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Abstract: Cytokines are a broad group of small regulatory proteins with many biological functions
involved in regulating the hematopoietic and immune systems. However, in pathological conditions,
hyperactivation of the cytokine network constitutes the fundamental event in cytokine release
syndrome (CRS). During the last few decades, the development of therapeutic monoclonal antibodies
and T-cell therapies has rapidly evolved, and CRS can be a serious adverse event related to these
treatments. CRS is a set of toxic adverse events that can be observed during infection or following
the administration of antibodies for therapeutic purposes and, more recently, during T-cell-engaging
therapies. CRS is triggered by on-target effects induced by binding of chimeric antigen receptor (CAR)
T cells or bispecific antibody to its antigen and by subsequent activation of bystander immune and
non-immune cells. CRS is associated with high circulating concentrations of several pro-inflammatory
cytokines, including interleukins, interferons, tumor necrosis factors, colony-stimulating factors,
and transforming growth factors. Recently, considerable developments have been achieved with
regard to preventing and controlling CRS, but it remains an unmet clinical need. This review
comprehensively summarizes the pathophysiology, clinical presentation, and treatment of CRS
caused by T-cell-engaging therapies utilized in the treatment of hematological malignancies.

Keywords: cytokine release syndrome; CAR T cell therapy; monoclonal antibodies; hematologi-
cal malignancies

1. Introduction

Cytokines are small molecular messengers produced by a wide variety of immune and
non-immune cells [1–4] that act as mediators and modulators within microenvironments.
Cytokines regulate immunological responses, hematopoietic development, and cell to cell
communication, as well as host responses to infectious agents, inflammatory stimuli, and
drugs, modulating their effects [4–6]. Cytokines with important roles in the hematopoietic
and immune systems may be classified based on their structure or function as interleukins
(ILs), interferons (IFNs), tumor necrosis factors (TNFs), colony-stimulating factors (CSFs),
and transforming growth factors (TGFs) [7]. Under physiological conditions, the secretion
of cytokines is highly regulated, and the excess production of one cytokine is antagonized
by the production of others with opposing functions through a counter-regulatory home-
ostatic mechanism. Cytokines can be pleiotropic, with different effects on diverse cell
types, and can act synergistically. They form complex interactive networks with potential
autocrine, paracrine, and endocrine functions [4,8,9]. Cytokine release syndrome (CRS) is a
systemic inflammatory response that can be triggered by a variety of factors, such as infec-
tion and certain medications, including monoclonal antibodies. CRS has been described
after the infusion of several antibody-based therapies, including rituximab [10,11], obinu-
tuzumab [12], alemtuzumab [13], brentuximab [14], dacetuzumab [15], and nivolumab [16].
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Severe viral infections, such as influenza and SARS-CoV-2 (COVID-19) [17], can also trigger
CRS through massive immune and non-immune cell stimulation.

Several efforts have been made to identify new therapeutic strategies for treating
hematological malignancies, and some immunotherapy approaches have been tested to
fortify the immune system of the patient against tumors. In the last few years, immune
checkpoint inhibition and T-cell-engaging therapies, such as bispecific T-cell-engaging
(BiTE) single-chain antibody constructs and chimeric antigen receptor (CAR) T cells, have
opened up a new frontier in cancer immunotherapy [18–20]. However, one of the most
important serious adverse effects of these therapies is CRS.

CRS is characterized by hypersecretion of pro-inflammatory cytokines, including IL-6,
IL-1, IL-5, IL-10, IFN-γ, TNF, and TGFs by B and T lymphocytes and natural killer (NK) cells.
The CRS may be further enhanced by numerous cellular interactions with bystander cells,
such as endothelial cells, monocyte/macrophages, and dendritic cells, further increasing
cytokine hypersecretion, aggravating symptoms, and inducing various grades of organ
damage [21]. CRS symptoms may occur immediately after the administration of T-cell-
engaging therapies or may be delayed until days or weeks after treatment. CRS can
manifest as mild, with flu-like symptoms, including fever, nausea, and chills, or may be life-
threatening and severe with shock and respiratory compromise, leading to multi-system
organ failure and even death [10,22].

This review comprehensively summarizes the biological and clinical aspects of the CRS
triggered by T-cell-engaging therapies used in the treatment of hematological malignancies.

