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Abstract

In mountain basins, sediment supply to the fluvial system occurs mainly through epi-

sodic geomorphic processes—such as debris flows and other landslide types—whose

effectiveness is strongly influenced by the structural connectivity within a catchment.

This paper presents a novel data-driven approach to identify and map areas that are

simultaneously susceptible to debris flow initiation and structurally connected to the

main channel network (i.e. relevant sediment source areas for predicting and mitigat-

ing flood hazards in the river channels). The presented approach comprises: (i) the

visual interpretation, delineation, mapping and classification of event-specific con-

nected and disconnected debris flow areas in three catchments of the Italian Alps;

(ii) the development of data-driven debris flow release susceptibility models that are

combined with quantitatively classified index of connectivity (IC) maps; and (iii) a

thorough evaluation of the approach, including an assessment of its spatial transfer-

ability across the catchments. The main results show: (i) quantitative IC thresholds to

discriminate connected from disconnected debris flow release areas; (ii) statistically

well-performing and geomorphically plausible debris flow release susceptibility

models for the three basins; (iii) diverse joint debris flow connectivity–susceptibility

maps that allow identifying zones which are differently relevant in terms of debris

flow connectivity. This work also highlights the spatial transferability of the approach,

associated benefits and potential drawbacks, as well as the utmost importance of a

thorough combined quantitative and qualitative (i.e. geomorphic plausibility) evalua-

tion of the underlying results. The proposed approach is rather simple and requires

few basic input data, and can therefore be applied over vast areas (e.g. to support

regional-scale hazard assessments or sediment management plans).
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1 | INTRODUCTION

Sediment connectivity can be defined as a state variable of a geomor-

phic system reflecting the degree of linkage that controls the sedi-

ment flux throughout the landscape (Cavalli et al., 2019; Heckmann

et al., 2018; Wohl et al., 2019). Three types of sediment

connectivity—lateral, longitudinal and vertical—can be analysed in

catchments, depending on the investigated linkages among the sys-

tem components. Lateral connectivity focuses on linkages between

the channel network, its floodplains and hillslopes. Longitudinal con-

nectivity aims to investigate the sediment transfer along the channel

network while vertical connectivity is related to bed surface–

subsurface sediment interactions (Bracken et al., 2015; Fryirs, 2013).

Longitudinal, lateral and vertical coupling can be interrupted byStefan Steger and Vittoria Scorpio contributed equally.
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sediment blockages termed buffers, barriers and blankets, respectively

(Brierley et al., 2006; Fryirs, 2013; Fryirs et al., 2007).

The assessment of sediment connectivity is pivotal in Alpine

headwaters, since high mountains experience some of the largest sed-

iment fluxes and are major sediment sources for river systems

(Carrivick & Tweed, 2019; Carrivick et al., 2018; Cavalli et al., 2013;

Hoffmann et al., 2013). Transfer of sediments to the channel network

occurs primarily throughout episodic geomorphic processes such as

rockfalls, debris flows, landslides and floods, whose effectiveness in

terms of sediment supply is extremely variable and strongly influenced

by climate conditions, by the complex morphological setting of catch-

ments, valley morphometry (Cavalli et al., 2019) and other types of

buffers (e.g. alluvial fans, floodplains), barriers (e.g. valley steps, dams)

and blankets (e.g. bed armouring).

Interest in sediment connectivity research has grown over the

past decades, along with the approaches trying to quantify it. Several

methodical approaches and indices have been proposed (Heckmann

et al., 2018; Wohl et al., 2019). Methodological procedures range from

the development of indices based on drainage area and slope (Dalla

Fontana & Marchi, 2003) to GIS-based models (Borselli et al., 2008;

Cavalli et al., 2013; Lane et al., 2017) and sophisticated two-

dimensional or mathematical models (Baartman et al., 2020; Cossart &

Fressard, 2017; Michaelides & Wainwright, 2002).

Borselli et al. (2008) introduced the index of connectivity (IC),

which was further developed by Cavalli et al. (2013). The IC spatially

assesses structural connectivity based on high-resolution digital eleva-

tion models (DEMs). It is a geomorphometric index considering the

potential for downward routing of the sediment in the upslope catch-

ment and the flow path length that sediment has to travel to reach a

given target based on DEM-derived parameters and a sediment flux

impedance factor (Cavalli et al., 2020). It has been used in many

recent studies for various aims, such as to assess the effects of land

use and topographic changes in Mediterranean and mountain catch-

ments (Cislaghi & Bischetti, 2019; Lizaga et al., 2018; Llena

et al., 2019; L�opez-Vicente et al., 2017), to estimate the impact on

geomorphic systems of natural infrequent disturbances (Martini

et al., 2019; Ortíz-Rodríguez et al., 2017; Pellegrini et al., 2021), to

identify dominant processes acting in headwater catchments and

proglacial areas (Bollati & Cavalli, 2021; Cavalli et al., 2019; Goldin

et al., 2016; Heiser et al., 2015). Research based on the IC has mainly

been conducted to compare the overall sediment connectivity

between different basins or different sectors of the same catchment,

as well as to differentiate between areas featuring relatively high/low

connectivity with respect to the closest main channel or to the catch-

ment outlet. However, most of the published research on connectivity

does not explicitly account for the actual terrain susceptibility to spe-

cific processes (e.g. debris flows or other types of mass movements).

The term ‘landslide susceptibility’ describes the spatial propensity

of an area to be affected by a landslide (Guzzetti et al., 2005). Beyond

the single-slope scale, a reasonable parameterization of spatial physi-

cally based slope stability models is often hindered by the

unavailability of spatial geotechnical data. In contrast, data-driven

models are more flexible in terms of their input data, while often still

being able to outperform their physical counterparts (Seefelder

et al., 2017). In past decades, a large amount of research focused on

identifying landside-prone terrain at regional or multi-regional scale

using data-driven procedures (Budimir et al., 2015; Goetz et al., 2015;

Reichenbach et al., 2018; Steger & Kofler, 2019). In many cases, those

data-driven assessments focused specifically on environmental condi-

tions present at the source zone of a specific landslide type in order

to identify potential process starting zones (Heckmann et al., 2014;

Petschko et al., 2016; Steger et al., 2016a). Besides the delineation of

landslide-prone terrain, landslide susceptibility models were also

applied to obtain insights into the influence of environmental vari-

ables on landslide occurrence (Goetz et al., 2015; Pisano et al., 2017;

Schmaltz et al., 2017; Vorpahl et al., 2012). Landslide susceptibility

assessments, combined with further analyses, were also used to

develop rules for regional-scale early warning and landslide hazard,

exposure or risk zonations (Guzzetti et al., 2005; Krøgli et al., 2018;

Pereira et al., 2016). Landslide susceptibility models and maps were

also investigated for their potential to explain spatial variability in sed-

iment yield (Broeckx et al., 2016), or the association between landslide

susceptibility and landslide mobilization rates (Broeckx et al., 2019).

Bordoni et al. (2018) included the IC in a data-driven landslide model

to estimate landslide-prone road sections.

It is expected that a combined perspective which considers both

lateral sediment connectivity and landslide susceptibility will be

required to identify areas that are most relevant to provide specific

sediments (e.g. debris flow material) to the channel network, because

an area that is structurally connected to a channel is not necessarily

prone to trigger a specific landslide type. Despite the relatively high

amount of published research in both fields, data-driven procedures

that combine the spatially explicit IC mapping with models that iden-

tify areas prone to slope instability are still missing. Up to now, to the

best of our knowledge, no approaches have been presented to classify

how potential sediment source areas, such as debris flow release

zones, are laterally connected to the main channel network, thus actu-

ally supplying sediments to the latter [with the exception of the very

recent work by Spiekermann et al. (2022), who developed a morpho-

metric landslide connectivity model using logistic regression]. Within

such a context, this paper presents a data-driven approach to identify

areas which are most likely to supply debris flow sediments to the

main channel network. The work aims to address several shortcom-

ings of previous research through an explicit integrated analysis of

debris flow release susceptibility and lateral connectivity via: (i) an

objective data-driven definition of binary IC thresholds to separate

connected from disconnected areas for high-magnitude reference

events; (ii) the development of debris flow release susceptibility

models then joined with the IC; and (iii) testing the transferability of

the developed approach across Alpine catchments that represent dif-

ferent geological and geomorphological characteristics. For this pur-

pose, three catchment-specific debris flow-triggering events in the

Italian Eastern Alps (Stolla, Pfitsch/Vizze and Sulden/Solda) were

analysed.

2 | STUDY AREAS

2.1 | Geological and geomorphological settings

Three catchments situated in South Tyrol (Northern Italy) were

analysed in this study (Figure 1a): Stolla, Pfitsch/Vizze and Sulden/

Solda. This latter catchment is drained by the Sulden River and by a

major tributary, the Trafoi River. The three catchments are spatially
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distributed across the region and are characterized by varying sub-

strate lithologies, drainage areas, geomorphological setting, land use

and hydrological regime (Table 1).

