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Abstract Autism spectrum disorder (ASD) is a complex be-
havioral condition with onset during early childhood and a
lifelong course in the vast majority of cases. To date, no be-
havioral, genetic, brain imaging, or electrophysiological test
can specifically validate a clinical diagnosis of ASD. Howev-
er, these medical procedures are often implemented in order to
screen for syndromic forms of the disorder (i.e., autism co-
morbid with known medical conditions). In the last 25 years a
good deal of information has been accumulated on the main
components of the “endocannabinoid (eCB) system”, a rather
complex ensemble of lipid signals (“endocannabinoids”),
their target receptors, purported transporters, and metabolic
enzymes. It has been clearly documented that eCB signaling
plays a key role in many human health and disease conditions
of the central nervous system, thus opening the avenue to the
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therapeutic exploitation of eCB-oriented drugs for the
treatment of psychiatric, neurodegenerative, and
neuroinflammatory disorders. Here we present a modern view
of the eCB system, and alterations of its main components in
human patients and animal models relevant to ASD. This
review will thus provide a critical perspective necessary to
explore the potential exploitation of distinct elements of eCB
system as targets of innovative therapeutics against ASD.
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The Endocannabinoid System

Twenty-five years after the cloning and expression of a com-
plementary DNA that encoded a G protein-coupled receptor,
named type-1 cannabinoid (CB;) receptor [1], there is a good
deal of information on the main components of the so-called
“endocannabinoid (eCB) system”, as well as on its role in
controlling cannabinergic signaling in human health and dis-
ease [2—4]. Anandamide (AEA) and 2-arachidonoylglycerol
(2-AG) are the most active eCBs as yet identified, although
this family of bioactive lipids includes other arachidonic acid
(AA) derivatives with cannabimimetic properties (i.e., noladin
ether, virodhamine, N-arachidonoyldopamine, to name but a
few). The classical dogma that eCBs are synthesized and re-
leased “on demand” upon (patho)physiological stimuli has
been recently revisited on the basis of unexpected evidence
for intracellular reservoirs and transporters of eCBs. These
new entities have been shown to drive intracellular trafficking
of eCBs, adding a new dimension to the regulation of their
biological activity [5]. To date, several metabolic routes have
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been described for AEA biosynthesis [6, 7], yet the most rel-
evant pathway is believed to begin with the transfer of AA
from the sn-1 position of 1,2-sn-di-arachidonoyl-phosphati-
dylcholine to phosphatidylethanolamine, generating the
AEA precursor N-arachidonoyl-phosphatidylethanolamine.
The latter compound is next cleaved by a specific N-acyl-
phosphatidylethanolamine (NAPE)-specific phospholipase
D, which has been characterized in detail [8]. However, the
degradation of AEA to AA and ethanolamine is mainly due to
2 fatty acid amide hydrolases (FAAH and FAAH-2) [9, 10].
When FAAH and FAAH-2 are inhibited, N-acylethanolamine-
hydrolyzing acid amidase cleaves AEA in an alternate route
[11, 12]. The main enzymes responsible for AEA metabolism
are reported in Fig. 1.

Much like AEA, the biological activity of 2-AG is con-
trolled through cellular mechanisms that include: 1) synthesis
through rapid hydrolysis of inositol phospholipids by a spe-
cific phospholipase C to generate diacylglycerol that is then
converted into 2-AG by a sn-1-specific diacylglycerol lipase
(DAGL) [13]; and 2) degradation to AA and glycerol by a
monoacylglycerol lipase (MAGL) [14], as schematically rep-
resented in Fig. 1. AEA and 2-AG can be also oxidized by
cyclooxygenase-2, different lipoxygenase isozymes, as well
as by cytochrome P450, to generate, respectively, prostaglan-
din—ethanolamides [15] and prostaglandin-glyceryl esters
[16], hydroxy-anandamides and hydroxyleicosatetraenoyl-
glycerols [17], and epoxy-eicosatrienoyl-glycerols [18].

