last,
we do not have a theoretical reference for the L∞ error values, hence we only observe that it
scales consistently with the previous two.

Figure 4.22: Mesh quality indicator %2D, H1-seminorm, L2-norm and L∞-norm of the approx-
imation errors relative to the meshes MP1, MP2, MP3, and MP4 and their agglomerated
verions. Solid, dashed and dotted lines relate to k = 1, 2, 3 respectively, and the x−axis is
inverted.

Test 3 For the three-dimensional case, we generated a dataset similar to Dtet-poisson from
Section 4.1.2. In particular, we adopted the same generation strategy but with lower input
parameters t, see Figure 4.23, for generating a sequence of five meshes Ω0, . . .Ω4, with a number
of nodes that doubles at every refinement. We apply the agglomeration algorithm with parameter
λ = 0.5, obtaining a dataset Dλtet-poisson of five agglomerated meshes. For three-dimensional
meshes, the major difference between the original and the agglomerated meshes is in the number
of faces and elements, while the total number of nodes does not decrease significantly. In
Table 4.5 we report statistics about the number of elements in the original and the agglomerated
meshes.

In Figure 4.24 we repeat the VEM analysis presented in Section 4.2.2. The quality of
Dλtet-poisson is lower than that of Dtet-poisson, in accordance with the previous results. The
approximation errors produced by the two datasets in the three norms are very similar, both
in terms of convergence rate and error magnitude. In particular, the VEM converges with an

108

4.3. MESH QUALITY AGGLOMERATION

(a) (b) (c)

Figure 4.23: Meshes Ω0 (a), Ω2 (a), and Ω4 (a) from datasets Dtet-poisson (top), and Dλtet-poisson
(bottom), with λ = 0.5.

Table 4.5: Summary of the number of elements and computational time T for Dλtet-poisson and
Dtet-poisson (in brackets).

#elements #faces #edges #nodes T

Ω0 64 (175) 241 (404) 240 (292) 64 (64) 2.047 · 10−2 (2.887 · 10−2)
Ω1 240 (651) 888 (1434) 830 (965) 183 (183) 8.318 · 10−2 (1.031 · 10−1)
Ω2 568 (1575) 2090 (3384) 1902 (2189) 381 (381) 1.795 · 10−1 (2.492 · 10−1)
Ω3 1155 (3143) 4173 (6640) 3703 (4182) 686 (686) 3.601 · 10−1 (5.015 · 10−1)
Ω4 2039 (5751) 7536 (12036) 6684 (7472) 1188 (1188) 6.041 · 10−1 (9.547 · 10−1)

109

CHAPTER 4. VERIFICATION OF THE QUALITY INDICATOR

optimal rate over the agglomerated dataset, producing a H1 error lower than the one relative
to the original meshes. In the last column of Table 4.5 we report the computational time T
required to assemble and solve the problem for the meshes of the two datasets. Clearly, as the
number of elements, faces, edges, and nodes in Dλtet-poisson is lower than that of Dtet-poisson, the
computational time is also lower. This further enforces the above results: after the agglomeration
process we obtain meshes with fewer elements, cheaper to handle, and that produce very similar
results with respect to the original ones, sometimes even more accurate.

Figure 4.24: Mesh quality indicator %3D, H1-seminorm, L2-norm and L∞-norm of the approxi-
mation errors relative to the datasets Dtet-poisson and Dλtet-poisson.

4.4 Application to Discrete Fracture Networks

This section presents an ongoing work with Drs. F. Vicini, S. Berrone (Dipartimento di
Matematica, Politecnico di Torino), S. Biasotti, G. Manzini, and M. Spagnuolo (Istituto di
Matematica Applicata e Tecnologie Informatiche ‘E. Magenes’, CNR). We test the mesh quality
indicator and the quality agglomeration algorithm in the practical application context of
Discrete Fracture Networks (DFN) [Adler and Thovert, 1999, Fidelibus et al., 2009]. DFN
flow simulations are characterized by complex geometries generated by the use of random
probability distributions to create the computational domain in geological applications. They
are used in a wide range of applications such as pollutant percolation, gas recovery, aquifers, and
reservoir analysis, among others [Decroux and Gosselin, 2013, Panfili and Cominelli, 2014]. The
generation of a conforming mesh discretization in real DFNs with classic tools often leads to a
large number of degrees of freedom to guarantee conformity on fracture intersections. To tackle
this problem, the use of VEM has been proved to be successful in the treatment of tessellations
with very generally shaped elements, and therefore highly versatile in the admissible meshes
[Benedetto et al., 2016, Berrone et al., 2017].

We investigate the application of the agglomeration algorithm on two different DFNs of
increasing complexity. A DFN, or simply network, is a collection of planar domains (representing
fractures), that intersect each other along interfaces. Each domain is initially discretized with

110

4.4. APPLICATION TO DISCRETE FRACTURE NETWORKS

a triangular mesh, according to a given mesh size h. Given the initial discretization, the
algorithm navigates the network and agglomerates neighboring cells trying to optimize the
global quality while respecting conformity constraints along boundaries and interfaces. The
parameter λ regulates the entity of the optimization of each domain, and we assume that the
value λ = 0 corresponds to the original non-agglomerated network. The distinct domains that
compose the network are discretized and agglomerated independently and in parallel, which
significantly speeds up the process. Then, we solve the elliptic problem (3.4) on the original
and the agglomerated networks, imposing some boundary conditions and the continuity of the
solution across interfaces. We use the VEM formulation adopted in [Berrone et al., 2017] (which
is equivalent to the one presented in Section 3.1) for k = 1, 2, 3, and compare the performance.

4.4.1 Simulation on a Simple Network

The first example, denoted Network1, is a network constituted by three planar domains, parallel
to the coordinate axis, meeting along two interfaces. The three domains are meshed with
three different mesh sizes, h0 = 10−1, h1 = 10−2, and h2 = 10−3, and then agglomerated with
parameters λ1 = 0.25 and λ2 = 1.0 (the original mesh is conventionally indicated with λ0 = 0.0).
We note Ωj

i , for i, j = 0, 1, 2, the network with mesh size hi and parameter λj , e.g., Ω2
1 is the

network with mesh size h1 = 10−2, agglomerated with parameter λ2 = 1.0.
For a fixed parameter value λj , the networks obtained for the three different values of h

constitute a dataset Dj = {Ωj
0,Ω

j
1,Ω

j
2}, with decreasing mesh size. We analyze the convergence

rate of the VEM and the error magnitude over the three datasets D0,D1,D2, similarly to what
was done in Section 4.2, to check if the agglomerated networks D1,D2 produce different results
from the original D0. Vice-versa, for a fixed mesh size hi, we have three networks Ω0

i ,Ω1
i ,Ω2

i

with the same size but increasing agglomeration parameter: see the case Ωj
1 in Figure 4.25 for

an example. In this case, we analyze how the number of cells and degrees of freedom varies for
the different λ values, and how this variation impacts the numerical error.

We solve the elliptic problem (3.4) on each Ωj
i , using as ground-truth on the three domains

the functions

f0(x, y) := − 1
10

(1
2 + x

) [
x3 + 8xy

(
x2 + y2

)
atan2 (y, x)

]
, (x, y) ∈ Ωj

i ;

f1(x, z) := − 1
10

(1
2 + x

)
x3 + π

4
5

(1
2 + x

)
x3|z|, (x, z) ∈ Ωj

i ;

f2(y, z) := y(y − 1)(y + 1)z(z − 1), (y, z) ∈ Ωj
i ,

(4.8)

which all have homogeneous Dirichlet boundary conditions. In Figure 4.26 we present the results
produced by the VEM over Network1 : the different colors correspond to the different λ values,
while the solid and dashed lines indicate the H1 and L2 errors, respectively. In other words,
blue lines correspond to dataset D0, red lines to dataset D1, and green lines to dataset D2.

111

CHAPTER 4. VERIFICATION OF THE QUALITY INDICATOR

(a) (b) (c)

Figure 4.25: Quality agglomeration algorithm over Network1 with mesh size h1 = 10−2, colored
with respect to the exact solution (4.8). (a) original network Ω0

1; (b) network Ω1
1 agglomerated

with λ1 = 0.25; (c) network Ω2
1 agglomerated with λ2 = 1.0.

Figure 4.26: Errors in the H1 and L2 norms (solid and dashed lines, respectively) relative to
Network1, for k = 1, 2, 3.

We note how the VEM converges with very similar rates and errors on any dataset, for
k = 1, 2, 3; in particular, the plots in the H1-seminorm are barely distinguishable. However, as
λ increases, the dots indicating the single networks inside each dataset are increasingly shifted
towards the left of the plane, and this effect is amplified by higher k values. This effect indicates
the significant reduction of the degrees of freedom caused by the quality agglomeration, whose
level depends on the agglomeration parameter and whose effect is more appreciable for higher
k values.

A quantitative measure of the above observations is deducible from Table 4.6, which
summarizes the number of cells, degrees of freedom, and numerical errors in each network. It is
split into three sub-tables, concerning the different values of k. We report the total number of
cells in the network because, as verified in Section 4.3, the major difference between the original
and the agglomerated meshes is in the number of cells, while the number of nodes does not
decrease significantly. Note that the number of cells does not depend on k, and it is therefore

112

4.4. APPLICATION TO DISCRETE FRACTURE NETWORKS

Table 4.6: Results of the quality agglomeration algorithm over Network1. We report the number
of cells and DOFs, and the L2 and H1 norms of the computed solution.

network #cells #DOFs ||u− uh||0,Ω |u− uh|1,Ω
k = 1 Ω0

0 184 131 1.7758e-01 1.6816e+00
Ω1

0 143 131 1.9084e-01 1.6207e+00
Ω2

0 52 92 2.8219e-01 1.9004e+00

Ω0
1 1,571 947 1.6651e-02 5.4935e-01

Ω1
1 972 947 2.3599e-02 6.0055e-01

Ω2
1 484 788 3.8770e-02 7.1998e-01

Ω0
2 14,548 7,865 1.6124e-03 1.7183e-01

Ω1
2 8,112 7,865 2.1136e-03 1.7904e-01

Ω2
2 4,687 7,065 3.8983e-03 2.2326e-01

k = 2 Ω0
0 184 629 1.2251e-02 2.6309e-01

Ω1
0 143 547 1.6465e-02 3.1200e-01

Ω2
0 52 287 4.4063e-02 5.5645e-01

Ω0
1 1,571 5,035 3.6072e-04 2.6098e-02

Ω1
1 972 3,837 8.9759e-04 4.4846e-02

Ω2
1 484 2,543 1.7383e-03 6.8635e-02

Ω0
2 14,548 44,825 1.1458e-05 2.5864e-03

Ω1
2 8,112 31,953 2.4618e-05 4.0638e-03

Ω2
2 4,687 23,503 5.4295e-05 6.6139e-03

k = 3 Ω0
0 184 1,311 7.2477e-04 2.2584e-02

Ω1
0 143 1,106 1.8690e-03 3.7121e-02

Ω2
0 52 534 1.1745e-02 1.2751e-01

Ω0
1 1,571 10,694 6.6740e-06 6.7445e-04

Ω1
1 972 7,699 3.4226e-05 1.8136e-03

Ω2
1 484 4,782 8.4998e-05 3.6409e-03

Ω0
2 14,548 96,333 6.9926e-08 2.1951e-05

Ω1
2 8,112 64,153 3.1432e-07 5.3694e-05

Ω2
2 4,687 44,628 8.6702e-07 1.1447e-04

identical across the three sub-tables, but it leads to a different number of DOFs, according to
the order of the VEM. For k = 1, agglomeration with λ1 does not affect the degrees of freedom:
networks Ω0

i and Ω1
i have the same number of DOFs for every i. This is because agglomerating

with a small parameter does not remove mesh nodes, while using λ2 the effects start to become
appreciable. For k = 2, 3 the differences are huge: agglomerating the network Ω2 with λ2 leads
to a reduction of the number of DOFs by a factor of 2.5 (from Ω0

2 to Ω2
2).

113

CHAPTER 4. VERIFICATION OF THE QUALITY INDICATOR

4.4.2 Simulation on a Complex Network

The second example, denoted Network2, contains 86 circular domains, with 100 triangular cells
each, that meet along 159 interfaces. The circular domains are agglomerated with parameters
λ1 = 0.25 and λ2 = 1.0, obtaining three networks Ω0, Ω1, and Ω2, presented in Figure 4.27.

(a) (b) (c)

Figure 4.27: Quality agglomeration algorithm over Network2 : (a) original network Ω0; (b)
network Ω1 agglomerated with λ1 = 0.25; (c) network Ω2 agglomerated with λ2 = 1.0.

We solve the elliptic problem (3.4), imposing Dirichlet boundary conditions on the left
and the right side of the 3D space in which the network is embedded. In particular, we set
a value of 10 for the boundary points on the plane x = 0, representing a pressure applied to
the volume, and a value of 0 on the boundary points on the plane x = 1, see Figure 4.28. On
the boundaries of the domains which do not intersect such two planes, we set homogeneous
Neumann conditions. In this case, we do not have an exact solution, hence we compare the
H1-seminorm and the L2-norm of the computed solution uh, and check how much they differ
from each other for the different λ values.

Statistics on the number of cells and DOFs for each domain are reported in Table 4.7,
together with the H1 and L2 norms of the computed solution. As for Network1, we notice
that the number of cells significantly decreases for increasing values of λ, leading to a small
reduction of the degrees of freedom for k = 1 and a huge drop (up to 50%) for k = 3. The
solutions computed over the different networks, however, differ for a very small factor: around
0.01% in the H1-seminorm and 1% in the L2-norm.

4.4.3 Discussion

The obtained results are encouraging: through the agglomeration algorithm, we are able to
reduce the number of degrees of freedom of a network up to 50% (in particular, when working
with high order formulations of the method), while preserving optimal convergence rate and
at a very small cost in terms of approximation error. This translates into a significant gain in

114

4.4. APPLICATION TO DISCRETE FRACTURE NETWORKS

(a) (b) (c)

Figure 4.28: Computed solution over Network2 : (a) original network Ω0; (b) network Ω1

agglomerated with λ1 = 0.25; (c) network Ω2 agglomerated with λ2 = 1.0.

Table 4.7: Results of the quality agglomeration algorithm over Network2. We report the number
of cells and DOFs, and the L2 and H1 norms of the computed solution.

network #cells #DOFs ||uh||0,Ω |uh|1,Ω
k = 1 Ω0 16,976 11,852 2.3335e+04 1.8707e+01

Ω1 11,959 11,808 2.3333e+04 1.8632e+01
Ω2 6,007 10,134 2.3321e+04 1.8447e+01

k = 2 Ω0 16,976 57,698 2.3331e+04 1.8493e+01
Ω1 11,959 47,576 2.3331e+04 1.8481e+01
Ω2 6,007 32,323 2.3326e+04 1.8431e+01

k = 3 Ω0 16,976 120,520 2.3332e+04 1.8492e+01
Ω1 11,959 95,303 2.3333e+04 1.8487e+01
Ω2 6,007 60,519 2.3331e+04 1.8463e+01

terms of computational cost. In particular, this process is strongly effective in the computation
of several solutions over the same network with a parameter changing at every iteration, e.g.,
time-dependent problems or model reduction problems.

