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ABSTRACT Due to the rapid and widespread growth of the Internet-of-Things (IoT) paradigm, present
days witness an exponential increase in the number of connected devices. In this regard, the orthogonal
transmission techniques featured by conventional 4G and 5G systems can only support a limited number of
simultaneously active users, due to their low spectral efficiency and poorly flexible resource allocation. To
overcome such limitations, the 6G framework will include novel Next Generation Multiple Access (NGMA)
solutions that will efficiently and flexibly connect a significantly larger number of devices over the same
portion of spectrum. Under the NGMA umbrella, the Power-Domain Non-Orthogonal Multiple Access
(PD-NOMA) technology is able to accommodate multiple users on the same frequencies by carefully
assigning different power levels to the active users and employing Successive Interference Cancellation
(SIC) receivers. In this work, we put forth a novel analytical approach to evaluate the performance that
PD-NOMA achieves on the uplink of a single cell when a dynamic-ordered SIC receiver is considered.
With respect to other existing works, the fundamental limits on the system performance are assessed
analytically for an arbitrary number = of simultaneously transmitting users, and both the case of Rayleigh
and lognormal-shadowed Rayleigh fading are examined. The closed-form expressions presented in this
work, whose correctness and excellent accuracy are validated through Monte Carlo simulations, disclose
the impact of lognormal shadowing and an increasingly larger number of active users on the PD-NOMA
performance.

INDEX TERMS Non-Orthogonal Multiple Access, Power-Domain NOMA, NOMA, outage probability,
Dynamic-ordered SIC, order statistics.

I. INTRODUCTION

SCANNING the 5G and beyond horizon, wireless con-
nectivity appears as one of the key enabling technolo-

gies for future Internet of Things (IoT). According to Cisco
[1], the number of connected devices is yet growing at an
extraordinary pace and is expected to reach a total of 29.3
billion devices by 2023, with IoT connections accounting
for half of the total. Such a massive demand for Internet
connectivity, along with the heterogeneous set of perfor-
mance requirements which characterizes IoT devices [2],
transcends the capabilities of fourth generation (4G) and fifth
generation (5G) systems. Relying on orthogonal transmission
techniques, these systems can only support a limited number

of simultaneously active users, and advocate for the design of
new connectivity solutions. In this direction, sixth generation
(6G) cellular systems will feature novel Next Generation
Multiple Access (NGMA) schemes able to guarantee massive
connectivity, improved energy efficiency, and lower latency.

Under the NGMA umbrella, Non-Orthogonal Multiple
Access (NOMA) techniques are expected to play a pivotal
role in the support of unprecedented connectivity capabilities
[3]. The key idea behind NOMA, i.e., serving multiple users
over the same radio spectrum, has been widely investigated
over the last years, breeding an abundant body of scien-
tific literature and the proposal of many distinct NOMA
approaches. Among them, there appear Power-Domain (PD)-
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NOMA, Sparse Code (SC)-NOMA, and Resource Spread
(RS)-NOMA, to name a few examples. As a result, the
risk that every NOMA bibliography incurs is to forget or
inadvertently miss some relevant works among the multitude
of published papers. For this reason, the surveys reported in
[4]–[7] are mentioned in this Introduction together with [8]
and [9], which provide a comprehensive comparison between
NOMA techniques and alternative NGMA schemes such
as Multi-User Multiple-Input Multiple-Output (MU-MIMO),
and Rate-Splitting Multiple Access (RSMA).

Specifically, this work concentrates on PD-NOMA. PD-
NOMA multiplexes multiple users on the same radio re-
sources by assigning them different transmit power levels,
and it can be employed in both downlink and uplink com-
munications. At the receiver side, the superimposed signals
are separately decoded using Successive Interference Cancel-
lation (SIC). Confining the attention to PD-NOMA, simply
referred to as NOMA in the rest of this paper, its behavior
has been assessed in numerous studies. For example, the
authors in [10] showed the potential of NOMA in mitigating
traffic congestion and reducing latency when 5G Vehicle-to-
Everything (V2X) downlink transmissions are considered.
The performance of random access uplink NOMA was
evaluated in [11] from a system-level perspective, i.e., in
terms of throughput and access delay, whereas an analytical
framework for the modeling and the analysis of large-scale
uplink and downlink NOMA systems has been proposed in
[12], [13]. The studies in [14], [15] highlighted the strengths
and the limitations which characterize a typical SIC-based
decoding process in uplink and downlink NOMA commu-
nications, and put forth the design of a new hybrid SIC
receiver. Moreover, it is worth recalling the contributions
in [16] and [17]. In the former, the performance of uplink
NOMA, paired with a dedicated power control scheme, was
analyzed in terms of outage probability and achievable data
rate. In the latter, the authors proposed a novel uplink NOMA
scheme able to achieve higher spectral efficiency and lower
receiver complexity with respect to conventional techniques.
Stemming from [16], [18] focused on the optimization of the
power allocation strategy. Differently from the contributions
mentioned so far, where a fixed decoding order SIC re-
ceiver was considered, the authors of [19] and [20] analyzed
NOMA systems employing dynamic-ordered SIC receivers.
The dynamic-ordered SIC receiver adaptively varies the de-
coding order on the basis of the instantaneously received sig-
nals power. These works determined closed-form expressions
of the outage probability for the case of three users, without
however providing a systematic analysis. In [21], the Signal-
to-Interference Ratio (SIR) coverage probability of uplink
NOMA was evaluated, comparing the performance of two
SIC receivers; namely, the dynamic-ordered SIC receiver was
confronted against a SIC receiver that ranks and decodes the
users’ signals on the basis of their mean received powers.