An open question concerning eCB metabolism remains the
transport of these compounds across the plasma membrane
[19,20]. As yet, the most accepted mechanisms are: 1) passive
diffusion, which can be favored by the formation of AEA—
cholesterol complexes, possibly in preferred microdomains
called “lipid rafts” [21, 22]; 2) facilitated transport through a
purported eCB membrane transporter [23]; and 3) endocytosis
assisted by caveolins (reviewed in [24]). Once taken up, intra-
cellular AEA reaches distinct sites, where distinct metabolic
and signaling pathways take place. Heat shock protein 70, and
albumin and fatty acid binding proteins 5 and 7 have been
shown to act as eCB intracellular transporters, able to ferry
AEA (and likely also 2-AG) within the cytoplasm to the nu-
cleus and other destinations, including storage compartments
like adiposomes [5, 25].

eCBs act principally through type-1 and type-2 (CB; and
CB,) cannabinoid receptors. Interestingly, CB; but not CB,
resides within lipid rafts, and their interaction with these spe-
cialized microdomains influences signal transduction thereof
[26]. Additionally, ¢CBs are also able to interact with non-
CB//non-CB; targets, such as 1) the transient receptor poten-
tial vanilloid type 1 channel, which is activated by both AEA
and 2-AG [27, 28]; 2) peroxisome proliferator-activated
receptor-o¢ and peroxisome proliferator-activated receptor-y
[29]; and 3) the orphan G protein-coupled receptor GPR55
[30, 31]. By interacting with these receptors, eCBs trigger a
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multiplicity of signaling pathways that are involved in both
physiological and pathological conditions [32]. On a final
note, the existence of compounds structurally related to eCBs,
and collectively known as “eCB-like” substances, should be
recalled because of their “entourage effect”. These com-
pounds potentiate eCB activity at their receptors by increasing
binding affinity or by inhibiting eCB hydrolysis [33-35]. A
schematic representation of eCBs, their molecular targets, bio-
synthetic and hydrolizing enzymes, and extra- and intracellu-
lar transporters, is depicted in Fig. 1.

Autism Spectrum Disorder: Clinical Traits,
Neuropsychological Deficits, and Neuroanatomical
Underpinnings

Autism spectrum disorder (ASD) is a complex behavioral
condition with onset during early childhood and a lifelong
course in the vast majority of cases. It is characterized by
deficits in communication and social interaction, as well as
by stereotypic behaviors, restricted patterns of interest, and
abnormal sensory issues [36]. The diagnosis is based on clin-
ical observation, substantiated by standardized testing of the
patient with the Autism Diagnostic Observation Schedule-
Generic [37], later revised into the Autism Diagnostic Obser-
vation Schedule-2 [38], and/or by parental interview with the
Autism Diagnostic Interview-Revised [39]. To date, no behav-
ioral, genetic, brain imaging, or electrophysiological test can
specifically validate a clinical diagnosis of ASD, although
these medical procedures are regularly implemented in order
to screen for syndromic forms of the disorder (i.e., autism due
to known medical conditions). Two essential features distin-
guish ASD from most other behavioral disorders: 1) an im-
pressive clinical and pathogenetic heterogeneity, which has
led to the designaton, by the term “autisms”, of a set of
neurodevelopmental disorders with early onset in life, sharing
autism as a common feature, but produced through distinct
processes [40]; 2) the distribution of autistic features as a
dimensional continuum in the general population, which fully
justifies referring to the “autism spectrum” rather than to a
categorical distinction between “affected” and “unaffected”
[41, 42]. As many as 1 in 68 (1.6 %) 8-year-old children
receive an ASD diagnosis [43], with a male:female ratio of
4:1. Siblings of children already diagnosed with ASD have a
significantly higher incidence of the same disorder, reported at
18.7 % in a prospective follow-up study [44], and ranging
from 15 % to 25 % depending on sex and clinical severity.
The prospective follow-up of these siblings later diagnosed
with ASD has led to the observation that some behavioral
abnormalities can appear very early on (e.g.,, sensory issues
[e.g., extreme responses to certain sounds/textures, fascination
with lights/spinning objects] are already present at 7 months
of age), others emerge at 12—14 months (e.g., disengagement
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Fig. 1 Schematic representation of the main elements of the
endocannabinoid (eCB) system. N-arachidonoylethanolamine (AEA) is
mainly synthesized by the sequential activity of N-acyltransferase (not
shown) and N-acylphosphatidyl-ethanolamine (NAPE)-specific
phospholipase D (NAPE-PLD). The intracellular degradation of AEA is
due to a fatty acid amide hydrolase (FAAH) that generates ethanolamine
(EtNH,) and arachidonic acid (AA). 2-Arachidonoylglycerol (2-AG) is
released from membrane lipids through the activity of diacylglycerol
lipase (DAGL), and can be hydrolyzed by a cytosolic monoacylglycerol
lipase (MAGL), which releases glycerol and AA. Cyclooxygenase-2,
lipoxygenase isozymes and cytochrome P450 were omitted for the sake
of clarity. Extracellular eCBs can cross the plasma membrane through a