Related Publications

• T. Sorgente, D. Prada, D. Cabiddu, S. Biasotti, G. Patané, M. Pennacchio, S. Bertoluzza,
M. Manzini, and M. Spagnuolo. VEM and the mesh. In SEMA SIMAI Springer Series,
vol. 31(1), pages 1–54, Springer, 2021.

• T. Sorgente, S. Biasotti, M. Manzini, and M. Spagnuolo. The role of mesh quality and
mesh quality indicators in the virtual element method. In Advances in Computational

115

CHAPTER 4. VERIFICATION OF THE QUALITY INDICATOR

Mathematics, vol. 48(1) pages 1–34, 2022.

• T. Sorgente, S. Biasotti, M. Manzini, and M. Spagnuolo. Polyhedral mesh quality indicator.
In Computers and Mathematics with Applications, vol. 114, pages 151-160, Pergamon,
2022.

• T. Sorgente, F. Vicini, S. Berrone, S. Biasotti, G. Manzini, and M. Spagnuolo. Quality-
based agglomeration of discrete fracture networks for the VEM. Ongoing work.

116

C
h

a
p

t
e

r 5
Conclusions

In this work, we analyzed the concept of mesh quality across the existing literature. We
realized that there is some general confusion around this topic, and that, despite many
efforts in the last decades, a comprehensive understanding of how and how much the

accuracy of a numerical solution depends on the mesh is still lacking. Two major strategies are
currently adopted for generating meshes that match a target level of accuracy: (i) to drastically
decrease the mesh size (increase the number of nodes) and generate a huge number of tiny
identical cells, taking advantage of the increasing computational power, or (ii) to analyze the
domain features and generate a small number of cells with higher quality. We decided to deepen
the second approach, restricting our focus to generic polytopal meshes defined for numerical
simulations and, in particular, for the Virtual Element Method.

We defined a mesh quality indicator, i.e., a mathematical instrument to investigate the
local and global quality of a polytopal mesh, directly deduced by the theoretical results on the
convergence of the VEM. We tested the indicator through a series of different experiments, that
showed a significant level of accuracy and reliability. It was shown to be capable of identifying
pathological meshes before the computation of the VEM solution and classifying groups of
meshes according to the quality of the approximation that they will produce. Moreover, when
applied to sequences of mesh refinements, the indicator was able to make accurate predictions
on the convergence rate of the VEM. It is therefore a practical tool to rapidly determine the
behavior of the VEM over a mesh before actually computing the solution.

Based on the mesh quality indicator, we then built a quality agglomeration algorithm, that
modifies an existing mesh in order to maximize its quality. The efficacy of the agglomeration
algorithm has been tested in several scenarios, including the practical problem of solving a
PDE over a discrete fracture network (DFN). After the agglomeration process, we obtained

117

CHAPTER 5. CONCLUSIONS

meshes with a significantly smaller number of elements, faces, edges, and nodes with respect to
the input mesh, that are therefore computationally cheaper to handle. At the same time, the
performance of the VEM over the agglomerated meshes was comparable, and sometimes even
better, than over the input ones.

The routines developed for the implementation of the above concepts have been presented
and made publicly available, together with all the meshes built for the testing phase. In particular,
we defined an algorithm for computing the kernel of a polyhedron, as this information was
needed by the quality indicator. Our algorithm is optimized for the efficient computation of
the kernel of small polyhedra, and, in this, outperforms the other methods available in the
literature.

5.1 Future Work

The analysis of the concept of mesh quality related to the VEM has been satisfactorily carried
out, as proven by the results obtained by the mesh quality indicators. We observe that the
theoretical analysis for the three-dimensional formulation of the VEM is still unripe, and we
hope this work will encourage research on this aspect. An extension of G42D to volumetric
elements, or indications on the relative importance of the quality of the faces with respect to the
quality of the interior, remain open issues. A further step forward could be the inclusion into the
indicator of information on the nature of the physical problem that we want to solve. The current
indicator is problem-independent, but it is intrinsically defined for isotropic problems because
the contribution given by %2D

2 and %3D
2 penalizes anisotropic configurations. An extension to

anisotropic problems would therefore lead to problem-specific indicators, with a consequent
loss of generality.

Regarding the quality agglomeration algorithm, experimental results suggest that the error
in the H1 norm benefits more than the others from the agglomeration process. This seems an
interesting observation, that deserves more accurate investigations. A possible improvement of
the algorithm could be the integration into the process of an optimization step that modifies
the position of the mesh nodes after the agglomeration. This would allow for alignment and
collapsing of multiple edges shared by two adjacent cells. However, the main limitation is the
algorithm computational cost. Despite the use of graph-cut and our efficient method for the
kernel computation, the analysis of dense meshes (especially in 3D) may take significant time
because we need to explore a high number of possible combinations. In such cases, it could be
useful to subdivide the domain into smaller regions, in order to run the algorithm in parallel,
e.g., as done in Section 4.4 for Discrete Fracture Networks examples. However, the proposed
framework is not graph-cut-dependent, and alternative methods for the optimization of the
energy induced by the quality indicator could be considered.

It would be interesting to adapt the quality indicator, and consequently, the quality

118

5.1. FUTURE WORK

agglomeration, to other numerical schemes different from the VEM, such as the Discontinuous
Galerkin method [Cockburn et al., 2012] or schemes defined over elements with curvilinear
edges [Beirão da Veiga et al., 2020, Anand et al., 2020], by opportunely defining a new set of
scalar functions based on appropriate geometrical assumptions.

As already noted in the Introduction 1, the agglomeration process cannot be properly
considered a mesh generation method. The most challenging problem remains the definition
of a method for generating quality polytopal meshes from scratch, and this will surely be a
major focus of our future research. Meanwhile, we plan to employ the quality indicator in a
new quality refinement strategy, with a similar philosophy to the one adopted for the quality
agglomeration. The integration of the refinement and the agglomeration methods will result in
a pipeline really capable of generating adaptive meshes. The first step in this direction will be
the comparative analysis of the results produced by current refinement schemes, from the point
of view of the mesh quality indicator.

Last, we plan to continue sharing our routines on GitHub, so as to create a proper library
over time. We will also collect all the meshes generated in these years into a wide database
of meshes, to be used by practitioners as a reference to test polytopal numerical schemes and
other quality measures.

119

A
p

p
e

n
d

ix A
Algorithms for the Computation of the Kernel of a Polyhedron

In this section, we illustrate our method for computing the kernel of a polyhedron with
a geometric approach, announced in Section 3.4.1. A first version of the method was
published in [Sorgente et al., 2021a], while the algorithms here reported have been described

in [Sorgente et al., 2022c]. It has a modular structure composed of four nested algorithms,
each one calling the next one in its core part (see Figure A.1). It is modular in the sense that
each algorithm can be entirely replaced by another one performing the same operation(s). This
property is particularly useful for making comparisons: one could, for instance, use different
strategies for computing the intersection between a polygon and a plane and simply replace
Algorithm 3, measuring the efficiency from time to time.

Figure A.1: A visual scheme of the whole algorithm.

A.1 Data Structure

We adopt the following data structure inherited by the cinolib library [Livesu, 2019], in which
the code has been written:

121

APPENDIX A. ALGORITHMS FOR THE COMPUTATION OF THE KERNEL OF A
POLYHEDRON

• Points: Array of unordered 3D points.

• Face: Array of unsigned integers associated to a Points array, representing the indices of
the vertices of a face ordered counter-clockwise.

• Polyhedron: Struct composed by a field verts of type Points containing the vertices
and a field faces of type array< Face > containing the faces of a polyhedron.

• Plane: Class defining a plane in the Hessian form, composed by a 3D point n indicating
the unit normal of the plane (i.e., the a, b, c coefficients of the plane equation) and a
number d indicating the distance of the plane from the origin (i.e., the d coefficient of the
plane equation). The plane class also contains three additional points p1, p2, p3 lying on
the plane, useful for the Shewchuck predicates [Shewchuk, 1997].

• Sign: Array of labels (BELOW, ABOVE, or INTER) used to store information on the
position of the elements of a polyhedron (points, edges, or faces) with respect to an
unspecified plane.

Given a plane p, the elements of a polyhedron are classified as follows:

• A point v is labelled as BELOW, ABOVE or INTER provided that the function orient3d-
fast(p.p1, p.p2, p.p3, v) in the Shewchuck predicates library [Shewchuk, 1997] is negative,
positive or zero, within a tolerance of 10−8;

• An edge e is labeled as BELOW (resp. ABOVE) if both its endpoints are BELOW or
INTER (resp. ABOVE or INTER), and as INTER if one point is ABOVE and the other one
is BELOW;

• A face f is labeled as BELOW if all of its points are BELOW, as ABOVE if none of its
points is BELOW, and as INTER otherwise.

The classification of points is computed at the top level of the algorithm with orient3d-fast. For
edges and faces instead, we define a function classify(S) which determines the classification of
an edge or a face from an array S of type Sign containing the classification of its points.

A.2 Polyhedron Kernel

With Algorithm 1 we tackle the general problem: given a polyhedron P , we want to find
the polyhedron K representing its kernel. In addition to P , we also need as input an array
containing the outwards normals of its faces, as it is not always possible to determine the
orientation of a face only from its vertices (for example, with non-convex faces). We require the
face normals explicitly, and not simply a boolean indicating the faces orientation because these
points will be used to define the planes containing the faces of P .

122

A.2. POLYHEDRON KERNEL

Algorithm 1 Polyhedron Kernel
Input: Polyhedron P , Points N (faces normals);
Output: Polyhedron K

1: K := AABB of P ;
2: [optional] shuffle P.faces;
3: for Face f in P.faces do
4: Plane p := plane containing f with normal −N(f);
5: Sign S := orient3d-fast(p.p1, p.p2, p.p3,K.verts);
6: K := Polyhedron-Plane Intersection(K, S, p);
7: if size(K.faces) < 3 then return NULL;
8: end if
9: end for

10: return K;

We initialize K with the axis-aligned bounding box (AABB) of P , i.e., the box with the
smallest volume within which all the vertices of P lie, aligned with the axes of the coordinate
system. Then we recursively “slice” K with a number of planes, generating a sequence of convex
polyhedra Ki, i = 1, . . . ,#P.faces, such that Ki ⊆ Ki−1. For each face f of P , we define the
plane p containing its vertices and with normal vector given by the opposite of the face normal
N(f), that is to say, p.n := −N(f). We consider the plane together with the direction indicated
by p.n, which is equivalent to considering the half-space originating in p and containing its
normal vector. Given this plane, in a Sign array S we store the classification of all the points
in K.verts according to their position with respect to p. For improving the efficiency, we can
set the sign of all points belonging to f to INTER without evaluating their position. In general,
p will separate K into two polyhedra, and between those two we keep the one containing
the vector p.n, which therefore points towards the interior of the element. This operation is
performed by Algorithm 2 (Polyhedron-Plane Intersection), which replaces K with the new
polyhedron. The whole pipeline is illustrated in Figure A.2.

Figure A.2: Pipeline of the kernel computation for a polyhedron. At first step, we compute the
Axis Aligned Bounding Box (AABB) of the polyhedron; then, we iterate on each face f of the
polyhedron (black edges) and cut AABB with the plane induced by f (red edges).

The order in which we consider the faces is not relevant from a theoretical point of view but
turns out to have a huge impact on the performance. For instance, if we imagine computing
the kernel of a non-simply connected object, which is obviously empty, visiting the faces in the
order they are stored may take a very long time, especially if the tessellation of the object is fine.

123

APPENDIX A. ALGORITHMS FOR THE COMPUTATION OF THE KERNEL OF A
POLYHEDRON

This is because, generally, the faces of a tessellated model are numbered somehow coherently
with their neighbors. For this reason, we optionally propose to visit the faces in random order,
or to shuffle P.faces, and to return an empty polyhedron if, after a “slice”, K has less than
three faces. In this way, the empty kernel of a non-simply connected object with thousands of
faces could be detected in just three or four iterations. When this command is turned on, we
say the algorithm is run in shuffle mode.

We point out that cutting a convex polyhedron with a plane will always generate two convex
polyhedra, and since we start from the bounding box (which is convex), we are guaranteed that
K will always be a convex polyhedron. No matter how weird the initial element P is, from this
point on we will only be dealing with convex polyhedra and convex faces. Last, we could as well
start by considering the polyhedron’s convex hull instead, but it would be less efficient because
the convex hull costs in general O(n logn) while the AABB is only O(n), and we would still
need to intersect the polyhedron with each of its faces.

A.3 Polyhedron-Plane Intersection

With Algorithm 2, we intersect a polyhedron P with a plane p, given in S the position of the
vertices of P with respect to p. The intersection will in general determine two polyhedra, and
between these two we are interested in the one containing the normal vector of p (conventionally
called the one “above” the plane and indicated with A). This algorithm is inspired from [Ahn
and Shashkov, 2008], where the authors define an algorithm for the intersection of a convex
polyhedron with a half-space.

The first part of Algorithm 2 is called the “clipping” part (recalling the terminology from
[Ahn and Shashkov, 2008]) and consists in clipping each face of P with the plane p, see
Figure A.3(a). It corresponds to the for loop: we iterate on P.faces, each time extracting from
S the labels fs of the vertices fv of the current face and using the classify function. Faces
classified as BELOW are discarded, ABOVE faces are added to A together with their vertices,
and INTER faces are split by Algorithm 3 (Polygon-Plane Intersection). While we visit every
face only once, the same does not hold for vertices, therefore we check if a vertex is already in
A.verts before adding it.

This simple idea of checking in advance the faces classification resolves several implementation
issues, and in some cases significantly improves the efficiency of the algorithm. By doing this,
we make sure that only the faces properly intersected by the plane are passed to Algorithm 3,
so that we do not need to implement all the particular cases of intersections in a single point,
or along an edge, or of faces contained in the plane. In addition, for every face not passed to
Algorithm 3 we have an efficiency improvement, and this happens frequently in models with
many co-planar faces.

If at the end of this step, A contains at least three INTER points, given that A and all its

124

A.3. POLYHEDRON-PLANE INTERSECTION

Algorithm 2 Polyhedron-Plane Intersection
Input: Polyhedron P , Sign S, Plane p
Output: Polyhedron A

1: for Face f in P.faces do
2: Points fv := vertices in P.verts relative to f ;
3: Sign fs := S|fv

4: switch classify(fs) do
5: case BELOW break;
6: case ABOVE
7: A.verts← fv, A.faces← f ;
8: case INTER
9: (V,F):=Polygon-Plane Intersection(fv, f, fs, p);

10: A.verts← V, A.faces← F ;
11: end for
12: Points capV := vertices in A.verts which are INTER;
13: if size(capV) < 3 then return A;
14: end if
15: Face capF := indices of the capV vertices ordered CCW;
16: if capF /∈ A.faces then A.faces← capF ;
17: end if
18: return A;

(a) (b)

Figure A.3: Intersection of a polyhedron with a plane: (a) clipping and (b) capping of a cube.

