
SoftwareX 12 (2020) 100599

a

b

c

u
t
a
t
t

h
2
n

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

ZWT: A new cross-platform graphical interface framework for Java
applications
Simone Cirani a, Marco Picone b, Luca Veltri c,∗, Luca Zaccomer c, Francesco Zanichelli c
Caligoo Inc., USA
Department of Sciences and Methods for Engineering, University of Modena and Reggio, Emilia, Italy
Department of Engineering and Architecture, University of Parma, Italy

a r t i c l e i n f o

Article history:
Received 28 May 2020
Received in revised form23 September 2020
Accepted 23 September 2020

Keywords:
Cross-platform
Java
Android
User Interface

a b s t r a c t

The Java Programming Language revolutionized the world of software development in the last decades.
Thanks to its portability, Java makes it possible to develop software that can run everywhere, in
a truly cross-platform computing environment. Although running the same Java code anywhere
works smoothly on major desktop and server platforms, this becomes much more complicated when
different devices and platforms, such as smartphones or embedded systems, are taken into account.
Furthermore, even if we consider devices that natively support the Java programming language, the
same application may not run without re-writing part or the entire source code. This is mainly due
to the existence of platform specific libraries for accessing input/output peripherals or system-specific
features. In particular, the main limitation is usually associated to the different APIs that must be used
for programming the Graphical User Interface (GUIs). In this paper, we present a novel framework
that can be used by developers to write Java applications with portable GUIs that are truly platform-
independent and thus can run on different systems such as PCs, Workstations, Android devices or
mobile phones and embedded systems with Java MicroEdition (Java ME).

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current code version v1.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX_2020_229
Code Ocean compute capsule None
Legal Code License Apache-2.0
Code versioning system used Git
Software code languages, tools, and services used Java, Android, Java ME
Compilation requirements, operating environments & dependencies Java 8 or greater
If available Link to developer documentation/manual https://github.com/zwt-sdk/zwt
Support email for questions luca.veltri@unipr.it

1. Motivation and significance

‘‘Write once, run anywhere (WORA)’’ was the original motto
sed by Sun Microsystems for describing the characteristics of
he Java programming language. The possibility to implement an
pplication independently from the platform(s) where it will ac-
ually run is particularly appealing when the programmer wants
o develop a simple application without caring about the specific

∗ Corresponding author.
E-mail address: luca.veltri@unipr.it (L. Veltri).

GUI widget toolkits available for the selected platform. On the
other hand, it can be useful to develop an application that can
be run, without changes, on different types of platforms (like PC,
laptop, tablet, and smartphone), possibly without caring about
the differences in the hardware and OSs.

We can say that an application is Cross-Platform (CP) when it
satisfies the above development characteristics. In recent years, a
great attention and focus have been paid to CP solutions in order
to overcome the limitations and problems associated to managing
different code bases for each mobile platform (e.g., Android and
iOS). In [1–3], the authors analyze available frameworks, CP ap-
proaches, and existing Mobile application development platforms
ttps://doi.org/10.1016/j.softx.2020.100599
352-7110/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
c-nd/4.0/).

https://doi.org/10.1016/j.softx.2020.100599
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2020.100599&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ElsevierSoftwareX/SOFTX_2020_229
https://github.com/zwt-sdk/zwt
mailto:luca.veltri@unipr.it
mailto:luca.veltri@unipr.it
https://doi.org/10.1016/j.softx.2020.100599
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

S. Cirani, M. Picone, L. Veltri et al. SoftwareX 12 (2020) 100599

(
m

2
p
s
a
b
e
u
f
P
I
J
i
a
t
n
b
a

t
s
w
o
s
a
e
i
e
e
m
p

Z
J
c
A
w
J
n
H
c
t
s
p
a
d

c
s
S
g
a
(
(
u
p
a
a
p
p
t
a
r

MADPs), in order to understand the fragmentation level of the
obile landscape.
According to the Stack Overflow Developer Survey Results

