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A B S T R A C T   

Background: Autism spectrum disorder (ASD) is a group of neurodevelopmental conditions associated with 
quantitative differences in cortical and subcortical brain morphometry. Qualitative assessment of brain 
morphology provides complementary information on the possible underlying neurobiology. Studies of neuro-
radiological findings in ASD have rendered mixed results, and await robust replication in a sizable and inde-
pendent sample. 
Methods: We systematically and comprehensively assessed neuroradiological findings in a large cohort of par-
ticipants with ASD and age-matched controls (total N = 620, 348 ASD and 272 controls), including 70 partic-
ipants with intellectual disability (47 ASD, 23 controls). We developed a comprehensive scoring system, 
augmented by standardized biometric measures. 
Results: There was a higher incidence of neuroradiological findings in individuals with ASD (89.4 %) compared to 
controls (83.8 %, p = .042). Certain findings were also more common in ASD, in particular opercular abnor-
malities (OR 1.9, 95 % CI 1.3–3.6) and mega cisterna magna (OR 2.4, 95 % CI 1.4–4.0) reached significance 
when using FDR, whereas increases in macrocephaly (OR 2.0, 95 % CI 1.2–3.2), cranial deformities (OR 2.4, 95 
% CI: 1.0–5.8), calvarian / dural thickening (OR 1.5, 95 % CI 1.0–2.3), ventriculomegaly (OR 3.4, 95 % CI 
1.3–9.2), and hypoplasia of the corpus callosum (OR 2.7, 95 % CI 1.1–6.3) did not survive this correction. 
Furthermore, neuroradiological findings were more likely to occur in isolation in controls, whereas they 
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clustered more frequently in ASD. The incidence of neuroradiological findings was higher in individuals with 
mild intellectual disability (95.7 %), irrespective of ASD diagnosis. 
Conclusion: There was a subtly higher prevalence of neuroradiological findings in ASD, which did not appear to 
be specific to the condition. Individual findings or clusters of findings may point towards the neuro-
developmental mechanisms involved in individual cases. As such, clinical MRI assessments may be useful to 
guide further etiopathological (genetic) investigations, and are potentially valuable to fundamental ASD 
research.   

1. Introduction 

Autism spectrum disorder (ASD) is a group of highly heterogeneous 
neurodevelopmental conditions and is related to differences in brain 
structure (Chen et al., 2011; Ecker et al., 2015; van Rooij et al., 2018). To 
date, structural neuroimaging studies in ASD have largely focused on 
quantitative data, with the most common findings being changes in brain 
morphometry in multiple brain regions (particularly in the striatal and 
fronto-temporal areas), combined with an atypical trajectory of brain 
growth in autistic individuals (Ecker et al., 2015; van Rooij et al., 2018). 
Specifically, enlarged brain volume in young children with ASD is one of 
the most consistent findings in autism research (Courchesne, 2002). The 
enlargement of the brain in ASD is accompanied by increased head 
circumference (Lainhart et al., 1997); it occurs during infancy and 
toddler years, while it is unclear whether it persists into later childhood 
and adolescence (Courchesne et al., 2001; Aylward et al., 2002). This 
suggests that the trajectory of early brain growth may be different in 
ASD (Courchesne et al., 2011). Later studies consistently found that 
early brain overgrowth in ASD differs between brain regions, mostly 
affecting frontal and temporal areas (Chen et al., 2011). Additionally, 
volumetric differences have been reported in numerous subcortical 
structures in ASD (Li et al., 2021), especially corpus callosum (Bellani 
et al., 2013; Frazier and Hardan, 2009), caudate nucleus (Qiu et al., 
2016), and cerebellum (D’Mello et al., 2015), although these findings 
are less consistent. Discrepancies between quantitative neuroimaging 
studies in ASD may be due to methodological differences, and, notably, 
to the established wide phenotypic diversity, both clinical and neuro-
biological (neuroanatomical), among individuals in the autism group. 
Assessment of neuroanatomical variation at an individual rather than 
just at a group level may therefore be more suited to understanding 
individual differences in the neurobiological underpinnings of the 
autism spectrum. 

Qualitative evaluation of individual scans is the typical approach in 
clinical neuroradiological practice. Several studies have investigated 
qualitative neuroradiological findings in ASD (Piven et al., 1990; 
Zeegers et al., 2006; Boddaert et al., 2009; Vasa et al., 2012; Erbetta 
et al., 2014; Erbetta et al., 2015; Monterrey et al., 2017; Myers et al., 
2020). However, these reported inconsistent prevalence and character-
istics of brain abnormalities in ASD, and as such are inconclusive. As a 
consequence, brain magnetic resonance imaging (MRI) is currently not 
included as a clinical standard when investigating autism (Filipek et al., 
2000), although it may be indicated in cases with co-morbid conditions 
or neurological signs and symptoms (Schaefer et al., 2013; Cooper et al., 
2016). Most qualitative studies used relatively small samples (N = 26 to 
168) (Piven et al., 1990; Zeegers et al., 2006; Boddaert et al., 2009; 
Erbetta et al., 2014; Erbetta et al., 2015; Monterrey et al., 2017), and the 
methods were inconsistent between studies, with different inclusion 
criteria (e.g., with or without individuals with intellectual disability, 
ID), and different definitions of ‘neuroradiological findings’. 

Abnormal findings on brain scans occur fairly commonly, in an 
estimated 20–25 % of the general population (Katzman et al., 1999; Kim 
et al., 2002; Jansen et al., 2017). However, they are highly heteroge-
nous, and specific findings are infrequent, meaning that while the 
chances of finding any abnormality might be relatively large, the 
chances of finding a particular one are not. Studies of neuroradiological 
findings in ASD have used different categorization systems, and 

sometimes did deliberately not report certain findings, as they were 
considered not to be clinically relevant, or a variation of normal brain 
anatomy (Boddaert et al., 2009). Inevitably, these different approaches 
have contributed to the heterogenous nature of the findings reported in 
the literature. Notably, there is no agreed-upon definition of what con-
stitutes a deviation from normal: brain structure demonstrates a wide 
variation in shape and size, and the range of normality is to some degree 
arbitrary, and, for some structures, simply unknown (Osborn and Pre-
ece, 2006). 

