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Abstract

In this paper, the existence and the localization of a solution of an impulsive vector
multivalued second-order Floquet boundary value problem are investigated. The method
used in the paper is based on the combination of a fixed point index technique with
bound sets approach. At first, problems with upper-Carathéodory right-hand sides are
investigated and it is shown afterwards how can the conditions be simplified in more
regular case of upper semi-continuous right hand side. In this more regular case, the
conditions ensuring the existence and the localization of a solution are put directly on the
boundary of the considered bound set. This strict localization of the sufficient conditions
is very significant since it allows some solutions to escape from the set of candidate
solutions. In both cases, the C1-bounding functions with locally Lipschitzian gradients
are considered at first and it is shown afterwards how the conditions change in case of
C2-bounding functions. The paper concludes with an application of obtained results to
Liénard-type equations and inclusions and the comparisons of our conclusions with the
few results related to impulsive periodic and antiperiodic Liénard equations are obtained.
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1 Introduction

Boundary value problems with impulses have been widely studied because of their appli-
cations in areas, where the parameters are subject to sudden perturbations in time. For
instance, in the treatment of some diseases, impulses may correspond to administration of
a drug treatment or in environmental sciences, they can describe the seasonal changes or
harvesting. Standardly, the right-hand sides of studied impulsive problems have been single-
valued. However, it is worth to study also the multivalued case since it comes from single-
valued problems with discontinuous right-hand sides, from control theory, or from practical
applications concerning population genetics, power law fluids, and many other branches.

1corresponding author

1



In this paper, the following second-order multivalued vector Floquet problem will be
studied

ẍ(t) ∈ F (t, x(t), ẋ(t)), for a.a. t ∈ [0, T ], (1)

x(T ) = Mx(0), ẋ(T ) = Nẋ(0), (2)

where F : [0, T ] × Rn × Rn ( Rn is an upper-Carathéodory (or upper semi-continuous)
multivalued mapping and M and N are real n× n matrices.

In the paper, the solvability of the Floquet b.v.p. (1), (2) will be investigated in the
presence of the following linear impulse conditions

x(t+i ) = Aix(ti), i = 1, . . . , p, (3)

ẋ(t+i ) = Biẋ(ti), i = 1, . . . , p, (4)

where a finite number of impulse points 0 = t0 < t1 < . . . < tp < tp+1 = T, p ∈ N
and real n × n matrices Ai, Bi, i = 1, . . . , p, are given and the notation lim

t→a+
x(t) = x(a+)

is used. The presence of the impulses take into account the possibility that the natural
phenomena described by the model doesn’t propagate continuously, but it is subject to short
term perturbations in time. For instance, in the periodic treatment of some diseases, impulses
may correspond to administration of a drug treatment; in environmental sciences, impulses
may correspond to seasonal changes or harvesting; in economics, impulses may correspond
to abrupt changes of prices. We consider the case of linear impulses described by means of
matrices Ai and Bi.

By a solution of problem (1) − (4) we shall mean a function x ∈ PAC1([0, T ],Rn) (see
Section 2 for the definition) satisfying (1)− (4).

If we would focus the attention to the literature overview dealing with impulsive bound-
ary value problems, we would find out that the theory of single-valued impulsive problems
has been deeply examined and presents in many cases direct analogies with the results for
problems without impulses (see, e.g., [8, 9, 20]). On the other hand, the theory dealing with
multivalued impulsive problems has not been so deeply studied and the results have been
obtained in particular for the first-order problems and using fixed point theorems or upper
and lower-solutions methods; for the overview of known-results, see, e.g., the monographs
[12, 18] and the references therein. Besides these techniques, also topological and variational
approaches have been used for Dirichlet impulsive problems with right-hand sides not de-
pending on the first derivatives or with impulses depending only on the first derivatives (see,
e.g., [1, 14, 15, 16, 21]).

In this paper, we consider the second order inclusion (1) with the right-hand side de-
pending also on the first derivative, together with impulses depending both on the solution
and its first derivative, obtaining the existence and the localization results for the associated
Floquet problem (1)-(4). The results will be proven by the combination of a continuation
principle with bound sets technique. Bound sets approach which is used in Sections 3 and 4
of our paper was initiated by Gaines and Mawhin in [17] for proving the existence of periodic
solutions of first-order as well as second-order systems of differential equations (see also the
references therein). Bound sets theory for multivalued Dirichlet or Floquet problems without
impulses was developed in [2]-[7],[24], [28]. Recently, bound sets approach has been applied
also for multivalued impulsive Dirichlet problem in [25] and [26]. In this paper, it will be
shown how changing the boundary conditions from Dirichlet to Floquet will affect the as-
sumptions guaranteeing the existence of a bound set for the considered impulsive boundary
value problem. Furthermore, it will be illustrated in the final part of the paper how the
existence and localization results can be applied to Liénard type equation which is a gener-
alization of the Duffing equation, the Josephson equation, the Van der Pol equation, or of
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the pendulum equation. Also some comparisons with the few results related to impulsive
periodic and antiperiodic Liénard equations will be obtained, showing not only that we are
able to threat a quite general equation, but also that the regularity assumptions that we need
are weaker than those assumed in the literature.

The paper is organized as follows. In the second section, suitable definitions and state-
ments which will be used in the sequel are recalled. Sections 3 and 4 are devoted to studying
of bound sets and Liapunov-like bounding functions for impulsive Floquet problems with
upper-Carathéodory or upper semi-continuous right-hand sides. In both sections, the C1-
bounding functions with locally Lipschitzian gradients are considered at first. Consequently,
it is shown how conditions ensuring the existence of a bound set change in case of C2-bounding
functions. In Section 5, the bound sets approach is combined with the continuation principle
and the existence and localization results are obtained in this way for the impulsive Floquet
problem (1)-(4). Final section 6 deals with an application to the Liénard type equation.

2 Preliminaries

Let us start with notations we use in the paper. If (X, d) is a metric space and A ⊂ X, by
A, Int A and ∂A, we mean the closure, the interior and the boundary of A, respectively.
For a subset A ⊂ X and ε > 0, we define the set Nε(A) := {x ∈ X | ∃a ∈ A : d(x, a) < ε},
i.e. Nε(A) is an open neighborhood of the set A in X. A subset A ⊂ X is called a retract of
X if there exists a retraction r : X → A, i.e. a continuous function satisfying r(x) = x, for
every x ∈ A.