019 [4], the Java programming language is fifth among all used
rogramming, scripting, and markup languages worldwide con-
idering both professional and non-professional developers (41%
mong all respondents). Statistics and analysis provided by Jet-
rains [5] and Baeldung [6] depict a prosperous Java development
cosystem where several frameworks and application servers are
sed to provide heterogeneous applications on different plat-
orm. Moreover, as confirmed by the Eclipse Foundation, the Java
rogramming language will also play a fundamental role in the
nternet of Things ecosystem. Together with C/C++ and Python,
ava is one of the top programming languages for the IoT and
n particular it is leading the development of Edge Gateways
nd Cloud IoT applications [7]. In this scenario, the possibility
o easily create CP Java graphical interfaces is really appealing
ot only considering traditional desktop and mobile platforms
ut also constrained devices and edge gateways that may take
significant advantage from a local UI.
Regarding Java applications, although the possibility to run

he same Java code anywhere still succeeds for the desktop and
erver platforms in the spirit of WORA, this may not still be true
hen taking into account different devices, such as smartphones
r embedded systems, even if the computing platform has native
upport for Java. Unfortunately, due to the existence of different
nd non-compatible libraries (e.g., related to input/output periph-
rals and/or system-specific features) an effective GUI portability
s still an open issue forcing developers to rewrite parts or the
ntire code. In particular, the main problem is usually due to the
xistence of different platform-specific GUI widget toolkits that
ust be used for programming the UI, which strongly limits the
ortability of Java code.
In order to overcome this limitation, in this paper we present

WT, a novel framework that allows developers to write graphical
ava applications whose GUIs are truly platform-independent and
an therefore run on different systems such as PCs, workstations,
ndroid smartphones, or mobile phone and embedded systems
ith Java ME. With this work we focus our attention on the

ava programming language and to the Android framework as its
atural and native extension to the Mobile Computing ecosystem.
owever, this work is not meant to become yet another mobile
ross-platform framework which, at the current stage, are out of
he scope of our developments as well as other mobile platforms,
uch as iOS and Windows Phone. We would like to bring ZWT
otentially to each platform capable to natively execute Java
pplications ranging from small constrained devices to high specs
esktop computers.
In the context of existing Java graphical cross-platform appli-

ations and frameworks, JavaFX [8] represents the most relevant
olution replacing Swing as the standard GUI library for Java
E. It is a rich and advanced platform for creating complex Java
raphical applications that can run across a variety of devices
nd operating systems. ZWT is not meant to be a clone of JavaFX
or to replace Android UIs) but rather a lightweight alternative
in terms of footprint and dependencies) that can fit specific
se cases related to the creation of ‘‘Micro User Interfaces’’ ap-
licable to constrained environments (e.g., IoT Smart Objects)
nd that can be potentially re-used and integrated into existing
nd more complex frameworks (see the IoT controller example
resented in Section 3). Furthermore, ZWT has been designed to
rovide a simple API (Application Programming Interface) similar
o those available with Swing and AWT in order to support
n easy porting of existing legacy applications into micro and
e-usable independent graphical components.

2. Software description

In order to try to achieve the goals described in Section 1,
we present the new ZWT (Zero-change Windows Toolkit) CP
development framework. The main goal of the ZWT is to provide
an easy-to-use solution for UI widget toolkit to be used in Java-
based GUI applications that can run on almost any platform that
supports the Java language, thus eliminating the gap introduced
in codebases that depend on different UI libraries for different
platforms (like AWT and Swing for Java SE, MIDP for Java ME, or
Android API for Android).

Hereafter, the requirements that led the design and develop-
ment of ZWT framework are summarized:

• portability - regardless of the UI library available on the
underlying platform, an application developed using ZWT
must be able to run on any platform without any code
change. Our goal is not to completely duplicate the fully-
featured APIs available on the specific platforms, but rather
to have a simple and light core of UI APIs with a sufficient
subset of features that allows the developer to create simple
and cross-platform applications that can be executed in the
true spirit of ‘‘WORA’’.