Considering the intrinsic heterogeneity of the clinical and imaging 
data in ASD, and the relative infrequency of most reported neurora-
diological findings as individual entities, studies using a comprehensive 
characterization of neuroradiological findings, and in large samples of 
participants, are essential. On a methodological level, it is important to 
screen brain scans explicitly for neuroradiological findings prior to 
quantitative analysis for a more comprehensive analytical and inter-
pretative approach of brain morphology. Indeed, the presence of 
neuroanatomical defects often precludes certain imaging pipelines. 
Conventional neuroimaging studies in autism are therefore biased to-
wards ‘typical’ brain anatomy. Furthermore, neuroradiological findings 
can point to developmental causal mechanisms (e.g., small cerebellum 
associated with pons hypoplasia, or with a posterior fossa cyst), and may 
therefore help elucidate the neurodevelopmental processes related to 
ASD. 

Hence, this study aimed to systematically and comprehensively 
characterize qualitative brain MRI findings in a large sample of in-
dividuals with ASD, with and without ID, and matched controls. We 
capitalized on the large sample of the LEAP cohort (Charman et al., 
2017; Loth et al., 2017), and constructed a comprehensive scoring sys-
tem covering all brain structures and regions, permitting us to charac-
terize in a standardized manner any visible morphological or signal 
abnormality identified on MRI scans including possible variants 
(neuroradiological findings), regardless of their clinical relevance. We 
expected to find an increased prevalence of structural brain abnormal-
ities in individuals with ASD, especially in those with ID. Given the 
inconsistent literature, we were not able to derive specific hypotheses on 
which brain regions would be most affected. 

2. Material and methods 

2.1. Participants 

We included participants of the Longitudinal European Autism 
Project (LEAP). The study design, methodologies, and clinical charac-
terization of the LEAP cohort have been described extensively in pre-
vious publications (Charman et al., 2017; Loth et al., 2017). In short, 
participants were recruited and assessed across six research centres in 
Europe: Institute of Psychiatry, Psychology and Neuroscience, King’s 
College London (KCL, United Kingdom); Autism Research Centre, Uni-
versity of Cambridge (UCAM, United Kingdom); University Medical 
Centre Utrecht (UMCU, the Netherlands); Radboud University Nijmegen 
Medical Centre (RUNMC, the Netherlands); Central Institute of Mental 
Health (CIMH, Germany); and University Campus BioMedico (UCBM, 
Italy). 

We included participants aged 6–30 years with intelligence quotient 
(IQ) in the typical range (75+), and participants with mild ID (IQ 
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50–74), aged 12–30 years. Females were purposely over-recruited in 
LEAP, with a targeted Male:Female ratio of 3:1, to enable better analysis 
of sex effects. 

Inclusion criteria for the ASD sample were an existing clinical diag-
nosis of ASD according to the Diagnostic and Statistical Manual of 
Mental Disorders (DSM)-IV (American Psychiatric Association, 1994), 
DSM-IV-TR (American Psychiatric Association, 2000), DSM-5 (American 
Psychiatric Association, 2013) or ICD-10 (World Health Organization 
(WHO), 1993) criteria. In addition, the Autism Diagnostic Observation 
Schedule (ADOS, Lord et al., 2000; Lord et al., 2012) and the Autism 
Diagnostic Interview-Revised (ADI-R, Rutter et al., 2003) were admin-
istered to support the clinical diagnosis of ASD. However, individuals 
with a clinical diagnosis of ASD who did not reach cut-off on these in-
struments were not excluded, as clinical judgement was considered to be 
more stable and reliable than scores on individual diagnostic in-
struments per se (Charman and Gotham, 2013). 

Participants were purposely recruited in LEAP to enable in depth 
experimental characterization of biological markers including the use of 
complex methodologies (e.g., MRI), and yet preserve the widest possible 
clinical diversity of the autism spectrum. Therefore, individuals with 
very low IQ (<50) were excluded in LEAP, while IQ ≥ 50 was included, 
and all psychiatric comorbidities were permitted, except for psychosis or 
bipolar disorder. Syndromic forms of intellectual disabilities were 
permitted. Participants on stable medication (minimum 8 weeks) at 
study entry and over the course of the study were included. Controls 
were excluded in case of any psychiatric morbidity. In all participants, 
additional exclusion criteria were uncorrectable hearing or visual im-
pairments, any major neurological disorders, or the presence of metals 
in the body that precluded the MRI session (see Charman et al., 2017 for 
more details). 

The study was approved by national and local independent ethics 
committees at each study site. Prior to testing, all participants, and/or 
their parents/legal guardian, provided written informed consent, as well 
as participants’ assent. 

2.2. MRI data acquisition and quality assessment 

Participants were assessed between January 2014 and March 2017 
(LEAP wave 1). We acquired structural MRI scans from 704 participants, 
including high-resolution three-dimensional T1-weighted (T1w) scans 
(n = 695), T2-weighted (T2w) fast spin-echo scans (n = 411), and fluid 
attenuated inversion recovery (FLAIR) scans (n = 357). Scans were ac-
quired on 3T scanners from different manufacturers (Siemens, General 
Electrics, Philips) across the six participating centers using the same 
acquisition protocol. The scanning parameters for the T1w, T2w, and 
FLAIR scans at each site are provided in Appendix A (Table A1). 

All scans were assessed by a team of three raters based at the UMCU: 
one senior pediatric neuroradiologist (ML) with broad expertise in brain 
congenital anomalies, and two pediatric neurologists experienced in 
brain development and structural MRI assessment (SA, HE). Specifically, 
each scan was assessed by SA (rater 1), while the scans of 218/620 (35.2 
%) participants were independently assessed by HE (rater 2). Addi-
tionally, the scans of 104/620 (16.8 %) participants were assessed by the 
neuroradiologist (ML). Agreements between the raters were between 92 
and 98 % (see details below). 

Scans were coded in order to ensure rater blindness to study site, 
participant identity and diagnosis at all times during analysis. However, 
raters were aware of the participants’ age at the time of scan to inform 
the interpretation of brain structure growth and maturation (i.e., 
myelination). 