It is worth pointing out that all the previous investigations
were performed in the exclusive presence of Rayleigh fading,
an assumption that greatly simplifies the study. In this regard,

the work in [22] introduced the hypothesis of generalized
fading channels encompassing statistics such as Rayleigh,
Rice, and Nakagami, and considered a fixed decoding order
SIC. Due to the complex nature of the analysis, the authors
exclusively considered the circumstance of two superim-
posed users for mathematical tractability. In [23], the channel
model was the generalized U-` fading and, also in this work,
the SIC decoding order was fixed; here too, the analysis
was limited to the circumstance of two or at the most three
simultaneously active users.

In this work, we analytically assess the performance of
a Single-Input Single-Output (SISO) uplink NOMA system
when a dynamic-ordered SIC receiver is considered. The
assumption of only two or three superimposed signals usually
found in literature is removed to disclose the fundamental
limits on the achievable performance of the receiver. Fur-
thermore, the analysis in the presence of Rayleigh fading
is extended by the investigation of the combined effects of
fading and lognormal shadowing. To characterize system
behavior, the outage probabilities % ( 9)out , 9 = 1, 2, . . . , =, are
determined, the generic % ( 9)out being defined as the probability
that the receiver fails to decode the 9-th strongest signal and
therefore cannot recover the remaining = − 9 weaker signals.
With respect to the state-of-the-art, this work offers several
novel contributions:

- a general method to analytically evaluate the outage
probabilities is provided, based on the unique properties
of the joint probability density function of the ordered
received powers, as the latter are dependent, non identi-
cally distributed random variables. The approach can be
profitably employed for any number = of simultaneously
received signals;

- when Rayleigh fading is considered, the exact analytical
expression of % (1)out , the probability that the strongest
signal cannot be decoded and that the SIC receiver fails
to recover any of the simultaneous signals, is provided
for an arbitrary value of =. When the first strongest
signal can be decoded, a closed-form approximation of
%
( 9)
out , 9 ≥ 2, is also put forth in order to characterize the

performance of the remaining = − 1 active users;
- when the signals are affected by Rayleigh-lognormal

shadowed fading, an approximation of the outage prob-
ability %

( 9)
out , 9 ≥ 1, is offered, demonstrating that it

achieves an excellent accuracy, again for an arbitrary =;
- the proposed approximations show that, 9 being fixed,
%
( 9)
out , 9 ≥ 2, can be recursively evaluated as a function

of the probabilities % (1)out obtained in the presence of =,
= − 1, . . . , = − 9 + 1 simultaneously active users.

Overall, the analysis discloses the limits that the dynamic-
ordered SIC receiver faces for an increasing number of
superimposed signals, when an uplink NOMA system is
considered. Furthermore, it reveals that lognormal shadowing
is responsible for a non-negligible performance worsening,
with respect to the circumstance where Rayleigh fading only
is considered. The deterioration is quantified for different
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values of f! , the standard deviation of the slow, lognormal
fading in dB.

The remainder of the paper is organized as follows. Section
II introduces the system model, it illustrates the analysis and
it puts forth the approximations to the outage probabilities
experienced on the uplink. Section III specializes the study
to the cases of Rayleigh and Rayleigh-lognormal shadowed
fading. Section IV provides several numerical results that
validate the approach and Section V draws the conclusions.

II. PERFORMANCE ANALYSIS
A. SYSTEM MODEL AND PERFORMANCE METRIC
EVALUATION
The current work focuses on the uplink communications in
a cellular system. Power-domain NOMA is considered and
the reference scenario features = User Equipments (UEs) that
transmit to a central-located base station on the same radio
spectrum. Let ?C ,8 denote the transmission power of the 8-th
UE and ℎ8 the envelope of the channel between such UE and
the base station. Let

-8 = ?C ,8 |ℎ8 |2 8 = 1, 2, . . . , = (1)

denote the instantaneously received power at the base station
from the 8-th UE. Further assume that every UE experi-
ences independent channel conditions while transmitting to
the base station; it follows that ℎ8 and ℎ 9 are independent
random variables, ∀ 8 and 9 , 8 ≠ 9 , and so are -8 and - 9 .
Moreover, assume that the signal recovery is performed using
a dynamic-ordered SIC receiver. This choice implies that: (i)
the instantaneously received signal powers from the UEs are
first sorted in descending order at the base station; (ii) the
receiver attempts to decode the signals in accordance to the
same sequence.