• simplicity - with ZWT developers do not have to learn a
completely brand new UI framework with its own widget
model and architecture, but rather they can use the same
approach used by well-known libraries like AWT, Swing,
or Android APIs. For this reason ZWT provides an API that
resembles the same concepts of Swing and Android.

• platform-agnostic - the application does not have to be
aware of the specific platform it is running on. That means
that the code should not take into account the differences
among different platforms and does not have to deal with
those differences (i.e. without introducing if-then-else logic).

• extensibility - while ZWT must be as simple and light as
possible, the API should be also easily extendible in order
to let programmers personalize the graphical effects and/or
to add new features.

2.1. Software architecture

Fig. 1 shows the architecture of ZWT. From the application
point of view, ZWT provides a simple API that resembles well-
known UI APIs like Swing of Java SE and the UI API of Android.
This makes it very simple to implement cross-platform appli-
cations without binding them to the actual UI libraries of all
platforms.

The implementation of ZWT is formed by two layers. The
upper layer (i.e. ZWT ‘‘independent’’ objects and interfaces in
Fig. 1) is composed by all ZWT interfaces and all classes that are
independent by underlying platforms in order to abstract them:
their code is completely CP, and based on a restricted number of
classes forming the underlying layer. The lower layer (i.e. the ZWT
‘primitive’ objects in Fig. 1) is where the ZWT implementation
is concretely bound to the specific platform. Despite this layer
still provides the same API to the upper layer and to the user, its
internal implementation differs from the specific platforms and
is based on APIs available on those platforms. Currently, three
concrete binding implementations are available: (i) Java SE, using
the Java Swing API, (ii) Java ME, using the Mobile Information
Device Profile (MIDP) of Java ME, and (iii) Android, using the stan-
dard UI API of Android. This layer actually makes ZWT capable of
running on different operating systems and hardware while using
the same high-level API.

Note that the lower layer of ZWT contains only the core com-
ponents of the UI, which are then used by all other components.
This lets developers to easily extend those components or to
create new ones without having to be aware of the underlying
platform(s).
2

S. Cirani, M. Picone, L. Veltri et al. SoftwareX 12 (2020) 100599

2

o
i

a
p

t
t
s

b

a

Fig. 1. ZWT architecture.

.2. Software functionalities

From the developer’s perspective, ZWT is formed by a basic set
f standard interfaces and classes, contained in the
t.unipr.netsec.zwt package, which provides all basic components
nd functions for building a UI. Other additional and optional
ackages contain extensions, integrations, and effects.
The it.unipr.netsec.zwt package includes panels, labels, but-

ons, menus, event callbacks, and drawing methods. The rela-
ionships among the entities of this set of basic components are
hown in the class-diagram reported in Fig. 2.
Some extension packages that are already included are layout,

order, floor, menu, and keyboard.

2.3. Sample code snippets analysis

In order to show the simplicity of running the same appli-
cation on different platforms, hereafter we report some sample
codes used for running an app on Java SE, Java ME, and Android.

Since the ZWT library resembles other well-known GUI li-
braries, writing an app with CP UI is very simple. Hereafter, we
show a snippet of code of a basic Hello application that displays
label ‘‘Hello world’’ and an ‘‘Ok’’ button for exiting:

1 import it.unipr.netsec.zwt.*;
2 import it.unipr.netsec.zwt.layout.ZwtBorderLayout;
3
4 public class Hello {
5
6 public Hello(ZwtFrame frame) {
7 frame.setLayout(new ZwtBorderLayout());
8 ZwtLabel label=new ZwtLabel(" Hello world ");
9 label.setColor(ZwtColor.WHITE);

10 label.setAlignment(ZwtLabel.ALIGN_HCENTER);
11 frame.addComponent(label,ZwtBorderLayout.CENTER);
12 ZwtButtonListener listener=new ZwtButtonListener()

{
13 @Override
14 public void onButtonPushed(ZwtButton arg0) {
15 System.exit(0);
16 }

17 };
18 ZwtButton button=new ZwtButton(" Ok " ,ZwtKeyboard.