First, we evaluated the acquisition symmetry and overall quality of 
each scan using a 0 to 5 rating scale (5 for the best quality scan). In case 
of multiple acquisitions of the same sequence, the best quality-one was 
carried forward for analysis. 

We excluded 80 participants for insufficient data quality (T1w 
quality < 3) due to missing T1w (n = 9), or to the presence of significant 

movement artifacts, primarily in the ASD group (n = 71; 58 ASD, 13 
controls; p <.001). We additionally excluded 4 participants due to 
incomplete demographic information. 

Eventually, we retained a final sample of 620 individuals (348 ASD, 
272 controls), including 70 participants (11.3 %) with mild ID (47 ID- 
ASD, 23 ID-controls). The details of participant characteristics 
included in this study are provided in Table 1. The ASD and control 
groups were matched for age, but not for sex or IQ. The ASD group 
included more males (p =.048) and had lower full-scale IQ (difference 
5.6 points; p <.001). The ID group included more males (p =.022) and 
had older participants (p =.002) compared to the group of participants 
with IQ in the typical range (details provided in Table 2). There were no 
between-groups differences in the distribution of the available T1w, 
T2w and FLAIR scans (p =.082). 

In the final, high-quality sample, T1-weighted images were available 
for 100 % of the participants (620 scans); T2-weighted and FLAIR scans 
were available for 369 (59.5 %) and 310 (50 %) participants respec-
tively, resulting in a total of 1299 scans. The overall visual quality of the 
included scans was 4.3/5, and did not differ between the ASD and 
control group (p =.082). 

2.3. Brain MRI assessment 

Special attention was paid to abnormalities previously described in 
the literature on neuroradiological findings in ASD (Piven et al., 1990; 
Taber et al., 2004; Zeegers et al., 2006; Boddaert et al., 2009; Vasa et al., 
2012; Erbetta et al., 2014), or in related neuropsychiatric disorders 
(Nopoulos et al., 2000; Vasa et al., 2012; Sommer et al., 2013), and in 
healthy adult and pediatric populations (Katzman et al., 1999; Kim 
et al., 2002; Jansen et al., 2017). But primarily, our aim was to capture 
all potentially relevant neuroradiological findings. Arguably, some 
findings may not be clinically relevant to ASD, yet they may still be 
scientifically relevant, as they may point to neurodevelopmental 
mechanisms and provide information on the biological pathways 
involved. Therefore, we constructed a systematic and comprehensive 
scoring system (see Appendix B), covering all brain structures and re-
gions, and characterizing all visibly detectable neuroradiological ab-
normalities (brain lesions, malformations, and anatomical variants). To 

Table 1 
Demographic and clinical characteristics of the sample.    

ASD 
n = 348 

Controls 
n = 272 

Group 
differences* 

Sex n male - female 252–96 176–96 .048 
Age at scan Years M (SD) 17.6 

(5.6) 
17.5 (5.8) .935 

ID n ID - typical IQ 47–301 23–249 .049 
Total IQ M (SD) 99.4 

(19.0) 
105.0 
(18.0) 

< .001 

ADI-R Social M (SD) 16.3 
(6.9) 

– –  

Communication M 
(SD) 

12.9 
(5.7) 

– –  

RRB M (SD) 4.3 (2.7) – – 
ADOS Social M (SD) 5.9 (2.6) – –  

RRB M (SD) 4.7 (2.8) – –  
Total M (SD) 5.2 (2.7) – – 

Scans per 
participant 

n 1 89 91 .082  

n 2 115 86  
n 3 144 95 

Scans in Total n 751 548 – 

Abbreviations: ASD, autism spectrum disorder; n, number; M, mean; SD, stan-
dard deviation; IQ, intelligence quotient; ID, intellectual disability; ADI-R, 
Autism Diagnostic Interview- Revised; RRB, restricted and repetitive behav-
iors; ADOS, Autism Diagnostic Observation Scale. 
Note: *Х2 for sex and number of scans acquired per person; t test for age and total 
IQ. 
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Table 2 
Neuroradiological findings in the sample.   

Total 
N = 620 

ASD 
n = 348 

Controls 
n = 272 

Group diff*  Typical IQ 
n = 550 

ID 
n = 70 

IQ 
diff*  

Age (years M (SD)) 17.6 (5.7) 17.6 (5.6) 17.5 (5.8) ns 17.4 (5.8) 18.9 (4.4) .002 
Sex (n male – female) 428–192 252–96 176–96 .048 388–162 40–30 .022 
Head, brain, and lobes        
Cranial deformity All 28 (4.5 %) 21 (6.0 %) 7 (2.6 %) .039 23 (4.2 %) 5 (7.1 %) ns 

Plagiocephaly 9 (1.5 %) 6 (1.7 %) 3 (1.1 %) ns 7 (1.3 %) 2 (2.9 %) ns 
Hyperbrachycephaly 9 (1.5 %) 8 (2.3 %) 1 (0.4 %) ns 8 (1.5 %) 2 (2.9 %) ns 
Hyperdolichocephaly 10 (1.6 %) 7 (2.0 %) 3 (1.1 %) ns 8 (1.5 %) 1 (1.4 %) ns 

Cranial volume All 133 (21.5 %) 87 (25.0 %) 46 (16.9 %) .018 115 (20.9 %) 18 (25.7 %) ns 
Microcephaly 47 (7.6 %) 27 (7.8 %) 20 (7.4 %) ns 36 6.5 %) 11 (15.7 %) .007 
Macrocephaly 86 (13.9 %) 60 (17.2 %) 26 (9.6 %) .007 79 (14.4 %) 7 (10 %) ns 

Calvarian / dural thickening 126 (20.3 %) 81 (23.3 %) 45 (16.5 %) .039 99 (18.0 %) 27 (38.6 %) < .001 
Opercular abnormality 

Bi/unilateral 
229 (36.9 %) 150/0 (43.1 %) 77/2 (29.0 %) < .001 191 (34.7 %) 38 (54.3 %) .001 

Cerebral cortex        
Malformations All 8 (1.3 %) 7 (2.0 %) 1 (0.4 %) ns 5 (0.9 %) 3 (4.3 %) ns 