The Stolla River flows from south to north (Figures 1a and b) and

its basin is composed of dolomites, limestones and sandstones. The

Stolla channel is mainly confined in the upper part, whereas it is char-

acterized by an alternation of confined and partly confined reaches in

the middle and lower sectors (Scorpio et al., 2022). The dolomitical

rockwalls frequently deliver large volumes of loose sediments to talus

slopes and cones, whose sediments are frequently reworked by debris

flow processes during rainstorms.

The Pfitsch basin presents a NE–SW orientation and flows into

the Eisack/Isarco River (Figures 1a and c). A prevalence of meta-

morphic rocks, especially gneiss and schist, and intrusive igneous

rocks (granite) characterizes its substrate. Aside from the first

3.5 km, where the channel is highly confined by the hillslopes, the

channel alternates unconfined and partly confined upstream of the

Novale dam (drainage area 112 km2, Figure 1c). Downstream from

this dam the channel flows in a narrow and confined valley for

about 5 km, whereas the last 3 km of channel length is unconfined

and channelized. Large debris flow fans are present at the toe of

both valley sides.

F I GU R E 1 Location map of the Stolla, Pfitsch and Sulden catchments (the latter includes the Trafoi subcatchment) (a). Land cover maps for
Stolla (b), Pfitsch (c) and Sulden (d), obtained from the Land-use Information System South Tyrol (LISS, 2013). Background for all images is the
hillshade derived from DTMs.
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The Sulden catchment (drainage area 130 km2) is drained by two

main rivers flowing from north to south, the Sulden (drainage area

107 km2, eastern part of the basin) and the Trafoi (drainage area

53 km2, western part, Figures 1a and d). The area shown in Figure 1d

will hereafter be referred to as ‘Sulden’. Bedrock geology includes

both metamorphic rocks (mainly quartz phyllites, ortho- and

paragneiss) and carbonate rocks (limestones and dolomites). Channels

are mainly confined or partly confined, with a diffuse presence of

debris flow fans and talus cones at the edges of the valley bottom.

2.2 | Recent debris flow-triggering events

In the last decade, the three basins have been affected by high-

magnitude storm events which caused channel widening and several

mass movements, including shallow landslides and debris flows

(Figure 2).

In the Stolla basin, a rainstorm presenting a short duration (6 h)

and a rainfall intensity exceeding 45 mm/h occurred on 5 August

2017. The cumulative rainfall depth ranged from 40 to 84 mm and

the return period was estimated in the order of 200 years for rainfall

duration of 1 h (Scorpio et al., 2022). More than 500 debris flows—

covering a total area of 1.7 km2 (4.1% of basin area)—were triggered

along the hillslopes during this event, and the Stolla main channel

underwent considerable widening and bed-level changes (Scorpio

et al., 2022, Figures 1b and 2a–c).

In the Pfitsch basin, a very intense summer storm took place on

4 August 2012. The rain gauge in Sterzing (2 km downstream of the

basin outlet) registered 72.8 mm of rainfall in 6 h, which corresponds

to an estimated return period between 200 and 300 years (Macconi

et al., 2012). The area close to the basin outlet received both the max-

imum event rainfall accumulation (136 mm) and the maximum hourly

rain intensities (38 mm/h; Destro et al., 2018). The cumulative rain-

storm precipitation decreased moving towards the upper part of the

basin, and from the left side to the right side of the valley. The storm

triggered numerous landslides and debris flows (Figures 1c and 2d

and e), presenting a total area of 0.77 km2 (0.5% of basin area); their

spatial distribution mirrored quite well the observed rainfall distribu-

tion (Destro et al., 2018).

The upper part of the Sulden basin was affected by a rainstorm

on 13 and 14 August 2014 (Macconi et al., 2012). The Madritsch

weather station (located at about 2900 m a.s.l.) registered a mean

rainfall intensity of 2.9 mm/h and a total rainfall depth of 48.5 mm

over the duration of 16.8 h (Kofler et al., 2021). Several hillslope pro-

cesses were triggered by this event (Figures 1d and 2f–h), including a

rock glacier front failure evolving to a debris flow and other debris

flows leading to a total debris flow area of about 0.44 km2,

corresponding to 0.27% of the basin area (Kofler et al., 2021; Savi

et al., 2021). Intense bedload transport was measured in the Sulden

River (Coviello et al., 2019). However, the August 2014 storm event

in Sulden was estimated to be considerably more frequent than the

events analysed in the Stolla and Pfitsch basins, with a recurrence

interval likely in the range 20–50 years.

3 | METHODS

The proposed approach builds upon three main steps: (i) creation of a

classified debris flow release susceptibility map (susceptible vs not

susceptible); (ii) thresholding of the sediment connectivity index map

with respect to debris flow initiation areas (connected vs discon-

nected); and (iii) joining of the two resulting binary maps to produce a

combined debris flow release connectivity–susceptibility map.

The methodological workflow is depicted in Figure 3 and started

with the mapping and labelling (connected vs disconnected) of debris

flow polygons and sampling of debris flow release points (Figure 3a;

Section 3.1). The labelled debris flow release points then served as

input for a logistic regression model that enabled us to derive a quan-

titative threshold for classifying the IC map (Cavalli et al., 2013;

Figure 3b) into connected and disconnected areas (Figure 3c;

Section 3.2). A set of predisposing factors (Figure 3e) and the debris

flow release points were used to train and evaluate a generalized

additive model (Figure 3f) to create a binary map that depicts suscep-

tible and not susceptible areas in terms of debris flow release

(Section 3.3). Detailed evaluations of the IC model and the susceptibil-

ity model (Section 3.4) were followed by an intersection of the associ-

ated binary maps (Figures 3c and f) to create the final combined

connectivity–susceptibility maps (Figure 3h).

The previously described approach was first developed within the

Stolla catchment. Two different strategies were then applied to test

the spatial transferability of the approach and of the specific results

(Figures 3d and g). First, we tested a direct transfer of the reference

Stolla susceptibility model and the reference Stolla IC model (including

their thresholds) to the Pfitsch and Sulden basins, by directly applying

the Stolla-derived relationships and thresholds to the local environ-

mental maps (i.e. predisposing factor maps, IC map). The resulting two

binary maps for each test basin were then intersected to produce a

combined connectivity–susceptibility map. Evaluations of these maps

provided insights into the direct transferability of the results in case

no local recalibration is conducted. Second, a recalibration of suscepti-

bility models and IC thresholds within the two test basins based on

local data (i.e. debris flow release points, predisposing factors, IC map)

was carried out, allowing us to investigate the transferability of the

workflow to other geomorphic settings.

T AB L E 1 Main physiographic and morphologic characteristics of
the study catchments

Stolla Pfitsch Sulden

Catchment area (km2) 40 140 130

Channel length (km) 11.5 23 18

Maximum elevation (m a.s.l.) 3146 3506 3905

Minimum elevation (m a.s.l.) 1185 937 1100

Mean basin elevation (m a.s.l.) 1935 2050 2355

Mean basin slope (%) 28 31 32

Glacier extension (km2) 0 5.2 9

Relative glacier cover (%) 0 3.7 11

Mean annual precipitation (mm) 860 700–800 835– 940

Relative forest cover (%) 48 30 27

Relative grassland cover (%) 15 16 17

Relative shrubland cover (%) 11 20 4

Relative unvegetated areas (%) 26 34 52
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3.1 | Debris flow inventories and sampling of
release zones

Event-specific debris flow inventories were produced for the three

previously described rainstorm events, each in a specific catchment

(see Section 2.2). The mapping was based on the comparison of

orthomosaics and digital terrain models (DTMs) acquired before

(orthomosaics in 2011 for Pfitsch and Sulden and in 2014 for

Stolla; DTMs acquired in 2005 for Pfitsch and Sulden and in 2010

for the Stolla) and immediately after the storm events

(orthomosaics and DTMs in 2014 for Pfitsch and Sulden and in

2017 for Stolla).

F I GU R E 2 Debris flow and alluvial channel processes in the Stolla (a–c), Pfitsch (d, e) and Sulden (f–h) catchments. Courtesy of the
Department of Civil Protection of the Autonomous Province of Bolzano-Bozen.
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The 2011 and 2014 orthomosaics (0.2 and 0.5 m spatial resolu-

tion, respectively) and the 2005 DTM (2.5 m spatial resolution)

derived from an aerial laser scanning (ALS) survey were made available

by the Autonomous Province of Bolzano-Bozen. The post-2017 event

orthomosaic in the Stolla catchment (0.15 m spatial resolution) and

the DTM (point cloud density 29 points m2) were produced from

F I GU R E 3 The methodological framework used in this study.
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aerial photographs and ALS survey data acquired by helicopter during

an ad-hoc, post-event flight conducted in October 2017 (Scorpio

et al., 2022).