of visual attention), while the bulk of more typical autistic
abnormalities has an onset between 14 and 24 months
[45—48]. Frequently, comorbid conditions include intellectual
disability (65 %), seizures (30 %), and different forms of sleep
problems [49-51]; less recognized, but equally impairing, are
frequent psychiatric comorbidities, that include anxiety disor-
ders, obsessive—compulsive disorders, and depression [52].
Altered neurodevelopment during early pregnancy represents
the neuropathological cause of ASD [53, 54]. Postmortem
studies have unveiled neuroanatomical and cytoarchitectonic
abnormalities in the cerebellum, inferior olivary complex,
deep cerebellar nuclei, hippocampus, amygdala, entorhinal
cortex, fusiform gyrus, and anterior and posterior cingulate
cortex, with thinner cortical minicolumns, excessive growth
of'the frontal lobes, and excessive dendritic spine density [55].
These abnormalities are suggestive of derangements occurring
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purported eCB membrane transporter (EMT), and then they are trafficked
within the cytoplasm through eCB intracellular transporters (EIT), which
deliver them to their different targets or, alternatively, to storage
organelles like adiposomes. Both AEA and 2-AG trigger several signal
transduction pathways by acting at type-1 and type-2 cannabinoid
receptors (CB; and CB,, respectively), or at other non-CB;/non-CB,
targets, such as peroxisome proliferator-activated receptors (PPARSs) in
the nucleus. CB;, but not CB,, resides within specialized membrane
microdomains enriched in cholesterol and sphingolipids, which are called
lipid rafts (LR). AEA (and also 2-AG) can also translocate to the inner
membrane leaflet, where it binds to transient receptor potential vanilloid
type 1 (TRPV1) channels