Periventricular nodular Heterotopia 3 (0.5 %) 2 (0.6 %) 1 (0.4 %) ns 2 (0.4 %) 1 (1.4 %) ns 
Simplified gyral pattern 2 (0.3 %) 2 (0.6 %) 0 (0 %) ns 2 (0.4 %) 0 (0 %) ns 
Cortical dysplasia 3 (0.5 %) 3 (0.9 %) 0 (0 %) ns 1 (0.2 %) 2 (2.9 %) ns 

Lesion 3 (0.5 %) 2 (0.6 %) 1 (0.4 %) ns 2 (0.4 %) 1 (1.4 %) ns 
Hippocampi        
Lesion 2 (0.3 %) 1 (0.3 %) 1 (0.4 %) ns 2 (0.4 %) 0 (0 %) ns 
White matter        
Lesion 15 (2.4 %) 10 (2.9 %) 5 (1.8 %) ns 12 (2.2 %) 3 (4.3 %) ns 
Virchow-Robin spaces        
Dilation All 338 (54.5 %) 189 (54.3 %) 149 (54.8 %) ns 302 (54.9 %) 36 (51.4 %) ns 

Deep white matter / subcortical 133 (21.5 %) 66 (19.0 %) 67 (24.6 %) ns 120 (21.8 %) 13 (18.6 %) ns 
Lenticulo-striate 300 (48.4 %) 171 (49.1 %) 129 (47.4 %) ns 268 (48.7 %) 32 (45.7 %) ns 

Basal ganglia 0 (0 %) 0 (0 %) 0 (0 %) ns 0 (0 %) 0 (0 %) ns 
Posterior fossa        
All 115 (18.5 %) 80 (23.0 %) 35 (12.9 %) .002 96 (17.5 %) 19 (27.1 %) ns 
Dandy-Walker complex 106 (17.1 %) 73 (21.0 %) 33 (12.1 %) .004 90 (16.4 %) 16 (22.9 %) ns 

Mega-cisterna magna 82 (13.2 %) 60 (17.2 %) 22 (8.1 %) .001 76 (13.8 %) 6 (8.6 %) ns 
Dandy-Walker variant 3 (0.5 %) 1 (0.3 %) 2 (0.7 %) ns 0 (0 %) 3 (4.3 %) ns 
Blake pouch cyst 1 (0.2 %) 1 (0.3 %) 0 (0 %) ns 1(0.2 %) 0 (0 %) ns 
Arachnoid cyst 13 (2.1 %) 6 (1.7 %) 7 (2.6 %) ns 12 (2.2 %) 1 (1.4 %) ns 
Vermian hypoplasia 7 (1.1 %) 5 (1.4 %) 2 (0.7 %) ns 1 (0.2 %) 6 (8.6 %) < .001 

Chiari type 1 malformation 7 (1.1 %) 5 (1.4 %) 2 (0.7 %) ns 5 (0.9 %) 2 (2.9 %) ns 
Lesion 1 (0.2 %) 1 (0.3 %) 0 (0 %) ns 1 (0.2 %) 0 (0 %) ns 
Vascular anomaly 1 (0.2 %) 1 (0.3 %) 0 (0 %) ns 0 (0 %) 1 (1.4 %) ns 
CSF spaces        
Ventriculomegaly 26 (4.2 %) 21 (6.0 %) 5 (1.8 %) .010 22 (4.0 %) 4 (5.7 %) ns 
Cavum septum pellucidum / vergae 12 (1.9 %) 4 (1.1 %) 8 (2.9 %) ns 10 (1.8 %) 2 (2.9 %) ns 
Choroid plexus cysts 3 (0.5 %) 2 (0.6 %) 1 (0.4 %) ns 1 (0.2 %) 2 (2.9 %) ns 
Subarachnoid spaces Enlargement 57 (9.2 %) 34 (9.8 %) 23 (2.9 %) ns 60 (10.9 %) 19 (27.1 %) < .001 
Calcifications 2 (0.3 %) 0 (0 %) 2 (0.7 %) ns 2 (0.4 %) 0 (0 %) ns 
Midline        
CC Hypoplasia All 30 (4.8 %) 23 (6.6 %) 7 (2.6 %) .020 17 (3.1 %) 13 (18.6 %) < .001 

CC thin 10 (1.6 %) 7 (2.0 %) 3 (1.1 %) ns 5 (0.9 %) 5 (7.1 %) < .001 
CC short 12 (1.9 %) 8 (2.3 %) 4 (1.5 %) ns 7 (1.3 %) 5 (7.1 %) .001 
CC short and thin 4 (0.6 %) 4 (1 %) 0 (0 %) ns 2 (0.4 %) 2 (2.9 %) ns 

CC partial agenesis 1 (0.2 %) 1 (0.3 %) 0 (0 %) ns 0 (0 %) 1 (1.4 %) ns 
CC focal hypoplasia 4 (0.6 %) 4 (1.1 %) 0 (0 %) ns 3 (0.5 %) 1 (1.4 %) ns 

Pineal gland cyst All 90 (14.5 %) 54 (15.5 %) 36 (13.2 %) ns 76 (13.8 %) 14 (20 %) ns 
≥ 10 mm 14 (2.3 %) 8 (2.3 %) 6 (2.2 %) ns 9 (1.6 %) 5 (7.1 %) .015 
< 10 mm 76 (12.3 %) 46 (13.2 %) 30 (11.0 %) ns 67 (12.2 %) 9 (12.9 %) ns 

Other        
Vascular anomalies All 10 (1.6 %) 7 (2.0 %) 3 (1.1 %) ns 10 (1.8 %) 2 (2.9 %) ns 

DVA 8 (1.3 %) 6 (1.7 %) 2 (0.7 %) ns 6 (1.1 %) 2 (2.9 %) ns 
Kissing carotids 1 (0.2 %) 0 (0 %) 1 (0.4 %) ns 1 (0.2 %) 0 (0 %) ns 
Capillary teleangectasia 1 (0.2 %) 1 (0.3 %) 0 (0 %) ns 1 (0.2 %) 0 (0 %) ns 