Indicate by SN the set of the =! permutations of # =

{1, 2, . . . , =} and by ' = {A1, A2, . . . , A=}, ' ∈ SN , the
permutation that corresponds to the descending order of the
instantaneously received powers. It follows that

?C ,A1 |ℎA1 |2 ≥ ?C ,A2 |ℎA2 |2 ≥ . . . ≥ ?C ,A= |ℎA= |2 . (2)

where ?C ,A1 is the transmitted power of the UE that exhibits
the highest received power, ?C ,A2 the transmitted power of the
UE that exhibits the second highest received power, and so
forth.

Next, introduce the random variables

-(8) = ?C ,A8 |ℎA8 |2 8 = 1, 2, . . . , = (3)

and observe that the -(8)s are no longer independent. Rather,
owing to (2) they constitute an order statistics; for the nota-
tion employed, -(1) is the largest order statistic, -(=) is the
smallest.

The receiver first attempts to decode the strongest signal. If
the decoding process is successful, the receiver removes the
first strongest signal and then proceeds to decode the second
strongest. For the base station to decode the message from
the 9-th strongest user UE( 9) , the 9 − 1 received signals with

the strongest power have to be successfully recovered and
removed first.

Recalling Shannon’s capacity theorem, the achievable data
rate of UE( 9) is

'( 9) = log2

(
1 +

-( 9)∑=
8= 9+1 -(8) + f2

)
bits/s/Hz , (4)

for 9 = 1, 2, . . . , = − 1, where f2 is the noise power, and

'(=) = log2

(
1 +

-(=)

f2

)
bits/s/Hz (5)

for the last user UE(=) , whose received power is the weakest.
Denote by '̂( 9) the target data rate of UE( 9) and define the

outage probability % ( 9)out , 9 = 1, 2, . . ., =, as the probability that
the SIC receiver can successfully recover the first strongest
signal, the second strongest, up to the 9 − 1, but it fails
to decode the 9-th strongest and all the subsequent signals.
Analytically,

%
( 9)
out = 1 − %{'( 9) ≥ '̂( 9) } . (6)

If we indicate by E: , : = 1, 2, . . . , =− 1, the random event
identified by the condition

-(:)∑=
8=:+1 -(8) + f2 ≥ Ŵ: (7)

where
Ŵ: = 2'̂(:) − 1, : = 1, 2, . . . , = , (8)

and by E= the event in which the condition

-(=)

f2 ≥ Ŵ= (9)

holds, then (6) is equivalently re-written as

%
( 9)
out = 1 − %

{
∩ 9
:=1E:

}
, 9 = 1, 2, . . . , = , (10)

where it is observed that the random events E1, E1, . . ., E=
are statistically dependent.

Indicate by 5joint= (G (1) , G (2) , . . . , G (=) ) the joint probability
density function (pdf) of the ordered set of random variables
-(8) , 8 = 1, 2, . . . , =, and by D 9 the region of the -(1) ,
-(2) , . . . , -(=) space identified by the conditions:

D 9 =



-(1) ≥ Ŵ1 · (
∑=
8=2 -(8) + f2)

-(2) ≥ Ŵ2 · (
∑=
8=3 -(8) + f2)

...

-( 9) ≥ Ŵ 9 · (
∑=
8= 9+1 -(8) + f2)

0 ≤ -(=) ≤ -(=−1) ≤ · · · ≤ -(2) ≤ -(1)

. (11)

It follows that % ( 9)out , 9 = 1, 2, . . . , =, is determined solving the
integral

%
( 9)
out = 1 −

∫
· · ·

∫
D 9

5joint= (G (1) , G (2) , . . . , G (=−1) , G (=) )

× 3G (=)3G (=−1) . . . 3G (2)3G (1) . (12)
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Among the different outage probabilities %
( 9)
out , observe

that % (1)out deserves a special place, as it coincides with the
probability that the strongest signal cannot be correctly re-
covered; in this circumstance, not even one, out of the =
simultaneous transmissions, can be successfully decoded and
power-domain NOMA fails. Indeed, the inequality -(1) ≥
Ŵ1 · (

∑=
8=2 -(8) + f2) identifying the outage domain D1 rep-

resents the necessary condition for the SIC decoding process
to begin. Equivalently stated, % (1)out gives the probability that
the adoption of power-based NOMA turns out detrimental, as
not even the best signal is correctly decoded.

When evaluating % ( 9)out , the first non-trivial problem at hand
is to determine 5joint= (G (1) , G (2) , . . . , G (=) ). In this respect, let
58 (G8) be the pdf of the unordered random variable -8 , 8 = 1,
2, . . . , =, defined in (1), whose pdf is available once the pdf
of ℎ8 is known, as ?C ,8 is a constant, and define �= as the
following = × = matrix

�= =


51 (G (1) ) 52 (G (1) ) . . . 5= (G (1) )
51 (G (2) ) 52 (G (2) ) . . . 5= (G (2) )
...

...
. . .

...

51 (G (=) ) 52 (G (=) ) . . . 5= (G (=) )


(13)

where 5 9 (G (8) ) denotes the pdf of the unordered random
variable - 9 , 9 = 1, 2, . . . , =, when the function argument
is the random sample G (8) of the ordered random vari-
able -(8) . For the purpose of what follows, recall that the

permanent of a square matrix �, written as
+
|�
+
| , is de-

fined like the determinant, except that all signs are pos-
itive. For an arbitrary =, it can be demonstrated that the
joint pdf 5joint= (G (1) , G (2) , . . . , G (=) ) of the ordered statistics
-(1) , -(2) , . . . , -(=) is

5joint= (G (1) , G (2) , . . . , G (=) ) =
+
|�=
+
| , (14)

where �= is given by (13). Last result is substantiated by the
reasoning in [24], where the arguments of [25] are extended
to prove the formulation in (14) with the use of permanents.