during the first/second trimester of pregnancy, namely re-
duced programmed cell death and/or increased cell prolifera-
tion, altered cell migration, abnormal cell differentiation with
reduced neuronal body size, abnormal neurite sprouting, and
pruning that result in atypical cell—cell wiring. In addition,
neurodevelopmental mechanisms extending into late
prenatal/postnatal life include reduced synapse formation
and delayed myelination [40, 56, 57]. The latter result in ab-
normal neuronal wiring, which was previously believed to be
characterized by long-range hypoconnectivity and local
hyperconnectivity [58], but more recently has been shown to
be a highly individualized mix of hyper- and hypoconnectivity
specific to each single patient with ASD [59]. These abnor-
malities have been associated with deficits in multiple behav-
ioral tasks that relate to social behavior, such as empathy,
theory of mind, joint attention, and face and emotion
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processing. Many of these observed behavioral features sug-
gest a deficit in the social reward processing system in ASD,
as we discuss in the following section. The neurocognitive
phenotype in ASD stems from a complex and highly hetero-
geneous array of genetic and environmental causes, with pa-
tients ranging from “purely genetic” cases due to known
ASD-causing chromosomal aberrations or mutations to
“purely environmental” cases due to rare prenatal exposure
to specific viral agents, drugs, and toxins [60—62]. In between
these extremes, ASD for most cases fully qualifies for the
definition of a “complex” disorder, whereby a host of rare
and common genetic variants, often but not necessarily in
conjunction with epigenetic factors [63], yield the
neurodevelopmental abnormalities summarized above,
resulting in autistic behaviors. Finally, neuroinflammation is
also a frequent finding in postmortem brains of autistic indi-
viduals [64, 65]. It may represent a nonspecific consequence
of insufficient neurite pruning and abnormal wiring of neural
networks, resulting in elevated oxidative stress (possibly a
common feature shared by several neurodevelopmental disor-
ders) [66], but it could also stem from a broader immune
dysfunction which, together with gastrointestinal disturbances
and recurrent infections, collectively qualifies ASD as a sys-
temic disorder [67-71].

Autism and Reward System

A deficit in theory of mind and empathy has commonly been
suggested to underlie atypical social behavior in individuals
with ASD [72]. A set of recent studies raises the possibility
that some of these social behavioral deficits in ASD arise due
to deficits in reward system functioning [73—75]. This hypoth-
esis is supported by studies that report a lack of social moti-
vation in children with autism [76, 77]. One rationale for the
social motivation-based account of ASD relies on the follow-
ing premise: if individuals with ASD do not find social stimuli
rewarding, and hence do not attend to them as much as
neurotypicals, then they are less likely to exhibit empathy
toward them. An alternative formulation of the social motivation
hypothesis suggests that the attention of individuals with and
without ASD is drawn to social stimuli to a comparable extent,
but individuals with ASD find social stimuli less rewarding,
which leads to the observed deficits in empathy (Fig. 2).

Both of these possible accounts of the social motivation
hypothesis are faced with a key question. Do people with
ASD find social stimuli rewarding or do they have a
domain-general dysfunction of the reward system? To test
these possibilities, a number of studies have compared pro-
cessing of social and nonsocial reward stimuli in people with
and without ASD. An early study using a continuous perfor-
mance task found no behavioral evidence for group differ-
ences in trials with monetary rewards versus nonrewards
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[78]. Similarly, comparable behavioral performance in a
reward-processing task using a variant of the go—no-go task
was found in children and adults with and without ASD [79,
80]. In contrast, using a similar task, DeMurie et al. [81] dem-
onstrated that children with ASD were slower in responding to
social rewards than monetary rewards, but this was not spe-
cific to ASD. Overall, the behavioral evidence summarized
above appears equivocal about any circumscribed deficit in
social reward processing in ASD. Yet, a main group effect in
the majority of these studies points toward a domain-general
deficit in the reward system. In contrast to the behavioral
studies using button-press responses, eyegaze tracking, elec-
troencephalography, and functional magnetic resonance imag-
ing studies suggest clear differences in processing of social
rewards in ASD compared with typically developed controls
[82]. Eyegaze tracking studies typically involve measuring
gaze fixation patterns in response to social and nonsocial stim-
uli. Children and adults with ASD are found to look less at
social stimuli than at nonsocial stimuli [8§3-85]. Gaze fixation
patterns have often been used as proxy metrics related to re-
ward processing [86], thus supporting the hypothesis of atyp-
ical processing of social rewards in ASD. Using electroen-
cephalography in children with ASD, a recent study reported
lower magnitude of a component related to reward anticipa-
tion (stimulus preceding negativity) in response to social
versus nonsocial stimuli [87]. Similarly, functional magnetic
resonance imaging studies revealed lower activity in the ven-
tral striatum in response to social stimuli (neutral faces) in
individuals with ASD [88]. The latter finding is consistent
with the observation that a reduced ventral striatal response
to happy faces was associated with lower self-reported empa-
thy in individuals with and without ASD [89].