2. Pathophysiology

The pathophysiology of CRS has been associated with invasive pathogens and ther-
apeutic infusions of several monoclonal antibodies [10,12–15,23] (Table 1). CRS can also
develop in association with severe viral infections, including COVID-19, which is caused by
SARS-CoV-2 [24,25]. Recently, with the success of the newer T-cell-engaging immunothera-
peutic agents, such as BiTE constructs and CAR T cells, in hematological malignancies [26],
the interest in CRS has grown, as this is a major serious adverse event of these treatments.
The immunotherapeutic strategies have been carried forward into clinical applications and
shown impressive therapeutic activity in several hematological malignancies, including
acute lymphoblastic B cell leukemia (B-ALL), chronic lymphocytic leukemia (CLL), and
diffuse large B cell lymphoma (DLBCL) [27]. CRS describes an exaggerated systemic im-
mune response involving the release of more than 150 inflammatory mediators, cytokines,
chemokines, oxygen radicals, and complement factors (Table 2) [28]. CRS is due to on-
target effects induced by the binding of CAR T cells or BiTE antibody to its antigen on the
surface of target cells and subsequent activation of bystander immune and non-immune
cells, such as monocytes/macrophages, dendritic cells, and endothelial cells. Activation of
these cells results in the massive release of several cytokines, initiating a cascade of events
that overwhelms counter-regulatory homeostatic mechanisms, leading to CRS [29,30]. As
clearly illustrated in Figure 1, T-cell engaging therapies target tumor cells and induce the
release of cytokines as IFN-γ or TNF-α, which lead to the activation of bystander immune
and non-immune cells as monocytes/macrophages, dendritic cells, NK and T-cell, and
endothelial cells. These cells further release proinflammatory cytokines triggering a cascade
reaction. Macrophages and endothelial cells produce large amounts of IL-6 which in turn
activates T cells and other immune cells leading to a cytokine storm (Figure 1). However,
the pathophysiology of CRS is still poorly understood.
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Table 1. Monoclonal antibodies associated with cytokine release syndrome (CRS) in hematologi-
cal malignancies.

Antibody Antigen Class Reference

TGN1412 CD28 Human IgG4 [31]
Alemtuzumab CD52 Human IgG2 [13]

Rituximab CD20 Murine-human chimeric IgG1 [10,11]
Obinutuzumab CD20 Human IgG1 [12]

Brentuximab CD30 Human IgG1 [14]
Dacetuzumab CD40 Human IgG1 [15]

Table 2. Soluble mediators over-expressed in cytokine release syndrome.

Main Cell Source Cytokines Type and Function Reference

Macrophages, epithelial cells IL-1
Proinflammatory alarming cytokine;

pyrogenic function, macrophage, and
Th17 cell activation

[32,33]

T cells IL-2 Effector T-cell and regulatory T-cell
growth factor [33,34]

Monocyte/macrophages, T cells,
endothelial cells, mesenchymal

cells, osteoblasts
IL-6

Proinflammatory cytokine; pyrogenic
function, increased antibody production,

growth and differentiation of
hematopoietic stem cells, induction of

acute-phase reactants

[33,35]

Regulatory T cells, T cells IL-10 Anti-inflammatory cytokine, inhibition of
Th1 cells, and cytokine release [33,36]

Chemokines
Macrophages, epithelial cells IL-8 (CXCL8) Recruitment of neutrophils [33,37]

Monocyte, endothelial cells,
keratinocytes IP-10 (CXCL10)

Interferon-inducible chemokine:
recruitment of Th1 cells, NK cells,

plasmacytoid dendritic cells
[38]

Macrophages, dendritic cells,
cardiac myocytes MCP-1 (CCL2) Recruitment of Th2 cells, monocyte,

dendritic cells, basophils [39]

Monocyte, neutrophils, dendritic
cells, NK cells, mast cells MIP-1α (CCL3)

Recruitment of macrophages, Th1 cells,
NK cells, eosinophils, dendritic cells,

pyrogenic function
[40,41]

Macrophages, neutrophils,
endothelium MIP-1β (CCL4) Recruitment of macrophages, Th1 cells,

NK cells, dendritic cells [40,41]

Growth Factors
Th1 cells, CTLs, group 1 innate
lymphoid cells, and NK cells IFN-γ Proinflammatory cytokine, activation of

macrophages [42]