125

APPENDIX A. ALGORITHMS FOR THE COMPUTATION OF THE KERNEL OF A
POLYHEDRON

faces are convex, these vertices will define a “cap” face of A completely contained in p, see
Figure A.3(b). We can optimize the algorithm by storing in a Sign array the classification of
the vertices in A, updating it with the sign of every vertex added in the switch loop. Note that
in this case, we do not need to use orient3d-fast: we already know the sign of the old vertices
and the new vertices will obviously be of type INTER. In our data structure, the vertices of the
faces are ordered counter-clockwise (CCW): to sort the points contained in capV we project
them onto a plane, drop one coordinate, and apply the algorithm proposed in [Baeldung, 2021]
for 2D points. Note that if the cap face was not convex it would make no sense to order its
vertices, but the intersection between a plane and a convex polyhedron will always generate
convex faces. Last, we need to check that this new face is not already present in A: for example,
if p was tangent to P along a face, this face could be added to A both as an ABOVE face and
as a cap face. If this is not the case, we add capF to A.faces but we do not need to add any
vertex from capV, as we can assume they are all already present in A.verts.

A.4 Polygon-Plane Intersection

Algorithm 3 describes the intersection of a polygon (representing a face of the polyhedron),
defined by an array of 3D points polyV and an array of indices polyF, with a plane p. As before,
we also require as input an array polys containing the position of the vertices of polyV with
respect to p. In analogy to Algorithm 2, the intersection will in general determine two polygons
and we are only interested in the one above the plane, see Figure A.4(a), defined by points
aboveV and indexes aboveF. We generically say that a vertex v is added to above meaning that
v is added to aboveV and its index idv is added to aboveF.

This time we iterate on the edges of polyF, extract the signs s1, s2 of the edge endpoints,
and switch between the three possible classifications of the edge. In order to avoid duplicates,
for each couple of consecutive points v1, v2, we only accept to add to above the second point v2

or the intersection point v, but never v1. We are here taking advantage of the fact that all faces
are oriented coherently.

If the edge is of type BELOW, we ignore it unless v2 is INTER (i.e. it lies exactly on the
plane), in which case we add it to above. In case of ABOVE edges, we add v2 to above. For edges
of type INTER, we perform Algorithm 4 (Line-Plane Intersection) and find a new point v. Its
index idv will be equal to the maximum value in polyF plus one, just to make sure that we are
not using the index of an existing point. We always add v to above, and if v1 is BELOW we also
add v2. As already noted in the previous section, treating separately the weak intersections
(the BELOW and ABOVE cases) makes the code simpler and more efficient.

126

A.4. POLYGON-PLANE INTERSECTION

Algorithm 3 Polygon-Plane Intersection
Input: Points polyV, Face polyF, Sign polys, Plane p.
Output: Points aboveV, Face aboveF.

1: for i = 1 : size(polyF) do
2: id1 := polyF(i), id2 := polyF(i+ 1);
3: v1 := polyV (id1), v2 := polyV (id2);
4: s1 := polys(id1), s2 := polys(id2);
5: switch classify(s1, s2) do
6: case BELOW
7: if v2 is INTER then
8: aboveV ← v2, aboveF ← id2;
9: end if

10: case ABOVE
11: aboveV ← v2, aboveF ← id2;
12: case INTER
13: v := Line-Plane Intersection(v1, v2, p);
14: idv := max(polyF)+1;
15: aboveV ← v, aboveF ← idv;
16: if v1 is BELOW then
17: aboveV ← v2, aboveF ← id2;
18: end if
19: end for
20: return aboveV, aboveF ;

(a) (b)

Figure A.4: (a) Intersection between a polygon and a plane, with the above part colored in
green. (b) Intersection between a line and a plane.

127

APPENDIX A. ALGORITHMS FOR THE COMPUTATION OF THE KERNEL OF A
POLYHEDRON

A.5 Line-Plane Intersection

This last algorithm computes the intersection point between a line, given as a couple of vertices,
and a plane. We use a very simple and well-known procedure, and we report it here only for
completeness.

Algorithm 4 Line-Plane Intersection
Input: vertices v1, v2, Plane p.
Output: vertex v.

1: N := (p.n) · (v1 − p.p1);
2: D := (p.n) · (v2 − v1);
3: assert(D! = 0)
4: t := −N/D;
5: return v := v1 + t (v2 − v1);

The intersection vertex v is defined as the linear combination of vertices v1 and v2, with
a coefficient t which may also fall outside the standard range [0, 1]. The coefficient t is found
as the negative ratio between two scalar products involving the plane normal n and another
generic point on the plane s, other than v1 and v2 see Fig A.4(b). The normal is p.n, and we
can use one of the three points on the plane p.p1, p.p2, or p.p3 as s. If the denominator D
vanishes, it means either that the line is contained in the plane (if N = 0 as well), or that the
line does not intersect the plane. We treat these exceptions as errors because in Algorithm 3 we
only call this algorithm after checking that the edge (v1, v2) properly intersects the plane p.

A.6 Tests and discussions

We test our method in different settings, comparing its performance to the results obtained
by our implementation of the algebraic method in CGAL. Experiments have been performed
on a MacBook Pro equipped with a 2,3 GHz Intel Core i5 processor with four CPUs and
16GB of RAM. Source code is written in C++ and it is accessible at https://github.com/

TommasoSorgente/polyhedron_kernel, together with all datasets.
In the following subsections, we will present some plots and tables: we point out here some

notation remarks. Regarding plots, we color the CGAL computational time in blue and ours
in red, both on a logarithmic scale. On the x−axis, depending on the context, we have the
number of elements in the mesh or the number of vertices of the single model. In the several
tables presented, we first report the number of elements or vertices of the mesh. Since all the
considered objects have genus zero, and their surface is purely triangular, Euler’s formula states
that the number of faces is approximately equal to twice the number of vertices. Therefore,
we only indicate the number of vertices, but the number of faces is easily computable. Then
the computational times (in seconds) are shown, and the ratio between CGAL time and ours.
Note that ratios are computed from the original time values, while in the tables we indicate

128

https://github.com/TommasoSorgente/polyhedron_kernel
https://github.com/TommasoSorgente/polyhedron_kernel

A.6. TESTS AND DISCUSSIONS

truncated times; therefore they do not exactly correspond to the division between the values in
the previous columns.

A.6.1 Polyhedral meshes

We first test our algorithm in the setting it was developed for, i.e., the computation of the
kernels of elements in a 3D tessellation. To do so, we use datasets Dpoly-parallel, Dpoly-poisson, and
Dpoly-random from Section 4.1.2. The meshes contained in these datasets are typical examples of
tessellations that can be found in numerical analysis for the approximation of a PDE. Each
of them contains five tessellations of the unit cube with decreasing mesh size, from 100 to
100K vertices. The resulting meshes contain between 100 and 600K elements, most of which
are tetrahedra, and 20% of them are generic polyhedra (in blue in Figure A.6) obtained by the
union of two tetrahedra. Non-tetrahedral elements are generated by the agglomeration of two
tetrahedral elements, therefore they may also be non-convex, see Figure A.5.

Figure A.5: Examples of non-convex elements found in polyhedral meshes from Dpoly-parallel,
Dpoly-poisson, and Dpoly-random, and relative kernels.

In Table A.1 we report, for each mesh of each dataset, the number of elements, the
computational times for both methods, and the ratio between the CGAL time and ours.
Moreover, at the bottom of Figure A.6, we plot the times against the number of elements in
the mesh. It is visible how both methods scale linearly with respect to the number of elements
since the kernel of the elements is computed separately and independently for each element.
Our method performs 8 to 11 times faster than CGAL, which approximately means one order
of magnitude. As the elements in these meshes have either 4 faces, if they are tetrahedra or
6 faces, if they are the union of two tetrahedra, computing their kernel in a geometrical way
results much faster than solving a linear problem. In this case, we did not use the shuffle mode,
as the number of faces was so small that the visiting order resulted not relevant.

A.6.2 Refinements

As the second setting for our tests, instead of increasing the number of elements, we measure
the asymptotic behavior of the method as the number of faces and vertices of a single element
explodes. We selected two polyhedra from the dataset Thingi10K [Zhou and Jacobson, 2016]:
the so-called spiral (ThingiID: 60246) and vase (ThingiID: 85580). These models are given in
the form of a surface triangular mesh, but we treat them as single volumetric cells, analyzing the

129

APPENDIX A. ALGORITHMS FOR THE COMPUTATION OF THE KERNEL OF A
POLYHEDRON

Figure A.6: Polyhedral meshes and time plots from datasets Dpoly-parallel, Dpoly-poisson, and
Dpoly-random, with non-tetrahedral elements highlighted in blue.

Table A.1: Computational times for polyhedral meshes.

dataset mesh #elements our CGAL ratio

Dpoly-parallel Ω0 130 0.04 0.21 4.89
Ω1 1647 0.17 1.79 10.69
Ω2 16200 1.68 19.4 11.55
Ω3 129600 13.94 142.36 10.21
Ω4 530842 53.47 588.43 11

Dpoly-poisson Ω0 140 0.04 0.3 8.05
Ω1 1876 0.29 2.54 8.91
Ω2 16188 2.64 24.79 9.38
Ω3 146283 24.24 212.23 8.75
Ω4 601393 86.77 770.66 8.88

Dpoly-random Ω0 147 0.03 0.19 6.8
Ω1 1883 0.28 2.62 9.41
Ω2 18289 2.91 27.11 9.33
Ω3 161512 26.51 228.08 8.6
Ω4 598699 80.15 735.55 9.18

performance of both algorithms as we refine them. In Table A.2 we report the computational
times and the ratio for each refinement.

The spiral model is refined through a midpoint strategy: each face is subdivided by connecting
its barycenter to its other vertices. As a consequence, the planes induced by its faces remain
the same and the kernels of the refined models are all equal (Figure A.7). In this example,
our method performs on average 5.77 times better than the algebraic method (see Table A.2),
and the computational time scales with a constant rate (see the plot in Figure A.7). Our
implementation takes advantage of the fact that Algorithm 2 recognizes the several co-planar
faces and always performs Algorithm 3 the same number of times, independently of the number
of faces.

The vase model is more complex, as it presents a curved surface that generates a lot of
different planes defining the kernel. Moreover, we refined this model using Loop’s algorithm,
and this generated faces lying on completely new planes. This explains the difference between

130

A.6. TESTS AND DISCUSSIONS

(a) (b)

Figure A.7: (a) Original spiral model and its first refinement, with identical kernels. (b) Original
vase model and its first refinement: small perturbations in the faces lead to slightly different
kernels.

the two kernels in Figure A.7: the general shape is similar, but the more faces we add to our
model the more faces we find on the resulting kernel. Our geometric method improves the
performance of the algebraic one by a factor of around 2 in the first refinements, but in the last
two meshes the complexity increases drastically and CGAL results faster (see Table. A.2). Even
the shuffle mode did not particularly improve the performance, being the object star-shaped.

Table A.2: Computational times for the spiral and vase refinements.

dataset mesh #vertices our CGAL ratio

spiral Ω0 64 0.004 0.01 3.07
Ω1 250 0.007 0.04 6.27
Ω2 994 0.02 0.14 6.56
Ω3 3970 0.08 0.43 5.38
Ω4 15874 0.32 1.77 5.54
Ω5 63490 1.05 8.24 7.86

vase Ω0 99 0.02 0.03 1.55
Ω1 390 0.04 0.12 2.56
Ω2 1554 0.31 0.92 2.94
Ω3 6210 3.24 6.1 1.88
Ω4 24261 47.49 37.24 0.78
Ω5 36988 196.7 56.75 0.29

A.6.3 Complex models

Last, we try to compute the kernel of some more complex models, taken again from the dataset
Thingi10K and treated as single volumetric cells. Even if our method is designed for dealing
with polyhedra of relatively small size, we already saw in Section A.6.2 how our algorithm is
still able to compute the kernel of objects with thousands of vertices and faces. We filtered the
Thingi10K dataset, selecting only “meaningful” models: objects with one connected component,

131

APPENDIX A. ALGORITHMS FOR THE COMPUTATION OF THE KERNEL OF A
POLYHEDRON

genus zero, Euler characteristic greater than zero, closed, not degenerate, and of size smaller
than 1MB. Note that, even applying these filters, the majority of the models are not star-shaped,
i.e., with empty kernel. We discarded a few models for computational and stability reasons; for
instance because one of the two algorithms failed to process them. The final collection, which
we will call the Thingi dataset, contains exactly 1806 distinct volumetric models.

Figure A.8: Thingi dataset computational times. From left to right: all Thingi dataset, models
with empty kernel, models with non-empty kernel.

In Figure A.8 we show the times distribution for the whole Thingi dataset, with a particular
focus on the difference between models with empty kernels and models with non-empty kernels.
Globally, the overall cost of computing all kernels is 173 seconds with our method against 518
seconds with CGAL, for an improvement of 3 times. When the kernel is empty, our algorithm is
always faster than CGAL: the main reason for this is the usage of the shuffle mode, which makes
it extremely cheap to recognize non-star-shaped elements. When the model is star-shaped, the
distinction between the two methods is not always clear, as the result mainly depends on the
shape and size of the object.

To further investigate this point, in Figure A.9 we present the kernel computation of 10
selected star-shaped examples from this dataset. In the top row we have models on which the
geometric method is by far more efficient: plus (ThingiID: 1120761), star (ThingiID: 313883),
flex (ThingiID: 827640) and cross (ThingiID: 313882). In the middle row, models for which
the performance are similar: part (ThingiID: 472063), super-ellipse (ThingiID: 40172), bot-eye
(ThingiID: 37276) and button (ThingiID: 1329185). Then, in the bottom row, we show models
on which the algebraic method is preferable: rt4-arm (ThingiID: 39353), ball (ThingiID: 58238),
acorn (ThingiID: 815480), muffin (ThingiID: 101636). The computational times, together with
the ones relative to the whole dataset, are reported in Table A.3.

Once again, we notice that the size of the model impacts the performance of our method.
Looking at Figure A.8, we can see how the models for which our method performs worse than
CGAL are all in the right part of the plane (the one relative to models with a high number of
vertices). At the same time, the number of vertices of the element, by itself, is not sufficient to

132

A.6. TESTS AND DISCUSSIONS

Table A.3: Computational times for complex models. The first number relative to Thingi dataset
indicates the number of models instead of the number of vertices.

mesh #vertices our-shuffle CGAL ratio

plus 448 0.004 0.09 22.75
star 9633 0.4 5.15 12.93
flex 834 0.02 0.27 12.76
cross 3914 0.19 2.1 11.12
part 5382 2.58 6.94 2.69

super-ellipse 290 0.02 0.04 2.05
bot-eye 453 0.03 0.03 0.96
button 1227 0.1 0.08 0.75
rt4-arm 655 0.13 0.09 0.67
ball 660 0.24 0.04 0.15
acorn 4114 4.35 0.55 0.13
muffin 8972 11.73 0.54 0.04

Thingi dataset 1806 172.88 518.2 2.99

justify the supremacy of one method over the other. For example, models star and flex have
very different sizes and times, but their ratio is quite similar; the same holds for models parts
and super-ellipse or ball and acorn.