At first sight, (14) gives the impression that evaluating the
integral in (12) might be quite cumbersome for an arbitrary
value of =. However, the joint pdf obeys a highly peculiar
structure, that allows a more convenient rewriting of it in
the following terms: let (8 = {81, 82, . . . , 8=} denote the
generic permutation of # = {1, 2, . . . , =} in SN , where we
recall that the latter symbol indicates the set of all possible
permutations. It follows that 5joint= (G (1) , G (2) , . . . , G (=) ) can
be equivalently written as

5joint= (G (1) ,G (2) , . . . , G (=) ) =
=

∑
(8 ∈SN

51 (G (81) ) 52 (G (82) ) . . . 5= (G (8=) ). (15)

Last expression highlights that the joint pdf exhibits the pres-
ence of =! terms, wherein the permutations of the arguments

of the 51 (·), 52 (·), . . . , 5= (·) pdfs appear. Replacing (15) in
(12) leads to

%
( 9)
out = 1 −

∫
· · ·

∫
D 9

∑
(8 ∈SN

51 (G (81) ) 52 (G (82) ) . . . 5= (G (8=) )

× 3G (=)3G (=−1) . . . 3G (2)3G (1) (16)

and denoting by �(8 the result of the integral

�(8 =

∫
. . .

∫
D 9
68182...8= (G (1) , G (2) , . . . , G (=) ) 3G (=) . . . 3G (1) ,

(17)
where

68182...8= (G (1) , G (2) , . . . , G (=) ) = 51 (G (81) ) 52 (G (82) )·. . .· 5= (G (8=) ) ,
(18)

then % ( 9)out can be rewritten as:

%
( 9)
out = 1 −

∑
(8 ∈SN

�(8 , ∀ 9 , 9 = 1, 2, . . . , = . (19)

Luckily, the random variables -1, -2, . . . , -= obey the same
statistical description, although with different mean values.
It follows that it is not necessary to compute every single
�(8 term in (19). Rather, the n-th fold integral in (17) has to
be solved only once, for a specific (8 . For instance, �(1 can
be determined, (1 = {1, 2, . . . , =}. Then, all the remaining
�(8 terms are obtained through the proper permutation of
the 58 (·)’s arguments G (8: ) , : = 1, 2, . . . , = in (18). This
significantly reduces %

( 9)
out computational complexity in =

regardless of the channel envelope statistics, i.e., no matter
what pdf the random variables ℎ8 , 8 = 1, 2, . . . , =, obey to.

Once % ( 9)out has been obtained, the sum data rate that power-
domain NOMA achieves is evaluated as:

'NOMA =

=∑
9=1

'̂( 9) ·
(
1 − % ( 9)out

)
. (20)

B. % (� )OUT APPROXIMATION FOR � ≥ 2
The previous development highlighted how to reduce the
complexity that hinders behind the exact analytical evalu-
ation of the outage probability %

( 9)
out , 9 = 1, 2, . . . , =. The

approach turns out particularly effective when evaluating
%
(1)
out . When 9 ≥ 2, the difficulty in evaluating % ( 9)out has also

to be ascribed to an increasing complexity of the integration
domain D 9 in (11), as well as to the dependency among the
events E1, E2, . . ., E 9 . To alleviate the computational burden,
this subsection explores the following approximation to % ( 9)out ,
9 ≥ 2:

%
( 9)
out ≈ 1 −

9∏
:=1

%{E: } , 9 ≥ 2 , (21)

that holds under the assumption that the random events
E: , : = 1, 2, . . . , =, be weakly dependent. To the authors’
knowledge, there is no general result in the vast literature on
ordered statistics that come to help in corroborating the above
approximation. It has however been employed before, e.g., in
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%
( 9)
out ≈


1 −

(
1 − % (1)out

)
·∏ 9−1

ℎ=1

(
1 − % (1)out ℎ+1, ℎ+2,... ,=

)
9 < =

1 −
(
1 − % (1)out

)
·∏=−1

ℎ=1

(
1 − % (1)out ℎ+1, ℎ+2,... ,=

)
·
(
1 − �= (Ŵ=f2)

)
9 = =

(28)

[16], [19], [20]. In this work, we follow the same approach,
and a posteriori demonstrate that it holds.