Consider a function V : Rn → R. If V is of class C1 we will denote by ∇V its gradient,
i.e.

∇V =

(
∂V

∂x1
,
∂V

∂x2
, . . . ,

∂V

∂xn

)
.

If V is of class C2 we will denote by HV its Hessian matrix, i.e.

HV =



∂2V
∂x21

∂2V
∂x1∂x2

. . . ∂2V
∂x1∂xn

∂2V
∂x2∂x1

∂2V
∂x22

. . . ∂2V
∂x2∂xn

...
...

...
...

∂2V
∂xn∂x1

∂2V
∂xn∂x2

. . . ∂2V
∂x2n


.

For a given compact real interval J, we denote by C(J,Rn) (by C1(J,Rn)) the set of all
functions x : J → Rn which are continuous (have continuous first derivatives) on J. By
AC1(J,Rn), we shall mean the set of all functions x : J → Rn with absolutely continuous
first derivatives on J. In the sequel, the norm of a real n× n matrix will be denoted by || · ||
and the norm in L1(J,R) by the symbol || · ||1.

Let PAC1([0, T ],Rn) be the space of all functions x : [0, T ]→ Rn such that

x(t) =



x[0](t), for t ∈ [0, t1],

x[1](t), for t ∈ (t1, t2],

.

.

.
x[p](t), for t ∈ (tp, T ],

where x[0] ∈ AC1([0, t1],Rn), x[i] ∈ AC1((ti, ti+1],Rn), x(t+i ) = lim
t→t+i

x(t) ∈ R and ẋ(t+i ) =

lim
t→t+i

ẋ(t) ∈ R, for every i = 1, ..., p. The space PAC1([0, T ],Rn) is a normed space with the
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norm
||x||E := sup

t∈[0,T ]
|x(t)|+ sup

t∈[0,T ]
|ẋ(t)|. (5)

In the sequel, it will be denoted by (E, || · ||E). In a similar way, we can define the spaces
PC([0, T ],Rn) and PC1([0, T ],Rn) as the spaces of functions x : [0, T ] → Rn satisfying the
previous definition with x[0] ∈ C([0, t1],Rn) and x[i] ∈ C((ti, ti+1],Rn) for every i = 1, .., p, or
with x[0] ∈ C1([0, t1],Rn) and x[i] ∈ C1((ti, ti+1],Rn), for every i = 1, .., p, respectively. The
space PC1([0, T ],Rn) with the norm defined by (5) is a Banach space (see [22, page 128]).

We also need the following definitions and notions from multivalued theory in the sequel.
We say that F is a multivalued mapping from X to Y (written F : X ( Y ) if, for every
x ∈ X, a nonempty subset F (x) of Y is given. We associate with F its graph ΓF , i.e. the
subset of X × Y defined by

ΓF := {(x, y) ∈ X × Y | y ∈ F (x)}.

The single-valued function f : X → Y is called a selection of F if Γf ⊂ ΓF , i.e. if f(x) ∈ F (x),
for every x ∈ X.

A multivalued mapping F : X ( Y is called upper semi-continuous (shortly, u.s.c.) if,
for each open set U ⊂ Y, the set {x ∈ X | F (x) ⊂ U} is open in X.

Let Y be a metric space and (Ω,U , µ) be a measurable space, i.e. a nonempty set Ω
equipped with a suitable σ-algebra U of its subsets and a countably additive measure µ on
U . A multivalued mapping F : Ω ( Y is called measurable if {ω ∈ Ω | F (ω) ⊂ V } ∈ U , for
each open set V ⊂ Y.

We say that the mapping F : J × Rm ( Rn, where J ⊂ R is a compact interval, is an
upper-Carathéodory mapping if the map F (·, x) : J ( Rn is measurable, for all x ∈ Rm, the
map F (t, ·) : Rm ( Rn is u.s.c., for a.a. t ∈ J, and the set F (t, x) is compact and convex, for
all (t, x) ∈ J × Rm.

We employ the following selection result in the sequel, which was proved in [13, Proposi-
tion 6] in a quite general setting for continuous function q. Its proof can be easily extended
to the piecewise continuous functions, so we omit it here.

Proposition 2.1 Let J ⊂ R be a compact interval and F : J × Rm ( Rn be an upper-
Carathéodory mapping such that for every r > 0 there exists an integrable function µr : J →
[0,∞) satisfying |y| ≤ µr(t), for every (t, x) ∈ J × Rm, with |x| ≤ r, and every y ∈ F (t, x).
Then the composition F (·, q(·)) admits, for every q ∈ PC(J,Rm), a measurable selection.

The following continuation principle, that was proven in [25, Proposition 2.4] for impulsive
boundary value problems, is the crucial tool that will be used in the paper for obtaining the
existence and localization result.

Proposition 2.2 Let us consider the b.v.p.

ẍ(t) ∈ F (t, x(t), ẋ(t)), for a.a. t ∈ [0, T ],
x ∈ S,

}
(6)

where F : [0, T ]×Rn ×Rn ( Rn is an upper-Carathéodory mapping and S is a subset of E.
Let H : [0, T ]× R4n × [0, 1] ( Rn be an upper-Carathéodory mapping such that

H(t, c, d, c, d, 1) ⊂ F (t, c, d), for all (t, c, d) ∈ [0, T ]× R2n.

Assume that
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(i) there exists a retract Q of PC1([0, T ],Rn), with Q \ ∂Q 6= ∅, and a closed subset S1 of
S such that the associated problem

ẍ(t) ∈ H(t, x(t), ẋ(t), q(t), q̇(t), λ), for a.a. t ∈ [0, T ],
x ∈ S1

}
(7)

has, for each (q, λ) ∈ Q× [0, 1], a non-empty and convex set of solutions T(q, λ);

(ii) there exists a nonnegative, integrable function α : [0, T ]→ R such that

|H(t, x(t), ẋ(t), q(t), q̇(t), λ)| ≤ α(t)(1 + |x(t)|+ |ẋ(t)|), for a.a. t ∈ [0, T ],

for any (q, λ, x) ∈ ΓT;

(iii) T(Q× {0}) ⊂ Q;

(iv) there exist constants M0 ≥ 0, M1 ≥ 0 such that |x(0)| ≤ M0 and |ẋ(0)| ≤ M1, for all
x ∈ T(Q× [0, 1]);

(v) the solution map T(·, λ) has no fixed points on the boundary ∂Q of Q, for every λ ∈ [0, 1).