Macrophages, T cells, NK cells,
mast cells TNF-α Increasing vascular permeability,

pyrogenic function [43]

Th17 cells GM-CSF Proinflammatory cytokine [44,45]
Endothelium and macrophages CSF Growth and differentiation of neutrophils [44]

Plasma Protein

Hepatocytes CRP
Monomeric CRP increases IL-8 and
MCP-1 secretion, IL-6 increases CRP

expression
[46]

Ubiquitous Ferritin Primary site of iron storage in cells [47]
IL: interleukin; IP-10: interferon—inducible protein 10; MCP-1: monocyte chemoattractant protein; MIP: macrophage inflammatory protein
1α; IFN-γ: interferon-gamma; TNF-α: tumor necrosis factor-alpha; GM-CSF: granulocyte colony-stimulating factor; CSF: colony-stimulating
factor; CRP: C-reactive protein; Th cell: T helper cell; CTLs: cytotoxic T lymphocytes; NK cell: natural killer cell.
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which are consistently found to be elevated in the serum of patients with CRS [22,48] (Fig-
ure 1). IL-6 seems to play a key role in CRS pathophysiology, as highly elevated IL-6 levels 
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Figure 1. CAR T cells target tumor cells and induce the release of cytokines as IFN-γ or TNF-α,
which lead to the activation of bystander immune and non-immune cells as monocytes/macrophages,
dendritic cells, NK and T-cell, and endothelial cells. These cells further release proinflammatory
cytokines triggering a cascade reaction. Macrophages and endothelial cells produce large amounts of
IL-6 which in turn activates T cells and other immune cells leading to a cytokine storm. BiTe: bispecific
T-cell engager; CAR: chimeric antigen receptor; IFN-γ: interferon-gamma; TNF-α: tumor necrosis
factor-alpha; IL: interleukin; GM-CSF: granulocyte colony-stimulating factor; MCP-1: monocyte
chemoattractant protein; NK cell: natural killer cell; DC: dendritic cell.

2.1. The Key Role of IL-6

Physiologically, cytokines play a key role in coordinating effector cells of the immune
system and providing regulatory signals that direct, amplify, and resolve the immune
response. Cytokines have short half-lives, which normally prevents them from having
effects outside the lymphoid tissue and sites of inflammation. In CRS, immune over-
activation occurs as a result of perceived danger, resulting in excessive activation of effector
immune cells and prolonged immune activation.

The overabundance of cytokines causes clinically significant collateral damage. The
cytokines involved in the pathophysiology of CRS include IFN-γ, TNF, IL-6, and IL-10,
which are consistently found to be elevated in the serum of patients with CRS [22,48]
(Figure 1). IL-6 seems to play a key role in CRS pathophysiology, as highly elevated IL-6
levels are found in almost all patients with CRS [10,35]. IL-6 is a pleiotropic cytokine that
exhibits both anti-inflammatory and pro-inflammatory characteristics. IL-6 can play diverse
roles in different phases of inflammation, promoting damaging reactions within the tissue,
and then contributing to resolving the inflammation, and finally helping to repair tissue in
the late stages [49]. IL-6 is secreted by T lymphocytes, monocytes/macrophages, dendritic
cells, mesenchymal cells, and osteoblasts and is present in processes, such as neutrophil
migration, the acute phase response, angiogenesis, B-cell differentiation, and antibody
generation [50] (Figure 2A). IL-6 exerts its biological functions via two major pathways:
“classical signaling” and “trans-signaling pathways.” In “classical signaling” pathways,
IL-6 activates cells by binding to the IL-6 receptor (IL6R), which leads to dimerization
of the membrane protein gp130 [50] and intracellular tyrosine kinases, especially Janus
kinase (JAK) 1 and JAK2, which then activate transcription factors signal transducer and
activator of transcription (STAT) 1 and STAT3 [51,52]. Other cascades that can be activated
by IL-6 include the SHP-2/ERK MAPK, PI3K-AKT-mTORC1, and SRC-YAP-NOTCH
pathways [53–55] (Figure 2B). IL-6 can bind cells that express IL6R and signal transducer
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membrane protein gp130 on their surfaces. IL6R is also found in its soluble form in body
fluids (sIL6R). When IL6 attaches to sIL6R and starts the signaling cascade by binding
to cells that express gp130 alone (without IL6R on their surface), it is known as “trans-
signaling” [56]. The mode of signaling influences the result: “classical IL-6 signaling”
reduces inflammation, whereas “IL-6 trans-signaling” promotes T-cell migration, decreases
apoptosis, enhances cytotoxicity, and suppresses regulatory T-cell differentiation [57–59].
“Classical IL-6 signaling” does not seem to affect CAR T cell efficacy [60], but the impact of
IL-6 trans-signaling on CAR T cells has not been described.
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Figure 2. (A) Source and biological functions of IL-6. (B) Genetic interaction network (String: https://string-db.org) that
evaluates pathways and visualizes the connection among target genes according to the literature search. IL6R: interleukin-6
receptor subunit alpha; STAT3: signal transducer and activator of transcription 3; IL6ST: interleukin-6 receptor subunit
beta; IL10: interleukin-10; IL4: interleukin-4; SOCS3: suppressor of cytokine signaling 3; IL13: interleukin-13; CXCL8:
interleukin-8; IL1B: interleukin-1 beta; JUN: transcription factor AP-1.