In sum, there is substantial evidence across different tech-
niques to suggest atypical reward processing in ASD. Irre-
spective of their domain specificity, such functional differ-
ences in the reward circuit in ASD have important conse-
quences for the processing of social stimuli. Atypical response
to social rewards from an early age can result in deficits in
learning about the social world, which, in turn, can lead to
social behavioral impairments in adulthood.

Alterations of the eCB System in Autism

The complexities that make autism hard to understand, from
the diagnostic criteria and clinical heterogeneity to the genetic/
environmental causes that provoke communication and be-
havioral problems to the innovative therapies to be applied
in order to give patients the best quality of life, encourage
scientists to look at predictive biomarkers and/or therapeutic
targets for the pharmacological management of this disorder
[90, 91]. Tt is now clear that eCB system is altered in several
neurodegenerative diseases and, very interestingly, that
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Fig. 2 Two possible routes through which atypical reward processing
can lead to reduced empathy as seen in ASD. (Top panel) The first of
these routes suggest that a lower reward response to social stimuli reduces
the salience of social stimuli and hence how much attention they capture.

distinct elements of the eCB system in peripheral blood mirror
these perturbations, providing novel and noninvasive diagnos-
tic tools for several neuroinflammatory diseases [92, 93]. In
addition, the eCB system controls emotional responses [94],
behavioral reactivity to context [95], and social interaction
[96]. Thus, it can be hypothesized that alterations in this en-
dogenous circuitry may contribute to the autistic phenotype.
In this and the following sections, we critically discuss the
evidence for this proposition from animal and human studies.
Recent investigations have addressed the involvement of
eCBs in autism, where, unfortunately, the role of these bioac-
tive lipids remains poorly understood. Indeed, autism is
uniquely human and there are only a few validated animal
models (e.g., finrl knockout mice, BTBR mice, and valproic
acid-treated rats), that display autistic-like features. Fragile X
syndrome (FXS) is an inherited disorder caused by mutations
in FMRI, which is translated into the fragile X mental retar-
dation 1 protein, which, in turn, plays a role in the develop-
ment of synapses [97, 98]. Expansion mutations of FMR]
produce autistic features in approximately 40 % of patients
with FXS, and thus FXS provides a valuable model for iden-
tifying novel biomarkers/targets for autism and for dissecting
the underlying neurochemical pathways [99]. In the first study
addressing eCB system in FXS, it has been reported that the
ablation finrl gene causes a dysfunctional 2-AG metabolism,
with increasing DAGL and MAGL activities in the striatum of
fmrl”" mutants, but unaltered striatal 2-AG levels [100]. Ac-
cording to a more recent study [101], stimulation of 2-AG
signaling could be a useful treatment for mitigating FXS
symptoms because it is able to normalize synaptic activity
through type I metabotropic glutamate activation; additional-
ly, genetic or pharmacological attenuation of CB-dependent
signal transduction and blockade of the mammalian target of
rapamycin pathway might provide alternative strategies to
treat autistic patients [102].

ﬁ

e 4 Attention to social stimuli 7

EMPATHY

The reduced empathy is therefore a product of this reduced attention to
social stimuli. (Bottom panel) A second possible route suggests
comparable salience for social and nonsocial stimuli in ASD, but lower
value for social stimuli in ASD, leading to reduced empathy