Cysts All 8 (1.3 %) 5 (1.4 %) 3 (1.1 %) ns 7 (1.3 %) 1 (1.4 %) ns 
Arachnoid** 3 (0.5 %) 2 (0.6 %) 1 (0.4 %) ns 3 (0.5 %) 0 (0 %) ns 
Poroencefalic 3 (0.5 %) 2 (0.6 %) 1 (0.4 %) ns 2 (0.4 %) 1 (1.4 %) ns 
Neuroglial 1 (0.2 %) 0 (0 %) 1 (0.4 %) ns 1 (0.2 %) 0 (0 %) ns 
Inclusion 1 (0.2 %) 1 (0.3 %) 0 (0 %) ns 1 (0.2 %) 0 (0 %) ns 

Abbreviations: ASD, autism spectrum disorder; N or n, number; M, mean; SD, standard deviation; ns, not significant; IQ, intelligence quotient; ID, intellectual disability; 
CSF, cerebral spinal fluid; CC, corpus callosum; DVA, developmental venous anomalies. 
Note: *Х2 or Fisher’s Exact Test, as appropriate, for testing for groups differences on ASD and ID (raw p-values; results reaching significance when controlling FDR are 
indicated in bold). 
**Arachnoid cysts in locations other than the posterior fossa. 
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enable quantification, we categorized our extensive assessment data into 
ten categories as follows: anomalies of 1) skull, whole brain, and brain 
lobes, 2) cerebral cortex, 3) hippocampi, 4) white matter, 5) Virchow- 
Robin (VR) perivascular spaces, 6) basal ganglia, 7) posterior fossa, 8) 
cerebral spinal fluid spaces, 9) midline, and 10) other. 

Further, we compared the assessments performed by any two raters 
in each category (on 276 participants, for a total of 2760 observations) 
using a binary system. Readings were rated as ‘0′ in case of congruent 
descriptions (both readers rated the category as normal, or described the 
same type of abnormality), or ‘1′ in case of substantial differences. The 
agreement between rater 1 and 2, performed on 172 participants, was 
92 %; the agreement between rater 1 and rater 3 (an experienced 
neuroradiologist), performed on 57 participants, was 98 %. In case of 
disagreement (a rating of ‘1′), consensus was reached by discussion. 

Finally, we acquired multiple biometric measures from the MR- 
scans, using standardized methods and age-sex normed values. This 
permitted us to further characterize specific brain features and to 
objectively quantify anomalies, while accounting for sex and age effects. 

Specifically, we acquired metrics of the whole head shape and size 
(Allanson et al., 2009; Franco et al., 2013), of the anterior and posterior 
inter-opercular distances (Chen et al., 1995; Chen et al., 1996), of the 
corpus callosum (length and thickness) (Garel et al., 2011; Karakaş et al., 
2011), and of the lateral ventricles (Sarı et al., 2015). Further, we 
measured perivascular VR spaces (Heier et al., 1989), pineal gland cysts, 
and the length of the cavum septum pellucidum and cavum vergae 
(Dremmen et al., 2019) when present. In the posterior fossa, we 
measured the width of cisterna magna (Limperopoulos et al., 2008), and 
the extent of tonsillar ectopia in case of Chiari malformation type 1 
(Baisden, 2012). 

All measures were acquired on T1w sequences using the submilli-
meter caliper of MedINRIA medical image visualization software 
(https://med.inria.fr). For further details on the measurement’s 
methods and standard references, we refer to Appendix C. Notably, this 
data is distinct and provides complementary information to measures 
obtained using standard automated imaging pipelines such as FreeSurfer 
(Fischl, 2012). In fact, some of these measures, such as the distinct di-
mensions of the corpus callosum, may be related to different neuro-
developmental mechanisms (De León Reyes et al., 2020). 

2.4. Statistical analysis 

We conducted all statistical analyses using SPSS statistical package 
v26. We used Chi-squared or Fisher’s Exact Test, as appropriate, to 
analyze differences in the observed MRI findings between diagnostic 
groups (ASD vs controls), and between individuals with and without ID. 
Odds ratios [OR] were calculated to estimate the strength of the asso-
ciation between neuroradiological findings and ASD or ID. We applied a 
false discovery rate (FDR) correction (Benjamini and Hochberg, 1995) to 
control for multiple comparisons, using a significance threshold of p 
<.05. Notably, previous studies on neuroradiological findings in ASD 
have reported uncorrected results (e.g., Erbetta et al., 2014) due to their 
small number of comparisons. Hence, to enable better comparisons with 
previous studies, and in consideration of our novel, more rigorous 
assessment of the scans, we report both FDR-corrected and uncorrected 
results here. 

Further, we explored the possibility of clustering. We compared the 
number of neuroradiological findings per individual (clusters) between 
groups. Then, we investigated the distribution of each type of finding 
within the clusters using Chi-square goodness of fit test. Post-hoc ana-
lyses were performed using adjusted standardized residuals for chi- 
square tests (Beasley and Schumacker, 1995). Finally, we performed 
pairwise correlations of the frequency distributions of neuroradiological 
findings in the sample, Bonferroni-corrected for multiple comparisons, 
and compared these correlations between groups. 

3. Results 

Complete demographic and high-quality brain MRI scans were 
available from 620 participants, aged from 6.8 to 30.6 years (Table 1). 
Table 2 summarizes the observed neuroradiological findings and 
between-group differences. Examples of common findings, and of some 
rarer anomalies encountered in our dataset, are depicted in Fig. 1. 

3.1. Types of neuroradiological findings 

Most participants (539/620, 86.9 %) had at least one neuroradio-
logical finding, including 331/348 (89.4 %) participants with ASD, 95.7 
% of participants with mild ID (44/47 ID-ASD, 23/23 ID-controls), and 
205/249 (82.3 %) typically developing controls. Participants with ASD, 
and participants with mild ID irrespective of ASD diagnosis, were more 
likely to have a neuroradiological finding compared to their respective 
controls (Х2

1 = 4.1, p =.042 and Х2
1 = 5.3, p =.021, respectively). There 

was no difference in the frequency of total findings between males and 
females. Preliminary analysis on sex differences is provided in Appendix 
D. Among a few other results, we found a higher incidence of mega 
cisterna magna in males (Х2

1 = 17.7; p <.001, FDRp <.001; OR 4.2, 95 % 
CI 2.0–8.5) (Table D1). 