All original 2.5 m DTMs were first resampled to a 5 m resolution

by averaging the values within a moving window and then hydrologi-

cally corrected by filling local depressions, using the ‘Pit Remove’ tool
of the Taudem software based on a pit-filling algorithm. The choice to

resample the original DTMs was dictated by the need to balance

among the maintenance of a good resolution and the requirements to

improve the computational efficiency, as also performed by Martini

et al. (2022).

The debris flow-mapping process took advantage of additional

sources: (i) the ‘ED30’ database, provided by the Civil Protection

Agency of the Autonomous Province of Bozen-Bolzano, which con-

tains qualitative (e.g. damages to roads and infrastructure) and quanti-

tative (e.g. volumes of removed sediments or buried areas) data

describing natural hazard events in South Tyrol; (ii) ad-hoc field cam-

paigns in the Stolla catchment to refine and validate the debris flow

mapping and the associated classifications. These field surveys in the

Stolla were carried out in August 2017, immediately after the storm

event. All debris flows were digitized manually as polygons in a GIS

environment (ESRI ArcGIS vers. 10.7) and labelled according to their

connectivity to the main channels (connected vs disconnected) during

the analysed events (Figures 1b–d and 3a; see also Scorpio

et al., 2022). The coupling or decoupling of the debris flow processes

with respect to the receiving main channel was evaluated based on

observations on the event deposits: if the sediment clearly reached

the main channel, the related debris flow polygon was classified as

connected and vice versa. In analogy to Heckmann et al. (2014), debris

flow release points were automatically extracted from the mapped

polygons by implementing a DTM-based sampling procedure. In this

context, the extracted points coincided with the highest areas within

each polygon, typically corresponding to the initiation sites. We

defined an initiation area—rather than a single cell—within each debris

flow polygon (>98th percentile in terms of elevation) to reduce the

influence of boundary mapping inaccuracies and allow the identifica-

tion of multiple points for larger debris flows. Single points were then

randomly extracted from this area by setting a minimum Euclidean

distance of 40 m between the point locations to reduce spatial auto-

correlation. Therefore, each single debris flow release area is repre-

sented by at least one point (in the case of small polygons with

maximum areas of 14 000 and 38 000 m2 for connected and discon-

nected debris flows, respectively), whereas the larger polygons

(i.e. debris flows) are represented by more points, as shown in

Figure 3a.

3.2 | Index of connectivity map and its
thresholding

The structural connectivity represents the potential of a landscape to

be connected through flow pathways and was evaluated by applying

the IC (Cavalli et al., 2013). For more details on index computation,

see the online Supplementary Material. The IC was computed by

investigating the connectivity between the catchment and the main

channels assumed as a target (Stolla, Pfitsch, Sulden and Trafoi rivers),

and thus this scenario focused on the evaluation of the lateral

connectivity (i.e. from the hillslopes to the main channels found in the

valley bottoms; Figure 3b). The IC values—which are dimensionless—

were computed by means of the SedInConnect software (Crema &

Cavalli, 2018). The IC map was divided into two groups (connected vs

disconnected zones) by training a generalized linear model (GLM),

namely logistic regression (Hosmer et al., 2013). The response variable

of the logistic regression model was represented by the binary label of

the previously sampled debris flow points (connected vs discon-

nected; Figure 3c, n = 612 for Stolla), while the corresponding IC

values were treated as the predictor variable. The fitted model permits

us to predict the probability of an area being connected in terms of

debris flow initiation as a function of the corresponding IC value. The

binary label at the point locations and the associated probability

values were then used to create and analyse a receiver operating

characteristic (ROC) curve (Figure 3c). ROC curves illustrate the global

outcome of a binary classifier by plotting the true positive rate (sensi-

tivity) against the false positive rate (1 � specificity) for each possible

classification threshold (Swets, 1988). Besides evaluating the overall

discriminatory power of the classification via the area under the ROC

(AUROC), the ROC plot was also used to elaborate an ‘optimal’
threshold for classifying the underlying probabilities into the two clas-

ses based on the Youden index (Schisterman et al., 2005). In summary,

the cutpoint value that ‘optimally’ separates connected from discon-

nected areas represents the predicted probability score in the ROC

space that maximizes the sum of sensitivity and specificity, and fur-

thermore has the property of maximizing the overall correct classifica-

tion rate (Hosmer et al., 2013; Ruopp et al., 2008). This cutpoint was

then used to divide the continuous IC probability map into two clas-

ses: ‘connected’ and ‘disconnected’ debris flow release areas.

The above-described methodological framework was first tested

in the Stolla catchment (Figure 3c), and the IC thresholds were then

transferred and tested in the Pfitsch and Sulden catchments

(Figure 3d). For these latter basins, additional optimized thresholds

were also computed based on local debris flow data (Figure 3d).

3.3 | Debris flow release susceptibility modelling
and thresholding

An interpretable supervised classifier, namely a binomial generalized

additive model (GAM; Figure 3f), was applied to delineate areas prone

to debris flow release (Hastie & Tibshirani, 1999). The statistical

modelling and associated evaluations were performed within the R

software (R Core Team, 2017), and the GAM was run utilizing the R-

package ‘mgcv’ (Wood, 2017).

Several recent studies demonstrated the usefulness of GAMs in

the field of data-driven landslide susceptibility modelling (Goetz

et al., 2015; Petschko et al., 2014; Steger et al., 2021; Vorpahl

et al., 2012). GAMs are flexible semi-parametric models that allow

accounting for non-linear relationships between the response variable

(i.e. presence/absence of debris flow release points in this study) and

continuous variables (e.g. slope angle, normalized elevation) by fitting

smoothing splines to continuously scaled variables (Hastie &

Tibshirani, 1999; Wood, 2017).

In detail, the GAM was used to model the binary response that

represents debris flow release locations (Figure 3a) and debris flow

absences. Sampling of debris flow release points is described in detail
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in Section 3.1. A topographical correction was applied to randomly

sampled debris flow absence locations outside the mapped debris

flow polygons. This procedure accounts for projection-related areal

biases (i.e. the measured planar area is smaller than the true surface

area on steep terrain) and ensures that differently inclined terrain are

equally well represented within the study site, as described in detail

by Steger et al. (2021). To represent the topographically complex ter-

rain with a sufficient quantity of observations while ensuring compu-

tational feasibility, the number of debris flow absence points to be

sampled was set to three times the number of landslide presences

(e.g. for Stolla, 612 presences and 1836 absences).

A parsimonious GAM model was created by introducing six signif-

icant and geomorphically plausible terms as predictors (Figure 3e).

The underlying seven spatial variables (i.e. the model contains one

two-variable interaction term) represent one land use variable and six

topographic factors (slope angle, plan curvature, profile curvature,

topographic wetness index, slope roughness, normalized height index)

that were derived directly from the 5 m DTM (Section 3.1) using the

respective tools within the SAGA GIS environment (Conrad

et al., 2015). The rasterized (5 m) land use map—with classes of bare

surface, forest, shrubland and grassland—was obtained from the Land-

use information System South Tyrol (LISS, 2013).

The model construction started with the smoothing parameter

selection for continuous variables. This step was conducted via inter-

nal cross-validation, while setting a maximum of three effective

degrees of freedom for the spline parameterization. p-Values for each

term were interpreted to reject the null hypothesis (i.e. no effect of

the term) (Wood, 2013). Thus, a term was only included in the final

model when showing a significant effect (p-values < 0.001), while

simultaneously depicting a geomorphologically plausible relationship

to debris flow occurrence (Steger et al., 2016a). In this context, the

visualization of component smooth functions served as a basis to

uncover implausible modelled relationships and to obtain insights into

the effect of terms on the outcome by interpreting the deviation of

the centred curves from the y-axis value of 0 (i.e. a horizontal line at

0 indicates no effect) (Steger et al., 2021).

The following six terms fulfilled our model selection requirements.

Slope angle was introduced to represent downslope forcing, while plan

and profile curvature were used as a proxy for slope hydrological influ-

ences (e.g. surface runoff) and potential for loose material availability.

An interaction term that represents the interplay of the topographic

wetness index and slope roughness was included after evaluating the

first model runs (more details in the discussion). The relative height

position of debris flow release zones within the catchment was repre-

sented by the normalized height index. Finally, the land use variable

was used as a proxy for the spatial variation of the effects of vegeta-

tion (or its absence) on debris flow release (Reichenbach et al., 2018;

Steger & Kofler, 2019; Van Westen et al., 2008).