A link between the eCB system and autism was put for-
ward by Schultz [103], who proposed that acetaminophen, an
antipyretic drug that is metabolized to a potent inhibitor of the
purported eCB membrane transporter AM404, could trigger
autism by activating CB receptors. In line with this, elevated
levels of circulating AEA during pregnancy or in the first
postnatal days might interefere with the neurodevelopment
of offspring, and might increase the risk of delivering autistic
children. Abnormalities in sociability and nociception tests,
and alterations of distinct elements of eCB system have been
reported in adolescent rats on valproic acid [104]. In particu-
lar, mRNA levels of the enzymes responsible for 2-AG me-
tabolism (i.e., DAGL and MAGL), which is disrupted in the
FXS model of autism [100], were altered in the cerebellum
and hippocampus, whereas endogenous levels of 2-AG in the
same regions remained at steady state [104]. Interestingly, the
content of AEA, N-oleoylethanolamine (OEA), and N-
palmitoylethanolamine (PEA), all of which are substrates of
FAAH, were increased in the hippocampus following expo-
sure to sociability tests, suggesting that a deficit in social play
behaviors might be due to reduced AEA levels in critical brain
areas [104]. Moreover, the same study documented a down-
regulation of GPR55 and PPAR gene expression, supporting a
role for these receptors in the cognitive mechanisms involved
in autism [104]. Preliminary data also addressed CB, as a
potential target for autism. Indeed, genomic studies have
highlighted an upregulation of mRNA levels of the CB,A,
but not the CB,B, isoform in the cerebellum of BTBR T+tF/
J mice [105], which have an autism-like behavioral phenotype
[106]. Also, an independent clinical study performed on
young (3—9-year-old) children demonstrated that CB; is high-
ly expressed, both at transcriptional and translational levels, in
peripheral blood mononuclear cells of patients with autism,
compared with matched healthy controls [107]. All the other
elements of the eCB system remained unaltered, except for a
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slight downregulation of NAPE—phospholipase D mRNA.
According to a recent hypothesis on autism and inflammation
[108], and in keeping with data on the key role of CB, in
immune-related pathologies [109—111], it can be speculated
that the increase in CB, expression may serve a compensatory
role with respect to the inflammatory state associated with
autism. Thus, the observed enhancement of CB, may be a
negative feedback response aimed at counteracting the proin-
flammatory responses implicated in the pathogenesis of this
neurobehavioral condition. In this context, it should be also
recalled that AEA suppresses the release of proinflammatory
cytokines from human lymphocytes through a CB,-mediated
mechanism [112]. The main alterations of the eCB system in
human patients and animal models of autism are summarized
in Tables 1 and 2, respectively. However, the paucity of the
relevant human data and their largely correlational nature do
not allow for a systematic comparison with the animal data.

Additionally, it is worth noting that plasma levels of poly-
unsaturated fatty acids (which are components of eCBs) are
lower in patients with autism, and that 2 derivatives of
docosahexaenoic acid and eicosapentaenoic acid (also com-
ponents of eCBs) are able to activate both CB; and CB, re-
ceptors [113]. These data further suggest that a dysregulation
of eCB signaling might be driven by diet, resulting in an
imbalance of pro- and anti-inflammatory metabolites, and thus
favoring the development of autism [114].

Suggested Roles of the eCB System in Autism

As discussed in the previous sections, there is phenotypic
evidence across multiple levels that suggests a role for atypical
reward system functioning in ASD. It is therefore vital to
investigate in detail the eCB system in autism and related
endophenotypes, also in view of its key role in modulating
mesolimbic dopaminergic neurotransmission. The majority of
studies on the eCB system in autism-related endophenotypes
in humans have tested the role of the CNRI, which is strongly
expressed in striatal structures implicated in processing

Table 1 Molecular markers of the endocannabinod (eCB) system in
autism and related phenotypes in humans
Biological sample =~ Model  eCB alterations Reference
Postmortem brain ~ Human  |CB,; [121]
PBMCs Human  |[NAPE-PLD mRNA [107]

= FAAH, CB, mRNA

1CB, mRNA and protein
Saliva Human CB,; SNP [116, 119]

PBMCs=peripheral blood mononuclear cells; CB' =type-1 cannabinoid
receptor; NAPE-PLD=N-acylphosphatidyl-ethanolamine-specific phos-
pholipase D; FAAH=fatty acid hydrolase; CB2=type-2 cannabinoid re-
ceptor; SNP=single nucleotide polymorphism
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rewards [115]. The previous section presented an overview
of largely animal studies that point to a role for eCB signaling
in autism-relevant phenotypes. Further clues from both human
and animal studies are discussed in the following section, and
are summarized in Fig. 3.