KEY_SELECT ,listener);
19 frame.addComponent(button,ZwtBorderLayout.SOUTH);
20 }
21 }

In this example, the constructor takes a ZwtFrame argument and
uses it to draw the UI (in this case only a label and a button). As
we can see, the code has no direct binding to any particular UI
widget toolkit and is therefore platform-independent.

In order to run the example on Java SE, all we need is a just a
class with a main method that creates a ZwtFrame based on a Java
Swing JFrame and passes it to the constructor of Hello, so that the
dependency on Swing is injected. Here is an example of the main
class:
1 import javax.swing.JFrame;
2
3 import it.unipr.netsec.zwt.ZwtFrame;
4
5 public class HelloMain {
6
7 public static void main(String[] args) {
8 JFrame jframe=new JFrame();
9 ZwtFrame frame=new ZwtFrame(jframe ,200,100);

10 new Hello(frame);
11 }
12 }

The same app can be easily built for an Android platform by
simply creating a main Activity with an ImageView and no status
bar.

Here is an example of code for the Android Activity:
1 import android.graphics.Point;
2 import android.support.v7.app.AppCompatActivity;
3 import android.os.Bundle;
4 import android.view.Display;
5 import android.widget.ImageView;
6
7 import it.unipr.netsec.zwt.ZwtFrame;
8
9 public class HelloMainActivity extends

AppCompatActivity {
10
11 @Override
12 protected void onCreate(Bundle savedInstanceState) {
13 super.onCreate(savedInstanceState);
14 setContentView(R.layout.activity_hello_main);
15
16 int statusBarHeight = 0;
17 int resourceId = getResources().getIdentifier("

status_bar_height " , " dimen " , " android ");
18 if (resourceId > 0) statusBarHeight = getResources

().getDimensionPixelSize(resourceId);
19 Display display = getWindowManager().

getDefaultDisplay();
20 Point size = new Point();
21 display.getSize(size);
22 int width = size.x;
23 int height = size.y - statusBarHeight;
24
25 ImageView imageView = findViewById(R.id.myImageView

);
26
27 ZwtFrame frame = new ZwtFrame(imageView , width,

height);
28 new Hello(frame);
29 }
30 }

Note that the Activity just creates a ZwtFrame based on an
ImageView and uses it to invoke the constructor of Hello.

Finally, in case of Java ME, the app can be run easily by just
writing a simple Java ME Midlet that creates a ZwtFrame and passes
it as an argument to the Hello constructor, as follows:
1 import it.unipr.netsec.zwt.ZwtFrame;
2
3 import javax.microedition.midlet.MIDlet;
4

3

S. Cirani, M. Picone, L. Veltri et al. SoftwareX 12 (2020) 100599
Fig. 2. ZWT core objects.

5 public class HelloMIDlet extends MIDlet {
6
7 public HelloMIDlet() {
8 ZwtFrame zf=new ZwtFrame(this);
9 new Hello(zf);

10 zf.repaintScreen();
11 }
12
13 public void startApp() {}
14
15 public void pauseApp() {}
16
17 public void destroyApp(boolean unconditional) {}
18 }

This application is very simple, but even more complex appli-
cations with richer GUIs (like the examples shown in Section 3)
require the same code shown above to actually perform the
dependency injection in for the three different platforms.

3. Illustrative examples

In order to illustrate the potential of the ZWT framework,
three sample applications are presented. The first is a simple
cross-platform calculator with Reverse Polish Notation. The calcu-
lator code is available in the test.calc package and, as expected,
is completely independent from the underlying platforms. As a
result, the application can run unmodified on either an Android
phone, a Java ME enabled phone, or a PC with Java SE. It is respon-
sive and adapts correctly to the displays of different platforms,

rotating to landscape-mode when the phone supports display
rotations.