Then the b.v.p. (6) has a solution in S1 ∩Q.

The continuation principle described in Proposition 2.2 requires in particular that any of
corresponding problems given in (7) does not have solutions tangent to the boundary of a
given set Q of candidate solutions. This will be guaranteed in the paper using the bound sets
approach studied in next two sections and by means of the following result based on Nagumo
conditions (see [27, Lemma 2.1] and [19, Lemma 5.1]).

Proposition 2.3 Let φ : [0,+∞) → [0,+∞) be a continuous and non-decreasing function,
with

lim
s→∞

s2

φ(s)
ds =∞, (8)

and let R be a positive constant. Then there exists a positive constant

B = φ−1(φ(2R) + 2R) (9)

such that if x ∈ PC1([0, T ],Rn) is such that |ẍ(t)| ≤ φ(|ẋ(t)|), for a.a. t ∈ [0, T ], and
|x(t)| ≤ R, for every t ∈ [0, T ], then it holds that |ẋ(t)| ≤ B, for every t ∈ [0, T ].

Let us note that the previous result is classically given for C2−functions. However,
it is easy to prove (see, e.g., [5]) that the statement holds also for piecewise continuously
differentiable functions.

3 Bound sets theory for impulsive Floquet problem with up-
per-Carathéodory r.h.s.

The direct verification of transversality condition (v) in Proposition 2.2 is quite complicated.
Therefore, a Liapunov-like function V, usually called a bounding function, which can guarantee
this condition will be introduced now.

Hence, let K ⊂ Rn be a nonempty, open set and let V : Rn → R be a continuous function
satisfying
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(H1) V |∂K = 0,

(H2) V (x) ≤ 0, for all x ∈ K.

Definition 3.1 The set K is called a bound set for the impulsive Floquet problem (1)− (4) if
every solution x of problem (1)− (4) such that x(t) ∈ K, for each t ∈ [0, T ], does not satisfy
x(t∗) ∈ ∂K, for any t∗ ∈ [0, T ].

Remark 3.1 Let us note that the existence of a bound setK for the Floquet problem (1)−(4)
does not guarantee the existence of a solution of problem (1) − (4). It only ensures that if
there would exist a solution laying in K, then this solution would not touch the boundary of
K at any point, i.e. it would lay in Int K.

At first, sufficient conditions for the existence of a bound set for the impulsive Floquet
problem (1) − (4) in the general case will be shown in Proposition 3.1 below. Afterwards,
the regularity assumptions on the bounding function V will be made more strict and the
practically applicable version of Proposition 3.1 will be obtained (see Corollary 3.1 below).

Proposition 3.1 Let K ⊂ Rn be a nonempty open set, M and N be real n×n matrices with
M invertible satisfying

M∂K = ∂K (10)

and let F : [0, T ] × Rn × Rn ( Rn be an upper-Carathéodory multivalued mapping. Let
a finite number of points 0 = t0 < t1 < . . . < tp < tp+1 = T, p ∈ N, be given and let
Ai, Bi, i = 1, . . . , p, be real n× n matrices, Ai invertible and such that Ai∂K = ∂K, for all
i = 1, . . . , p.
Assume that there exists a function V ∈ C1(Rn,R), with ∇V locally Lipschitzian, satisfying
conditions (H1) and (H2). Suppose, moreover, that there exists ε > 0 such that, for all
x ∈ K ∩Nε(∂K), t ∈ (0, T ) and v ∈ Rn, the following condition

lim sup
h→0−

〈∇V (x+ hv), v + hw〉 − 〈∇V (x), v〉
h

> 0 (11)

holds, for all w ∈ F (t, x, v), and that

〈∇V (Aix), Biv〉 · 〈∇V (x), v〉 > 0, (12)

for all i = 1, . . . , p, x ∈ ∂K and v ∈ Rn with 〈∇V (x), v〉 6= 0.
Moreover, let

〈∇V (Mx), Nv〉 · 〈∇V (x), v〉 ≥ 0, (13)

for all x ∈ ∂K and v ∈ Rn.
Then K is a bound set for the impulsive Floquet problem (1)-(4).

Proof. We assume, by a contradiction, thatK is not a bound set for the Floquet problem (1)-
(4), i.e. that there exist a solution x : [0, T ]→ K of problem (1)-(4) and t∗ ∈ [0, T ] such that
x(t∗) ∈ ∂K. If the point t∗ lays in {0, T}, we can take without the loss of generality, t∗ = T ,
according to (10). Let us define the function g : [0, T ] → R by the formula g(t) := V (x(t)).
According to the properties of x and V , g ∈ PC1([0, T ],R) and g(t) ≤ 0, for all t ∈ [0, T ].
Since g(T ) = 0, the point T is a local maximum point for g. Therefore, ġ(T ) ≥ 0. According
to the boundary conditions, also x(0) ∈ ∂K, i.e. also 0 is a local maximum point for g, hence

0 ≥ ġ(0) = 〈∇V (x(0)), ẋ(0)〉 .
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Moreover, since x(T ) = Mx(0) and ẋ(T ) = Nẋ(0), we have

0 ≤ ġ(T ) = 〈∇V (x(T )), ẋ(T )〉 = 〈∇V (Mx(0)), Nẋ(0)〉 .

Condition (13) then implies

〈∇V (x(0)), ẋ(0)〉 = 〈∇V (Mx(0)), Nẋ(0)〉 = 0.

This is equivalent to ġ(0) = ġ(T ) = 0. Therefore, whatever is t∗, ġ(t∗) = 0 and we can
subsequently proceed like in the proof of Proposition 3.3 in [25]. 2

Definition 3.2 A function V : Rn → R from Proposition 3.1 satisfying (H1), (H2) and
conditions (11), (12) and (13) is called a bounding function for the set K relative to (1)− (4).

When the bounding function V is of class C2, the condition (11) can be rewritten in terms
of gradients and Hessian matrices and the following corollary immediately follows.