In analogy to the IC models, debris flow susceptibility modelling

was first conducted in the Stolla catchment (Figure 3f), whereas sub-

sequent transferability tests (i.e. direct transfer of the results; rec-

alibration with local data) were performed also within the Pfitsch and

Sulden areas (Figure 3g). Analogous to the binary maps of connectiv-

ity, the continuous probability map of debris flow release susceptibil-

ity was classified into a binary map according to the ROC analysis and

the Youden index (susceptible vs not susceptible terrain; Figures 3f

and g).

3.4 | Model evaluation techniques

The two separate models (IC and susceptibility; Sections 3.2 and 3.3)

were evaluated separately by assessing: (i) their discrimination power

and (ii) their non-spatial and spatial prediction performance. The

AUROC curve was used as the primary error measure for the continu-

ous model outputs (i.e. probability estimates) while confusion matrix

measures (e.g. sensitivity, specificity) were used to evaluate the subse-

quent categorized results (i.e. binary IC and susceptibility maps, final

combined map). In summary, the calculation of the discrimination

power focused on the fitting performance of the two single models

and thus is not based on model-independent test data. The presented

predictive performance estimates, in contrast, were calculated via

multiple independent test sets based on a repeated non-spatial ran-

dom selection (cross validation, CV) or on multiple spatially disjoint

subregions (spatial cross validation, SCV). Finally, a confusion matrix

was used to compare the combined connectivity–susceptibility map

(i.e. not a newly trained model of its own) with debris flows that actu-

ally occurred and were labelled (connected vs disconnected) during

the post-event mapping.

In detail, the discrimination power metric compares the continu-

ous model predictions (probability scores between 0 and 1) to the

observations of the binary response, to determine how well the

underlying model separates the binary observations of the training

data (i.e. connected vs disconnected; debris flow presence vs absence)

(Murillo-García et al., 2019; Steger et al., 2020). For instance, an asso-

ciated AUROC of 1 would indicate that the model predictions per-

fectly separate connected from disconnected debris flow release

observations, with each connected debris flow observation having a

higher probability score than each disconnected debris flow observa-

tion. An AUROC of 0.5 would point to a random classification, while

AUROCs between 0.7 and 0.8 can be considered acceptable. AUROC

values between 0.8 and 0.9 refer to an excellent discrimination, and

values > 0.9 to an outstanding discrimination (cf. AUROC interpreta-

tion guidelines in Hosmer et al., 2013).

The predictive performance estimation was also based on the

AUROC metric and assessed by iteratively confronting the predicted

probability scores with independent test data using k-fold CV and k-

fold SCV (Brenning, 2012; Schratz et al., 2019). Thus, predictive per-

formances were calculated by repeatedly splitting the original data

into training data, which was used to fit the model, and test data,

which was used to calculate the AUROC metric. In this context, CV is

based on a repeated non-spatial random splitting of training and test

data, while SCV is built upon a k-means cluster algorithm to create

multiple spatially disjoint training and test areas. In total, 125 AUROCs

were calculated (25 repetitions, 5 folds) for each model. The associ-

ated interquartile range (IQR) of AUROCs allowed us to additionally

evaluate model robustness (Steger et al., 2017).

Finally, the four classes of the combination maps—

(i) disconnected and not susceptible; (ii) connected but not suscepti-

ble; (iii) susceptible but disconnected; (iv) connected and susceptible—

were quantitatively compared to the label of the debris flow source

zones in the form of a confusion matrix to highlight the level of spatial

(dis)agreement between debris flow observations and the four classes

of the map. Absolute numbers (i.e. number of observations within a

class), relative numbers (i.e. proportions) and frequency ratio

(FR) scores are shown in the confusion matrix. FRs were computed to
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additionally account for the areal extent of the four zones within the

combination map. The FR metric relates the proportion of observed

debris flows within one of the four zones (e.g. 82% of connected

debris flows were observed within the zone ‘susceptible and con-

nected’) to the proportion of area covered by the respective zone

(e.g. ‘susceptible and connected’ covers 5% of the total area). The

resulting FR score (in this example, 82/5 = 16.4) is >1 in case an

over-proportional density of debris flow observations is observed

within the respective zone. FRs < 1 (e.g. 5/56 = 0.09) indicate that,

compared to the size of the zone of interest (e.g. ‘not susceptible and

disconnected’ covers 56% of the area), a lower proportion (in this case

5%) of actual debris flows was observed in this class.

3.5 | Map combination and model transfer

Both binary maps (i.e. the classified IC and release susceptibility maps)

were spatially overlaid to obtain the final joint susceptibility–

connectivity maps that reflect the four classes mentioned above

(Figure 3h).

The spatial transferability tests followed a two-step procedure. In

the first step, the reference models fitted with data from the Stolla

catchment and associated thresholds were directly transferred to the

environmental data produced for the other catchments (i.e. IC map and

the predisposing variable maps for the susceptibility model). Comparing

the mapped debris flow inventory data with these maps allowed us to

evaluate the generalizability of the reference model and the direct spa-

tial transferability of the Stolla results to catchments with dissimilar

environmental conditions. The second step focused on investigating

the transferability of the general workflow by creating and validating

newly calibrated models for the test areas in analogy to the procedure

applied for the reference Stolla model. Thus, local debris flow data was

used to refit the models and recalculate the associated thresholds.

4 | RESULTS

4.1 | Connectivity of debris flow release areas to
main channels

In the Stolla catchment, a total of 587 debris flows (represented via

612 point locations) were identified for the triggering event in August

2017. Based on field surveys and aerial photo interpretation, only

39 of them (6%) were classified as connected to the main channel.

In the Pfitsch basin, 180 debris flows (193 point locations)—

caused by the August 2012 rainfall event—were delineated. A total of

59 (31%) of these debris flows were categorized as connected. In the

Sulden basin, 46 debris flows (47 point locations) were identified fol-

lowing the August 2014 storm event and more than half of them

(53%, n = 25) were classified as connected to the main channels

(Sulden and Trafoi).

In the Stolla and Pfitsch basins, most of the disconnected debris

flows were initiated at elevations >2000 m a.s.l. and stopped at hang-

ing valleys, on talus slopes and on debris flow fans, or in a few cases

on alluvial plains located on the valley floors. In the Sulden catchment,

debris flows stopped mainly at debris flow fans located at the edges

of the valley bottom.

A first exploratory data analysis showed that the IC values sam-

pled within the debris flow release zones of the Stolla and Pfitsch

catchments were considerably higher (�2.5 and �2.6, respectively;

Figures 4a and b) for connected debris flows compared to their dis-

connected counterparts (�3.7 and �3.5, respectively; Figures 4a and

b). Their significant difference was confirmed by a p-value of <0.001

as measured via the non-parametric Wilcox–Mann–Whitney rank sum

test. In contrast, no statistically significant difference (p-value > 0.1)

was observed between connected and disconnected debris flows for

the Sulden basin, where median values for connected debris flows

(�1.9, Figure 4c) were very similar to median values for disconnected

debris flows (�2.1, Figure 4c).

The logistic regression model trained for the Stolla catchment

performed exceptionally well to discriminate connected from discon-

nected debris flow release areas (AUROC 0.93; Table 2).

The high generalizability and robustness of the Stolla IC model

was confirmed with independent test data based on non-spatial

(CV median AUROC 0.95, IQR 0.055) and spatial (SCV median

AUROC 0.88, IQR 0.096) data partitioning (Table 3).

The optimal IC value cutpoint that separates connected from dis-

connected debris flows in the Stolla catchment was found to be

�3.21 (i.e. values > �3.21 mean connected areas), which corresponds

to a portion of correctly classified connected debris flow releases of

95%, and to 85% of correctly classified disconnected debris flows

(Table 2, Figure 5).

The superimposition of mapped debris flows on the spatial model

predictions (Figure 6a) and its binary derivative (Figure 6b) visually

confirms the good agreement between model outputs and the

mapped debris flows. The data-driven thresholding led to a binary

map that depicts around 30% (70%) of the total basin area as con-

nected to (disconnected from) the main channel in terms of debris

flow release (Figure 6b).

A direct spatial transfer of the Stolla IC threshold to the Pfitsch

and Sulden basins led to divergent performance statistics (transf

models in Table 2). For instance, the computed AUROC scores reveal

that the direct spatial transfer of the Stolla IC model to the Pfitsch

area was associated with an excellent separability of connected and

disconnected debris flow release observations (AUROC 0.82),

whereas a below acceptable discrimination was found for the Sulden

area (AUROC 0.57) (Hosmer et al., 2013). These results are evident

when visually comparing actual debris flow release zones with the

respective spatial pattern of the IC models (Figures 7a and c). For

Pfitsch, the true positive rate of 0.81 and the lower true negative rate

of 0.68 indicate that the spatially transferred Stolla threshold was

more accurate to correctly classify connected debris flows compared

to disconnected ones (transf models in Table 2, Figure 7b) and that a

higher IC threshold is required to balance classification errors for con-

nected and disconnected observations (Figure 8a). For Sulden, the

spatial model transfer led to a classification that failed to correctly

classify all disconnected debris flows (true negative rate 0) while

almost all connected debris flows were classified correctly (true posi-

tive rate of 0.96; Table 2, Figure 7d). These numbers revealed that a

local optimization is required for the Sulden basin in order to balance

misclassification rates.