In ASD, we found a higher incidence of opercular abnormalities (Х2
1 

= 12.9, p <.001, FDR-adjusted value of p (FDRp) = 0.017; OR 1.9, 95 % 
CI 1.3–2.6), and mega cisterna magna (Х2

1 = 11.1, p =.001, FDRp =.026; 
OR 2.4, 95 % CI 1.4–3.9), compared to controls (Table 2). Given the sex 
mismatch between diagnostic groups in our research population 
(Table 1), and the sex difference on mega cisterna magna (Table D1), we 
repeated the ASD analysis on mega cisterna magna in a male only sub-
group (n = 428), which yielded consistent results (p =.009). 

We additionally found a higher incidence in ASD of cranial de-
formities (Х2

1 = 4.2, p =.039; OR 2.4, 95 % CI 1.0–5.8), macrocephaly 
(Х2

1 = 7.5, p =.006; OR 2.0, 95 % CI 1.2–3.2), calvarian / dural thick-
ening (Х2

1 = 4.3, p =.039; OR 1.5, 95 % CI 1.0–2.3), ventriculomegaly 
(enlarged ventricles; (Х2

1 = 6.7, p =.010; OR 3.4, 95 % CI 1.3–9.2), and 
hypoplasia of the corpus callosum (Х2

1 = 5.4, p =.020; OR 2.7, 95 % CI 
1.1–6.3), although these results failed to reach significance after 
correction for multiple comparison (Table 2). All these differences did 
not hold in the subsample of participants with mild ID (i.e. when 
comparing ID-ASD to ID-controls). 

Instead, participants with mild ID had a higher incidence of micro-
cephaly (Х2

1 = 7.5, p =.006, FDRp =.042; OR 2.7, 95 % CI 1.3–5.5), 
calvarian / dural thickening (Х2

1 = 16.2, p <.001, FDRp =.001; OR 2.9, 
95 % CI 1.7–4.9), opercular abnormalities (Х2

1 = 10.2, p =.001, FDRp 
=.011; OR 2.2, 95 % CI 1.4–3.7), vermian hypoplasia (Х2

1 = 39.2, p 
<.001, FDRp <.001; OR 51.5, 95 % CI 6.1–434.3), enlargement of the 
subarachnoid spaces (Х2

1 = 11.0, p =.001, FDRp =.008; OR 3.0, 95 % CI 
1.5–5.7), and hypoplasia of the corpus callosum (Х2

1 = 32.3, p <.001, 
FDRp =.002; OR 7.2, 95 % CI 3.3–15.5) compared to participants with 
IQ in the typical range (ASD and controls combined), see Table 2. 

3.2. Clustering of neuroradiological findings 

The number of neuroradiological findings per individual ranged 
from 0 to 8, regardless of clinical diagnosis. In more than half of cases, 
any single neuroradiological finding was accompanied by others: of the 
620 participants, 81 (13.1 %) had no findings at all (‘cluster 0′), 189 
(30.5 %) had one finding (‘cluster 1′), 142 (22.9 %) had two findings 
(‘cluster 2′), 119 (19.2 %) had three findings (‘cluster 3′), and 89 (14.4 
%) had four or more findings (‘cluster 4+’). 

The number of neuroradiological findings per person differed be-
tween ASD and controls (Х2

3 = 25.4, p <.001). Post-hoc analysis of the 
adjusted standardized residuals showed that individuals with 0 or 1 
findings were more prevalent in the control group (p <.001), the number 
of individuals with 2–3 neuroradiological findings did not differ be-
tween groups, while individuals with 4 or more neuroradiological 
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findings were more prevalent in the ASD group than in controls (p 
=.029), see Fig. 2. These differences were not present in the subsample 
of participants with mild ID. 

Similarly, the number of neuroradiological findings per person 
differed between individuals with mild ID and individuals with typical 
IQ, irrespective of ASD diagnosis (Х2

3 = 25.0, p <.001). Post-hoc analysis 
showed that individuals with 0 or 1 finding were more prevalent in the 
control group (p =.001), the number of individuals with 2–3 neurora-
diological findings did not differ between the groups, and individuals 
with 4+ neuroradiological findings were more prevalent in mild ID than 
in participants with typical IQ (p =.001). These group differences were 
not present in the subsample of individuals with ASD (i.e. when 
comparing ID-ASD vs ASD with typical IQ). 

3.3. Types by number of neuroradiological findings 

We used Chi-square goodness of fit test and post-hoc analyses to 
explore if there was a difference in the frequency of different types of 
neuroradiological findings across the (1 to 4+) clusters. We found that 
macrocephaly, the mega cisterna magna, vermian hypoplasia, 

enlargement of the subarachnoid spaces and of lateral ventricles were 
more prevalent in the 4+ cluster (all ps < .001). In other words, these 
findings were commonly accompanied by three or more other findings. 
There were no differences between diagnostic groups in the distribution 
of any neuroradiological finding within the (1 to 4+) clusters, with the 
exception of the Virchow-Robin (VR) perivascular spaces: post-hoc an-
alyses showed that the VR spaces were more prevalent (p =.001) in 
cluster 1 in controls (i.e., they occurred in isolation), whereas they were 
more prevalent in cluster 4+ (p =.012) in ASD. 

Next, we investigated the correlation between each type of neuro-
radiological finding in the whole group. Due to the large number of 
comparisons, here we applied Bonferroni correction (adjusted p value =
.0002). Results are summarized in Appendix D (Table D2). We found 
that macrocephaly was associated with calvarian / dural thickening and 
with ventriculomegaly, and that the microcephaly was associated with 
hypoplasia of the corpus callosum. We also found significant correla-
tions between cortical malformations and cystic or WM abnormalities 
(all ps < .0001). 

Finally, we tested whether correlation coefficients differed between 
the groups. We found no differences in these correlations in ASD, nor in 

Fig. 1. Examples of neuroradiological findings. Panel A: arachnoid cyst in the left temporal pole; Panel B: periventricular nodular heterotopia (PNH, arrow); Panel C: 
simplified gyral pattern; Panel D1-2: opercular abnormality; Panel E: partial agenesis of the corpus callosum; Panel F: Dandy-Walker variant; Panel G: ven-
triculomegaly; Panel H: thickening of the dura mater. 
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individuals with mild ID, compared to controls. 