As stated in Section 2, the framework is easy to extend: new
components or graphical effects can be added without being
aware of the underlying platform and knowing the native API.
Any additional graphical component can be developed on top of
core ZWT objects.

Some simple graphical effects like transparency and roundness
are already available in ZWT (check packages floor and border)
and used in this demo application. An example of the calculator
with transparency effects running on a mobile phone with Java
ME is shown in Fig. 3(a).

The application has the following two peculiarities. On the one
hand, it provides its own keyboard and consequently a platform
software keyboard (e.g. in case of smartphones with touchscreen)
is not required while a native keyboard can be still used for
example in case of PCs and some mobile phones (like the one
shown in Fig. 3(a)). On the other hand, the application’s UI is
always completely framed in the display and scrolling is not
required.

In order to exploit these last two functionalities not included
in the calculator example, a second example is hereafter illus-
trated.

An Instant Messaging (IM) cross-platform application and the
corresponding User Agent (UA) have been developed.
4

S. Cirani, M. Picone, L. Veltri et al. SoftwareX 12 (2020) 100599

a
t
r
u
(
d
m
a

b
t
l
m

r
R

s
a

s
b
f
w
t
o
T
s
a
a
t
r
p

Z

4

i
w
b
h
J

Fig. 3. Examples: (a) calculator with transparency effect, (b) instant messaging app on Android phone, (c) same app running on PC.

Since this is an example application, only basic IM function-
lities have been implemented: (i) it presents a login interface
o the user where the user can enter his/her username; (ii) it
egisters the UA (and the username) to a remote server that is
sed to dispatch incoming and outgoing messages among users;
iii) it adds new contacts; (iv) it shows a buddy list to the user,
isplaying the contacts and a preview of the last exchanged
essage; (v) displays the complete chat for each selected contact;
nd (vi) it sends and receives messages.
The IETF standard Session Initiation Protocol (SIP) [9] has

een selected as IM signaling protocol. Support for SIP opera-
ions (register/unregister/send/receive) is provided by the mjSIP
ibrary [10], which is an open source cross-platform SIP imple-
entation that can run on Java SE, Android, and Java ME.
In order to manage the user’s contact registration and message

elaying, we used the mjSIP Session Border Controller (SBC) with
egistrar and Proxy functions.
The resulting sample application is open-source. In Fig. 3 the

ame IM app UI is shown when running on an Android phone (b)
nd PC (c).
The third example is a UI for controlling IoT devices. This

cenario is particularly relevant: as several IoT products are being
rought to the market, a unified and consistent codebase for user-
acing applications may be convenient to distribute products that
ork with connected objects on different devices. Starting from
he main panel, as shown in Fig. 4(a) and (d) running on a PC and
n an Android phone respectively, it is possible to select a device.
he corresponding control panel is then displayed. Examples are
hown in Fig. 4(b) and (c) for a PC, (e) for an Android phone,
nd (f) for a Java ME phone. The UI can be fully customized
nd different graphical components can be displayed. Moreover,
he UI is fully independent from the underlying platform and it
uns transparently on either a PC, Android, or a Java embedded
latform.
All three illustrated demo applications are available on the

WT repository [11].

. Impact

ZWT represents an innovative point of view for develop-
ng Java Graphical Cross Platform applications. The consolidated
idespread adoption of the Java programming language com-
ined with the availability of experienced developers and the
uge market share of Android are the perfect conditions to make
ava an ecosystem that can overcome the limitations of ‘‘write

once and redesign (the UI) everywhere’’. The proposed framework
aims at allowing developers to write Java applications whose GUIs
are truly independent from the underlying layers and the running
platforms. This approach has a direct impact on the reuse of code
and Graphical User Interface and at the same time it protects the
application from platform-specific constraints or hard changes.