The recalculation of the IC thresholds for Pfitsch and Sulden

based on basin-specific debris flow observations resulted in slightly

higher (Pfitsch: �3.10, Figure 5) and considerably higher (Sulden:
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�2.03, Figure 5) cutpoint values compared to the Stolla reference

cutpoint of �3.21 (Table 2, Figure 5). As a result, a decrease of the

area classified as connected is observed for the former basins

(Figure 8a vs b; Figure 8c vs d).

The associated sensitivity and specificity scores indicate a more

balanced distribution between correctly classified connected and dis-

connected debris flow observations when using optimized, basin-

specific thresholds (Table 2). In fact, a higher (Pfitsch) or much higher

(Sulden) portion of correctly classified disconnected debris flow obser-

vations was obtained, at the cost of a slightly lower (Pfitsch) or much

lower true positive rate (Sulden) (Table 2). For the Pfitsch basin, the

two binary maps are similar, with 18% (transferred) and 15% (opti-

mized) of the total area classified as connected (Figures 8a and b). In

contrast, considerable differences between the two maps can be

observed for the Sulden basin, as the proportion of the area covered

by connected areas decreased from 67% (transferred) to 16% (opti-

mized) (Figures 8c and d). Table 2 highlights that the classification

balance has been improved in both test areas via the local optimiza-

tion (i.e. Spec and Sens for each model are more similar compared to

the transferred counterparts). Still, the AUROC scores of the opti-

mized models (Pfitsch 0.82, Sulden 0.57) show that an excellent dis-

crimination between connected and disconnected debris flow release

F I GU R E 4 Box and whisker plots presenting IC values for connected and disconnected debris flows with respect to the areas of Stolla (a),
Pfitsch (b) and Sulden (c). The number shown relates to the median IC value.

T AB L E 2 Discriminatory power for the IC logistic regression
models (i.e. the capability to separate connected from disconnected
debris flow release areas) and associated optimal IC thresholds

Catchment (model) AUROC IC Spec Sens

Stolla (opt*) 0.93 �3.21* 0.85 0.95

Pfitsch (transf) 0.82 �3.21* 0.68 0.81

Sulden (transf) 0.57 �3.21* 0.00 0.96

Pfitsch (opt) 0.82 �3.10 0.77 0.8

Sulden (opt) 0.57 �2.03 0.64 0.56

Notes: AUROC values depict the overall discriminatory power of the

classification (0.5 = random, 1 = perfect) based on training data; IC

shows the optimal IC cutpoint (connected vs disconnected) that maximizes

the sum of sensitivity (Sens) and specificity (Spec); Spec relates to the

specificity (true negative rate) at the optimal IC cutpoint (i.e. the portion of

observed disconnected debris flow releases correctly classified as

disconnected); Sens shows the sensitivity (true positive rate) at the

optimal IC cutpoint (i.e. the portion of observed connected debris flow

releases correctly classified as connected); transf = the IC cutpoint value

was directly transferred from the original Stolla model (*) and tested for

Pfitsch and Sulden; opt = the underlying models were optimized (trained)

with local data.

T AB L E 3 Non-spatial (CV) and spatial (SCV) cross-validation
results for the IC logistic regression models. Median AUROC values
for model-independent non-spatial (CV) and spatial (SCV) test data.
The interquartile range (IQR) depicts prediction performance
variability in response to changes in the data partition

Catchment
CV median
AUROC [IQR]

SCV median
AUROC [IQR]

Stolla 0.94 [0.055] 0.88 [0.096]

Pfitsch (opt) 0.83 [0.071] 0.85 [0.201]

Sulden (opt) 0.51 [0.29] 0.49 [0.26]

F I G U R E 5 Comparisons of optimized IC thresholds (points) and
the underlying IC probability score for the three catchments. The
underlying IC logistic regression coefficients were 2.71 (Stolla), 1.88
(Pfitsch) and 0.24 (Sulden).
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points could be achieved in Pfitsch only, whereas the classification for

Sulden can be considered unacceptable, despite the recalibration of

the model using local data.

4.2 | Debris flow release susceptibility

Similar to the IC models, debris flow susceptibility modelling was first

conducted in the Stolla catchment. The GAM was built on six signifi-

cant (p-value < 0.001) model terms that allowed us to separate debris

flow release zones from debris flow absences associated with the

2017 event (slope angle, normalized height, planform curvature, pro-

file curvature, land cover, interaction between surface roughness and

wetness index). Modelled relationships, visualized in the form of com-

ponent smooth functions, revealed that the chances of debris flow

release are highest for medium inclined slopes (peak at around 40�;

Figure 9a), at medium to high relative slope positions below the preva-

lent rocky faces (normalized heights around 0.5; Figure 9b) exhibiting

a concave-shaped terrain form (negative profile and plan curvature

values; Figures 9c and d).

Furthermore, bare surface areas, covered with loose debris, were

associated with the highest chances of releasing debris flows,

followed by grasslands and shrubland, whereas forested terrain was

associated with the lowest chance of debris flow release (Figure 9e).

Higher debris flow release likelihoods were also predicted for rough

terrain that spatially coincides with a high topographic wetness index

(Figure 9f).

The comparison of the continuously scaled spatial prediction pat-

tern (Figure 10a) with debris flow observations showed a very

high separability of the two classes in the training data (debris flow

release zones vs absence observations) with an AUROC of 0.92

(Table 4).

Validation of the model with independent test observations con-

firmed a high predictive performance and generalization capacity of

the debris flow release susceptibility model for Stolla with median

AUROC scores of 0.92 (CV, Table 5) and 0.89 (SCV, Table 5).

Binary thresholding of the continuously scaled debris flow release

susceptibility map was conducted in analogy to the approach

implemented for the IC map.

The maximization of the sum of sensitivity and specificity led to a

probability cutpoint of 0.31, a true positive rate of 0.83 and a true

negative rate of 0.87 (Table 4). Inspection of the subsequent binary

map for Stolla (Figure 10b) highlighted that those areas classified as

susceptible to debris flow release frequently corresponded to medium

inclined impluvium, hollows and low hierarchical order channels at

medium to high unvegetated slope positions.

A particularly good spatial agreement between mapped debris

flow initiation areas and terrain classified as susceptible to debris flow

release was observed for the western part of the Stolla catchment

(Figure 10).

F I GU R E 6 Probability of an area to be connected to the main channel in terms of debris flow release (a) and derived classified binary map of
connectivity (b) for the Stolla catchment.
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The Stolla modelling results (i.e. the fitted model) were then

directly transferred to the Pfitsch and Sulden catchments to produce

first debris flow release susceptibility models based on the identical

spatial explanatory variables (Figures 11a and c). For Pfitsch, a first

quantitative evaluation of the spatially transferred susceptibility

model from Stolla (Table 4) showed that the observed debris flow

release zones were frequently located on terrain classified as above-

average susceptible, whereas debris flow absence observations regu-

larly coincided with below-average susceptibility scores, leading to an

acceptable AUROC of 0.76. The direct transfer of the Stolla suscepti-

bility model to the Sulden area led to a lower, but still marginally

acceptable, classification accuracy (AUROC 0.71) according to ROC

interpretation guidelines (Table 4).

Training of new GAMs within these two test areas increased the

discrimination power of the models, resulting in AUROC scores of

0.87 for Pfitsch and 0.92 for Sulden (opt models in Table 4;

Figures 11b and d). An evaluation of the prediction performance of

these local models confirmed a high ability of the models to correctly

classify independent test observations with median AUROC scores of

0.85 (CV) and 0.86 (SCV) for Pfitsch and 0.86 (CV) and 0.89 (SCV) for

Sulden (Table 5).

Subsequent ROC-driven thresholding of the maps led to binary

maps that contain 88 and 87% of mapped debris flow releases within

areas classified as susceptible for Pfitsch and Sulden, respectively. In

both test catchments, differences in the spatial prediction pattern

exist when visually comparing the spatially transferred models with

the locally trained ones. Areas classified as susceptible to release

debris flows correspond to higher elevation impluvium, ridges and

upper parts of hillslopes in the transferred maps (Figures 12a and c)

and with branches of drainage network and hillslopes at lower eleva-

tions, in the optimized maps (Figures 12b and d).