The shape of the object also plays an important role: over models with numerous adjacent
co-planar faces like plus, star (whose bottom is completely flat), and cross, our method is
preferable even when the size grows. As already seen in Section A.6.2, the presence of co-planar
faces significantly improves the performance of our method. Vice-versa, over elements with
significant curvatures like rt4-arm, acorn, or muffin, the algebraic method performs similarly
or better than ours, even on relatively small models like bot-eye. Over these models, it is still
possible to compute a correct kernel with the geometric approach, but the ratio between CGAL
time and ours is in the order of 10−1, or even 10−2.

Related Publications

• T. Sorgente, S. Biasotti, and M. Spagnuolo. A geometric approach for computing the
kernel of a polyhedron. In Smart Tools and Apps for Graphics - Eurographics Italian
Chapter Conference, pages 11–19, P. Frosini, D. Giorgi, S. Melzi, E. Rodolà editors, 2021.

• T. Sorgente, S. Biasotti, and M. Spagnuolo. Polyhedron kernel computation using a
geometric approach. In Computers & Graphics, vol. 105, pages 94-104, 2022.

133

APPENDIX A. ALGORITHMS FOR THE COMPUTATION OF THE KERNEL OF A
POLYHEDRON

plus star flex cross

part super-ellipse bot-eye button

rt4-arm ball acorn muffin

Figure A.9: Examples of our kernel evaluation for complex models. In the top row, models on
which the geometric method is more efficient; in the middle, models for which the performance
are similar; in the bottom row, models on which the algebraic method is preferable.

134

A
p

p
e

n
d

ix B
Algorithms for the Generation of the 2D Datasets

We take a closer look at how the datasets presented in Section 4.1.1 are built, and
we precisely compute the quantities An and en defined in (4.1). All algorithms have
been written using the cinolib library [Livesu, 2019]. We recall that a dataset is a

finite mesh sequence D = {Ωn}n=0,...,N , ordered decreasingly with respect to the mesh size, and
that the domain Ω is the unit square (0, 1)2.

Each of the following datasets is built around (and often named after) a particular polyg-
onal element contained in it, which is meant to stress one or more assumptions or indica-
tors. Their construction was originally presented in [Sorgente et al., 2021b]. All the meshes
generated in this section are publicly accessible at https://github.com/TommasoSorgente/

vem-quality-dataset.

B.1 Hybrid Datasets

The first dataset, DTriangle, contains only triangular meshes that are built by inserting a number
of points in the domain and connecting them in a Delaunay triangulation. The point set is defined
through the Poisson Disk Sampling algorithm proposed in [Bridson, 2007], empirically adjusting
the distance between points (called “radius” in the original paper) in order to generate meshes
with the desired number of vertices. Points are then connected in a Delaunay triangulation using
the well-known Triangle library [Shewchuk, 2005], with the default parameters configuration.
In DTriangle, An and en are almost constant, as no constraints are imposed on the triangulation
process.

The construction of datasets DMaze and DStar is characterized by the insertion in Ω of a
number of polygonal elements and by a tessellation algorithm. They are built around (and

135

https://github.com/TommasoSorgente/vem-quality-dataset
https://github.com/TommasoSorgente/vem-quality-dataset

APPENDIX B. ALGORITHMS FOR THE GENERATION OF THE 2D DATASETS

named after) an initial polygon E = E(tn) depending on a deformation parameter tn ∈ [0, 1),
which is used to deform E. This parameter directly depends on the mesh number (i.e. tn → 1
as n → N), and it can be adjusted to improve or worsen the quality of the polygon E (the
higher, the worse). At refinement step n, mesh Ωn is created by inserting a number of identical
copies of the deformed polygon E(tn) (opportunely resized) in the domain Ω, and tessellating
the rest of Ω using Triangle. Note that, a whole family of other datasets may be generated by
simply defining a new initial polygon. More examples can be found in [Attene et al., 2021].

(a) (b)

Figure B.1: Initial polygons E(t0), E(t2), E(t4), E(t6) from datasets DMaze(a) and DStar(b).

• The initial polygon E(tn) for dataset DMaze is the 10-sided element shown in Figure B.1(a),
with vertices:

(0, 1), (0, 0), (1, 0), (1, 0.75), (0.5, 0.75),
(

0.5, 0.5 + tn
4

)
,

(
0.75 + tn

4 , 0.5 + tn
4

)
,(

0.75 + tn
4 , 0.25− tn

4

)
,

(
0.25− tn

4 , 0.25− tn
4

)
,

(
0.25− tn

4 , 1
)
.

As tn → 1, the length of the shortest edge (the one with vertices (0, 1) and (0.25− tn/4, 1))
goes to zero, and so does the area of E(tn).

• For building the initial polygon E(tn) of dataset DStar (Figure B.1(b)), we first build a
ī-sided regular polygon, with ī = 8(1 + b10tnc) and vertices v0 = (1, 0), vi = σ(vi−1) for
i = 1, . . . , ī, being σ(v) the rotation centered at (0, 0) of vertex v by an angle of 2π/̄i. Then
we project every odd-indexed vertex towards the barycenter of E(tn): v′2j+1 = s v2j+1,
for j = 0, . . . , ī−1

2 , where the projection factor s ∈ (0, 1) is gradually decreased until the
angles at the even-indexed vertices become smaller than (1− tn)π/3. As tn → 1 we have
an increasing number of edges (from 8 to almost 90), the minimum angle and the area
decrease to zero while the length of every edge increases.

Once we defined the initial polygon E(tn), we can build the corresponding dataset through
Algorithm 5. We have some initial parameters, which are set a priori and remain untouched:
the number of meshes in the dataset N , the area of the initial polygon at the first step d0

and the deformation range T = [tmin, tmax]. In this work we set N = 10, d0 = 0.03, which
corresponds to 3% of the domain, and T = [0, 0.95]. Then we have three main parameters,
en ∈ N, tn ∈ T and dn ∈ (0, d0), which respectively regulate the number of initial polygons
inserted, the deformation of these polygons and their area. In particular, en increases inversely

136

B.1. HYBRID DATASETS

to dn (Ωn+1 has twice as polygons as Ωn, with halved areas), so that the percentage of the
domain covered by polygons (not triangles) is preserved all across the dataset. Due to the
complicated shapes of some initial polygons, it may be hard to ask for exactly |E(tn)| = dn,
therefore we only impose |E(tn)| ≤ dn.

Several options are possible for setting en, tn and dn, and the speed at which these quantities
vary strongly affects the geometrical qualities of the meshes in the dataset. In our datasets,
en increases exponentially, tn increases linearly inside T and dn decreases exponentially. The
exponential increase of the number of initial polygons inserted in the domain may lead to
intersections between them, or with the domain boundaries. To avoid this phenomenon, we
inserted a while loop in Algorithm 5 which decreases dn until no intersections occur: this ensures
stability to the algorithm, but in practice, it activates only for very dense meshes and it typically
runs only a few iterations.

Last, when all polygons have been inserted in Ω, the Triangle algorithm is used to generate
a Delaunay triangulation. The already inserted polygons are considered as holes in the domain,
and we set no limitations on the number of Steiner points that may appear in the triangulation
process. We also impose to have no angles smaller than 20 degrees and set a maximum triangle
area constraint equal to dn. Due to the freedom left to the Triangle algorithm, it is not possible
to estimate An and en precisely; hence, the relative values reported in Table 4.1 have been
measured a posteriori.

Algorithm 5 Hybrid datasets generation
Input: initial polygon E(t), initial parameters N , d0, T ;
Output: dataset D

1: for n = 0, . . . , N do
2: set the main parameters: en := 2n, tn := n tmax−tmin

N , dn := d0/2n;
3: use Poisson Disk Sampling with r = 1/

√
2en to find en points {pi}i=1,...,en in Ω;

4: generate polygon E(tn) with |E(tn)| ≤ dn;
5: insert a copy of E(tn) centered around every pi;
6: while polygon E(tn) intersects other polygons or the boundary of Ω do
7: dn := dn − ε;
8: generate a polygon E(tn) with |E(tn)| ≤ dn;
9: insert a copy of E(tn) centered around every pi;

10: end while
11: mesh Ωn := Triangle(Ω), considering polygons E(tn) as holes;
12: D ← Ωn;
13: end for
14: return D;

137

APPENDIX B. ALGORITHMS FOR THE GENERATION OF THE 2D DATASETS

B.2 Mirroring Datasets

The construction of DJenga, DSlices and DUlike, at every step n ≥ 1, consists in a first algorithm
for iteratively generating a base mesh Ω̂n from the previous base mesh Ω̂n−1, followed by a
mirroring technique which returns the computational mesh Ωn. The base mesh generation
algorithm is different for each dataset (Algorithms 6, 7 and 8), while the mirroring algorithm
(Algorithm 9) is common to all three datasets. Algorithms 6, 7 and 8 depend on two initial
parameters: N indicates the number of meshes in the dataset and Nel indicates the number
of elements to insert at each step. For mirroring datasets we set Nel = 1, while for multiple
mirroring datasets (described in the next section) we will set Nel = 4.

Figure B.2: Non-mirrored base meshes Ω̂0, Ω̂1, Ω̂2, Ω̂3 from datasets DJenga(top), DSlices(middle),
and DUlike(bottom).

In the DJenga base mesh shown in Figure B.2(top) we have a top bar, a bottom bar and a
right square which are fixed independently of n, and n+ 1 stripe elements in the left part of
the domain. At each refinement step n ≥ 1, a new rectangular element is created by splitting
in two equal parts the leftmost stripe in the previous base mesh, and consequently updating

138

B.2. MIRRORING DATASETS

top bar and bottom bar with new vertices and edges. Therefore, all elements in Ω̂n, except for
top bar and bottom bar, are rectangles with height equal to 1/2 and basis ranging from 1/2
to 1/2n+1. Once the base mesh Ω̂n is generated, the mirroring algorithm Mirror is recursively
applied for n times to generate the computational mesh Ωn, as described in Algorithm 6. When
computing An and en, we can restrict our calculations to the base mesh, because these ratios
are not affected by the mirroring algorithm. In particular, the longest edge in the base mesh
is the upper edge of top bar, which is never split, while the shortest edge is the basis of the
leftmost stripe, which halves at each step: this causes en ∼ 2n. The top bar is also the element
with the greatest area (together with bottom bar and right square), which is constantly equal to
1/4, while the leftmost stripe has area 1/2 · 1/2n+1 = 1/2n+2, therefore An ∼ 2n.

Algorithm 6 DJenga dataset generation
Input: number of meshes N , number of elements Nel

Output: dataset DJenga
1: for n = 0, . . . , N do
2: top bar := {(0, 0.75), (1, 0.75), (1, 1), (0, 1)};
3: bottom bar := {(0, 0), (1, 0), (1, 0.25), (0, 0.25)};
4: right square := {(0.5, 0.25), (1, 0.25), (1, 0.75), (0.5, 0.75)};
5: vector b := sample nNel equally spaced points inside interval (0, 0.5);
6: for i = 1, . . . , size(b) do
7: stripe[i] := {(b[i− 1], 0.25), (b[i], 0.25), (b[i], 0.75), (b[i− 1], 0.75)};
8: top bar ← (b[i], 0.75);
9: bottom bar ← (b[i], 0.25);

10: end for
11: mesh Ω̂n := {top bar, bottom bar, right square, stripe};
12: for i = 1, . . . , n do
13: mesh Ω̂n := Mirror(Ω̂n);
14: end for
15: DJenga ← Ω̂n;
16: end for
17: return DJenga;

In the DSlices base meshes shown in Figure B.2(middle), at each step n ≥ 0, we add the
vertices with coordinates (2−i, 1− 2−i) and (1− 2−i, 2−i) for i = 1, . . . , n+ 2, and we connect
them to the vertices (0, 0) and (1, 1). As a result, at each iteration, we create a couple of new
polygons, called upper slice and lower slice, symmetrical with respect to the diagonal, and we
add them to the base mesh. The area of the two inner triangles (the biggest polygons in the base
mesh) is constantly equal to 1/4. For evaluating the area of the two most external polygons, we
consider them as the union of the two identical triangles obtained by splitting the polygons
along the diagonal (the one connecting the vertices with coordinates (0, 1) and (1, 0)). Then the
smallest area in the base mesh is the sum of the areas of two equal triangles with basis

√
2 /2

and height 2−n/
√

2 , and simple calculations lead to An ∼ 2n. Last, we notice that all the edges

139

APPENDIX B. ALGORITHMS FOR THE GENERATION OF THE 2D DATASETS

in the base mesh have lengths between 1 and
√

2 , because no edge is ever split, hence en ∼ c.

Algorithm 7 DSlices dataset generation
Input: number of meshes N , number of elements Nel

Output: dataset DSlices
1: for n = 0, . . . , N do
2: vector b := [2−1, 2−2, . . . , 2−nNel];
3: for i = 1, . . . , size(b) do
4: upper slice[i] := {(0, 0), (b[i], 1− b[i]), (1, 1), (b[i+ 1], 1− b[i+ 1])};
5: lower slice[i] := {(0, 0), (1− b[i],b[i]), (1, 1), (1− b[i+ 1],b[i+ 1])};
6: end for
7: mesh Ω̂n := {upper slice, lower slice};
8: for i = 1, . . . , n do
9: mesh Ω̂n := Mirror(Ω̂n);

10: end for
11: DSlices ← Ω̂n;
12: end for
13: return DSlices;

In the DUlike base meshes shown in Figure B.2(bottom), at each step n ≥ 0 we insert 2n

U -shaped continuous polylines inside the domain. We have an internal rectangle and a sequence
of concentric equispaced polygons U-like culminating with an external polygon U-ext. This
last element is not different from the polygons U-like, but is created separately because we
need to split its lower edge in order to match the base mesh that will appear below it during
the mirroring algorithm. In every base mesh, the shortest edge is the one corresponding to
the width of each U-like, which measures 2−(n+1), and the longest edges are the left and right
boundaries of the domain. This causes en ∼ 2n. Said e the shortest edge, the smallest area is
the one of rectangle, equal to 2e(1/2 + e), and the biggest area is the one relative to U-ext,
equal to 3e− 2e2. We have

An = 3− 2e
1 + 2e = 3− 2(2−(n+1))

1 + 2(2−(n+1))
= 3− 2−n

1 + 2−n ∼ c.

B.3 Multiple Mirroring Datasets

Multiple mirroring datasets are built with the exact same algorithms as the mirroring datasets,
changing the parameter Nel. This parameter regulates the number of elements generated in
each base mesh of the dataset. In particular, datasets DJenga4, DSlices4 and DUlike4 are defined
by setting Nel = 4. An example of a multiple mirroring dataset with Nel = 4 is shown in
Figure B.3, where the first three base meshes of DUlike4 are presented. The Nel value influences
ratios An and en: if An, en ∼ 2n for Nel = 1, these quantities become asymptotic to 24n when
Nel = 4, except for the cases in which the ratios were constant (see Table 4.1).