Actually, the ZWT framework allows developers to create
graphical CP applications that can be executed without any
change or adaptation on Java Micro Edition (JME), Standard Edi-
tion (JSE) and Android with a single code base. This approach
simplifies the transition of existing applications from Java ME
and SE to Android and to new classes of devices that were not
available (and even imaginable) at the time of their design. This
migration will be easier, cost effective, and furthermore will be
less influenced by a skill gap. Java developers can start working
immediately on the software without the need of learning a new
platform and keeping the focus on Java programming language
both for the core and the User Interface.

Sometimes, and in particular for the Mobile ecosystem (as
illustrated and analyzed in [12]), this skill gap brought companies
to develop workarounds to support some sort of portability, such
as web-based cross platforms solutions. However this technolog-
ical debt eventually requires to entirely re-write the application
to integrate updates and overcome incompatibility issues.

5. Conclusions

The Java cross-platform graphical interface framework pre-
sented in this paper is a novel, scalable, and flexible solution
targeting different Java development application scenarios. It can
be used to develop cross-platform graphical applications for the
Java Standard and Micro Editions and the same code can be also
executed and integrated in Android mobile apps without any
changes or significant readaptation of the codebase. Furthermore,
the possibility to design and write an application’s graphical user
interface and reuse it on different platforms without changes is
appealing also for dynamic user interface generation scenarios,
both for form-oriented applications [13] or Internet of Things
scenarios, where the UI can be dynamically generated according
to the Smart Object type and functionalities [14].

In this article, we have described how this framework has been
designed and implemented and how it is possible to setup and
create a graphical cross-platform Java application. Three sample
applications (with increasing complexity) have been presented
5

S. Cirani, M. Picone, L. Veltri et al. SoftwareX 12 (2020) 100599

(
v

a
s
o
b
a
r
m
a
a
e
a
l
o
a

D

c
t

R

Fig. 4. Examples: IoT control app running on a PC, Android phone, and Java ME phone: (a) The main control panel on Java SE, (b) Device control panel on Java SE,
c) Device monitoring panel on Java SE, (d) The main control panel on Android, (e) Device monitoring panel on Android, (f) Device monitoring panel on JME with
ertical display.

nd tested on Java SE, Java ME, and Android. A more detailed de-
cription of the software and all its possible usages can be found
n the official website and repository. ZWT is not intended to
ecome a cross-language UI toolkit but is limited to Java-enabled
pplications only, as discussed in Section 1. Currently, the most
elevant missing features compared to other frameworks are
ainly related to the availability of richful UI components, such
s in-app embedded web views and media player controllers,
nd the possibility to provide styling to applications through
xternal configurations, such as using CSS. ZWT aims to be an
ctive and ongoing project and we are planning to improve the
ist of supported features and tools together with a extended set
f examples and demo applications for a wide range of solutions
lso including embedded and constrained devices.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

eferences

[1] Smutný P. Mobile development tools and cross-platform solutions. In:
Proceedings of the 13th international Carpathian control conference (ICCC).
2012, p. 653–6. http://dx.doi.org/10.1109/CarpathianCC.2012.6228727.

[2] Pinto CM, Coutinho C. From native to cross-platform hybrid development.
In: 2018 international conference on intelligent systems (IS). 2018, p.
669–76. http://dx.doi.org/10.1109/IS.2018.8710545.

[3] Biørn-Hansen A, Grønli T-M, Ghinea G. A survey and taxonomy of core
concepts and research challenges in cross-platform mobile development.
ACM Comput Surv 51(5). http://dx.doi.org/10.1145/3241739.

[4] Stack overflow developer survey results. 2019, URL https://insights.
stackoverflow.com/survey/2019. [Last Accessed 08 May 2020].

[5] Java development ecosystem. 2019, https://www.jetbrains.com/lp/
devecosystem-2019/java/. [Last Accessed 08 May 2020].

[6] Baeldung - The state of java in 2019. 2019, URL https://www.baeldung.
com/java-in-2019. [Last Accessed 08 May 2020].