In summary, AUROC evaluations (Table 5) and associated ROC

interpretation guides (cf. Hosmer et al., 2013) highlight that the debris

flow release susceptibility models trained within the respective areas

performed outstandingly (Stolla) to excellent (Pfitsch, Sulden) to sepa-

rate model-independent debris flow release observations from

absence data. A direct spatial transfer of the Stolla model to both test

areas led to lower and acceptable (Pfitsch) to marginally acceptable

F I GU R E 7 Probability of an area to be connected to the main channel in term of debris flow release for the Pfitsch and Sulden catchments.
The probability values observed at the debris flow release point locations were used to derive optimized thresholds based on the ROC curve.
Maps A and C are based on the spatial transfer of the Stolla IC logistic regression model (transferred model). The maps in B and D depict the
results of a logistic regression model trained with local data (optimized model).
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(Sulden) model performances. The spatial extent of areas susceptible

to release debris flow equalled 17% in the Stolla catchment. In the

Pfitsch basin, these areas decreased from 31% (transf model) to 17%

(optimized map), whereas in Sulden they increased from 17% (transf

model) to 29% (opt model).

4.3 | Joining debris flow release susceptibility with
its connectivity

Basin areas predicted to be: (i) disconnected and not susceptible to

debris flow release; (ii) connected but not susceptible; (iii) susceptible

but disconnected; and (iv) connected and susceptible are shown in

Figures 13 and 14.

A comparison of the combined connectivity–susceptibility map

for Stolla with the label of the previously sampled debris flow pres-

ence and absence locations revealed that 82% of connected debris

flow release locations were located within areas classified as ‘suscep-
tible and connected’ (areal extent 5%), leading to a very high FR score

of 16.4 (Table 6).

In analogy, 76% of the disconnected debris flows were correctly

classified as lying in areas ‘susceptible but disconnected’ (areal extent
12%). The resulting FR score of 6.33 highlights the high density of the

disconnected debris flow observations within this zone (Table 6). The

very low FR values indicate that very few zones in the Stolla area

were affected by a double misclassification, such as observed con-

nected debris flow releases lying within zones classified as not suscep-

tible and disconnected (cf. FR of 0.07 and 0.09 in Table 6).

In the Pfitsch catchment, areas classified as ‘susceptible and con-

nected’ mainly correspond to hillslopes close to the bottom of con-

fined reaches. Comparing post-event debris flow classification for

Pfitsch with the transferred and optimized connectivity–susceptibility

maps showed that local optimization improves the classification

(Table 7).

For instance, 42% of the observed disconnected debris flows

were located within the comparably small area (16% areal extent) clas-

sified as susceptible and disconnected (FR 2.62). In analogy, 36% of

the observed connected debris flow releases were located within the

very small zone (1% areal extent) classified as susceptible and con-

nected, leading to a very high FR of 36. Double misclassifications are

F I GU R E 8 Classified binary maps of debris flow release area connectivity: transferred model in the Pfitsch catchment (a); optimized model in
the Pfitsch catchment (b); transferred model in the Sulden catchment (c); optimized model in the Sulden catchment (d).
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under-represented within the four-class map, as confirmed by the

respective FR scores below 1. Local optimization led to a different

spatial classification, with larger zones classified as connected and

susceptible (5% areal extent, Figure 14a) compared to the spatially

transferred model combination (1%, Figure 14b). For the optimized

Pfitsch models, 63% of the disconnected and 61% of the connected

debris flow observations were located within susceptible areas that

were labelled as disconnected (24% areal extent, FR 2.63) and con-

nected (5% extent, FR 12.2), respectively. FRs clearly below 1 for the

double misclassifications (cf. FR of 0.4 and 0.11, Table 7) provide fur-

ther quantitative evidence for a meaningful, but not outstanding, clas-

sification quality.

For Sulden, the plausibility of the joint connectivity–susceptibility

map was considered unacceptable for the transferred model, with

higher, but still limited explanatory power for the optimized one

(Table 8).

Comparing the labelled debris flow release observations with the

spatially transferred connectivity–susceptibility model confirmed a

comparably low portion of correct classification. Even though 64% of

the connected debris flow release points were observed within their

‘correct’ zone (susceptible and connected; FR 3.04), a large portion of

the area was affected by misclassifications. For instance, none of the

observed disconnected debris flow releases was located within areas

classified as susceptible and disconnected (FR 0), while 63% of these

observations were observed for areas classified as susceptible and

connected (correct in terms of susceptibility, but wrong in terms of

connectivity). The map based on the optimized joint classification for

Sulden (Figure 14d) showed substantial deviations from the map

based on the spatially transferred models (Figure 14c). Table 8

confirms an improved and more balanced classification in case the

underlying models were optimized with local input data. For instance,

the portion of labelled debris flow observations located within

wrongly classified areas in terms of both connectivity and susceptibil-

ity decreased from 19% (8 + 1 for disconnected and connected

debris flows, respectively) to 9% (1 + 3) when locally optimizing the

underlying models. Within the optimized connectivity–susceptibility

map for Sulden, 56% of the connected debris flows were located

within the comparably small zone classified as ‘susceptible and con-

nected’ (areal extent 5%), leading to a high FR of 11.2. In analogy,

54% of the disconnected debris flow releases were observed for ‘sus-
ceptible but disconnected’ terrain (areal extent 12%; FR 4.5). Wrong

classifications, in which both labels, connectivity and susceptibility,

were incorrectly assigned to an area were clearly below the FR

threshold of 1, with FR of 0.36 for disconnected debris flows and FR

of 0.17 for connected debris flows (Table 8).

5 | DISCUSSION

5.1 | (Dis)agreement between modelled and
observed debris flow susceptibility/connectivity

The results highlight that the class labels of the combined

connectivity–susceptibility maps for Stolla and Pfitsch frequently

agree with observed process dynamics (Tables 6 and 7), despite con-

siderable differences in geomorphology and lithology between the

two basins. As shown by the geomorphological analysis carried out by

Scorpio et al. (2022), in the Stolla basin sediment cascades are

F I GU R E 9 Modelled relationships for the Stolla debris flow release susceptibility model. The centred component smooth functions (a–d)
depict how the likelihood of debris flow release changes with respect to the topographic variables shown. Values > 0 depict an above-average
likelihood of debris flow release for the respective variable value and vice versa. Bare surfaces associated with the categorical land use variable
(e) represents the reference class (= 0) and the other classes have to be interpreted relative to this class (e.g. the odds of forest being a location of
debris flow release are lowest). The interaction term (f) depicts that the modelled likelihood of debris flow release (from red: low to white: high) is
highest at locations with a high surface roughness that spatially coincides with a high wetness index.
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hampered by landscape features acting as buffers, such as upper

hanging valleys, narrow floodplains and talus slopes (e.g. Fryirs &

Brierley, 1999; Harvey, 2002; Lane et al., 2017; Mancini &

Lane, 2020; Schrott et al., 2003). Particularly the upper and western

parts of the basin that are prone to debris flow initiation were

regularly predicted as susceptible but disconnected by the final map

(Figure 13). Most of the active talus slopes—composing the dominant

source of debris flow material—were therefore assessed to be

decoupled from the sediment cascade. The combined connectivity–

susceptibility map for Pfitsch and associated performance scores

(Figures 14a and b, Table 7) highlight that confined reaches were

observed and modelled to be the main entry point of debris flow

material to the channel, whereas the almost continuous floodplain and

the wide alluvial fans at the valley bottom act as buffers that impede

an effective connection to the main channel.

The results for the Sulden basin (Figures 14a and d, Table 8),

however, and particularly those associated with the spatially

F I GU R E 1 0 Unclassified debris flow release susceptibility map (a) and derived classified binary map (b) for the Stolla catchment.

T AB L E 4 Discriminatory power for the debris flow release
susceptibility model (i.e. capability to separate susceptible from not
susceptible terrain) and associated optimal threshold

Catchment (model) AUROC PT Spec Sens

Stolla (opt*) 0.92 0.31 0.87 0.83

Pfitsch (transf) 0.76 0.18 0.76 0.63

Sulden (transf) 0.71 0.26 0.69 0.7

Pfitsch (opt) 0.87 0.21 0.73 0.88

Sulden (opt) 0.92 0.31 0.88 0.87

Notes: AUROC values depict the overall discriminatory power of the

classification (0.5 = random, 1 = perfect) based on training data; PT

relates to the probability threshold (susceptible vs not susceptible) that

maximizes the sum of sensitivity (Sens) and specificity (Spec); Spec relates

to the specificity (true negative rate) at the optimal PT cutpoint (i.e. the

portion of observed debris flow absences correctly classified as not

susceptible); Sens shows the sensitivity (true positive rate) at the optimal

PT cutpoint (i.e. the portion of observed debris flow release correctly

classified as susceptible); transf = the susceptibility model trained for

Stolla (*) was directly transferred and tested for Pfitsch and Sulden;

opt = the underlying models were optimized (trained) with local data.