Let us begin considering the case of = = 2 UEs. In addition
to % (1)>DC , only % (2)>DC , the probability that the receiver fails to
decode the second strongest signal, has to be determined. If
we recall (7) and (9), % (2)out specializes to

%
(2)
out ≈ 1 − %

{
-(1)

-(2) + f2 ≥ Ŵ1

}
· %

{
-(2)

f2 ≥ Ŵ2

}
; (22)

it is easy to recognize that the first term in the product on the
right-hand side of (22) coincides with 1 − % (1)out . Moreover,
indicating by � (2) (·) the Cumulative Distribution Function
(CDF) of the random variable -(2) , (22) is equivalently re-
written as

%
(2)
out ≈ 1 −

(
1 − % (1)out

)
·
(
1 − � (2) (Ŵ2f

2)
)
. (23)

With no loss in generality, let the unordered random
variables -8 , 8 = 1, 2,, . . ., =, be numbered in accordance
to the descending order of their mean received powers, so
that -1 > -2 > . . . > -=. Moreover, let us assume that
the random variable X8 measuring the spacing between -8
and -8−1, X8 = |-8 − -8−1 |, 8 = 2, . . . , =, takes on large
values with probability close to 1. In the scenarios where
uplink NOMA is profitably employed, such approximation
is verified, i.e., the spacing X8 is sufficiently wide; as a
matter of fact, this is the condition that allows to better
discriminate among simultaneously received signals. Given
this assumption holds, observe that it is possible to leverage
upon a further approximation, namely,� (2) (·) that appears in
(23) is replaced by �2 (·), the CDF of the unordered random
variable -2. This leads to

%
(2)
out ≈ 1 −

(
1 − % (1)out

)
·
(
1 − �2 (Ŵ2f

2)
)

(24)

that represents the final, approximated % (2)out expression when
= = 2.

When = = 3 UEs are present, % (2)>DC and also % (3)>DC have to
be determined. The probability % (2)>DC modifies in

%
(2)
out ≈ 1−%

{
-(1)

-(2) + -(3) + f2 ≥ Ŵ1

}
·%

{
-(2)

-(3) + f2 ≥ Ŵ2

}
,

(25)
and denoting by %

(1)
out2,3 the probability %

{
-(2)

-(3)+f2 ≥ Ŵ2

}
,

then % (2)>DC is expressed as

%
(2)
out ≈ 1 −

(
1 − % (1)out

)
·
(
1 − % (1)out2,3

)
(26)

As regards % (3)out , the same approximation leveraged in (24)
leads to

%
(3)
out ≈ 1−

(
1 − % (1)out

)
·
(
1 − % (1)out2,3

)
·
(
1 − �3 (Ŵ3f

2)
)
, (27)

�3 (·) being the CDF of the unordered random variable -3.
When an arbitrary number = of UEs is considered, the

approximated expression of % ( 9)out , 9 ≤ =, is provided by (28),
where % (1)out ℎ+1 ,ℎ+2 ,... ,= is defined as %

{
-(ℎ+1)

-(ℎ+2)+...+-(=) ≤ Ŵℎ+1
}
,

and�= (·) is the CDF of the =-th random variable -=, i.e., the
CDF of the power received from the most distant user from
the base station.

Last expression is illuminating, as it reveals that: (i) the
outage probability % ( 9)out , 9 ≥ 2, depends on % (1)out , the proba-
bility that NOMA fails in the presence of the same number of
users; (ii) moreover, % ( 9)out can be readily computed, given the
expression of % (1)out in the presence of =, = − 1, . . . , = − 9 + 1
users is known. Finally, observe that the expressions we have
obtained can be employed when different fading conditions
are examined.

The Numerical Results highlight that it is possible to
rely upon the proposed approximation of % ( 9)out , 9 ≥ 2, in
several meaningful settings. To the authors’ knowledge, there
is however no means to conclude whether (28) provides an
upper or lower bound to the outage.

When Rayleigh fading is considered, next Section reports
the exact analytical expression of % (1)out derived in the Ap-
pendix, and the closed-form approximation of % ( 9)out , 9 ≥ 2,
for an arbitrary number of simultaneously transmitting UEs.
When shadowing is also introduced, the closed-form approx-
imation of % ( 9)out is provided for 9 ≥ 1.

III. FADING MODELS
A. RAYLEIGH FADING
When the presence of Rayleigh fading is assumed, the prob-
ability density function (pdf) of the received signal power -8
is exponential:

58 (G8) =
1
- 8

exp
(
−G8
- 8

)
(29)

with mean - 8 ,
- 8 = ?C ,8 · : ?�−U8 , (30)

: ? being a constant that depends on the operating frequency
and �8 the distance between UE8 and the base station.

In Appendix A, it is proved that when Ŵ1 ≥ 1, for an
arbitrary number of users =, % (1)out obeys the expression:

%
(1)
out = 1 −

=∑
:=1

exp
(
−Ŵ1f

2

- :

)
=∏
8=1
8≠:

(
1 + - 8

- :
Ŵ1

) (31)

that reveals what limits NOMA faces, if the number = of
simultaneously active users is increased from 2 to higher
values.
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%
( 9)
out ≈
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(32)

In turn, taking advantage of (31), the fading-independent
approximation of % ( 9)out provided by (28), 9 ≥ 2, specializes to
(32), reported at the top of this page.

The constraint on Ŵ1 deserves a careful remark: it is the au-
thors’ belief that it does not represent a limiting factor, rather,
a fairly widespread requirement in upcoming settings. As an
example, high-end industrial IoT use cases are expected to re-
quire conspicuous data rates, exceeding the system available
bandwidth, to support video-assisted services ranging from
process monitoring to augmented video-reality [2].