Corollary 3.1 Let K ⊂ Rn be a nonempty open set, M and N be real n × n matrices with
M invertible satisfying (10) and let F : [0, T ] × Rn × Rn ( Rn be an upper-Carathéodory
multivalued mapping. Let a finite number of points 0 = t0 < t1 < . . . < tp < tp+1 = T, p ∈ N,
be given and let Ai, Bi, i = 1, . . . , p, be real n × n matrices, Ai invertible and such that
Ai∂K = ∂K, for all i = 1, . . . , p.
Assume that there exists a function V ∈ C2(Rn,R) satisfying conditions (H1), (H2) and (12)
and (13). Moreover, assume that there exists ε > 0 such that, for all x ∈ K ∩Nε(∂K), t ∈
(0, T ) and v ∈ Rn, condition

〈HV (x)v, v〉+ 〈∇V (x), w〉 > 0 (14)

holds, for all w ∈ F (t, x, v).
Then K is a bound set for the impulsive Floquet problem (1)− (4).

Proof. The statement of Corollary 3.1 follows immediately from the fact that if V ∈
C2(Rn,R), then, for all x ∈ K ∩Nε(∂K), t ∈ (0, T ), v ∈ Rn and w ∈ F (t, x, v), there exists

lim
h→0

〈∇V (x+ hv), v + hw〉 − 〈∇V (x), v〉
h

= 〈HV (x)v, v〉+ 〈∇V (x), w〉.

2

Remark 3.2 In conditions (11)-(14), the element v plays the role of the first derivative of
the solution x. If x is a solution of (1) − (4) such that x(t) ∈ K, for every t ∈ [0, T ], and if
there exists a continuous non-decreasing function φ : [0,∞)→ [0,∞) satisfying condition (8)
and such that

|F (t, c, d)| ≤ φ(|d|),

for a.a. t ∈ [0, T ] and every c, d ∈ Rn with |c| ≤ R := max{|x| : x ∈ K}, then, according
to Proposition 2.3, it holds that |ẋ(t)| ≤ B, for every t ∈ [0, T ], where B is defined by (9).
Hence, it is sufficient to require conditions (11)-(14) only for all v ∈ Rn with |v| ≤ B and not
for all v ∈ Rn.
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4 Bound sets theory for Floquet problem with upper semi-
continuous r.h.s.

In this section, we will show how conditions ensuring the existence of a bound set for the
impulsive Floquet problem (1) − (4) change in case of upper semi-continuous r.h.s. Firstly,
we will consider a smooth bounding function V with a locally Lipschitzian gradient.

Proposition 4.1 Let K ⊂ Rn be a nonempty open set, F : [0, T ]×Rn×Rn ( Rn be an upper
semi-continuous multivalued mapping with nonempty, compact, convex values. Assume that
there exists a function V ∈ C1(Rn,R) with a locally Lipschitzian gradient ∇V which satisfies
conditions (H1) and (H2). Furthermore, assume that M and N are n× n matrices with M
invertible and satisfying (10). Let a finite number of points 0 = t0 < t1 < . . . < tp < tp+1 =
T, p ∈ N, be given and let Ai, Bi, i = 1, . . . , p, be real n×n matrices, Ai invertible and such
that Ai∂K = ∂K, for all i = 1, . . . , p.
Suppose moreover that, for all x ∈ ∂K, t ∈ (0, T ) \ {t1, . . . tp} and v ∈ Rn with

〈∇V (x), v〉 = 0,

the following condition holds

lim inf
h→0−

〈∇V (x+ hv), v + hw〉
h

> 0, (15)

for all w ∈ F (t, x, v).
Furthermore, suppose that, for all x ∈ ∂K and v ∈ Rn with

〈∇V (Aix), Biv〉 ≤ 0 ≤ 〈∇V (x), v〉, for some i = 1, . . . , p,

the following condition

lim inf
h→0−

〈∇V (x+ hv), v + hw〉
h

> 0 (16)

holds, for all w ∈ F (ti, x, v).
At last, suppose that, for all x ∈ ∂K and v ∈ Rn with

〈∇V (x), v〉 ≤ 0 ≤ 〈∇V (Mx), Nv〉, (17)

the following condition

lim inf
h→0−

〈∇V (Mx+ hNv), Nv + hw〉
h

> 0 (18)

holds, for all w ∈ F (T,Mx,Nv).
Then K is a bound set for the impulsive Floquet problem (1)− (4).

Proof. We assume, by a contradiction, that K is not a bound set for the Floquet problem
(1)-(4), i.e. that there exist a solution x : [0, T ] → K of problem (1)-(4) and t∗ ∈ [0, T ]
such that x(t∗) ∈ ∂K. If the point t∗ lays in (0, T ), then we proceed like in the proof of
Theorem 3.4 in [26]. Therefore, it is only necessary to solve the cases when t∗ = 0 and
t∗ = T. According to condition (10), we can take, without any loss of generality, t∗ = T.

Following the same reasoning as in the proof of Proposition 3.1, we obtain

〈∇V (x(0)), ẋ(0)〉 ≤ 0

and
0 ≤ 〈∇V (x(T )), ẋ(T )〉 = 〈∇V (Mx(0)), Nẋ(0)〉.
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Therefore the couple (x, v) := (x(0), ẋ(0)) satisfies condition (17).
Using the same procedure as in the proof of Proposition 3.2 in [26], for t = T, we obtain the
existence of a sequence of negative numbers {hk}∞k=1 and of a point w ∈ F (T, x(T ), ẋ(T ))
such that

ẋ(T + hk)− ẋ(T )

hk
→ w as k →∞.

Finally, by similar arguments as in the proof of Proposition 3.2 in [26], we get

lim inf
h→0−

〈∇V (x(T ) + hẋ(T )), ẋ(T ) + hw〉
h

= lim inf
h→0−

〈∇V (Mx(0) + hNẋ(0)), Nẋ(0) + hw〉
h

≤ 0.

(19)
Inequality (19) is in contradiction with condition (18), which completes the proof. 2

Remark 4.1 Let us note that condition (18) can be replaced by the following assumption:
For all x ∈ ∂K and v ∈ Rn satisfying (17), it holds that

lim inf
h→0+

〈∇V (x+ hv), v + hw〉
h

> 0, (20)

for all w ∈ F (0, x, v).

Remark 4.2 If the bounding function V is of class C2, then conditions (15), (16) and
(18) can be rewritten in terms of gradients and Hessian matrices. More concretely, if
V ∈ C2(Rn,R), then, for all x ∈ ∂K, t ∈ (0, T ), v ∈ Rn and w ∈ F (t, x, v), there ex-
ists

lim
h→0

〈∇V (x+ hv), v + hw〉
h

= lim
h→0

〈∇V (x+ hv), v + hw〉 − 〈∇V (x), v〉
h

= 〈HV (x)v, v〉+ 〈∇V (x), w〉.