T AB L E 5 Non-spatial (CV) and spatial (SCV) cross-validation
results for the debris flow release susceptibility models. Median
AUROC values for model-independent non-spatial (CV) and spatial
(SCV) test data. The interquartile range (IQR) depicts prediction
performance variability in response to changes in the data partition

Catchment
CV median
AUROC [IQR]

SCV median
AUROC [IQR]

Stolla 0.92 [0.019] 0.89 [0.035]

Pfitsch (opt) 0.85 [0.043] 0.86 [0.104]

Sulden (opt) 0.86 [0.122] 0.89 [0.168]

STEGER ET AL. 15



transferred IC model, exhibit low statistical performance AUROCs and

plausibility (cf. columns ‘transferred’ in Table 8 and associated

description). Model evaluations revealed challenges in separating con-

nected from disconnected observations for the Sulden case, particu-

larly because similar IC values were observed for connected and

disconnected debris flows for the investigated storm event

(Figure 4c). Several additional reasons for the poor spatial transferabil-

ity of the Stolla model to Sulden can be invoked, but we believe that

the relatively low intensity of the studied triggering event, as well as

the specific geomorphological setting, played a crucial role. Indeed,

the event analysed in Stolla was characterized by considerably higher

rainfall accumulations (up to 84 mm in 6 h), while the 2014 Sulden

storm event was related to lower rainfall intensities with 48.5 mm in

17 h. Notably, in the Sulden basin, a previously documented storm in

summer 1987 caused comparable morphological effects along the

slopes, while most debris flows triggered in 1987 were reactivated in

2014 (Schiona, 1994). Comparison of the two events reveals that pre-

cipitation magnitudes were equivalent, with about 50 mm of rain

depth in 24 h in 1987 (Schiona, 1994). Additionally, in the Sulden

basin, geomorphological analysis of the orthomosaic and DTM, and

comparison with the map of Buter et al. (2020), show that most debris

flows originating in the upper basin areas are currently decoupled

from the main river system by the presence of large buffering land-

forms such as terminal and lateral moraines and bedrock valley steps.

Hence, we argue that the low performance indicators observed for

the spatially transferred Sulden model are due to both differences in

the geomorphological setting—in comparison with the catchment

where the model was initially devised—and external forcing (relative

magnitude–frequency of the triggering events). As expected, the clas-

sification accuracy of the combined map in the Sulden basin increased

to an acceptable level as soon as the model was trained with event-

specific local data (cf. columns ‘optimized’ in Table 8 and associated

description), confirming the utility of the general methodical approach

while highlighting the need for site-specific calibrations in case the

environmental setting in the training area differs substantially from

the application study site. It can be assumed that a very severe storm

event in Sulden, comparable to the one studied for the Stolla basin,

may entail a situation in which a higher proportion of debris flows that

F I GU R E 1 1 Unclassified debris flow release susceptibility map for Pfitsch (a, b) and Sulden (c, d). The maps in A and C are based on the
spatial transfer of the Stolla landslide susceptibility model (transferred model). The maps in B and D depict the results of the GAM model trained
with local debris flow data (optimized model).
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are currently labelled as disconnected would reach the channel (Buter

et al., 2022). This in turn may be reflected by improved model perfor-

mance estimates. However, the potential presence of non-linear asso-

ciations between storm severity and its impact on debris flow

connectivity has to be taken into account within such considerations.

Finally, it is worth mentioning that the proposed method does not

always explicitly account for the disconnecting effects of sediment

control works (e.g. check-dams)—unless they determine significant

changes in the DEM—and thus must be viewed as a precautionary

approach.

5.2 | Novel quantitative perspectives in the
modelling of debris flow connectivity and remaining
challenges

Debris flows are crucial processes for sediment transfer in mountain

environments, as they represent key drivers of hillslope–channel con-

nectivity (Brardinoni & Hassan, 2006; Hoffmann et al., 2013;

Messenzehl et al., 2014). This study highlights the primary role of

landscape morphologies and their spatial distribution on sediment cas-

cades during extreme events, in analogy with recent publications

(Cossart & Fressard, 2017; Cossart et al., 2018; Llena et al., 2019). In

accordance with several authors—who highlighted the importance of

negative feedback on the hillslope–valley bottom linkages

(e.g. Fryirs & Brierley, 1999; Harvey, 2002; Lane et al., 2017;

Mancini & Lane, 2020; Schrott et al., 2003), our study demonstrates

that hillslopes and steep tributaries prone to slope instability (land-

slides and/or debris flows) may not necessarily supply sediment to

subjacent channels, even during extreme events. Lack of structural

connectivity [i.e. presence of buffer or barriers, sensu Fryirs et al.

(2007)] and/or functional aspects (e.g. insufficient event intensity and

duration) co-determine that mobilized debris flow sediments may not

reach downslope channels. In other words, this work highlights how

important it is to consider debris flow susceptibility along with associ-

ated sediment connectivity when elaborating the effects on the main

channel networks. In fact, large connected areas may not always be

susceptible to slope stability, while vast susceptible terrain may as

well be disconnected from downslope channels.

We believe this aspect needs to be considered in future analyses

and in the development of tools and frameworks for sediment cas-

cade and hazard assessment. Nonetheless, the fact that landslide

occurrence does not necessarily result in sediment transfer to the flu-

vial system has already been highlighted by recent studies

(e.g. Schopper et al., 2019; Scorpio et al., 2018; Surian et al., 2016),

but not yet formalized via spatially explicit modelling procedures.

In terms of sediment connectivity research, this study is the first

to propose a quantitative approach to derive objective thresholds for

F I GU R E 1 2 Classified binary maps of debris flow release susceptibility: transferred model for Pfitsch (a); optimized model for Pfitsch (b);
transferred model for Sulden (c); optimized model for Sulden (d).
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the IC in order to discriminate connected from disconnected debris

flows (�3.21 for Stolla, �3.10 for Pfitsch and �2.03 for Sulden;

Figure 5, Table 2). In this context, testing the spatial transferability of

the workflow (optimized models) and the results (transferred models)

to other basins proved particularly useful to uncover the strengths

and limitations of the presented approach. Before this research,

despite the high interest in the literature for application of the IC in

different contexts, very few studies investigated IC values in relation

to geomorphic processes from a quantitative viewpoint to define opti-

mized thresholds. Among these, it is worth mentioning the work of

Messenzehl et al. (2014), which applied the IC in a formerly glaciated

alpine valley (Val Müschauns, Switzerland) and obtained lower values

of IC (< �2.37) within the glacial cirques, talus slopes, pronival

ramparts and exposed bedrocks and intermediate values (< �1) within

colluvial deposits, debris flow moraine deposits, debris cones and allu-

vial deposits. In this context, the definition of one consistent

structural connectivity threshold, below which decoupling generally

occurs, was found to be impossible. In a similar physiographic and

environmental setting of this study, a recent work by Pellegrini et al.

(2021) used the IC to investigate the coupling between the hillslopes

and the active channel in the Tegnas catchment as a response to a

high-magnitude storm in Northeastern Italy, in 2018 (named “Vaia”).
The authors found that IC values ranging between �2 and �4 charac-

terized high-connectivity areas, while IC values between �7 and �8

were found along floodplains and other landforms classified as poorly

connected.

Abatti et al. (2021) applied a debris flow model and the IC in a

Brazilian catchment that was affected by hundreds of mass move-

ments in 2017. The results showed a pixel-by-pixel positive linear cor-

relation between the modelled flow depths and the IC, while the

disconnected debris flows had the lowest mean IC value along their

flow path. It is worth noting that in this work a land use weighting

F I G U R E 1 3 Combined debris flow release
connectivity–susceptibility map for the Stolla
catchment resulting from the intersection of the
binary maps of debris flow release area
connectivity and susceptibility.
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factor was applied to compute the IC in place of the roughness-based

one adopted in our study. Kedich et al. (2021) applied the IC to inves-

tigate the connection of highland cirques within a Caucasian study

area (Russia) and identified several IC cutpoints that separate sedi-

ment transport and accumulation. IC thresholds of �2.3 were defined

for colluvial fans and �2.5 for alluvial fans. In any case, these values

are related to the transition between different dynamics of debris

flow processes and not directly aimed at evaluating the connection of

sediment transported by a debris flow with respect to a specific

target.

Martini et al. (2022) used the IC to study the linkage between

sediment sources and the main channel network of the Rio Cordon—a

small catchment in the Italian Dolomites featuring similarities in terms

of lithology and geomorphology with the Stolla—during an extremely

F I GU R E 1 4 Combined debris flow release connectivity–susceptibility map for the Pfitsch and Sulden catchments resulting from the
intersection of the binary maps of debris flow release areas connectivity and susceptibility. Results of the transferred model for Pfitsch (a) and

Sulden (c); results of the optimized model for Pfitsch (b) and Sulden (d).