B. RAYLEIGH-LOGNORMAL SHADOWED FADING

When the envelope of the received signal is subject to both
Rayleigh fading and lognormal shadowing, the -8 pdf is

58 (G8) =
∫ +∞

0

1
G

exp
(−G8
G

) 1
√

2c f!
ℎ
G

× exp ©­«− (ln(G) − `8)
2

2f2
!

ℎ2

ª®¬ 3G (33)

where f! is the standard deviation of the Gaussian random
variable modeling lognormal shadowing in dB, `8 depends
on the distance attenuation law, `8 = ln(?C ,8 · : ?�−U8 ), and
ℎ = 10

ln(10) . In our analysis, f! is assumed to be the same for
all signals.

An additional hurdle is present here, because of the inte-
gral in (33). We therefore propose an approximation to (33),
exploiting the approach put forth by Holtzman in [26]. Ac-
cording to [26], given a function k(\) of a Gaussian random
variable \ with mean `\ and variance f2

\
, the expectation

E [k(\)] can be approximated by

E [k(\)] ≈ 2
3
k(`\ )+

1
6
k

(
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√
3f\

)
+ 1

6
k

(
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√
3f\

)
.

(34)
For the examined case, it is observed that the change of

variable

H = ℎ · ln(G) (35)

that is, G = exp
( H
ℎ

)
, leads to rewrite (33) in the form
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that can therefore be approximated as:

58 (G8) ≈
3∑
:=1

0:

18,:
exp

(
−G8
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)
(37)

where 01=
2
3 , 02=03=

1
6 , 18,1 = exp

( `8
ℎ

)
, 18,2 =

exp
(
(`8+
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3f! )
ℎ

)
and 18,3 = exp

(
(`8−
√

3f! )
ℎ

)
.

This linear combination of exponential functions allows to
leverage the results obtained in the previous case of Rayleigh
fading.

Hence, when lognormal shadowing is added, for = super-
imposed signals % (1)out is approximated by

%
(1)
out ≈ 1 −

3∑
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(38)

and % ( 9)out , 9 ≥ 2, follows from (28) and it is approximated by
(39), reported on top of the next page.

In next Section, the excellent accuracy of the approxima-
tions in (32), (38) and (39) will be demonstrated for several
choices of system parameters.

IV. NUMERICAL RESULTS
An exemplary set of numerical results is reported next, in
order to highlight the accuracy of the proposed analytical
approaches, as well as to provide useful insights on the uplink
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(39)

performance of power-domain NOMA, when the dynamic-
ordered SIC receiver is employed.

The results have been obtained for the following configu-
ration: in (6), the target data rate '̂( 9) is set to 1.2 bits/s/Hz,
∀ 9 , 9 = 1, 2, . . . , =; in (30), the : ? constant is

(
2

4c 52

)
,

where 2 is the speed of light and omnidirectional antennas
are assumed. The operating frequency is 52 = 2 GHz, the
pathloss exponent is U = 2 and the cell radius is ' = 1000
m. As regards lognormal shadowing, unless otherwise stated,
in (33) f! = 4 dB. To improve the base station capability to
recover the signals coming from distinct UEs, the transmitted
powers are set so as to attribute higher power levels to UEs
closer to the base station. Unless otherwise stated, the UEs
location along the cell radius is the one illustrated in Fig. 1.
Namely, the ratio between the transmitted powers of UE8 and
UE 9 , with distances �8 and � 9 from the base, �8 < � 9 , is
set to

?C ,8

?C , 9
= 10

( 9−8)Δ
10 , (40)

and the power back-off step is Δ = 6 dB.
In the first set of figures, the outage probabilities are

reported as a function of the largest average received Signal-
to-Noise Ratio (SNR). Recalling that the UEs are indexed so
that -1 > -2 > · · · > -=, it follows that SNR = -1/f2.
In other words, as the power law assignment privileges users
that are closer to the base, the SNR is the average received
signal-to-noise ratio of the UE that is the nearest to the base
station.

When Rayleigh fading is considered, Fig. 2 shows % (1)out as
a function of the SNR, if = = 2, 3, 5 users are simultaneously
transmitting. As indicated in Fig. 2, when = = 2, the distance
�1 of UE1 from the base is 0.2' and the distance �2 of
UE2 from it is '; when = = 3, �1 = 0.2', �2 = 0.6' and
�3 = '; when = = 5, �1 = 0.2', �2 = 0.4', �3 = 0.6',
�4 = 0.8' and �5 = '. Solid lines refer to the exact
analytical evaluation, markers to %

(1)
out values determined

through Monte Carlo simulation, considering 105 samples for
each plotted value. The perfect match between the analytical

0.2R R

UE 1

0.6R

UE 2 UE 3

0.2R R

UE4UE 1

0.6R

UE 3

0.4R

UE 5

0.8R

UE 2

0.2R R

UE 1 UE 2

FIGURE 1. Users location along the cell radius when = = 2, 3, 5.