140

B.3. MULTIPLE MIRRORING DATASETS

Algorithm 8 DUlike dataset generation
Input: number of meshes N , number of elements Nel

Output: dataset DUlike
1: for n = 0, . . . , N do
2: vector b := sample 2nNel equally spaced points inside interval (0, 0.5);
3: for i = 1, . . . , size(b) do
4: U-like[i] := {(b[i], 1), (b[i],b[i]), (1− b[i],b[i]), (1− b[i], 1), (1− b[i+ 1], 1),
5: (1− b[i+ 1],b[i+ 1]), (b[i+ 1],b[i+ 1]), (b[i+ 1], 1)};
6: end for
7: rectangle := {(b[end], 1), (b[end],b[end]), (1− b[end],b[end]), (1− b[end], 1)};
8: U-ext := {(0, 1), (0, 0), (1, 0), (1, 1), (1− b[0], 1), (1− b[0],b[0]), (b[0],b[0]), (b[0], 1)};
9: for b ∈ b do

10: U-ext ← {(b, 0), (1− b, 0)};
11: end for
12: mesh Ω̂n := {U-ext, U-like, rectangle};
13: for i = 1, . . . , n do
14: mesh Ω̂n = Mirror(Ω̂n);
15: end for
16: DUlike ← Ω̂n;
17: end for
18: return DUlike;

Figure B.3: Non-mirrored base meshes Ω̂0, Ω̂1 and Ω̂2 from dataset DUlike4.

141

APPENDIX B. ALGORITHMS FOR THE GENERATION OF THE 2D DATASETS

B.4 The Mirroring Algorithm

The mirroring algorithm (Algorithm 9) generates four adjacent copies of any polygonal mesh
M defined over the domain Ω = (0, 1)2. In cinolib, a polygonal mesh can be defined by a vector
verts containing all its vertices and a vector polys containing all its polygons. The result of the
algorithm is therefore a polygonal meshM′, generated by some vectors new-verts and new-polys,
containing four times the number of vertices and polygons ofM. When iterated a sufficient
number of times, this construction allows us to obtain a number of vertices and degrees of
freedom in each mesh of the mirroring datasets that is comparable to that of the meshes at the
same refinement level in hybrid datasets. Vector new-verts contains all vertices v ∈ verts copied
four times and translated by vectors (0, 0), (1, 0), (1, 1) and (0, 1) respectively. The coordinates
of all vertices in new-verts are divided by 2 so that all new points lie in the same domain as the
input mesh. Vector new-polys is simply vector polys repeated four times. A final cleaning step is
required to remove duplicate vertices and edges that may arise in the mirroring process, for
example, if the initial meshM has vertices along its boundary.

Algorithm 9 Mesh mirroring
Input: base meshM
Output: mirrored meshM′

1: verts := vertices ofM; polys := polygons ofM;
2: new-verts := verts;
3: for vertex v ∈ verts do new-verts ← v + (1, 0);
4: end for
5: for vertex v ∈ verts do new-verts ← v + (1, 1);
6: end for
7: for vertex v ∈ verts do new-verts ← v + (0, 1);
8: end for
9: for vertex v ∈ new-verts do v := v/2;

10: end for
11: new-polys := [polys, polys, polys, polys];
12: M′ := {new-verts, new-polys};
13: remove duplicated vertices and edges fromM′;
14: returnM′;

Related Publications

• T. Sorgente, D. Prada, D. Cabiddu, S. Biasotti, G. Patané, M. Pennacchio, S. Bertoluzza,
M. Manzini, and M. Spagnuolo. VEM and the mesh. In SEMA SIMAI Springer Series,
vol. 31(1), pages 1–54, Springer, 2021.

• T. Sorgente, S. Biasotti, M. Manzini, and M. Spagnuolo. The role of mesh quality and
mesh quality indicators in the virtual element method. In Advances in Computational

142

B.4. THE MIRRORING ALGORITHM

Mathematics, vol. 48(1) pages 1–34, 2022.

143

Bibliography

[Abdelkader et al., 2020] Abdelkader, A., Bajaj, C. L., Ebeida, M. S., Mahmoud, A. H.,
Mitchell, S. A., Owens, J. D., and Rushdi, A. A. (2020).

Vorocrust: Voronoi meshing without clipping.
ACM Transactions on Graphics (TOG), 39(3):1–16.

[Adams and Fournier, 2003] Adams, R. A. and Fournier, J. J. F. (2003).
Sobolev spaces.
Pure and Applied Mathematics. Academic Press, Amsterdam, 2 edition.

[Adler and Thovert, 1999] Adler, P. M. and Thovert, J.-F. (1999).
Fractures and fracture networks, volume 15.
Springer Science & Business Media.

[Aghdaii et al., 2012] Aghdaii, N., Younesy, H., and Zhang, H. (2012).
5–6–7 meshes: Remeshing and analysis.
Computers & Graphics, 36(8):1072–1083.

[Ahmad et al., 2013] Ahmad, B., Alsaedi, A., Brezzi, F., Marini, L. D., and Russo, A. (2013).
Equivalent projectors for virtual element methods.
Computers & Mathematics with Applications, 66:376–391.

[Ahn and Shashkov, 2008] Ahn, H. T. and Shashkov, M. (2008).
Geometric algorithms for 3D interface reconstruction.
In Proceedings of the 16th international meshing roundtable, pages 405–422. Springer.

[Aiffa and Flaherty, 2003] Aiffa, M. and Flaherty, J. (2003).
A geometrical approach to mesh smoothing.
Computer methods in applied mechanics and engineering, 192(39-40):4497–4514.

[Alliez et al., 2003] Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., and Desbrun, M.
(2003).

Anisotropic polygonal remeshing.
In ACM SIGGRAPH 2003 Papers, pages 485–493. -.

[Alliez et al., 2005] Alliez, P., Cohen-Steiner, D., Yvinec, M., and Desbrun, M. (2005).
Variational tetrahedral meshing.

145

BIBLIOGRAPHY

In ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05, pages 617–625, New York, NY, USA.
Association for Computing Machinery.

[Alliez et al., 2008] Alliez, P., Ucelli, G., Gotsman, C., and Attene, M. (2008).
Recent advances in remeshing of surfaces.
Shape analysis and structuring, pages 53–82.

[Anand et al., 2020] Anand, A., Ovall, J. S., Reynolds, S. E., and Weiser, S. (2020).
Trefftz finite elements on curvilinear polygons.
SIAM Journal on Scientific Computing, 42(2):A1289–A1316.

[Antonietti et al., 2021a] Antonietti, P. F., Beirão da Veiga, L., and Manzini, G., editors
(2021a).

The Virtual Element Method and its Applications.
SEMA-SIMAI Series. Springer.
(to appear).

[Antonietti et al., 2021b] Antonietti, P. F., Berrone, S., Busetto, M., and Verani, M. (2021b).
Agglomeration-based geometric multigrid schemes for the virtual element method.
arXiv preprint arXiv:2112.11080.

[Antonietti et al., 2016] Antonietti, P. F., Cangiani, A., Collis, J., Dong, Z., Georgoulis, E. H.,
Giani, S., and Houston, P. (2016).

Review of discontinuous galerkin finite element methods for partial differential equations on
complicated domains.

In Building bridges: connections and challenges in modern approaches to numerical partial
differential equations, pages 281–310. Springer.

[Antonietti and Manuzzi, 2022] Antonietti, P. F. and Manuzzi, E. (2022).
Refinement of polygonal grids using convolutional neural networks with applications to

polygonal discontinuous galerkin and virtual element methods.
Journal of Computational Physics, 452:110900.

[Antonietti et al., 2018] Antonietti, P. F., Manzini, G., and Verani, M. (2018).
The fully nonconforming Virtual Element method for biharmonic problems.
M3AS Math. Models Methods Appl. Sci., 28(2).

[Armstrong et al., 2015] Armstrong, C. G., Fogg, H. J., Tierney, C. M., and Robinson, T. T.
(2015).

Common themes in multi-block structured quad/hex mesh generation.
Procedia Engineering, 124:70–82.

[Attene et al., 2021] Attene, M., Biasotti, S., Bertoluzza, S., Cabiddu, D., Livesu, M., Patané,
G., Pennacchio, M., Prada, D., and Spagnuolo, M. (2021).

Benchmarking the geometrical robustness of a virtual element Poisson solver.

146

BIBLIOGRAPHY

Mathematics and Computers in Simulation, 190:1392–1414.

[Attene and Spagnuolo, 2000] Attene, M. and Spagnuolo, M. (2000).
Automatic surface reconstruction from point sets in space.
In Computer Graphics Forum, volume 19-3, pages 457–465. Wiley Online Library.

[Au et al., 1998] Au, P., Dompierre, J., Labbé, P., Labb, P., Guibault, F., Guibault, F., and
Camarero, R. (1998).

Proposal of benchmarks for 3d unstructured tetrahedral mesh optimization.
In In Proceedings of the 7th International Meshing RoundTable’98. Citeseer.

[Aurenhammer, 1987] Aurenhammer, F. (1987).
Power diagrams: properties, algorithms and applications.
SIAM Journal on Computing, 16(1):78–96.

[Aurenhammer, 1991] Aurenhammer, F. (1991).
Voronoi diagrams—a survey of a fundamental geometric data structure.
ACM Computing Surveys (CSUR), 23(3):345–405.

[Baeldung, 2021] Baeldung (2021).
Baeldung guides and courses.
https://www.baeldung.com/cs/sort-points-clockwise.

[Baker, 1989] Baker, T. J. (1989).
Automatic mesh generation for complex three-dimensional regions using a constrained

delaunay triangulation.
Engineering with Computers, 5(3):161–175.

[Baker, 2005] Baker, T. J. (2005).
Mesh generation: Art or science?
Progress in Aerospace Sciences, 41(1):29–63.

[Barrett, 1996] Barrett, K. (1996).
Jacobians for isoparametric finite elements.
Communications in numerical methods in engineering, 12(11):755–766.

[Bawin et al., 2021] Bawin, A., Henrotte, F., and Remacle, J.-F. (2021).
Automatic feature-preserving size field for three-dimensional mesh generation.
International Journal for Numerical Methods in Engineering, 122(18):4825–4847.

[Beall and Shephard, 1997] Beall, M. W. and Shephard, M. S. (1997).
A general topology-based mesh data structure.
International Journal for Numerical Methods in Engineering, 40(9):1573–1596.

[Beirão da Veiga et al., 2013] Beirão da Veiga, L., Brezzi, F., Cangiani, A., Manzini, G., Marini,
L. D., and Russo, A. (2013).

Basic principles of virtual element methods.

147

https://www.baeldung.com/cs/sort-points-clockwise

BIBLIOGRAPHY

Mathematical Models & Methods in Applied Sciences, 23:119–214.

[Beirão da Veiga et al., 2014] Beirão da Veiga, L., Brezzi, F., Marini, L. D., and Russo, A.
(2014).

The Hitchhiker’s guide to the virtual element method.
Mathematical Models and Methods in Applied Sciences, 24(8):1541–1573.

[Beirão da Veiga et al., 2021] Beirão da Veiga, L., Dassi, F., Manzini, G., and Mascotto, L.
(2021).

Virtual elements for Maxwell’s equations.
arXiv preprints, arXiv: 2102.00950.

[Beirão da Veiga et al., 2017] Beirão da Veiga, L., Dassi, F., and Russo, A. (2017).
High-order virtual element method on polyhedral meshes.
Computers & Mathematics with Applications, 74:1110–1122.

[Beirão da Veiga and Manzini, 2014] Beirão da Veiga, L. and Manzini, G. (2014).
A virtual element method with arbitrary regularity.
IMA Journal on Numerical Analysis, 34(2):782–799.
DOI: 10.1093/imanum/drt018, (first published online 2013).

[Beirão da Veiga and Manzini, 2015] Beirão da Veiga, L. and Manzini, G. (2015).
Residual a posteriori error estimation for the virtual element method for elliptic problems.
ESAIM: Mathematical Modelling and Numerical Analysis, 49:577–599.

[Beirão da Veiga et al., 2019a] Beirão da Veiga, L., Manzini, G., and Mascotto, L. (2019a).
A posteriori error estimation and adaptivity in hp virtual elements.
Numer. Math., 143:139–175.

[Beirão da Veiga et al., 2019b] Beirão da Veiga, L., Mora, D., and Vacca, G. (2019b).
The Stokes complex for virtual elements with application to Navier–Stokes flows.
J. Sci. Comput., 81:990–1018.

[Beirão da Veiga and Vacca, 2020] Beirão da Veiga, L. and Vacca, G. (2020).
Sharper error estimates for virtual elements and a bubble-enriched version.
arXiv preprint arXiv:2005.12009.

[Beirão da Veiga et al., 2020] Beirão da Veiga, L., Brezzi, F., Marini, L., and Russo, A. (2020).
Polynomial preserving virtual elements with curved edges.
Mathematical Models and Methods in Applied Sciences, 30(08):1555–1590.

[Beirão da Veiga et al., 2014] Beirão da Veiga, L., Lipnikov, K., and Manzini, G. (2014).
The mimetic finite difference method for elliptic problems, volume 11.
Springer.

[Beirão da Veiga et al., 2017] Beirão da Veiga, L., Lovadina, C., and Russo, A. (2017).
Stability analysis for the virtual element method.

148

BIBLIOGRAPHY

Mathematical Models and Methods in Applied Sciences, 27(13):2557–2594.

[Benedetto et al., 2014] Benedetto, M. F., Berrone, S., Pieraccini, S., and Scialò, S. (2014).
The virtual element method for discrete fracture network simulations.
Computer Methods in Applied Mechanics and Engineering, 280(0):135 – 156.

[Benedetto et al., 2016] Benedetto, M. F., Berrone, S., and Scialò, S. (2016).
A globally conforming method for solving flow in discrete fracture networks using the virtual

element method.
Finite Elements in Analysis and Design, 109:23–36.

[Benvenuti et al., 2019] Benvenuti, E., Chiozzi, A., Manzini, G., and Sukumar, N. (2019).
Extended virtual element method for the Laplace problem with singularities and discontinu-

ities.
Computer Methods in Applied Mechanics and Engineering, 356:571 – 597.

[Benzley et al., 1995] Benzley, S. E., Perry, E., Merkley, K., Clark, B., and Sjaardama, G.
(1995).

A comparison of all hexagonal and all tetrahedral finite element meshes for elastic and
elasto-plastic analysis.

In Proceedings, 4th international meshing roundtable, volume 17, pages 179–191. Citeseer.

[Bern and Eppstein, 1992] Bern, M. and Eppstein, D. (1992).
Mesh generation and optimal triangulation.
Computing in Euclidean geometry, 1:23–90.

[Bern and Plassmann, 2000] Bern, M. W. and Plassmann, P. E. (2000).
Mesh generation.
Handbook of computational geometry, 38.

[Berrone et al., 2017] Berrone, S., Benedetto, M., Borio, A., Pieraccini, S., and Scialò, S. (2017).
The virtual element method for the transport of passive scalars in discrete fracture networks.
In European Conference on Numerical Mathematics and Advanced Applications, pages 501–

508. Springer.

[Berrone et al., 2018] Berrone, S., Borio, A., and Manzini (2018).
SUPG stabilization for the nonconforming virtual element method for advection–diffusion–

reaction equations.
Computer Methods in Applied Mechanics and Engineering, 340:500–529.