T AB L E 6 Confusion matrix for Stolla that confronts the debris flow point classification (observations) with the spatially coinciding class label
of the combined connectivity–susceptibility map (predicted class). The frequency ratio (FR) scores relate the portion of classified debris flow
points (connected or disconnected) to the portion of area covered by a predicted class. FR > 1 depicts an over-proportional density of the
respective observations within the spatially predicted class, and vice versa

Predicted class

Not susceptible
disconnected (portion of
area 56%)

Not susceptible
connected (portion of
area 27%)

Susceptible
disconnected (portion
of area 12%)

Susceptible
connected (portion of
area 5%)

Observations Disconnected

debris flow

release points

N = 572

N = 58 N = 12 N = 431 N = 71

10% 2% 76% 12%

FR = 0.17 FR = 0.07 FR = 6.33 FR = 2.4

Connected debris

flow release

points

N = 39

N = 2 N = 0 N = 5 N = 32

5% 0% 13% 82%

FR = 0.09 FR = 0 FR = 1.08 FR = 16.4

STEGER ET AL. 19



high-magnitude storm which occurred in 2018. The authors carried

out a logistic regression analysis and found a threshold of �2.32,

capable of differentiating between low (disconnected) and high (con-

nected) structural sediment connectivity. This value is in line with the

findings of the present study, even if our study considered the con-

nectivity of the triggering area of debris flow, whereas Martini et al.

(2022) analysed IC values of the entire sediment source polygon and

different process types (e.g. shallow landslides, debris flows, surficial

erosions, active talus, stream bank erosion and rockfall).

When analysing quantitatively the IC values, these show a sys-

tematic decrease with increasing resolution of DTM and that using

different weighting factors leads to different IC patterns and values

(Cantreul et al., 2018; Cavalli et al., 2020; Heckmann et al., 2018). This

means that caution is needed when comparing IC thresholds identi-

fied from computations based on DTM with different resolutions. In

this work, the proposed IC thresholds are based on elaborations on a

5 m LiDAR DTM using the surface roughness-based weighting factor.

5.3 | Insights into data-driven debris flow release
susceptibility modelling and the importance of
geomorphic settings

The debris flow release susceptibility model for Stolla produced pre-

dictions that were in very high spatial agreement with observed

debris flow presence and absence observations, also when validated

with independent random test data (CV median AUROC 0.92,

Table 5) or across several subregions (SCV median AUROC 0.89,

Table 5). Inspection of associated modelled relationships revealed

geomorphologically plausible results (Steger et al., 2016a). For

instance, the chance of debris flow initiation was modelled to

increase from flat terrain up to a peak of 40� before starting to

decrease again. Such a trend appears plausible since gravitational

forcing increases with increasing slope angles, while debris material

may not—or be less likely to—accumulate on very steep terrain. In

this context, the GAM proved useful to account for non-linear

behaviour and was therefore able to overcome the reported chal-

lenges of non-linear associations in debris flow susceptibility model-

ling (Heckmann et al., 2014). A similar non-linear trend was

observed for relative slope positions represented by the normalized

height variable. Inspection of the associated map confirmed the

meaningfulness of the result, since most debris flow initiation takes

place at medium relative slope positions while higher relative eleva-

tion zones were predominantly represented by steep rock faces

without relevant debris accumulation. Figures 8c and d depict that

concave-shaped terrain was also associated with higher chances of

debris flow release, which is in line with the assumption that both

debris and surface water may more likely accumulate within such

landforms. The introduced statistically significant interaction term

between topographic wetness index and roughness revealed that

typical debris flow release zones can be found in zones where rough

terrain spatially coincides with a high topographic wetness index.

Similar patterns were found within all basins, describing that the

chance of debris flow initiation is highest in case potential water

accumulation zones overlap with terrain representative of the pres-

ence of coarse material. In fact, tests showed that a separate consid-

eration of these two variables led to implausible spatial predictionsT
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in the form of relatively high probability scores at the flood plains

(high wetness index but low roughness) and at rough rock surfaces

without debris material (high roughness index but low wetness

index).

From a methodological viewpoint and in contrast to many land-

slide susceptibility studies, several crucial modelling decisions—such

as the selection of variables or modelling parameters—were not solely

based on a maximization of statistical performance estimates

(Reichenbach et al., 2018; Steger et al., 2016a). We further opted to

create relatively simple parsimonious models that come with a consid-

erable amount of generalization with respect to the complex phenom-

ena under investigation (Coelho et al., 2019). These decisions were

taken to ensure computational feasibility and to enhance model trans-

ferability and interpretability. The strong focus on model generaliza-

tion was further considered useful to offer some protection against a

direct propagation of possible input data inaccuracies on the results

(Steger et al., 2016b). For instance, we opted for a simple GLM to

translate the initial IC map into probabilities associated with the

labelled debris flow data, because a monotonic association between

the occurrence of connected debris flows and the IC values can be

expected from a geomorphic viewpoint. In contrast, non-linear associ-

ations between the occurrence of debris flow release susceptibility

and specific variables, such as slope angle, can be expected from a

geomorphic viewpoint (Heckmann et al., 2014), which is why we

opted for a more flexible GAM (Bordoni et al., 2020; Goetz

et al., 2015; Knevels et al., 2020; Petschko et al., 2014; Vorpahl

et al., 2012).

However, in this case we also strived to avoid a too close descrip-

tion of local particularities and a reproduction of input data flaws by

restricting the maximum flexibility of the smoothing functions

(Hastie & Tibshirani, 1999; Wood, 2017). Variable selection went

beyond the pure focus on statistical criteria. For example, specific

proxy variables, such as slope orientation, were excluded from model-

ling in case the modelled relationships were observed to be valid only

for single basins, even though the respective variable statistically

improved the local model. Similarly, to enhance the model’s spatial

transferability, we opted to include the normalized height index,

instead of basin-specific elevation values, to describe the relative

position of debris flow release zones. In summary, it was considered

crucial to complement the numerous quantitative validations with

continuous geomorphic plausibility checks to ensure meaningful

results that agree with the knowledge on local process dynamics, that

are spatially transferable to a certain degree and do not explicitly

reflect or reproduce input data flaws (Steger et al., 2016a, 2021).

Finally, the results about debris flow susceptibility highlight the

effectiveness of data-driven modelling, but on the other side, they

reveal the importance of integrating reliable model inputs, to ensure

model generalization and to propose a geomorphological interpreta-

tion with respect to local process knowledge and field-based informa-

tion. When interpreting the results, it should be kept in mind that the

underlying data-driven models come along with a considerable level

of abstraction. Thus, even though it is known that generalizing models

tend to make more accurate predictions on unseen data, they deliber-

ately ignore the complexity of the phenomena of interest. Still, in this

study, the numerous quantitative and qualitative evaluations provided

insights into the explanatory power of the results (Good &

Hardin, 2006; Oreskes et al., 1994; Steger et al., 2016a).T
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6 | CONCLUSION

The present work has proposed and tested a novel methodological

framework to delineate areas in a mountain basin that are both sus-

ceptible to debris flow initiation and also structurally connected to the

main channel network. The presented data-driven approaches are

straightforward to implement and rely mostly on geomorphometric

analyses. Despite the method being devised for the Dolomitic Stolla

basin—where it performed best—we highlight its spatial transferability

and associated challenges for areas that differ in terms of lithology

and geomorphology. The AUROCs associated with the Stolla refer-

ence models pointed to a very high discrimination between connected

and disconnected debris flow test observations (median AUROCs of

0.88 for non-spatial and 0.94 for spatial cross validation) and similarly

high performance scores for the debris flow release susceptibility

model (median AUROCs of 0.92 for non-spatial and 0.89 for spatial

cross validation). The methodological framework is highly advanta-

geous as it requires few basic input data sets, and thus it can be

applied over large areas (e.g. to support regional-scale hazard assess-

ment studies or sediment management plans). For these purposes,

alternative methods relying on physically based debris flow initiation

and propagation modelling could theoretically be used. Such methods

(e.g. Cislaghi et al., 2018; Pastorello et al., 2017, 2020; Scheidl &

Rickenmann, 2011), however, require a large number of input parame-

ters (e.g. geotechnical and rheological), which are typically available

for single-case studies or even for specific hillslopes only. Therefore,

we believe that our work presents a viable approach for predicting

and mapping debris flow processes and their connectivity to the main

channels over large areas, keeping in mind that only storm events

comparable—in terms of magnitude/frequency—to those used for

model calibration can be directly associated with storm recurrence

intervals. Nonetheless, our approach does allow users to perform a

straightforward sensitivity analysis by varying the two thresholds for

susceptibility and connectivity.
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