2.2. The Roles of Other Cytokines

IL-6 determines the release of other cytokines, such as IFN-γ and TNF-α, by lympho-
cytes, monocytes, and neutrophils (Figures 1 and 2A). The release of TNF-α and IFN-γ
within 1–2 h is followed by an increase in IL-6 and IL-10, and in some cases, of IL-8 and
IL-2. IFN-γ generated by T cells and NK cells, or by the tumor cells themselves, is a
pro-inflammatory cytokine that activates other immune cells, such as macrophages [61],
which produce excessive quantities of additional cytokines [62]. Moreover, IFN-γ triggers
macrophage activation, leading to the secretion of host cytokines, including IL-6, TNF-α,
and IL-10 [22], which could further intensify the CRS. IL-10 fails to control this process,
though it suppresses cellular immunity. Other cytokines have also been found to be ele-
vated during the course of CRS, including IL-1, IL-2, IL-8, IL-5, monocyte chemoattractant
protein 1 (MCP-1), and granulocyte-macrophage colony-stimulating factor (GM-CSF), driv-
ing some of its manifestations (Figure 1 and Table 2) [22,48,63–68]. IL-1 has one of the
simplest signaling mechanisms in the innate immune system. It is capable of sensing an
infection and triggering an inflammatory response [69]. IL-1 is released from activated
macrophages and monocytes, further stimulating the release of IL-6 and inducing nitric
oxide synthetase [48]. Endothelial cell activation also plays a role in CRS. Ang-2, a typical
marker of endothelial cell activation, is a hallmark of severe CRS, showing that the en-

https://string-db.org


Int. J. Mol. Sci. 2021, 22, 7652 6 of 14

dothelium plays a key role in the pathophysiology of CRS by amplifying the inflammatory
response [67].

2.3. Biomarkers

Various studies indicate a correlation between the severity of the CRS and tumor
burden, C-reactive protein (CRP) and ferritin levels, and cytokine levels [29,63,70,71]
(Table 2). However, whether the cytokines can act as prognostic factors, especially in
patients with CRS, in whom cytokine concentrations may already be high, and in patients
with malignancies, is not clear. Comparing the increased cytokine level to the baseline
value while simultaneously considering some specific markers and following a series
of measurements rather than the amount of a single cytokine has been suggested [72].
Furthermore, the serum cytokine measurement is usually not quickly available in most
hospitals. In response to IL-6, the liver produces CRP, and this concentration is easily
measured by a rapid and inexpensive assay available in the majority of hospitals. Thus,
CRP measurements are widely utilized as a surrogate marker of IL-6 bioactivity [73,74].
However, CRP is not specific to CRS and cannot be used to distinguish inflammation due
to infectious or non-infectious disease [75]. An excessive increase in ferritin has also been
reported in several patients after CAR T-cell infusion, supporting a relationship between
CRS and macrophage activation syndrome (MAS)/hemophagocytic lymphohistiocytosis
(HLH). However, in the same experience, ferritin did not show utility in predicting the
severity of CRS [29].