FIGURE 2. Rayleigh fading: % (1)out as a function of the SNR, = = 2, 3, 5.

and the simulation results confirms the correctness of the
exact closed-form of % (1)out provided by (31). The figure also
indicates that % (1)out is close to 1 when the SNR is smaller
than 5 dB, regardless of =. As a matter of fact, in this low
SNR region, the achievable data rate of the strongest user
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FIGURE 3. Rayleigh fading and log-normal shadowing: % (1)out as a function of
the SNR, = = 2, 3, 5.

FIGURE 4. % (1)out , Rayleigh fading and Rayleigh plus lognormal, = = 3.

is limited by the weak level of the received signal, rather
than by the presence of simultaneously transmitting users.
As the SNR increases above 10 dB, the impact of a larger
number of interfering users gradually becomes more evident.
Yet, observe that for = = 5, % (1)out is always below 1% for all
SNR values in the [15, +∞] range.

Fig. 3 shows % (1)out as a function of the SNR, when the
received signal is subject to both Rayleigh fading and log-
normal shadowing, and it reveals that the closed-form in (38)
is an excellent approximation to the exact % (1)out computed
via simulation. In this scenario too, the impact on %

(1)
out of

a larger number of users can be appreciated only for SNR
values greater than 10 dB. The relative position of the curves
is the same as observed in Fig. 2. However, % (1)out takes on
higher values than in the presence of Rayleigh fading only.

(a) Rayleigh Fading.

(b) Rayleigh fading plus log-normal shadowing.

FIGURE 5. Outage probability vs SNR, = = 3.

For instance, when SNR = 30 dB, for = = 2 % (1)out increases
from 7 × 10−3 determined in the presence of Rayleigh fading
to 1.4 × 10−2 when lognormal shadowing is also taken into
account, and raises from 4.7 × 10−2 to 6.9 × 10−2 for = = 5.
This indicates that the shadowing plays a non-negligible role
in the outage probability evaluation.

To better understand the influence of lognormal shad-
owing, Fig. 4 compares % (1)out in the presence of Rayleigh
fading against % (1)out in the additional presence of lognormal
shadowing, when = = 3 and three different values of f! ,
namely, 2, 4 and 6 dB are considered. The black lowest
curve and the circle markers refer to the benchmark case of
Rayleigh fading; the red, blue and green curves, paired with
the square, triangle and diamond markers, respectively, refer
to the Rayleigh plus lognormal case. The results corroborate
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FIGURE 6. Outage probability as a function of �2/', = = 3, SNR= 30 dB.

what was previously anticipated, quantifying the remarkable
impact of the shadowing on % (1)out for increasing values of f! .
For instance, when f! = 6 dB and SNR > 30 dB, % (1)out is
2.4 times larger than for the case of Rayleigh fading only.
Also note the tightness of the approximation provided by
(38): here too, the results obtained by simulation are nearly
undistinguishable from the analytical outcomes, no matter
what f! value is examined.

Next, Fig. 5a and 5b report % (1)out , %
(2)
out and % (3)out for the case

of Rayleigh fading and Rayleigh plus lognormal shadowing,
respectively, when = = 3. As regards % (2)out and %

(3)
out , these

figure show the impressive accuracy of the approximation
proposed in Section III and detailed in eqs. (32) and (39).
Furthermore, they reveal that % (2)out and % (3)out take on signifi-
cantly high values, with and without lognormal shadowing.
As expected, % (3)out takes on the worst values, as the signal
coming from the third strongest user can be decoded only if
both the second and the first strongest signals have already
been decoded.

When considering both Rayleigh fading and lognormal
shadowing, an alternative view is provided by Fig.6, that
shows %

(1)
out , %

(2)
out and %

(3)
out as a function of �2/', the

normalized distance of UE2 from the base, when UE1 and
UE3 distances are �1 = 0.2' and �3 = ', respectively.
This figure indicates that the values of % (2)out and % (3)out lie in
the range of a few percentage points; equivalently stated,
approximately in 90% of the cases it is possible to support
2 simultaneous communications (and in 80% of the cases
even 3). If the involved UEs all require maximum relia-
bility, this is unacceptable. Yet, resorting to power-domain
NOMA becomes truly interesting in alternative settings: for
instance, whenever communication redundancy can be intro-
duced without an excessive overhead, as it happens when a
modest number of packet re-transmissions are introduced and
packets exhibit a modest size. The figure also shows that % (2)out

FIGURE 7. Sum data rate of OMA and NOMA as a function of SNR, Rayleigh
and lognormal shadowing.

and % (3)out minima lie at �2 = 0.4' and that they are not so
critical, revealing that the location of the UEs does not have
to be identified with extreme accuracy. Also observe that the
tightness of the proposed approximation in evaluating % (3)out
slightly worsens as �2 approaches �3; this happens since
the spacing X3 no longer verifies the assumption of taking on
large values with probability close to 1.

Last, Fig. 7 displays 'NOMA, the sum data rate of power-
domain NOMA of (20), as a function of the SNR in the
simultaneous presence of Rayleigh fading and lognormal
shadowing, when = = 2 and = = 3, and compares it against
the OMA data rate. The latter scheme is examined under
the hypothesis that the signal-to-noise ratio of the OMA user
coincides with SNR, the signal-to-noise ratio of the NOMA
UE that is the nearest to the base station. Here too, the
accuracy of the proposed approximation is striking. The gain
of NOMA over OMA becomes more and more evident for
increasing SNR values. Moreover, at high SNR regimes the
NOMA system with = = 3 users achieves a sum data rate
significantly greater than 2.4 bits/s/Hz, the maximum data
rate NOMA attains when = = 2.