Therefore, conditions (15), (16) and (18) take in this more regular case the following form:
Suppose that, for all x ∈ ∂K and v ∈ Rn the following holds:

� if 〈∇V (x), v〉 = 0, then 〈HV (x)v, v〉 + 〈∇V (x), w〉 > 0, for all t ∈ (0, T ) \ {t1, . . . tp}
and w ∈ F (t, x, v),

� if 〈∇V (Aix), Biv〉 ≤ 0 ≤ 〈∇V (x), v〉, for some i = 1, ..., p, then
〈HV (x)v, v〉+ 〈∇V (x), w〉 > 0, for all w ∈ F (ti, x, v),

� if 〈∇V (x), v〉 ≤ 0 ≤ 〈∇V (Mx), Nv〉, then 〈HV (Mx)Nv,Nv〉+ 〈∇V (Mx), w〉 > 0, for
all w ∈ F (T,Mx,Nv).

Remark 4.3 In Proposition 4.1, the element v plays again the role of the first derivative
of the solution x. Therefore, if all assumptions from Remark 3.2 hold, then it is possible to
require all conditions in Proposition 4.1 only for all v ∈ Rn with |v| ≤ B, where B is defined
by (9), and not for all v ∈ Rn.

5 The existence and localization result for Floquet problem

In this section, the impulsive Floquet problem (1) − (4) will be investigated by combining
the continuation principle from Proposition 2.2 with bound sets results developed in previous
two sections. After rewriting the impulsive Floquet problem (1) − (4) in the abstract form
(6), we will be able to clearly verify all conditions in Proposition 2.2. Firstly, the case of
upper-Carathéodory r.h.s. will be investigated and then also the case of more regular r.h.s.
will be studied.
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Theorem 5.1 Let K ⊂ Rn be a nonempty, open, bounded and convex set with 0 ∈ K and let
us consider the impulsive Floquet problem (1)− (4), where F : [0, T ]× Rn × Rn ( Rn is an
upper-Carathéodory multivalued mapping, M and N are real n×n matrices with M invertible
satisfying (10), 0 = t0 < t1 < · · · < tp < tp+1 = T, p ∈ N, and Ai, Bi, i = 1, . . . , p, are real
n × n matrices, Ai invertible and such that Ai∂K = ∂K, for all i = 1, . . . , p. Moreover,
assume that

(i) there exists a function φ : [0,∞)→ [0,∞) continuous and non-decreasing satisfying

lim
s→∞

s2

φ(s)
ds =∞, (21)

such that
|F (t, c, d)| ≤ φ(|d|), (22)

for a.a. t ∈ [0, T ] and every c, d ∈ Rn, with |c| ≤ R := max{|x| : x ∈ K};

(ii) matrices (N −
∏p
i=1Bi) and (M −

∏p
i=1Ai) are both invertible;

(iii) there exists a function V ∈ C1(Rn,R), with ∇V locally Lipschitzian, satisfying condi-
tions (H1) and (H2);

(iv) there exists ε > 0 such that, for all λ ∈ (0, 1), x ∈ K ∩Nε(∂K), t ∈ (0, T ) and v ∈ Rn,
with |v| ≤ φ−1(φ(2R) + 2R), the following condition

lim sup
h→0−

〈∇V (x+ hv), v + hw〉 − 〈∇V (x), v〉
h

> 0

holds, for all w ∈ λF (t, x, v);

(v) for all i = 1, . . . , p, x ∈ ∂K and v ∈ Rn, with |v| ≤ φ−1(φ(2R)+2R) and 〈∇V (x), v〉 6= 0,
it holds that

〈∇V (Aix), Biv〉 · 〈∇V (x), v〉 > 0;

(vi) for all x ∈ ∂K and v ∈ Rn, with |v| ≤ φ−1(φ(2R) + 2R)

〈∇V (Mx), Nv〉 · 〈∇V (x), v〉 ≥ 0.

Then the Floquet problem (1)− (4) has a solution x(·) such that x(t) ∈ K, for all t ∈ [0, T ].

Proof. For every c ∈ K, it holds that |c| ≤ R. According to Proposition 2.3, for every
x ∈ PC1([0, T ],Rn) with |ẍ(t)| ≤ φ(|ẋ(t)|), for a.a. t ∈ [0, T ], and x(t) ∈ K, for every
t ∈ [0, T ], it holds |ẋ(t)| ≤ B, for every t ∈ [0, T ], with B defined by

B = φ−1(φ(2R) + 2R).

Define

F̄ (t, c, d) =

{
F (t, c, d) if |c| ≤ R
F (t, R c

|c| , d) if |c| > R.

Since F is upper-Carathéodory, F̄ is upper Carathéodory as well. Moreover, since |R c
|c| | = R,

it holds according to (22) that, for every t ∈ [0, T ] and c, d ∈ Rn,

|F̄ (t, c, d)| ≤ φ(|d|). (23)
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In order to apply the continuation principle from Proposition 2.2, put

Q := {q ∈ PC1([0, T ],Rn) | q(t) ∈ K, |q̇(t)| ≤ 2B, for all t ∈ [0, T ]},

S = S1 = Q and H(t, c, d, e, f, λ) = λF̄ (t, e, f). Thus the associated problem (7) is the fully
linearized problem

ẍ(t) ∈ λF̄ (t, q(t), q̇(t)), for a.a. t ∈ [0, T ],
x(T ) = Mx(0),
ẋ(T ) = Nẋ(0),

x(t+i ) = Aix(ti), i = 1, . . . , p,
ẋ(t+i ) = Biẋ(ti), i = 1, . . . , p.

 (24)

Moreover, let us denote, for each (q, λ) ∈ Q× [0, 1], by T(q, λ) the solution set of (24).
We will check now that (24) satisfies all the assumptions of Proposition 2.2.

ad (i)− (ii) Since the closure of a convex set is still a convex set, it follows that Q is convex, and
hence a retract of PC1([0, T ],Rn).