3. Clinical Manifestations

The incidence of CRS varies with the type of immunotherapy, and it is more frequently
observed during CAR T-cell therapy than with bispecific antibody blinatumomab infusion.
During T-cell therapies, CRS occurs early during the course of treatment [76]. CRS related
to blinatumomab therapy usually occurs during the first cycle of therapy, and typically
upon starting the infusion. CRS manifests with a wide variety of signs and symptoms of
varying severity. The most important and frequent symptoms are summarized in Figure 3.
Fever is usually present, and several other symptoms can mimic infection. The patient’s
body temperature quite commonly exceeds 40.0 ◦C. For this reason, the possibility of
infection must be ruled out after appropriate cultures, particularly if the patient is neu-
tropenic. Other constitutional symptoms, such as myalgia and arthralgia, may be present.
Any organ can be affected during CRS, and the patient can develop nausea, vomiting,
skin rash, hemodynamic instability, and capillary leak syndrome with hypotension and
tachycardia, disseminated intravascular coagulation, and neurological toxicity [67]. Neu-
rological toxicity may occur together with other symptoms of CRS or when the other
symptoms are disappearing. Neurological toxicity includes headache, confusion, delirium,
aphasia, tremor, and seizures. Patients with severe neurotoxicity show signs of endothelial
activation, including disseminated intravascular coagulation and increased blood-brain
barrier (BBB) permeability, which may allow the entry of high concentrations of systemic
cytokines, particularly IFN-γ, inducing brain vascular pericyte stress and the consequent
secretion of endothelium-activating cytokines. Adverse neurological events can be fatal
in rare cases [77]. Although usually reversible, severe cardiac dysfunction is of particular
concern. The pathophysiology of acute cardiac toxicity is not clear but it appears similar to
that cardiomyopathy is associated with sepsis [78].
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Disseminated intravascular coagulation can occur in patients with CRS, especially
in those who develop a CRS of grade ≥4. Consumptive coagulopathy manifests with
thrombocytopenia, the elevation of D-dimer, prolongation of prothrombin time (PT) and
partial thromboplastin time (PTT), hyperfibrinogenemia, and elevation of endothelial
activation markers [67]. CRS symptoms may also mimic MAS/HLH [79,80], and the
pathophysiology of the syndromes may overlap [81].

4. Management of CRS

The optimal clinical management of CRS is still not well-defined since T-cell-engaging
therapies were recently introduced into clinical practice; thus, several questions are still
unanswered. A reduced incidence of severe CRS has been obtained with cytoreduction,
dose adjustment, and premedication with corticosteroids [82].

In patients receiving T-cell-engaging therapies, the approaches to prevention and
treatment of CRS may differ substantially. Blinatumomab has a short half-life (~2 h),
and CRS symptoms may resolve quickly by interrupting therapy and starting supportive
care with or without additional interventions. However, BiTE constructs can be given
repeatedly, whereas CAR T cells are usually administered once, but the side effects after
CAR T infusion are difficult to reverse because the infused cells can persist for prolonged
periods. Therefore, the management of CRS can be diverse between the two therapeutic
modalities. Current treatments are based on the severity of the side effects [29,83] using
the grading scheme developed by Lee et al. [29] (Table 3 and Figure 3).

Efficient management of patients requires very strict collaboration between several
specialties, such as hematology, neurology, and radiology. Sometimes intensive care unit
(ICU) referral should be considered so that mechanical ventilation can be offered when
necessary. Patients with grade 1 and 2 toxicity experiencing fever, constitutional symptoms,
and moderate hypotension are treated symptomatically with antipyretics and antibiotics for
fever, with fluids and low dose vasopressors for hypotension and oxygen supplementation
when saturation drops.

After CAR T-cell therapy, fever usually precedes CRS. Therefore, patients who develop
persistent fever should be frequently evaluated for signs and symptoms of CRS. If an
infection cannot be ruled out, empiric antibiotic therapy should be started.
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Table 3. Cytokine release syndrome (CRS) grading system (Lee et al. [29] partially modify).

Toxicity Grade

Symptoms are not life threatening and require symptomatic treatment only, eg, fever, nausea,
fatigue, headache, myalgia, malaise

Grade 1

Symptoms require and respond to moderate intervention. Oxygen requirement < 40 % or
hypotension responsive to fluids or low dose of one vasopressor or grade 2 organ toxicity

Grade 2

Symptoms require and respond to aggressive intervention. Oxygen requirement ≥ 40 % or
hypotension requiring high dose or multiple vasopressor or grade 3 organ toxicity or grade
4 transaminitis

Grade 3

Life-threatening symptoms. Requirement for ventilator support or grade 4 organ toxicity
(excluding transaminitis)

Grade 4

Grades 2–4 refer to CTCAE v4.0 grading [21].