V. CONCLUSIONS
This work has proposed a novel analytical approach to
evaluate the outage probabilities of uplink power-domain
NOMA, when a dynamic-ordered SIC receiver is employed.
The method has been employed in the presence of Rayleigh
fading, and Rayleigh plus lognormal shadowing. In the
former setting, it has allowed to determine the probability
that NOMA fails through an exact analytical expression, for
a generic number of superimposed signals; in the second
examined scenario, such probability has been obtained in
closed-form via an excellent approximation. Moreover, the
current study has put forth an approximated expression of
the probability that the SIC receiver does not succeed in
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decoding the second, third, =-th strongest user. Monte Carlo
simulations have demonstrated the accuracy of the results
obtained through the proposed approximations, that clearly
quantify the effects of an increasing number of simultaneous
users on system performance. The analysis has also dis-
closed to what extent lognormal shadowing affects NOMA
behavior, revealing that its presence significantly deteriorates
performance with respect to the case of Rayleigh fading only.

.

APPENDIX A DERIVATION OF %
(1)
OUT FOR AN

ARBITRARY NUMBER OF USERS
In the presence of Rayleigh fading, the outage probability
%
(1)
out is evaluated beginning with the special case = = 2. From

(19), % (1)out specializes to

%
(1)
out = 1 − (�(1 + �(2 ) (41)

where (1 = {1, 2}, (2 = {2, 1},
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When the target data rate of the strongest user Ŵ1 is at least
equal to 1 bit/s/Hz, solving the integral in (42) gives
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Ŵ1
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From (44), �(2 is readily determined as
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and % (1)out follows:
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When = = 3, % (1)out exhibits 3! distinct contributions. The
first of them, �(1 , (1 = {1, 2, 3}, is

�(1 =

∭
D1

51 (G (1) ) 52 (G (2) ) 53 (G (3) ) 3G (3)3G (2)3G (1) (47)

where D1 is identified by the conditions
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So,
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After a few lengthy steps, last integral is solved and leads to
the following result
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2
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that more aptly is written as
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Once �(1 is determined, all the remaining contributions can
be obtained permuting over SN . On purpose, the set (2 =

{1, 3.2} is considered next, which provides the result

�(2 =
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Observe that, when the sum �(1 + �(2 is computed, it gives
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(53)

If we now introduce the sets (3 = {2, 1, 3} and (4 =

{3, 1, 2}, permuting -1,-2 and -3 in (51) �(3 and �(4 are
also determined. Their sum gives

�2 = �(3 + �(4 =
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(54)

The same applies to (5 = {3, 2, 1} and (6 = {2, 3, 1},
whose sum �3 is

�3 = �(5 + �(6 =

=
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(55)
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Therefore, in the presence of = = 3 users and under the
previous hypothesis Ŵ1 ≥ 1, % (1)out is amenable to the writing

%
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−Ŵ1f

2

-2

)
(1 + -1

-2
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When the case = = 4 is examined, 4! = 24 terms
contribute to %

(1)
out ; yet, it is sufficient to compute the term

that corresponds to the (1 = {1, 2, 3, 4} set, that is expressed
by

�(1 =

⨌
D1

51 (G (1) ) 52 (G (2) ) 53 (G (3) ) 54 (G (4) )

× 3G (4)3G (3)3G (2)3G (1) (57)

D1 now being given by

D1 =

{
-(1) ≥ Ŵ1 ·

(
-(2) + -(3) + -(4) + f2)

-(1) ≥ -(2) ≥ -(3) ≥ -(4) ≥ 0 . (58)

Here too, the assumption of exponential pdf allows to solve
(57) in closed-form, resulting in

�(1 = exp
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.(59)

At first sight, last expression might look unmanageable and
hinder % (1)out determination. Yet, in analogy with the previous
= = 3 case, the contribution in (59) has to be grouped
with other conveniently identified terms, namely, those that
correspond to the sets (2 = {1, 2, 4, 3}, (3 = {1, 3, 2, 4},
(4 = {1, 3, 4, 2}, (5 = {1, 4, 2, 3} and (6 = {1, 4, 3, 2},
leading to the partial sum
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In an analogous manner, 3 more partial sums are com-
puted, so that altogether 4 terms are identified, �: , : =

1, 2, 3, 4, the generic �: being

�: =

exp
(
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)
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and % (1)out is then computed as

%
(1)
out = 1 −

4∑
:=1

�: . (62)

For an arbitrary number = of superimposed signals, = partial
sums, each with (=−1)! elements, have to be determined. By
induction, the generic sum �: turns out to be
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- :
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, (63)

so that % (1)out , the probability that power-domain NOMA can-
not guarantee the target data rate to the strongest user, is
finally written as

%
(1)
out = 1 −

=∑
:=1

�: = 1 −
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:=1

exp
(
−Ŵ1f

2

- :
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) . (64)

under the condition Ŵ1 ≥ 1 bits/s/Hz.
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