[Bertoluzza et al., 2021] Bertoluzza, S., Manzini, G., Pennacchio, M., and Prada, D. (2021).
Stabilization of the nonconforming virtual element method.
Computers & Mathematics with Applications.

[Biasotti et al., 2014] Biasotti, S., Falcidieno, B., Giorgi, D., and Spagnuolo, M. (2014).
Mathematical tools for shape analysis and description.

149

BIBLIOGRAPHY

Synthesis Lectures on Computer Graphics and Animation, 6(2):1–138.

[Blacker and Stephenson, 1991] Blacker, T. D. and Stephenson, M. B. (1991).
Paving: A new approach to automated quadrilateral mesh generation.
International journal for numerical methods in engineering, 32(4):811–847.

[Boier-Martin et al., 2004] Boier-Martin, I., Rushmeier, H., and Jin, J. (2004).
Parameterization of triangle meshes over quadrilateral domains.
In Proceedings of the 2004 Eurographics/ACM SIGGRAPH symposium on Geometry process-

ing, pages 193–203.

[Boissonnat, 1984] Boissonnat, J.-D. (1984).
Geometric structures for three-dimensional shape representation.
ACM Transactions on Graphics (TOG), 3(4):266–286.

[Boissonnat et al., 2000] Boissonnat, J.-D., Devillers, O., Teillaud, M., and Yvinec, M. (2000).
Triangulations in cgal.
In Proceedings of the sixteenth annual symposium on Computational geometry, pages 11–18.

[Boissonnat and Oudot, 2005] Boissonnat, J.-D. and Oudot, S. (2005).
Provably good sampling and meshing of surfaces.
Graphical Models, 67(5):405–451.

[Boissonnat and Yvinec, 1998] Boissonnat, J.-D. and Yvinec, M. (1998).
Algorithmic geometry.
Cambridge university press.

[Bommes et al., 2013a] Bommes, D., Campen, M., Ebke, H.-C., Alliez, P., and Kobbelt, L.
(2013a).

Integer-grid maps for reliable quad meshing.
ACM Transactions on Graphics (TOG), 32(4):1–12.

[Bommes et al., 2013b] Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M.,
and Zorin, D. (2013b).

Quad-mesh generation and processing: A survey.
In Computer Graphics Forum, volume 32-6, pages 51–76. Wiley Online Library.

[Bommes et al., 2009] Bommes, D., Zimmer, H., and Kobbelt, L. (2009).
Mixed-integer quadrangulation.
ACM Transactions On Graphics (TOG), 28(3):1–10.

[Boost, 2021] Boost (2021).
Boost C++ Libraries.
http://www.boost.org/.

[Boots et al., 2009] Boots, B., Sugihara, K., Chiu, S. N., and Okabe, A. (2009).
Spatial tessellations: concepts and applications of Voronoi diagrams.

150

http://www.boost.org/

BIBLIOGRAPHY

John Wiley & Sons.

[Borouchaki et al., 1995] Borouchaki, H., Hecht, F., Saltel, E., and George, P. (1995).
Reasonably efficient delaunay based mesh generator in 3 dimensions.
In Proceedings 4th International Meshing Roundtable, pages 3–14. Citeseer.

[Botsch et al., 2010] Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., and Lévy, B. (2010).
Polygon mesh processing.
CRC press.

[Boykov and Kolmogorov, 2004] Boykov, Y. and Kolmogorov, V. (2004).
An experimental comparison of min-cut/max-flow algorithms for energy minimization in

vision.
IEEE transactions on pattern analysis and machine intelligence, 26(9):1124–1137.

[Boykov et al., 2001] Boykov, Y., Veksler, O., and Zabih, R. (2001).
Fast approximate energy minimization via graph cuts.
IEEE Transactions on pattern analysis and machine intelligence, 23(11):1222–1239.

[Brenner et al., 2017] Brenner, S. C., Guan, Q., and Sung, L.-Y. (2017).
Some estimates for virtual element methods.
Computational Methods in Applied Mathematics, 17(4):553–574.

[Brenner and Sung, 2018] Brenner, S. C. and Sung, L.-Y. (2018).
Virtual element methods on meshes with small edges or faces.
Mathematical Models and Methods in Applied Sciences, 28(07):1291–1336.

[Brezzi et al., 2005] Brezzi, F., Lipnikov, K., and Shashkov, M. (2005).
Convergence of the mimetic finite difference method for diffusion problems on polyhedral

meshes.
SIAM Journal on Numerical Analysis, 43(5):1872–1896.

[Brezzi and Marini, 2013] Brezzi, F. and Marini, L. D. (2013).
Virtual element methods for plate bending problems.
Computer Methods in Applied Mechanics and Engineering, 253:455–462.

[Bridson, 2007] Bridson, R. (2007).
Fast Poisson disk sampling in arbitrary dimensions.
SIGGRAPH sketches, 10:1.

[Brückler et al., 2022] Brückler, H., Gupta, O., Mandad, M., and Campen, M. (2022).
The 3D Motorcycle Complex for Structured Volume Decomposition.
Computer Graphics Forum.

[Campen et al., 2016] Campen, M., Silva, C. T., and Zorin, D. (2016).
Bijective maps from simplicial foliations.
ACM Transactions on Graphics (TOG), 35(4):1–15.

151

BIBLIOGRAPHY

[Cangiani et al., 2014] Cangiani, A., Georgoulis, E. H., and Houston, P. (2014).
hp-version discontinuous galerkin methods on polygonal and polyhedral meshes.
Mathematical Models and Methods in Applied Sciences, 24(10):2009–2041.

[Cangiani et al., 2017a] Cangiani, A., Georgoulis, E. H., Pryer, T., and Sutton, O. J. (2017a).
A posteriori error estimates for the virtual element method.
Numerische Mathematik, pages 1–37.

[Cangiani et al., 2016] Cangiani, A., Gyrya, V., and Manzini, G. (2016).
The non-conforming virtual element method for the Stokes equations.
SIAM Journal on Numerical Analysis, 54(6):3411–3435.

[Cangiani et al., 2017b] Cangiani, A., Manzini, G., and Sutton, O. (2017b).
Conforming and nonconforming virtual element methods for elliptic problems.
IMA Journal on Numerical Analysis, 37:1317–1354.

[Carr et al., 2006] Carr, N. A., Hoberock, J., Crane, K., and Hart, J. C. (2006).
Rectangular multi-chart geometry images.
In Proceedings of the fourth Eurographics symposium on Geometry processing.

[Certik et al., 2019] Certik, O., Gardini, F., Manzini, G., Mascotto, L., and Vacca, G. (2019).
The p- and hp-versions of the virtual element method for elliptic eigenvalue problems.
Computers & Mathematics with Applications.
published online: 31 October 2019.

[Certik et al., 2018] Certik, O., Gardini, F., Manzini, G., and Vacca, G. (2018).
The virtual element method for eigenvalue problems with potential terms on polytopic

meshes.
Applications of Mathematics, 63(3):333–365.

[Chalmeta et al., 2013] Chalmeta, R., Hurtado, F., Sacristán, V., and Saumell, M. (2013).
Measuring regularity of convex polygons.
Computer-Aided Design, 45(2):93–104.

[Chen et al., 2019] Chen, W., Zheng, X., Ke, J., Lei, N., Luo, Z., and Gu, X. (2019).
Quadrilateral mesh generation i: Metric based method.
Computer Methods in Applied Mechanics and Engineering, 356:652–668.

[Cherchi et al., 2016] Cherchi, G., Livesu, M., and Scateni, R. (2016).
Polycube simplification for coarse layouts of surfaces and volumes.
In Computer Graphics Forum, volume 35-5, pages 11–20. Wiley Online Library.

[Ciarlet, 2002] Ciarlet, P. G. (2002).
The finite element method for elliptic problems.
SIAM.

[Cignoni et al., 2003] Cignoni, P., Montani, C., Rocchini, C., and Scopigno, R. (2003).

152

BIBLIOGRAPHY

External memory management and simplification of huge meshes.
IEEE Transactions on Visualization and Computer Graphics, 9(4):525–537.

[Cockburn et al., 2008] Cockburn, B., Dong, B., and Guzmán, J. (2008).
A superconvergent ldg-hybridizable galerkin method for second-order elliptic problems.
Mathematics of Computation, 77(264):1887–1916.

[Cockburn et al., 2012] Cockburn, B., Karniadakis, G. E., and Shu, C.-W. (2012).
Discontinuous Galerkin methods: theory, computation and applications, volume 11.
Springer Science & Business Media.

[Cordova and Barth, 1988] Cordova, J. and Barth, T. (1988).
Grid generation for general 2-d regions using hyperbolic equations.
In 26th Aerospace Sciences Meeting, page 520.

[CoreForm, 2021] CoreForm (2021).
Coreform.
https://coreform.com/products/coreform-cubit/government/.

[Coxeter, 1938] Coxeter, H. S. M. (1938).
Regular skew polyhedra in three and four dimension, and their topological analogues.
Proceedings of the London Mathematical Society, 2(1):33–62.

[Coxeter, 1973] Coxeter, H. S. M. (1973).
Regular polytopes.
Courier Corporation.

[Cubit, 2021] Cubit (2021).
Cubit.
https://cubit.sandia.gov.

[De Floriani et al., 1985] De Floriani, L., Falcidieno, B., and Pienovi, C. (1985).
Delaunay-based representation of surfaces defined over arbitrarily shaped domains.
Computer Vision, Graphics, and Image Processing, 32(1):127–140.

[Decroux and Gosselin, 2013] Decroux, B. and Gosselin, O. (2013).
Computation of effective dynamic properties of naturally fractured reservoirs: Comparison

and validation of methods.
In EAGE Annual Conference & Exhibition incorporating SPE Europec. OnePetro.

[Dey, 2006] Dey, T. K. (2006).
Curve and surface reconstruction: algorithms with mathematical analysis, volume 23.
Cambridge University Press.

[Dey and Sun, 2006] Dey, T. K. and Sun, J. (2006).
Defining and computing curve-skeletons with medial geodesic function.
In Symposium on geometry processing, volume 6, pages 143–152.

153

BIBLIOGRAPHY

[Di Pietro and Droniou, 2019] Di Pietro, D. A. and Droniou, J. (2019).
The Hybrid High-Order method for polytopal meshes, volume 19.
Springer.

[Dong et al., 2006] Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., and Hart, J. C. (2006).
Spectral surface quadrangulation.
In ACM SIGGRAPH 2006 Papers, pages 1057–1066. .

[Du et al., 1999] Du, Q., Faber, V., and Gunzburger, M. (1999).
Centroidal voronoi tessellations: Applications and algorithms.
SIAM review, 41(4):637–676.

[Dupont and Scott, 1980] Dupont, T. and Scott, R. (1980).
Polynomial approximation of functions in sobolev spaces.
Mathematics of Computation, 34(150):441–463.

[Edelsbrunner et al., 2001] Edelsbrunner, H. et al. (2001).
Geometry and topology for mesh generation.
Cambridge University Press.

[Edelsbrunner and Mücke, 1994] Edelsbrunner, H. and Mücke, E. P. (1994).
Three-dimensional alpha shapes.
ACM Transactions on Graphics (TOG), 13(1):43–72.

[Edelsbrunner and Shah, 1994] Edelsbrunner, H. and Shah, N. R. (1994).
Triangulating topological spaces.
In Proceedings of the tenth annual symposium on Computational geometry, pages 285–292.

[Erten et al., 2009] Erten, H., Üngör, A., and Zhao, C. (2009).
Mesh smoothing algorithms for complex geometric domains.
In Proceedings of the 18th international meshing roundtable, pages 175–193. Springer.

[Fabri and Pion, 2009] Fabri, A. and Pion, S. (2009).
Cgal: The computational geometry algorithms library.
In Proceedings of the 17th ACM SIGSPATIAL international conference on advances in

geographic information systems, pages 538–539.

[Fang et al., 2016] Fang, X., Xu, W., Bao, H., and Huang, J. (2016).
All-hex meshing using closed-form induced polycube.
ACM Transactions on Graphics (TOG), 35(4):1–9.

[Fidelibus et al., 2009] Fidelibus, C., Cammarata, G., and Cravero, M. (2009).
Hydraulic characterization of fractured rocks.

[Fortune, 1995] Fortune, S. (1995).
Voronoi diagrams and delaunay triangulations.
Computing in Euclidean geometry, pages 225–265.

154

BIBLIOGRAPHY

[Freitag, 1997] Freitag, L. A. (1997).
On combining laplacian and optimization-based mesh smoothing techniques.
Technical report, Argonne National Lab., IL (United States).

[Freitag and Plassmann, 2000] Freitag, L. A. and Plassmann, P. (2000).
Local optimization-based simplicial mesh untangling and improvement.
International Journal for Numerical Methods in Engineering, 49(1-2):109–125.

[Frey and George, 2007] Frey, P. J. and George, P.-L. (2007).
Mesh generation: application to finite elements.
Iste.

[Fu et al., 2016] Fu, X.-M., Bai, C.-Y., and Liu, Y. (2016).
Efficient volumetric polycube-map construction.
In Computer Graphics Forum, volume 35-7, pages 97–106. Wiley Online Library.

[Funaro, 1997] Funaro, D. (1997).
Spectral elements for transport-dominated equations, volume 1.
Springer Science & Business Media.

[Gao et al., 2017] Gao, X., Jakob, W., Tarini, M., and Panozzo, D. (2017).
Robust hex-dominant mesh generation using field-guided polyhedral agglomeration.
ACM Transactions on Graphics (TOG), 36(4):1–13.

[Gao et al., 2019] Gao, X., Shen, H., and Panozzo, D. (2019).
Feature preserving octree-based hexahedral meshing.
In Computer graphics forum, volume 38-5, pages 135–149. Wiley Online Library.

[Gardini et al., 2019] Gardini, F., Manzini, G., and Vacca, G. (2019).
The nonconforming virtual element method for eigenvalue problems.
ESAIM: Mathematical Modelling and Numerical Analysis, 53:749–774.

[Garimella, 2002] Garimella, R. V. (2002).
Mesh data structure selection for mesh generation and fea applications.
International journal for numerical methods in engineering, 55(4):451–478.

[Geuzaine and Remacle, 2009] Geuzaine, C. and Remacle, J.-F. (2009).
Gmsh: A 3-d finite element mesh generator with built-in pre-and post-processing facilities.
International journal for numerical methods in engineering, 79(11):1309–1331.

[Gillette et al., 2012] Gillette, A., Rand, A., and Bajaj, C. (2012).
Error estimates for generalized barycentric interpolation.
Advances in computational mathematics, 37(3):417–439.

[Goldberg and Tarjan, 1988] Goldberg, A. V. and Tarjan, R. E. (1988).
A new approach to the maximum-flow problem.
Journal of the ACM (JACM), 35(4):921–940.

155

BIBLIOGRAPHY

[Gordon and Hall, 1973] Gordon, W. J. and Hall, C. A. (1973).
Transfinite element methods: blending-function interpolation over arbitrary curved element

domains.
Numerische Mathematik, 21(2):109–129.

[Gordon and Thiel, 1982] Gordon, W. J. and Thiel, L. C. (1982).
Transfinite mappings and their application to grid generation.
Applied Mathematics and Computation, 10:171–233.