For severe cases of CRS, the patient should be admitted to the ICU for close monitoring.
In addition to aggressive supportive care, steroids and repeated doses of Il-6 inhibitor
need to be administered when no improvement is observed. In some resistant cases, other
anti-inflammatory agents need to be administered, but clinical experience in this setting is
undeveloped [29,80,84,85].

5. Treatment of CRS

The therapy for CRS is not yet well defined but is based on the use of steroids
and inhibitors of IL-6 activity, as well as IL-1, IFN-γ, TNF-α, and IL-2 inhibitors for
unresponsive patients.

5.1. Steroids

Clinical experience shows that steroids are an effective treatment for suppressing the
excessive inflammatory response and CRS [86]. Opinions differ on the timing and dosing
of corticosteroids. Some choose to use corticosteroids as a first-line agent, whereas others
do not [29]. However, corticosteroids have generalized effects on the immune system and
may also inhibit the anti-tumor efficacy and affect the amplification and persistence of CAR
T cells in vivo [71]. Thus, steroids should generally be avoided as first-line treatment but
used in resistant patients with severe CRS and given at high doses when it is necessary
to ablate CAR T cells. Furthermore, steroids are recommended in patients with adverse
neurological effects.

5.2. IL-6 Activity Inhibitors

Tocilizumab is a humanized monoclonal antibody against both the soluble IL-6 and
membrane-bound IL-6 receptors, inhibiting both classical and trans-IL-6 signaling. After
multiple trials demonstrated its efficacy [76,87], it was approved by the FDA in 2017 as the
first approach for the treatment of CRS-related toxicities following CAR T-cell infusion.
Tocilizumab controls CRS without significant loss of CAR T-cell activity. Improvements
occur within a few hours after drug infusion, reducing adjuvant therapy. Advantageous
effects of a single injection in patients with CRS induced by CAR T-cell therapy strongly
suggest that IL-6 blockade may constitute a new therapeutic approach for an acute, severe,
systemic inflammatory response such as CRS. Its most used dosage for CRS is 12 mg/kg
for patients weighing <30 kg and 8 mg/kg for patients weighing ≥30 kg. Fever and
hypotension are ameliorated within a few hours in responsive patients, whereas it is
necessary to continue supportive treatment for several days in some patients. Responsive
patients recover from CRS without significant loss of CAR T-cell function. However, a
significant number of patients present with resistance to tocilizumab [83].

The effect of tocilizumab against severe CRS-associated neurotoxicity is extremely low,
probably due to its limited ability to penetrate the BBB [88]. Some researchers have seen
that prophylactic use of tocilizumab does not prevent the development of neurotoxicity [89],
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whereas others wonder if it is possible to use this drug prophylactically in order to avoid
or reduce the symptoms of CRS [22].

Another monoclonal antibody that blocks IL-6 signaling is siltuximab, which prevents
the activation of immune effector cells through either the trans or classical mechanisms [50].
Siltuximab has a higher affinity for IL-6 than tocilizumab has for IL6R, making it an
attractive tool in managing CRS. The use of siltuximab is encouraged in patients that do
not respond to tocilizumab and corticosteroids.

5.3. IL-1, IFN-γ, TNF-α, and IL-2 Inhibitors

IL-6/IL6R blockade alone cannot alleviate CRS symptoms completely and would be
insufficient in treating severe CRS in patients undergoing CAR T-cell therapy. For patients
who become critically ill and do not respond to IL-6, directed therapy targeting IL-1, IFN-γ,
TNF-α, or sIL-2 could ameliorate their symptoms. This has led to the use of other cytokine
inhibitors, including TNF-α and IL1R inhibitors [29,56,70,80]. Etanercept and infliximab
both target TNF-α, which is known to be elevated in CRS, and have been used to treat
severe CRS, with varying results [29,80]. Anakinra, a recombinant and slightly altered form
of the IL1R antagonist, may be helpful in a subset of patients with increased IL-1α, but this
cytokine is also not consistently elevated in patients with severe CRS [70]. Although IFN-γ
is consistently elevated very early in severe CRS, it is not thought to be an ideal target due
to its role in T-cell proliferation [90].