For every (t, c, d, e, f, λ) ∈ [0, T ]× R4n × [0, 1], it follows from (23) that

|H(t, c, d, e, f, λ)| = λ|F̄ (t, e, f)| ≤ φ(|f |)

yielding that
|H(t, c, d, e, f, λ)| ≤ φ(2B) ≤ φ(2B)(1 + |c|+ |d|) (25)

when |f | ≤ 2B and that
|F̄ (t, e, f)| ≤ φ(r) (26)

when |f | ≤ r.
Let q ∈ Q and let fq be a measurable selection of F̄ (·, q(·), q̇(·)), whose existence is
guaranteed applying Proposition 2.1 with µr(t) ≡ φ(r). Then, for any λ ∈ [0, 1], λfq
is a measurable selection of λF̄ (·, q(·), q̇(·)). Let us consider the corresponding single-
valued linear problem with linear impulses

ẍ(t) = λfq(t), for a.a. t ∈ [0, T ],
x(T ) = Mx(0),
ẋ(T ) = Nẋ(0),

x(t+i ) = Aix(ti), i = 1, . . . , p,
ẋ(t+i ) = Biẋ(ti), i = 1, . . . , p.

 (27)

Since the matrices (N −
∏p
i=1Bi) and (M −

∏p
i=1Ai) are invertible, the problem (27)
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has a unique solution xλfq given by

xλfq(t) =



x[0](t) := xλfq(0) + ẋλfq(0)t+ λ
∫ t
0 (t− τ)fq(τ)dτ

if t ∈ [0, t1],

x[1](t) := A1[xλfq(0) + ˙xλfq(0)t1 + λ
∫ t1
0 (t1 − τ)fq(τ)dτ ]

+B1[ẋλfq(0)(t− t1) + (t− t1)λ
∫ t1
0 fq(τ)dτ ]

+λ
∫ t
t1

(t− τ)fq(τ)dτ

if t ∈ (t1, t2]

x[i](t) :=
i∏

k=1

Ak

[
xλfq(0) + ẋλfq(0)t1 + λ

∫ t1

0
(t1 − τ)fq(τ)dτ

]
+

i∏
l=1

Blẋλfq(0)(t− ti) +
i∑

r=1

i∏
l=r

(t− ti)λBl
∫ tr

tr−1

fq(τ)dτ

+
i∑

j=2

i∏
k=j

Ak

[j−1∏
l=1

Blẋλfq(0)(tj − tj−1) + λ

∫ tj

tj−1

(tj − τ)fq(τ)dτ

+
k−1∑
r=1

k−1∏
l=r

(tj − tj−1)λBl
∫ tr

tr−1

fq(τ)dτ

]
+ λ

∫ t

ti

(t− τ)fq(τ)dτ

if t ∈ (ti, ti+1], 2 ≤ i ≤ p

with

ẋλfq(0) =

(
N −

p∏
i=1

Bi

)−1 [ p∑
m=1

p∏
i=m

Biλ

∫ tm

tm−1

fq(τ)dτ + λ

∫ T

tp

fq(τ)dτ

]
, (28)

xλfq(0) =

(
M −

p∏
k=1

Ak

)−1 [ p∏
k=1

Ak

(
ẋλfq(0)t1 + λ

∫ t1

0
(t1 − τ)fq(τ)dτ

)
+(T − tp)

p∏
l=1

Blẋλfq(0) + (T − tp)λ
p∑
r=1

p∏
l=r

Bl

∫ tr

tr−1

fq(τ)dτ

+

p∑
j=2

p∏
k=j

Ak

(
(tj − tj−1)

j−1∏
l=1

Blẋλfq(0) + λ

∫ tj

tj−1

(tj − τ)fq(τ)dτ

+(tj − tj−1)
k−1∑
r=1

k−1∏
l=r

λBl

∫ tr

tr−1

fq(τ)dτ

)
+ λ

∫ T

tp

(T − τ)fq(τ)dτ

]
.

(29)

Therefore
T(q, λ) = {xλfq : fq is a selection of F̄ (·, q(·), q̇(·))} 6= ∅.

Moreover, given x1, x2 ∈ T(q, λ), there exist two measurable selections f1q and f2q of
F̄ (·, q(·), q̇(·)) such that x1 = xλf1q and x2 = xλf2q . Since the right-hand side F̄ has

convex values, it holds that, for any c ∈ [0, 1], cf1q + (1− c)f2q is a measurable selection
of F̄ (·, q(·), q̇(·)) as well. The linearity of both the equation and of the impulses yields
that cx1 + (1− c)x2 = xcf1q+(1−c)f2q , i.e. that the set of solutions of problem (24) is, for

each (q, λ) ∈ Q× [0, 1], convex.

Condition (ii) in Proposition 2.2 follows from (25) when replacing (t, c, d, e, f, λ) by
(t, x(t), ẋ(t), q(t), q̇(t), λ) with q ∈ Q, x ∈ T(q, λ).
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ad (iii) For λ = 0, the associated problem takes the form

ẍ(t) = 0, for a.a. t ∈ [0, T ],
x(T ) = Mx(0),
ẋ(T ) = Nẋ(0),

x(t+i ) = Aix(ti), i = 1, . . . , p,
ẋ(t+i ) = Biẋ(ti), i = 1, . . . , p.

 (30)

Assumption (ii) implies that the problem (30) has only one solution, i.e. only the trivial
solution. The fulfillment of condition (iii) in Proposition 2.2 then follows immediately
from the fact that 0 ∈ K.

ad (iv) Let xλfq be the solution of the b.v.p. (27). Then, it is possible to show that according
to formulas (26), (28) and (29), there exist constants

M1 ≤
∥∥∥∥(N − p∏

i=1

Bi

)−1∥∥∥∥
[

p∑
m=1

p∏
i=m

‖Bi‖
∫ tm

tm−1

|fq(τ)|dτ +

∫ T

tp

|fq(τ)|dτ

]

≤
∥∥∥∥(N − p∏

i=1

Bi

)−1∥∥∥∥
[

p∏
i=m

‖Bi‖φ(2B)tp + φ(2B)(T − tp)

]