4. Discussion 

We performed a large study (N = 620) investigating neuroradio-
logical findings in ASD. We used a systematic and comprehensive 
scoring system of brain findings on MRI, augmented with standardized 
biometric measures of brain features. We found that neuroradiological 
findings were more common and clustered more frequently in ASD, 
although this did not appear to be specific to the condition. 

The incidence of brain MRI findings in ASD in our study was higher 
(89.4 %) than in previous reports, which ranged from 11 % (Vasa et al., 
2012), 40–54 % (Piven et al., 1990; Taber et al., 2004; Zeegers et al., 
2006; Boddaert et al., 2009: Erbetta et al., 2014, 2015; Myers et al., 
2020), to 68 % (Monterrey et al., 2017) in ASD. This is likely related to 
several factors, such as the inclusion of participants with ID in our study 
(as there were more findings in ID-participants compared to participants 
with typical IQ), and our acquisition of extensive assessment data, which 
permitted us to report on a wide range of anatomical features, from 
common to more rare variants in brain anatomy. 

The presence of specific neuroradiological markers may hint at the 
neurodevelopmental processes involved. For example, we found a 
higher incidence of mega cisterna magna in ASD, consistent with pre-
vious neuroradiologic studies (Erbetta et al., 2014; Erbetta et al., 2015). 
Mega cisterna magna is a cystic malformation of the posterior fossa 
characterized by a focal enlargement of the subarachnoid space located 
below the cerebellum (cerebellomedullary cistern), with normal fourth 
ventricle and cerebellar structures (Whitney et al., 2013; Bosemani 
et al., 2015). Mega cisterna magna is considered to be on the mild end of 
the Dandy-Walker (DW) complex, a wide spectrum of congenital ab-
normalities sharing overlapping radiological features, a similar clinical 
spectrum, and related developmental origins (Barkovich et al., 1989). 
Embryologically, the DW complex is thought to be related to insults 
predominantly involving the developing cerebellar hemispheres 

(leading to the DW variant, Fig. 1 panel F), or the developing fourth 
ventricle (associated to the mega cisterna magna), or both (leading to 
the most severe DW malformation) (Barkovich et al., 1989). Interest-
ingly, in our study, we found a higher incidence of the DW complex as a 
whole in the autism group, largely driven by the presence of mega 
cisterna magna. This implicates the developmental period when the 
fourth ventricle develops, up to 26 weeks’ gestation (Brocklehurst, 
1969), in ASD. 

Prior studies on cerebellar morphometry provided variable results on 
the direction and pattern of differences observed in ASD (Brambilla 
et al., 2003; Donovan and Basson, 2017). Our study reflects such vari-
ability as well, as by definition the DW variant and malformation are 
characterized by varying degrees of malformation of the cerebellar re-
gions, whereas in mega cisterna magna these structures are visually 
intact (Barkovich et al., 1989). The qualitative assessment of posterior 
fossa as conducted in our study may be able to help to stratify ASD into 
subtypes based on cerebellar anomalies at a macroscopic level. 

Consistent with previous volumetric studies of the corpus callosum 
(CC) in ASD (reviewed by Bellani et al., 2013), we found a higher 
incidence of hypoplasia of the CC in the autism group, although this 
result did not reach significance when controlling FDR. The CC is the 
largest commissural white matter tract, involved in the integration of 
high-order functions and sensory information between the two hemi-
spheres. Anatomically, the CC has four distinct segments (rostrum, genu, 
body and splenium), all identifiable by 20 weeks post-conception 
(Edwards et al., 2014). In this study, we extended the identification of 
the cases with callosal hypoplasia by assessing the presence of these 
segments, and determining whether the hypoplasia was primarily 
related to thinning and / or shortening of the CC. We found no between- 
group differences in the distinct forms of callosal hypoplasia. However, 
we identified one case with partial agenesis of the CC (Fig. 1 panel E), 
characterized by markedly reduced length as a result of missing seg-
ments, primarily the splenium. This may result from an early pertur-
bation of callosal development preceding the 20th week of gestation. 

Fig. 2. Clustering of neuroradiological findings in ASD vs controls. The number of neuroradiological findings per person differed between ASD and controls (p 
<.001). Asterisks mark significant group differences from post-hoc analysis: individuals with 0–1 neuroradiological findings were more prevalent in the control group 
(**p <.001), individuals with 2–3 findings did not differ between groups, individuals with 4 or more findings were significantly more prevalent in ASD compared to 
controls (*p =.029). 
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The remaining cases of callosal hypoplasia are more likely related to 
insults later in gestation, leading to a reduction in size of the fully 
formed CC (De León Reyes et al., 2020). The development of the CC is 
regulated through a complex interplay of genes (see Edwards et al., 2014 
for a comprehensive review), a number of which have been already 
linked to ASD (e.g., 17p13.3 which contains the LIS1 gene, or 11q13.4 
for the DHCR7 gene; Edwards et al., 2014). 

Additionally, we found a higher incidence of qualitative abnormal-
ities of the opercular formation in ASD (Fig. 1 panel D1-2). This finding is 
unprecedented in ASD research, and is likely due to the fact that we 
assessed the opercular region explicitly, and objectified our findings by 
measuring inter-opercular distances. Our result converges with previous 
automated quantitative studies that repeatedly identified cortical 
morphometric changes predominantly in fronto-temporal and fronto- 
parietal regions in ASD (Hadjikhani et al., 2006; Hyde et al., 2010; 
Ecker et al., 2013). Recently, differences in fronto-temporal cortical 
thickness were also reported in a large sample derived from the same 
cohort as the present study (LEAP) (Ecker et al., 2022). Our finding also 
aligns with a previous report of cortical shape abnormalities specifically 
in the opercular region in ASD (Nordahl et al., 2007). Investigation of 
the link between qualitative anomalies of the opercular regions and 
morphometric changes in the pertaining cortical areas is a fascinating 
and open area of research. 