[Gregson et al., 2011] Gregson, J., Sheffer, A., and Zhang, E. (2011).
All-hex mesh generation via volumetric polycube deformation.
In Computer graphics forum, volume 30-5, pages 1407–1416. Wiley Online Library.

[Hatcher, 2002] Hatcher, A. (2002).
Algebraic Topology.
Cambridge University Press.

[Herrmann, 1976] Herrmann, L. R. (1976).
Laplacian-isoparametric grid generation scheme.
Journal of the Engineering Mechanics Division, 102(5):749–756.

[Ho-Le, 1988] Ho-Le, K. (1988).
Finite element mesh generation methods: a review and classification.
Computer-aided design, 20(1):27–38.

[Hong and Elber, 2022] Hong, Q. Y. and Elber, G. (2022).
Detection and computation of conservative kernels of models consisting of freeform curves

and surfaces, using inequality constraints.
Computer Aided Geometric Design, page 102075.

[Huang and Wang, 2020] Huang, W. and Wang, Y. (2020).
Anisotropic mesh quality measures and adaptation for polygonal meshes.
Journal of Computational Physics, 410:109368.

[Hughes et al., 2005] Hughes, T. J., Cottrell, J. A., and Bazilevs, Y. (2005).
Isogeometric analysis: Cad, finite elements, nurbs, exact geometry and mesh refinement.
Computer methods in applied mechanics and engineering, 194(39-41):4135–4195.

[Ito et al., 2009] Ito, Y., Shih, A. M., and Soni, B. K. (2009).
Octree-based reasonable-quality hexahedral mesh generation using a new set of refinement

templates.
International Journal for Numerical Methods in Engineering, 77(13):1809–1833.

[Jacobson and Panozzo, 2017] Jacobson, A. and Panozzo, D. (2017).
Libigl: prototyping geometry processing research in c++.
In SIGGRAPH Asia 2017 courses, pages 1–172. -.

156

BIBLIOGRAPHY

[Kälberer et al., 2007] Kälberer, F., Nieser, M., and Polthier, K. (2007).
Quadcover-surface parameterization using branched coverings.
In Computer graphics forum, volume 26-3, pages 375–384. Wiley Online Library.

[Knupp, 2012] Knupp, P. (2012).
Introducing the target-matrix paradigm for mesh optimization via node-movement.
Engineering with Computers, 28(4):419–429.

[Knupp, 2000] Knupp, P. M. (2000).
Achieving finite element mesh quality via optimization of the jacobian matrix norm and

associated quantities. part ii—a framework for volume mesh optimization and the condition
number of the jacobian matrix.

International Journal for numerical methods in engineering, 48(8):1165–1185.

[Knupp, 2001] Knupp, P. M. (2001).
Algebraic mesh quality metrics.
SIAM journal on scientific computing, 23(1):193–218.

[Kolmogorov and Zabin, 2004] Kolmogorov, V. and Zabin, R. (2004).
What energy functions can be minimized via graph cuts?
IEEE transactions on pattern analysis and machine intelligence, 26(2):147–159.

[Kong and Rosenfeld, 1989] Kong, T. and Rosenfeld, A. (1989).
Digital topology: Introduction and survey.
Computer Vision, Graphics, and Image Processing, 48(3):357–393.

[Kovalevsky, 1989] Kovalevsky, V. (1989).
Finite topology as applied to image analysis.
Computer Vision, Graphics, and Image Processing, 46(2):141–161.

[Lawson, 1977] Lawson, C. L. (1977).
Software for c1 surface interpolation.
In Mathematical software, pages 161–194. Elsevier.

[Lee and Preparata, 1979] Lee, D.-T. and Preparata, F. P. (1979).
An optimal algorithm for finding the kernel of a polygon.
J. ACM, 26(3):415–421.

[Lee et al., 1980] Lee, K., Huang, M., Yu, N., and Rubbert, P. (1980).
Grid generation for general three-dimensional configurations.
NASA. Langley Research Center Numerical Grid Generation Tech.

[Lévy, 2014] Lévy, B. (2014).
Restricted voronoi diagrams for (re)-meshing surfaces and volumes.
In 8th International Conference on Curves and Surfaces, volume 6, page 14.

[Lévy and Filbois, 2015] Lévy, B. and Filbois, A. (2015).

157

BIBLIOGRAPHY

Geogram: a library for geometric algorithms.

[Lévy and Liu, 2010] Lévy, B. and Liu, Y. (2010).
Lp centroidal voronoi tessellation and its applications.
ACM Transactions on Graphics (TOG), 29(4):1–11.

[Li et al., 1995] Li, T., McKeag, R., and Armstrong, C. (1995).
Hexahedral meshing using midpoint subdivision and integer programming.
Computer methods in applied mechanics and engineering, 124(1-2):171–193.

[Liseikin, 2006] Liseikin, V. D. (2006).
A computational differential geometry approach to grid generation.
Springer Science & Business Media.

[Liseikin, 2017] Liseikin, V. D. (2017).
Grid generation methods, volume 1.
Springer.

[Liu and Joe, 1994] Liu, A. and Joe, B. (1994).
Relationship between tetrahedron shape measures.
BIT Numerical Mathematics, 34(2):268–287.

[Liu et al., 2015] Liu, L., Sheng, Y., Zhang, G., and Ugail, H. (2015).
Graph cut based mesh segmentation using feature points and geodesic distance.
In 2015 International Conference on Cyberworlds (CW), pages 115–120. IEEE.

[Liu et al., 2009] Liu, Y., Wang, W., Lévy, B., Sun, F., Yan, D.-M., Lu, L., and Yang, C. (2009).
On centroidal voronoi tessellation—energy smoothness and fast computation.
ACM Transactions on Graphics (ToG), 28(4):1–17.

[Livesu, 2019] Livesu, M. (2019).
cinolib: a generic programming header only C++ library for processing polygonal and

polyhedral meshes.
Transactions on Computational Science XXXIV.
https://github.com/mlivesu/cinolib/.

[Livesu et al., 2016] Livesu, M., Muntoni, A., Puppo, E., and Scateni, R. (2016).
Skeleton-driven adaptive hexahedral meshing of tubular shapes.
In Computer Graphics Forum, volume 35-7, pages 237–246. Wiley Online Library.

[Livesu et al., 2020] Livesu, M., Pietroni, N., Puppo, E., Sheffer, A., and Cignoni, P. (2020).
Loopycuts: Practical feature-preserving block decomposition for strongly hex-dominant

meshing.
ACM Transactions on Graphics (TOG), 39(4):121–1.

[Livesu et al., 2021] Livesu, M., Pitzalis, L., and Cherchi, G. (2021).
Optimal dual schemes for adaptive grid based hexmeshing.

158

BIBLIOGRAPHY

ACM Transactions on Graphics (TOG), 41(2):1–14.

[Livesu et al., 2013] Livesu, M., Vining, N., Sheffer, A., Gregson, J., and Scateni, R. (2013).
Polycut: Monotone graph-cuts for polycube base-complex construction.
ACM Transactions on Graphics (TOG), 32(6):1–12.

[Lo, 1985] Lo, D. S. (1985).
A new mesh generation scheme for arbitrary planar domains.
International journal for numerical methods in engineering, 21(8):1403–1426.

[Lo, 2013] Lo, D. S. (2013).
Dynamic grid for mesh generation by the advancing front method.
Computers & Structures, 123:15–27.

[Lo, 2014] Lo, D. S. (2014).
Finite element mesh generation.
CRC Press.

[Löhner, 1988] Löhner, R. (1988).
Some useful data structures for the generation of unstructured grids.
Communications in Applied Numerical Methods, 4(1):123–135.

[Lyon et al., 2016] Lyon, M., Bommes, D., and Kobbelt, L. (2016).
Hexex: Robust hexahedral mesh extraction.
ACM Transactions on Graphics (TOG), 35(4):1–11.

[Mäntylä, 1987] Mäntylä, M. (1987).
An introduction to solid modeling.
Computer Science Press, Inc.

[Marcum and Weatherill, 1995] Marcum, D. L. and Weatherill, N. P. (1995).
Unstructured grid generation using iterative point insertion and local reconnection.
AIAA journal, 33(9):1619–1625.

[Maréchal, 2009] Maréchal, L. (2009).
Advances in octree-based all-hexahedral mesh generation: handling sharp features.
In Proceedings of the 18th international meshing roundtable, pages 65–84. Springer.

[Martin et al., 2009] Martin, T., Cohen, E., and Kirby, R. M. (2009).
Volumetric parameterization and trivariate b-spline fitting using harmonic functions.
Computer aided geometric design, 26(6):648–664.

[Mascotto, 2018] Mascotto, L. (2018).
Ill-conditioning in the virtual element method: stabilizations and bases.
Numer. Methods Partial Differential Equations, 34(4):1258–1281.

[MeshGems, 2020] MeshGems (2020).

159

BIBLIOGRAPHY

Distene sas.
http://www.meshgems.com/volume-meshing-meshgems-hexa.html.

[Meyer et al., 2003] Meyer, M., Desbrun, M., Schröder, P., and Barr, A. H. (2003).
Discrete differential-geometry operators for triangulated 2-manifolds.
In Hege, H.-C. and Polthier, K., editors, Visualization and Mathematics III, pages 35–57,

Berlin, Heidelberg. Springer Berlin Heidelberg.

[Misztal et al., 2009] Misztal, M. K., Bærentzen, J. A., Anton, F., and Erleben, K. (2009).
Tetrahedral mesh improvement using multi-face retriangulation.
In Proceedings of the 18th international meshing roundtable, pages 539–555. Springer.

[Mitchell et al., 1971] Mitchell, A., Phillips, G., and Wachspress, E. (1971).
Forbidden shapes in the finite element method.
IMA Journal of Applied Mathematics, 8(2):260–269.

[Mora et al., 2015] Mora, D., Rivera, G., and Rodríguez, R. (2015).
A virtual element method for the Steklov eigenvalue problem.
Mathematical Models and Methods in Applied Sciences, 25(08):1421–1445.

[Moriguchi and Sugihara, 2006] Moriguchi, M. and Sugihara, K. (2006).
A new initialization method for constructing centroidal voronoi tessellations on surface

meshes.
In 2006 3rd International Symposium on Voronoi Diagrams in Science and Engineering,

pages 159–165. IEEE.

[Munkres, 2000] Munkres, J. R. (2000).
Topology.

[Myles et al., 2010] Myles, A., Pietroni, N., Kovacs, D., and Zorin, D. (2010).
Feature-aligned t-meshes.
ACM Transactions on Graphics (TOG), 29(4):1–11.

[Nakahashi, 1987] Nakahashi, K. (1987).
Viscous flow computations using a composite grid.
In 8th Computational Fluid Dynamics Conference, page 1128.

[Nakamura, 1982] Nakamura, S. (1982).
Marching grid generation using parabolic partial differential equations.
In Numerical grid generation; Symposium on Numerical Generation of Curvilinear Coordinate

Systems and Their Use in the Numerical Solution of Partial Differential Equations.

[Natarajan et al., 2015] Natarajan, S., Bordas, P. A., and Ooi, E. T. (2015).
Virtual and smoothed finite elements: a connection and its application to polygonal/polyhedral

finite element methods.
International Journal on Numerical Methods in Engineering, 104(13):1173–1199.

160

BIBLIOGRAPHY

[Nieser et al., 2011] Nieser, M., Reitebuch, U., and Polthier, K. (2011).
Cubecover–parameterization of 3d volumes.
In Computer graphics forum, volume 30-5, pages 1397–1406. Wiley Online Library.

[Oddy et al., 1988] Oddy, A., Goldak, J., McDill, M., and Bibby, M. (1988).
A distortion metric for isoparametric finite elements.
Transactions of the Canadian Society for Mechanical Engineering, 12(4):213–217.

[Owen, 1998] Owen, S. J. (1998).
A survey of unstructured mesh generation technology.
IMR, 239:267.

[Palmer et al., 2020] Palmer, D., Bommes, D., and Solomon, J. (2020).
Algebraic representations for volumetric frame fields.
ACM Transactions on Graphics (TOG), 39(2):1–17.

[Panfili and Cominelli, 2014] Panfili, P. and Cominelli, A. (2014).
Simulation of miscible gas injection in a fractured carbonate reservoir using an embedded

discrete fracture model.
In Abu Dhabi International Petroleum Exhibition and Conference. OnePetro.

[Park and Washam, 1979] Park, S. and Washam, C. (1979).
Drag method as a finite element mesh generation scheme.
Computers & Structures, 10(1-2):343–346.

[Paulino and Gain, 2015] Paulino, G. H. and Gain, A. L. (2015).
Bridging art and engineering using Escher-based virtual elements.
Structures and Multidisciplinary Optimization, 51(4):867–883.

[Perugia et al., 2016] Perugia, I., Pietra, P., and Russo, A. (2016).
A plane wave virtual element method for the Helmholtz problem.
ESAIM: Mathematical Modelling and Numerical Analysis, 50(3):783–808.

[Pietroni et al., 2022] Pietroni, N., Campen, M., Sheffer, A., Cherchi, G., Bommes, D., Gao,
X., Scateni, R., Ledoux, F., Remacle, J.-F., and Livesu, M. (2022).

Hex-mesh generation and processing: a survey.
arXiv preprint arXiv:2202.12670.

[Preparata and Shamos, 1985] Preparata, F. P. and Shamos, M. I. (1985).
Computational Geometry: An Introduction.
Springer-Verlag, Berlin, Heidelberg.

[Preparata and Shamos, 2012] Preparata, F. P. and Shamos, M. I. (2012).
Computational geometry: an introduction.
Springer Science & Business Media.

161

BIBLIOGRAPHY

[Quinn et al., 2012] Quinn, J., Sun, F., Langbein, F. C., Lai, Y.-K., Wang, W., and Martin,
R. R. (2012).

Improved initialisation for centroidal voronoi tessellation and optimal delaunay triangulation.
Computer-Aided Design, 44(11):1062–1071.

[Ray et al., 2009] Ray, N., Vallet, B., Alonso, L., and Levy, B. (2009).
Geometry-aware direction field processing.
ACM Transactions on Graphics (TOG), 29(1):1–11.

[Rebay, 1993] Rebay, S. (1993).
Efficient unstructured mesh generation by means of delaunay triangulation and bowyer-watson

algorithm.
Journal of computational physics, 106(1):125–138.

[Richardson, 1922] Richardson, L. F. (1922).
Weather prediction by numerical process.
Cambridge university press.

[Richeson, 2012] Richeson, D. S. (2012).
Euler’s gem.
In Euler’s Gem. Princeton University Press.

[Rjasanow and Weiser, 2012] Rjasanow, S. and Weiser, S. (2012).
Higher order bem-based fem on polygonal meshes.
SIAM Journal on Numerical Analysis, 50(5):2357–2378.

[Roca et al., 2011] Roca, X., Gargallo-Peiró, A., and Sarrate, J. (2011).
Defining quality measures for high-order planar triangles and curved mesh generation.
In Proceedings of the 20th International Meshing Roundtable, pages 365–383. Springer.