The first clue comes from a human neuroimaging study
that measured striatal response to social rewards (happy faces
vs neutral faces). This investigation found that common single
nucleotide polymorphisms in CNR/ are associated with activ-
ity in the ventral striatal cluster in response to happy (but not
to disgusted) faces [116], and later on it was replicated in an
independent cohort [117]. In view of the central role of the
ventral striatum in reward processing, it is reasonable to infer
that variation in CNR/ was linked to differences in sensitivity
to social rewards such as happy faces. Another study in an
independent sample used eyegaze tracking to show that the
same CNR] polymorphisms were associated with greater gaze
duration to happy faces, but again not to disgust faces [118]. A
parallel population genetic study found a nominal association
of the same CNR! genetic variations with trait empathy [119].
Individuals with ASD score low in trait empathy, and, consis-
tent with this, a gene expression study in postmortem brains of
individuals with autism had earlier reported a reduced expres-
sion of CB; [120, 121]. In sum, multiple indirect lines of
evidence suggest a role for CNR! genetic variations in under-
lying social reward responsivity, a putative endophenotype for
autism. These findings in human patients parallel observations
in animal models that show a strong role for the eCB system in
social play behavior, which is a proxy measure for social re-
ward responsivity [122, 123].

A second clue for the role of eCB system in autism comes
from observations in early neural development [124]. Autism
is neurodevelopmental in nature, and atypical development of
neural connectivity has been suggested to underlie its key
phenotypic features [125]. A set of genes involved in
neurodevelopmental processes that mediate the formation, sta-
bilization, and pruning of synapses has been consistently as-
sociated with autism-related phenotypes in animal models
[126—128]. Neuroligins (NLGN) represent a significant part
of this set, and indeed several genes of NLGN family have
been associated with autism [129]. In a mouse model, an
autism-associated mutation in NLGN3 was found to be asso-
ciated with deficits in social behavior and disrupted tonic eCB
signaling [130, 131]. Evidence from this study and several
others (reviewed in [124]) provides a potential causal bridge
between atypical neural development and potential dysfunc-
tion of the eCB system in autism.

A third clue comes from the role of the eCB system in
influencing circadian rhythm in animal models [132—134].
Autism has been associated with atypical sleep patterns and
circadian rhythms [135]. Polymorphisms in ASMT (involved
in melatonin synthesis), paralleled by reduced levels of circu-
lating melatonin, have been reported in autism [136].
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Table 2 Molecular markers of the eCB system in autism-related animal models
Biological sample Model eCBs alterations Reference
Striatum fmrl™" mouse =2-AG levels [100]
TDAGL and MAGL activity
Cerebellum Rat valproic acid = AEA, OEA, PEA and 2-AG levels [104]
|DAGLx mRNA
Frontal cortex = AEA, OEA, PEA and 2-AG levels
|PPAR-x and |GPR55 mRNA
Hippocampus TAEA, 1OEA, 1PEA content*
|PPAR~y and |GPR55 mRNA
IMAGL mRNA
TMAGL activity
Cerebellum BTBR T+tF/J mouse 1CB,A isoform mRNA [105]

2-AG=2-arachidonoylglycerol; DAGL=diacylglycerol; MAGL=monacylglycerol lipase; AEA=anandamide; OEA=N-oleoylethanolamine;
PEA=N-palmitoylethanolamine; PPAR=peroxisome proliferator-activated receptor