The operculum is a large cortical structure encompassing parts of the 
frontal, temporal and parietal lobes, which together cover the insula. 
Functionally, the operculum is involved in social, sensory, language, and 
cognitive processing (Chen et al., 1996; Nordahl et al., 2007). Problems 
with these abilities are some of the core symptoms of ASD (American 
Psychiatric Association, 2013). The open operculum, resulting in an 
exposed insula, is not merely due to a volumetric reduction of frontal, 
temporal or parietal regions, but may be related to a disturbed devel-
opmental process, starting around 20–22 weeks’ gestation period and 
usually proceeding in a clear and well-orchestrated manner, known as 
opercularization. Therefore, our refined anatomical characterization of 
the opercular region may provide clues to the neurodevelopmental 
mechanisms involved. 

In addition to micro- and macrocephaly, we found a few rare mal-
formations of cortical development (MCD) in ASD, namely periven-
tricular nodular heterotopia (PNH, n = 2, Fig. 1 panel B), diffuse 
simplified gyral pattern (n = 2, see Fig. 1 panel C), and cortical dysplasia 
(n = 3). Although there were no between-group differences due to the 
low incidence of these malformations, they are each suggestive of dis-
rupted specific phases of cortical development, possibly related to spe-
cific genetic mutations. For example, PNH are disorders of the last phase 
of neuronal migration associated to, among others, FLNA or ARFGEF2 
mutations. Identification of genes associated with MCD (Barkovich 
et al., 2012; Desikan and Barkovich, 2016) in these participants may link 
between neuroradiological findings to neurodevelopment, and poten-
tially to individual clinical profiles. 

In sum, our study shows high prevalence of specific brain anomalies 
in ASD that may act as markers of neurodevelopmental processes 
involved. Furthermore, our results showed that neuroradiological find-
ings were more likely to occur in isolation in controls, whereas they were 
more commonly associated with multiple findings in ASD. This con-
verges with another recent study of cortical morphometry in the LEAP 
cohort, which suggested that the total amount of widespread deviation 
from typical brain anatomy is a better predictor of the clinical outcome 
in ASD than changes in any specific brain region per se (Pretzsch et al., 
2022). Speculatively, these findings suggest a possible ‘cumulative ef-
fect’ of neurodevelopmental events in developing ASD. 

Plausibly, some neuroradiological findings may cluster due to shared 
biological or mechanical factors (i.e., tissue viscoelasticity) which 
modulate the whole brain and shape of the neurocranium (Bilston, 
2011). Our study confirms this hypothesis, as we indeed found that there 
were anomalies that tended to cluster together. For example, we found 
correlations between macrocephaly and ventriculomegaly, where 

progressive enlargement of intracranial ventricular system may have 
resulted in an abnormally large head (Orrù et al., 2018). We also found 
an association between macrocephaly and thickening of cranial bones, 
hinting at another possible mechanism for the increase in head size 
frequently observed in ASD (Lainhart et al., 1997; Fombonne et al., 
1999; Dementieva et al., 2005; Orrù et al., 2018) in addition to early 
brain overgrowth (Courchesne, 2002). 

Yet, we also found that neither the type, nor the number of neuro-
radiological findings per person, nor the pattern of association between 
different findings were specifically associated with the autism spectrum. 
In fact, there were no differences in neuroradiological findings between 
ASD and controls within the subsample of participants with mild ID, 
although this sample was relatively small. Previous studies including 
individuals with ID did not perform direct pairwise comparisons be-
tween diagnostic groups (Zeegers et al., 2006; Erbetta et al., 2015). 
Nevertheless, the literature on neuroradiological findings in ASD 
unanimously concurs that there are no specific individual (or association 
of) findings that are unique to ASD (Piven et al., 1990; Zeegers et al., 
2006; Boddaert et al., 2009; Vasa et al., 2012; Erbetta et al., 2014, 2015; 
Monterrey et al., 2017; Myers et al., 2020). Our study corroborates this, 
further supporting the notion that brain imaging per se does not a have a 
direct role in the diagnosis of autism. 

However, neuroradiological findings may be related to specific 
etiopathological mechanisms, which in turn, may be linked to ASD. 
Hence, our study illustrates that brain imaging has potential clinical 
relevance, particularly for evaluation of individual subjects (e.g. clinical 
genetics), and certainly in case of accompanying neurological and 
clinical signs and symptoms. From a methodological perspective, our 
study shows that detailed qualitative radiological screening of MRI scans 
is a valuable complement to automated (quantitative) assessments of 
brain morphometry. 

Strengths of this study were its large sample size, and the use of a 
systematic and comprehensive scoring system of brain anomalies on 
MRI, augmented with standardized biometric measures of brain fea-
tures. However, our findings must also be interpreted in the light of 
several limitations. First, T2w and FLAIR sequences were not available 
for all participants. However, these are not strictly necessary for iden-
tifying most of the MRI findings (e.g., persistent cavum septum pellu-
cidum (Dremmen et al., 2019)). In addition, the acquisition parameters 
of the MRI scans used in this study were sub-optimal for assessing hip-
pocampus. Therefore, analyses in this region must be interpreted with 
caution. Nonetheless, we ensured that all the reported findings in this 
study were adequately characterized by the available MRI sequences, 
and the number of scans missing did not differ between participants with 
and without ASD. Furthermore, not all scans in this study were reviewed 
independently by more than one rater. However, we worked in an 
interdisciplinary team, with one experienced, senior neuroradiologist 
supervising two pediatric neurologists with experience in brain imaging 
and development. Difficult scans were reviewed for consensus, and es-
timates of interrater agreement were remarkably high. 

5. Conclusions 

We used a systematic and comprehensive scoring system of brain 
anomalies on MRI, augmented with standardized biometric measures of 
brain features, and found a high incidence of neuroradiological findings 
in individuals with and without ASD. We found that neuroradiological 
findings were more common and clustered more frequently in ASD. 
Also, individual findings or clusters of findings may point towards the 
timing of neurodevelopmental mechanisms involved in individual cases. 
As such, clinical MRI assessments may be useful in the context of (ge-
netic) diagnoses, and are potentially valuable to further elucidate the 
pathogenesis of autism. 
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