[Ruppert, 1993] Ruppert, J. (1993).
A new and simple algorithm for quality 2-dimensional mesh generation.
In SODA, volume 93, pages 83–92.

[Rycroft, 2009] Rycroft, C. (2009).
Voro++: A three-dimensional Voronoi cell library in C++.
Technical report, Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).

[Salagame and Belegundu, 1994] Salagame, R. R. and Belegundu, A. D. (1994).
Distortion, degeneracy and rezoning in finite elements—a survey.
Sadhana, 19(2):311–335.

[Sander et al., 2003] Sander, P. V., Wood, Z. J., Gortler, S., Snyder, J., and Hoppe, H. (2003).
Multi-chart geometry images.
ACM Symposium on Geometry Processing.

[Sastry and Shontz, 2009] Sastry, S. P. and Shontz, S. M. (2009).

162

BIBLIOGRAPHY

A comparison of gradient-and hessian-based optimization methods for tetrahedral mesh
quality improvement.

In Proceedings of the 18th International Meshing Roundtable, pages 631–648. Springer.

[Schneider et al., 2019] Schneider, T., Dumas, J., Gao, X., Botsch, M., Panozzo, D., and Zorin,
D. (2019).

Poly-spline finite-element method.
ACM Transactions on Graphics (TOG), 38(3):1–16.

[Schneider et al., 2022] Schneider, T., Hu, Y., Gao, X., Dumas, J., Zorin, D., and Panozzo, D.
(2022).

A large-scale comparison of tetrahedral and hexahedral elements for solving elliptic pdes
with the finite element method.

ACM Trans. Graph., 41(3).

[Scott and Brenner, 2008] Scott, L. R. and Brenner, S. C. (2008).
The mathematical theory of finite element methods.
Texts in applied mathematics 15. Springer-Verlag, New York, 3 edition.

[Shamos and Hoey, 1976] Shamos, M. I. and Hoey, D. (1976).
Geometric intersection problems.
In 17th Annual Symposium on Foundations of Computer Science (sfcs 1976), pages 208–215.

[Shephard and Georges, 1991] Shephard, M. S. and Georges, M. K. (1991).
Automatic three-dimensional mesh generation by the finite octree technique.
International Journal for Numerical methods in engineering, 32(4):709–749.

[Shepherd and Johnson, 2008] Shepherd, J. F. and Johnson, C. R. (2008).
Hexahedral mesh generation constraints.
Engineering with Computers, 24(3):195–213.

[Shepherd et al., 2000] Shepherd, J. F., Mitchell, S. A., Knupp, P., and White, D. R. (2000).
Methods for multisweep automation.
Technical report, Sandia National Labs., Albuquerque, NM, and Livermore, CA (US).

[Shewchuk, 1996] Shewchuk, J. R. (1996).
Triangle: Engineering a 2d quality mesh generator and delaunay triangulator.
In Workshop on applied computational geometry, pages 203–222. Springer.

[Shewchuk, 1997] Shewchuk, J. R. (1997).
Adaptive precision floating-point arithmetic and fast robust geometric predicates.
Discrete & Computational Geometry, 18(3):305–363.

[Shewchuk, 2005] Shewchuk, J. R. (2005).
Triangle library.
https://www.cs.cmu.edu/quake/triangle.html.

163

BIBLIOGRAPHY

[Si, 2015] Si, H. (2015).
TetGen, a Delaunay-based quality tetrahedral mesh generator.
ACM Transactions on Mathematical Software (TOMS), 41(2):1–36.

[Sokolov et al., 2016] Sokolov, D., Ray, N., Untereiner, L., and Lévy, B. (2016).
Hexahedral-dominant meshing.
ACM Transactions on Graphics (TOG), 35(5):1–23.

[Sorgente et al., 2018] Sorgente, T., Biasotti, S., Livesu, M., and Spagnuolo, M. (2018).
Topology-driven shape chartification.
Computer Aided Geometric Design, 65:13–28.

[Sorgente et al., 2022a] Sorgente, T., Biasotti, S., Manzini, G., and Spagnuolo, M. (2022a).
Polyhedral mesh quality indicator for the virtual element method.
Computers & Mathematics with Applications, 114:151–160.

[Sorgente et al., 2022b] Sorgente, T., Biasotti, S., Manzini, G., and Spagnuolo, M. (2022b).
The role of mesh quality and mesh quality indicators in the virtual element method.
Advances in Computational Mathematics, 48(1):1–34.

[Sorgente et al., 2021a] Sorgente, T., Biasotti, S., and Spagnuolo, M. (2021a).
A Geometric Approach for Computing the Kernel of a Polyhedron.
In Frosini, P., Giorgi, D., Melzi, S., and Rodolà, E., editors, Smart Tools and Apps for

Graphics - Eurographics Italian Chapter Conference, pages 11–19, online. The Eurographics
Association.

[Sorgente et al., 2022c] Sorgente, T., Biasotti, S., and Spagnuolo, M. (2022c).
Polyhedron kernel computation using a geometric approach.
Computers & Graphics, 105:94–104.

[Sorgente et al., 2021b] Sorgente, T., Prada, D., Cabiddu, D., Biasotti, S., Patane, G., Pennac-
chio, M., Bertoluzza, S., Manzini, G., and Spagnuolo, M. (2021b).

VEM and the Mesh, volume 31 of SEMA SIMAI Springer series, chapter 1, pages 1–54.
Springer.
ISBN: 978-3-030-95318-8.

[Staten et al., 2010] Staten, M. L., Kerr, R. A., Owen, S. J., Blacker, T. D., Stupazzini, M.,
and Shimada, K. (2010).

Unconstrained plastering-hexahedral mesh generation via advancing-front geometry decom-
position.

International journal for numerical methods in engineering, 81(2):135–171.

[Stimpson et al., 2007] Stimpson, C., Ernst, C., Knupp, P., Pébay, P., and Thompson, D.
(2007).

The verdict library reference manual.

164

BIBLIOGRAPHY

Sandia National Laboratories Technical Report, 9(6).

[Stojmenovic, 1997] Stojmenovic, I. (1997).
Honeycomb networks: Topological properties and communication algorithms.
IEEE Transactions on parallel and distributed systems, 8(10):1036–1042.

[Sukumar and Tabarraei, 2004] Sukumar, N. and Tabarraei, A. (2004).
Conforming polygonal finite elements.
International Journal for Numerical Methods in Engineering, 61(12):2045–2066.

[Tadepalli et al., 2011] Tadepalli, S. C., Erdemir, A., and Cavanagh, P. R. (2011).
Comparison of hexahedral and tetrahedral elements in finite element analysis of the foot and

footwear.
Journal of biomechanics, 44(12):2337–2343.

[Taha and Hanbury, 2015] Taha, A. A. and Hanbury, A. (2015).
An efficient algorithm for calculating the exact hausdorff distance.
IEEE transactions on pattern analysis and machine intelligence, 37(11):2153–2163.

[Tarini et al., 2004] Tarini, M., Hormann, K., Cignoni, P., and Montani, C. (2004).
Polycube-maps.
ACM transactions on graphics (TOG), 23(3):853–860.

[Tarini et al., 2010] Tarini, M., Pietroni, N., Cignoni, P., Panozzo, D., and Puppo, E. (2010).
Practical quad mesh simplification.
In Computer Graphics Forum, volume 29-2, pages 407–418. Wiley Online Library.

[Tautges, 2004] Tautges, T. J. (2004).
Moab-sd: integrated structured and unstructured mesh representation.
Engineering With Computers, 20(3):286–293.

[Thompson, 1982] Thompson, J. F. (1982).
Elliptic grid generation.
Applied Mathematics and Computation, 10:79–105.

[Thompson et al., 1998] Thompson, J. F., Soni, B. K., and Weatherill, N. P. (1998).
Handbook of grid generation.
CRC press.

[Thompson et al., 1985] Thompson, J. F., Warsi, Z. U., and Mastin, C. W. (1985).
Numerical grid generation: foundations and applications.
Elsevier North-Holland, Inc.

[Tong et al., 2006] Tong, Y., Alliez, P., Cohen-Steiner, D., and Desbrun, M. (2006).
Designing quadrangulations with discrete harmonic forms.
In Eurographics symposium on geometry processing.

165

BIBLIOGRAPHY

[Vartziotis et al., 2008] Vartziotis, D., Athanasiadis, T., Goudas, I., and Wipper, J. (2008).
Mesh smoothing using the geometric element transformation method.
Computer Methods in Applied Mechanics and Engineering, 197(45-48):3760–3767.

[Vartziotis and Wipper, 2010] Vartziotis, D. and Wipper, J. (2010).
Characteristic parameter sets and limits of circulant hermitian polygon transformations.
Linear algebra and its applications, 433(5):945–955.

[Vartziotis and Wipper, 2012] Vartziotis, D. and Wipper, J. (2012).
Fast smoothing of mixed volume meshes based on the effective geometric element transfor-

mation method.
Computer methods in applied mechanics and engineering, 201:65–81.

[Viertel et al., 2016] Viertel, R., Staten, M. L., and Ledoux, F. (2016).
Analysis of non-meshable automatically generated frame fields.
Technical report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).

[Wang and Ye, 2013] Wang, J. and Ye, X. (2013).
A weak galerkin finite element method for second-order elliptic problems.
Journal of Computational and Applied Mathematics, 241:103–115.

[Wang, 2017] Wang, L. (2017).
Algorithms and Criteria for Volumetric Centroidal Voronoi Tessellations.
PhD thesis, Université Grenoble Alpes.

[Wang et al., 2016] Wang, L., Hétroy-Wheeler, F., and Boyer, E. (2016).
A hierarchical approach for regular centroidal voronoi tessellations.
In Computer Graphics Forum, volume 35-1, pages 152–165. Wiley Online Library.

[Warsi and Thompson, 1990] Warsi, Z. and Thompson, J. (1990).
Application of variational methods in the fixed and adaptive grid generation.
Computers & Mathematics with Applications, 19(8-9):31–41.

[Watson, 1981] Watson, D. F. (1981).
Computing the n-dimensional delaunay tessellation with application to voronoi polytopes.
The computer journal, 24(2):167–172.

[Weatherill, 1988a] Weatherill, N. P. (1988a).
A method for generating irregular computational grids in multiply connected planar domains.
International Journal for Numerical Methods in Fluids, 8(2):181–197.

[Weatherill, 1988b] Weatherill, N. P. (1988b).
On the combination of structured-unstructured meshes.
Numerical grid generation in computational fluid mechanics’88, pages 729–739.

[Weatherill and Hassan, 1994] Weatherill, N. P. and Hassan, O. (1994).

166

BIBLIOGRAPHY

Efficient three-dimensional delaunay triangulation with automatic point creation and imposed
boundary constraints.

International journal for numerical methods in engineering, 37(12):2005–2039.

[Whitehead, 1949] Whitehead, J. H. C. (1949).
Combinatorial homotopy. ii.
Bulletin of the American Mathematical Society, 55(5):453–496.

[Wriggers et al., 2016] Wriggers, P., Rust, W. T., and Reddy, B. D. (2016).
A virtual element method for contact.
Computational Mechanics, 58(6):1039–1050.

[Xu and Newman, 2006] Xu, H. and Newman, T. S. (2006).
An angle-based optimization approach for 2d finite element mesh smoothing.
Finite Elements in Analysis and Design, 42(13):1150–1164.

[Yan et al., 2013] Yan, D.-M., Wang, W., Lévy, B., and Liu, Y. (2013).
Efficient computation of clipped voronoi diagram for mesh generation.
Computer-Aided Design, 45(4):843–852.

[Yerry and Shephard, 1984] Yerry, M. A. and Shephard, M. S. (1984).
Automatic three-dimensional mesh generation by the modified-octree technique.
International journal for numerical methods in engineering, 20(11):1965–1990.

[Yi and Moon, 2012] Yi, F. and Moon, I. (2012).
Image segmentation: A survey of graph-cut methods.
In 2012 international conference on systems and informatics (ICSAI2012), pages 1936–1941.

IEEE.

[Zhang et al., 2010] Zhang, M., Huang, J., Liu, X., and Bao, H. (2010).
A wave-based anisotropic quadrangulation method.
In ACM SIGGRAPH 2010 papers, pages 1–8. -.

[Zhou and Jacobson, 2016] Zhou, Q. and Jacobson, A. (2016).
Thingi10k: A dataset of 10,000 3D-printing models.

[Zlámal, 1968] Zlámal, M. (1968).
On the finite element method.
Numerische Mathematik, 12(5):394–409.

[Zunic and Rosin, 2004] Zunic, J. and Rosin, P. L. (2004).
A new convexity measure for polygons.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(7):923–934.

167

	List of Tables
	List of Figures
	Introduction
	Motivations
	Contributions
	Organization

	Meshes
	Mesh Classification
	Cell Typology
	Mesh Structure

	Mesh Generation
	Structured Meshes
	Block-Structured Meshes
	Semi-Structured Meshes
	Unstructured Meshes

	Mesh Quality
	Element Indicators
	Mesh Indicators
	Mesh Quality Improvement

	A Mesh Quality Indicator for the Virtual Element Method
	The Virtual Element Method
	Notation
	The Model Problem
	The Virtual Element Space
	The Virtual Element Functionals

	Geometrical Assumptions for the VEM
	Assumption G1
	Assumption G2
	Assumption G3
	Assumption G4

	VEM Convergence Results
	``Basic Principles of Virtual Elements Methods'', Beirão Da Veiga et al., 2013
	``Equivalent Projectors for Virtual Element Methods'', Ahmad et al., 2013
	``Stability Analysis for the Virtual Element Method'', Beirão Da Veiga et al., 2017
	``Some Estimates for Virtual Element Methods'', Brenner et al., 2017
	``Virtual Element Methods on Meshes with Small Edges or Faces'', Brenner and Sung, 2018
	``Sharper Error Estimates for Virtual Elements and a Bubble-Enriched Version'', Beirão Da Veiga and Vacca, 2020

	Mesh Quality Indicator
	The Kernel of a Polytope
	The G1-based Indicator
	The G2-based Indicator
	The G3-based Indicator
	The G4-based Indicator
	The Global Indicator
	The Elemental Indicator

	Verification of the Quality Indicator
	Generation of the Datasets
	Generation of the 2D Datasets
	Generation of the 3D Datasets

	Correlations Between the Quality and the Performance
	Analysis of the 2D Dataset
	Analysis of the 3D Dataset
	Discussion

	Mesh Quality Agglomeration
	Energy Functional
	Graph-cut
	Quality Agglomeration Algorithm

	Application to Discrete Fracture Networks
	Simulation on a Simple Network
	Simulation on a Complex Network
	Discussion

	Conclusions
	Future Work

	Algorithms for the Computation of the Kernel of a Polyhedron
	Data Structure
	Polyhedron Kernel
	Polyhedron-Plane Intersection
	Polygon-Plane Intersection
	Line-Plane Intersection
	Tests and discussions
	Polyhedral meshes
	Refinements
	Complex models

	Algorithms for the Generation of the 2D Datasets
	Hybrid Datasets
	Mirroring Datasets
	Multiple Mirroring Datasets
	The Mirroring Algorithm

	Bibliography