=

∥∥∥∥(N − p∏
i=1

Bi

)−1∥∥∥∥max

{ p∏
i=m

‖Bi‖, 1
}
φ(2B)T
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and

M0 ≤
∥∥∥∥
(
M −

p∏
k=1

Ak

)−1∥∥∥∥[ p∏
k=1

‖Ak‖
(
M1t1 + t1

∫ t1

0
|fq(τ)|dτ

)
+(T − tp)

p∏
l=1

‖Bl‖M1 + (T − tp)
p∏
l=1

‖Bl‖
∫ tp

0
|fq(τ)|dτ

+

p∑
j=2

p∏
k=j

‖Ak‖
(

(tj − tj−1)
j−1∏
l=1

‖Bl‖M1 + (tj − tj−1)
∫ tj

tj−1

|fq(τ)|dτ

+(tj − tj−1)
k−1∑
r=1

k−1∏
l=r

‖Bl‖
∫ tr

tr−1

|fq(τ)|dτ
)

+ (T − tp)
∫ T

tp

|fq(τ)|dτ
]

≤
∥∥∥∥
(
M −

p∏
k=1

Ak

)−1∥∥∥∥[ p∏
k=1

‖Ak‖t1
(
M1 + t1φ(2B)

)
+(T − tp)

p∏
l=1

‖Bl‖
(
M1 + tpφ(2B)

)
+

p∑
j=1

p∏
k=1

‖Ak‖
(

(tj − tj−1)
p∏
l=1

‖Bl‖M1 + (tj − tj−1)Tφ(2B)

+(tj − tj−1)
p∑
r=1

p∏
l=1

‖Bl‖(tr − tr−1)φ(2B)

)
+ (T − tp)Tφ(2B)

]

≤
∥∥∥∥
(
M −

p∏
k=1

Ak

)−1∥∥∥∥[ p∏
k=1

‖Ak‖t1
(
M1 + t1φ(2B)

)
+(T − tp)

p∏
l=1

‖Bl‖
(
M1 + tpφ(2B)

)
+

p∏
k=1

‖Ak‖tp
p∏
l=1

‖Bl‖
(
M1 + tpφ(2B)

)
+ φ(2B)T 2

]

≤
∥∥∥∥
(
M −

p∏
k=1

Ak

)−1∥∥∥∥[max

{ p∏
i=m

‖Bi‖, 1
}

max

{ p∏
k=1

‖Ak‖, 1
}
T

(
M1 + tpφ(2B)

)
+φ(2B)T 2

]
such that |xλfq(0)| ≤ M0 and |ẋλfq(0)| ≤ M1, for every λ ∈ [0, 1], q ∈ Q. Hence,
condition (iv) in Proposition 2.2 is satisfied.

ad (v) Let us assume that q∗ ∈ Q is, for some λ ∈ [0, 1), a fixed point of the solution mapping
T(·, λ). We will show now that q∗ can not lay in ∂Q.

At first, let us investigate the case when λ = 0. Then problem (24) transforms into
the b.v.p. (30) which has only the trivial solution. Therefore, for λ = 0, it holds that
q∗ ≡ 0 which lays in Int Q. Hence, if λ = 0, condition (v) in Proposition 2.2 is satisfied.

Secondly, let us assume that λ ∈ (0, 1). If q∗ laid in ∂Q, then there would exist t0 ∈ [0, T ]
such that q∗(t0) ∈ ∂K or |q̇∗(t0)| = 2B. Since, for a.a. t ∈ [0, T ], we have

|q̈∗(t)| = λ|F̄ (t, q∗(t), q̇∗(t))| ≤ φ(|q̇∗(t)|)

and |q∗(t)| ≤ R, for every t ∈ [0, T ], Proposition 2.3 implies that |q̇∗(t)| ≤ B < 2B, for
every t ∈ [0, T ]. Hence, it would hold that q∗(t0) ∈ ∂K.
But this is impossible, since F̄ (t, c, d) = F (t, c, d) when c ∈ K, and hypotheses (iii), (iv),
(v) and (vi) guarantee that K is a bound set for (24) (according to Proposition 3.1 and

14



Remark 3.2). Therefore, it holds that q∗(t) ∈ K, for all t ∈ [0, T ], and subsequently
q∗ ∈ Int Q.
Thus, condition (v) from Proposition 2.2 is satisfied, for all λ ∈ [0, 1), which guarantees
that (24) has a solution x with x(t) ∈ K for every t ∈ [0, T ]. Recalling that F̄ (t, c, d) =
F (t, c, d) when c ∈ K, it implies that x is a solution of (1)-(4).

2

Remark 5.1 When V is of class C2, then, according to Corollary 3.1, condition (iv) in
Theorem 5.1 is equivalent to requiring that, for all x ∈ K ∩Nε(∂K), t ∈ (0, T ), and v ∈ Rn,
with |v| ≤ φ−1(φ(2R) + 2R),

〈HV (x)v, v〉+ λ 〈∇V (x), w〉 > 0, for every λ ∈ (0, 1) and w ∈ F (t, x, v). (31)

Since the function g(λ) = λ 〈∇V (x), w〉 is monotone in [0, 1], (31) is then equivalent to require
g(0) ≥ 0 and g(1) ≥ 0 with at least one of the inequalities to be strict, i.e. requiring one of
the following two conditions

〈HV (x)v, v〉 ≥ 0 and 〈HV (x)v, v〉+ 〈∇V (x), w〉 > 0 (32)

or
〈HV (x)v, v〉 > 0 and 〈HV (x)v, v〉+ 〈∇V (x), w〉 ≥ 0

that do not depend on λ.

Remark 5.2 If the multivalued mapping F : [0, T ]×Rn×Rn ( Rn in (1) is globally u.s.c.,
then it is possible to replace conditions (iv)−(vi) in Theorem 5.1 by the following assumptions
directly imposed on the boundary of the bound set K:

(ivusc) for all λ ∈ (0, 1), x ∈ ∂K, t ∈ (0, T ) \ {t1, . . . tp} and v ∈ Rn, |v| ≤ φ−1(φ(2R) + 2R)
with

〈∇V (x), v〉 = 0,

the following condition holds

lim inf
h→0−

〈∇V (x+ hv), v + hw〉
h

> 0,

for all w ∈ λF (t, x, v).