[7] Eclipse - IoT developer survey 2019 results. 2020, URL https://iot.eclipse.
org/community/resources/iot-surveys/. [Last Accessed 08 May 2020].

[8] JavaFX. 2020, URL https://openjfx.io/. [Last Accessed 08 May 2020].
[9] Schooler E, Rosenberg J, Schulzrinne H, Johnston A, Camarillo G, Peterson J,

et al. SIP: Session initiation protocol, RFC 3261. 2002, http://dx.doi.org/10.
17487/RFC3261, URL https://rfc-editor.org/rfc/rfc3261.txt.

[10] Veltri L, Fadda C. An open-source platform for ip telephony services.
In: 2007 15th international conference on software, telecommunications
and computer networks. 2007, p. 1–5. http://dx.doi.org/10.1109/SOFTCOM.
2007.4446107.

[11] ZWT Repository. 2020, URL https://github.com/zwt-sdk. [Last Accessed 18
September 2020].

[12] Daradkeh MK, Sabbahein HAS. Factors influencing the adoption of mo-
bile application development platforms: A qualitative content analysis of
developers’ online reviews. Int J Enterp Inf Syst (IJEIS) 2019;15(4):43–59.

[13] Galizia A, Zereik G, Roverelli L, Danovaro E, Clematis A, D’Agostino D. Json-
GUI - A module for the dynamic generation of form-based web interfaces.
SoftwareX 2019;9:28–34. http://dx.doi.org/10.1016/j.softx.2018.11.007.

[14] Belli L, Cirani S, Gorrieri A, Picone M. A novel smart object-driven ui
generation approach for mobile devices in the internet of things. In:
Proceedings of the 1st international workshop on experiences with the
design and implementation of smart objects. 2015, p. 1–6. http://dx.doi.
org/10.1145/2797044.2797046.
6

http://dx.doi.org/10.1109/CarpathianCC.2012.6228727
http://dx.doi.org/10.1109/IS.2018.8710545
http://dx.doi.org/10.1145/3241739
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
https://insights.stackoverflow.com/survey/2019
https://www.jetbrains.com/lp/devecosystem-2019/java/
https://www.jetbrains.com/lp/devecosystem-2019/java/
https://www.jetbrains.com/lp/devecosystem-2019/java/
https://www.baeldung.com/java-in-2019
https://www.baeldung.com/java-in-2019
https://www.baeldung.com/java-in-2019
https://iot.eclipse.org/community/resources/iot-surveys/
https://iot.eclipse.org/community/resources/iot-surveys/
https://iot.eclipse.org/community/resources/iot-surveys/
https://openjfx.io/
http://dx.doi.org/10.17487/RFC3261
http://dx.doi.org/10.17487/RFC3261
http://dx.doi.org/10.17487/RFC3261
https://rfc-editor.org/rfc/rfc3261.txt
http://dx.doi.org/10.1109/SOFTCOM.2007.4446107
http://dx.doi.org/10.1109/SOFTCOM.2007.4446107
http://dx.doi.org/10.1109/SOFTCOM.2007.4446107
https://github.com/zwt-sdk
http://refhub.elsevier.com/S2352-7110(20)30312-5/sb12
http://refhub.elsevier.com/S2352-7110(20)30312-5/sb12
http://refhub.elsevier.com/S2352-7110(20)30312-5/sb12
http://refhub.elsevier.com/S2352-7110(20)30312-5/sb12
http://refhub.elsevier.com/S2352-7110(20)30312-5/sb12
http://dx.doi.org/10.1016/j.softx.2018.11.007
http://dx.doi.org/10.1145/2797044.2797046
http://dx.doi.org/10.1145/2797044.2797046
http://dx.doi.org/10.1145/2797044.2797046

	ZWT: A new cross-platform graphical interface framework for Java applications
	Motivation and significance
	Software description
	Software architecture
	Software functionalities
	Sample code snippets analysis

	Illustrative examples
	Impact
	Conclusions
	Declaration of competing interest
	References