* After sociability tests

Interestingly, the eCB system also plays a role in regulating
circadian rhythms [134], thus making it a putative target to
examine using animal models of autism-related phenotypes.
The fourth clue comes from comorbidities commonly ob-
served in autism. First of these is anxiety, which is highly
comorbid with autism (42-56 %). The eCB system, and
cannabidiol in particular, is known to mediate anxiety and
related phenotypes [137, 138]. Anecdotal reports of cannabis
use in autism suggest a reduction in anxiety-related symp-
toms. A potential role for the eCB system in ASD can thus
also be mediated through its influence on the anxiety-related
component of the disease. The second commonly occuring
comorbidity in autism relevant to the current review is epilep-
sy (up to 30 %). The eCB system is studied intensively as
targets for potential antiepileptic drugs [139]. It is therefore

Fig. 3 Four clues pointing to the
role of the endocannabinoid
(eCB) system in autism. The eCB
system constitutes a relatively less
investigated piece of a puzzle that
brings together 4 phenotypic
features known to be atypical in
autism: 1) social reward
responsivity; 2) neural
development; 3) circadian
rhythm; and 4) anxiety-related
symptoms. fMRI = functional
magnetic resonance imaging

fMRI

Neuroligin signalling

+Essential for neurodevel

*NLGNS3 -/- mice sh

*Eyegaze tracking
«Atypical in autism

possible that a potential future drug acting on the eCB system
is better able to ameliorate epilepsy-related comorbidities in
ASD.

Conclusions

Accumulated evidence suggests that the eCB system consti-
tutes a relatively less investigated piece of a puzzle that brings
together 4 phenotypic features known to be atypical in autism:
1) social reward responsivity; 2) neural development; 3) cir-
cadian rhythm; and 4) anxiety-related symptoms. Therefore,
the potential therapeutic exploitation of distinct elements of
this system (e.g., receptor targets, biosynthetic and hydrolytic
enzymes, and transmembrane/intracellular transporters)

Social reward responsivity:

N

Animal models

Anxiolysis
«Common comorbidity in autism

ENDOCANNABINOIDS

Circadian rhythm

«Atypical circadian rhythm in autism
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seems immense. As supported by the evidence presented in
the previous sections in humans and animal models, any po-
tential therapeutic approach is unlikely to involve a simple
choice between activation versus inhibition of the eCB system
to target specific features related to autism. Any such approach
will need to be precisely tuned to the developmental timeline
and to the specific pathogenetic underpinnings of autism in the
single patient. Our understanding of eCB signaling in autism
is still in its infancy compared with other disorders of the
central nervous system or of peripheral tissues, where eCB-
based therapies have already reached preclinical and clinical
phases [4]. However, research in this field is rapidly evolving,
and novel drugs able to hit specifically a distinct element of
the eCB system are developed at a surprising speed [4].
Among them, those that target metabolic enzymes of eCBs,
and, at the same time, key enzymes of oxidative pathways like
cyclooxygenases seem to hold promise as next-generation
therapeutics against human disorders with an inflammatory
component [140], and therefore they will possibly result in
also being beneficial for ASD. A second medium-term target
could focus on the antiepileptic drugs that are being devel-
oped, focusing on the eCB system. These drugs could poten-
tially ameliorate the epilepsy-related symptoms that common-
ly co-occur with ASD. On a final note, it seems of major
interest that preliminary data, showing consistency between
changes in distinct eCB system elements (i.e., CB,) in animal
models of ASD and in peripherabl blood mononuclear cells
from young patients with ASD [106, 107], support a role for
these elements in the (early) diagnosis of the disease. Future
work should test expression profiles for key players of the
eCB system in prospective samples to test the potential of
these as diagnostic biomarkers. In this context, it should be
recalled that easily accessible biomarkers of neurological
disorders are highly searched for, and some of them have been
already identified to hold promise in human
neurodegenerative/neuroinflammatory diseases [141].
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