Finally, other research groups have thought of inserting a “suicidal” gene into the
genetic construct used to arm T lymphocytes, a “command” that, when activated from the
outside, drives the lymphocytes to commit suicide, self-limiting activity when the CRS
becomes life-threatening [76].

6. Conclusions

The introduction of CAR T-cell therapy into clinical practice is revolutionizing the
treatment of numerous hematological malignancies. This treatment is able to induce
prolonged remission in patients in a very advanced stage of the disease and for whom
the most common therapeutic options have been exhausted. However, it is essential
that life-threatening toxicities, such as CRS, can be managed in an optimal and effective
way. Therefore, the goal is to prevent or effectively treat CRS without diminishing the
antitumor efficacy. The BiTE construct blinatumomab, a prophylactic procedure including
cytoreduction, premedication with corticosteroids, and dose adjustment, appears to be able
to reduce the incidence of severe CRS [82]. Considering the type of CAR T cells currently
available, the most used sequence of agents to control severe CRS include tocilizumab and
high-dose corticosteroids. When these treatments fail, other cytokine inhibitors, such as
TNF-α or IL1R inhibitors, are often used. Isolated and severe neurotoxicity is usually, at
least initially, treated with corticosteroids rather than tocilizumab.

In this review, we have summarized the pathophysiology, symptoms, and manage-
ment of CRS associated with T-cell-based therapies utilized in the treatment of hema-
tological malignancies. Although several grading scales and very effective treatment
algorithms have been proposed, we would like to emphasize that optimal management
of patients is based on the close collaboration of a multidisciplinary team that includes
hematologists, neurologists, radiologists, and intensive care specialists, so that mechanical
ventilation can be offered if necessary. Until new knowledge on the pathophysiology of
CRS allows the use of new and more effective treatments, we think that early intervention
by a multidisciplinary team and the use of tocilizumab and corticosteroids remains the best
management strategy.

7. Future Prospect

In the near future, every effort will be made to balance treatment toxicity and efficacy
and to prevent or reduce the symptoms of CRS after infusion of T-cell-based therapies in
hematological patients. It will be necessary to act both on the aspects of patient care and in
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the field of research on that intricate network of different cell types, which constitutes the
immune system. These goals can be achieved:

(a) Developing even greater cooperation between experts from various fields such as
onco-hematology, neuroscience, immunology virology, and ICU: the multidisciplinary
approach is an essential requirement for an adequate treatment of patients with CRS.

(b) Improving specificity and further unlocking the potential of immunotherapy.

A typical example is the recently developed split, universal, and programmable
(SUPRA) CAR system which is composed of an antigen-binding portion, and a universal
signal transduction receptor. The system seems able to improve the specificity and control-
lability [91] of the immune cell engineering strategy. Thus, the SUPRA CAR system has the
potential to reduce CRS without reducing the antitumor response [92].
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(T-PLL) T-cell prolymphocytic leukemia
AKT serine/threonine-specific protein kinase
ALL acute lymphoblastic leukemia
AML acute myeloid leukemia
BiTE bispecific T-cell engaging
B-NHL B-cell non-Hodgkin lymphoma
CAR chimeric antigen receptor
CLL chronic lymphocytic leukemia
COVID 19 coronavirus disease 2019
CRES CAR T-cell-related encephalopathy syndrome
CRP C-reactive protein
CRS cytokine release syndrome
CSF colony-stimulating factor
DLBCL diffuse Large B-cell Lymphoma
FDA Food and Drug Administration
GCSF granulocyte colony-stimulating factor
HGF hepatocyte growth factor
HLH haemophagocytic lymphohistiocytosis
HSCT hematopoietic stem cell transplantation
ICU intensive care unit
IFN interferon
IL interleukin
IL6R IL6 Receptor
IP-10 interferon–inducible protein 10
JAK Janus associated kinase
mAbs monoclonal antibodies
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MAPK mitogen-activated protein kinase
MAS macrophage activation syndrome
MCP monocyte chemoattractant protein
MIP macrophage inflammatory protein 1α
MSC mesenchymal stem cells
NHL non-Hodgkin lymphoma
NK natural killer
PT prothrombin time
PTT partial thromboplastin time
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
sIL6R soluble IL6 receptor
SS Sézary syndrome
STAT signal transducer and activator of transcription
TGF transforming growth factors
TNF tumor necrosis factors
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