(vusc) for all λ ∈ (0, 1), x ∈ ∂K and v ∈ Rn with |v| ≤ φ−1(φ(2R) + 2R) satisfying

〈∇V (Aix), Biv〉 ≤ 0 ≤ 〈∇V (x), v〉, for some i = 1, . . . , p,

the following condition

lim inf
h→0−

〈∇V (x+ hv), v + hw〉
h

> 0

holds, for all w ∈ λF (ti, x, v);

(viusc) for all λ ∈ (0, 1), x ∈ ∂K and v ∈ Rn with |v| ≤ φ−1(φ(2R) + 2R) satisfying

〈∇V (x), v〉 ≤ 0 ≤ 〈∇V (Mx), Nv〉,

the following condition

lim inf
h→0−

〈∇V (Mx+ hNv), Nv + hw〉
h

> 0

holds, for all w ∈ λF (T,Mx,Nv).
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Remark 5.3 If the bounding function V is of class C2, then conditions (ivusc), (vusc) and
(viusc) can be (according to Remark 4.2) rewritten in terms of gradients and Hessian matrices
as follows:

(iv
′
usc) for all λ ∈ (0, 1), x ∈ ∂K, t ∈ (0, T ) \ {t1, . . . tp} and v ∈ Rn, |v| ≤ φ−1(φ(2R) + 2R)

with
〈∇V (x), v〉 = 0,

the following condition holds

〈HV (x)v, v〉+ 〈∇V (x), w〉 > 0,

for all w ∈ λF (t, x, v).

(v
′
usc) for all λ ∈ (0, 1), x ∈ ∂K and v ∈ Rn with |v| ≤ φ−1(φ(2R) + 2R) satisfying

〈∇V (Aix), Biv〉 ≤ 0 ≤ 〈∇V (x), v〉, for some i = 1, . . . , p,

the following condition
〈HV (x)v, v〉+ 〈∇V (x), w〉 > 0

holds, for all w ∈ λF (ti, x, v);

(vi
′
usc) for all λ ∈ (0, 1), x ∈ ∂K and v ∈ Rn with |v| ≤ φ−1(φ(2R) + 2R) satisfying

〈∇V (x), v〉 ≤ 0 ≤ 〈∇V (Mx), Nv〉,

the following condition

〈HV (Mx)Nv,Nv〉+ 〈∇V (Mx), w〉 > 0

holds, for all w ∈ λF (T,Mx,Nv).

Remark 5.4 If we compare the results from Theorem 5.1 and Remark 5.2 for the impulsive
Floquet problem with the previous ones for the Dirichlet boundary conditions, we will find
out that in case of Dirichlet conditions, it is possible to omit condition (vi) in Theorem 5.1
and (viusc) in Remark 5.2 (see Theorem 4.1 in [25] and Theorem 4.3 in [26])

6 An application to a Liénard type equation

As an application of the previous existence and localization results, let us study a generaliza-
tion of the Liénard equation which is widely studied in literature (see, e.g., [10, 11, 23]) and,
in turn, is a generalization of the Duffing equation, the Josephson equation, the Van der Pol
equation, the pendulum equation.

For this purpose, let us consider the second-order equation

ẍ(t) = g(x(t))f(t, ẋ(t)) + h(t, x(t)), for a.a. t ∈ [0, T ], (33)

together with antiperiodic impulses

x(t+i ) = −x(ti), i = 1, . . . , p, (34)

ẋ(t+i ) = −ẋ(ti), i = 1, . . . , p, (35)

16



where 0 = t0 < t1 < . . . < tp < tp+1 = T, p ∈ N. Assume that g : R → R is a continuous
function and that f, h : [0, T ] × R → R are Carathédory functions. Suppose moreover that
there exist k ∈ C(R, [0,+∞)), q ∈ C([0,+∞), [0,+∞)), with q increasing, such that

lim
s→+∞

s2

q(s)
= +∞, (36)

|f(t, d)| ≤ q(|d|) (37)

and
|h(t, c)| ≤ k(c) (38)

for every t ∈ [0, T ], c, d ∈ R. Associated to (33)-(35) we consider the following boundary
conditions

x(T ) = ax(0), ẋ(T ) = bẋ(0) (39)

with a, b ∈ R, a 6= (−1)p, b 6= (−1)p and ab ≥ 0, which includes both periodic and antiperiodic
conditions, respectively when p is odd and p is even.

We will show now that, under very general conditions, the problem (33), (39) together with
impulse conditions (34), (35) satisfies all the assumptions of Theorem 5.1. On this purpose,
let us consider the nonempty, open, bounded, convex and symmetric neighbourhood of the
origin K = (−R,R), with R to be specified later, and the C2-function V (x) = 1

2(x2 − R2)
that trivially satisfies conditions (H1) and (H2).
In order to verify condition (i), let us define the continuous and increasing function

φ(d) = gR q(d) + kR,

where gR = max|x|≤R |g(x)|, kR = max|x|≤R |k(x)|. Since q is monotone, there exists

lim
s→+∞

q(s) = q ∈ (0,+∞].

Then the limit

lim
s→+∞

q(s)

gR q(s) + kR

is finite in both cases when q is finite or non finite. Hence, according to (36), the function φ
satisfies (21). Moreover F (t, c, d) := g(c)f(t, d) +h(t, c) satisfies (22), for all t ∈ [0, T ] and all
c, d ∈ R, with |c| ≤ R.
Assumption (ii) follows from the conditions put on a and b.
Condition (iii) follows from the fact that V̇ (x) = x and V̈ (x) = 1, for every x ∈ R.
Notice moreover that (−x)(−v)xv = x2v2 > 0 whenever xv 6= 0 and that (ax)(bv)xv =
abx2v2 ≥ 0 for every x, v ∈ R, according to properties of a and b. Hence, also conditions
(v)− (vi) hold.
It remains to prove condition (iv), which, according to Remark 5.1, is equivalent to (32).
Since

φ−1(d) = q−1
(
d− kR
gR

)
,

we easily get that

φ−1(φ(2R) + 2R) = q−1
(
q(2R) +

2R

gR

)
.

Thus condition (iv) reads as

v2 + xg(x)f(t, v) + xh(t, x) > 0 (40)

for every t ∈ (0, T ), x = ±R, v with |v| ≤ q−1(q(2R) + 2R
gR

).

The previous result can be stated in the form of the following theorem.
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Theorem 6.1 Let g : R→ R be a continuous function, f, h : [0, T ]×R→ R be Carathédory
functions, 0 = t0 < t1 < . . . < tp < tp+1 = T and a, b ∈ R, a 6= (−1)p, b 6= (−1)p and ab ≥
0. Suppose that there exist k ∈ C(R, [0,+∞)), q ∈ C([0,+∞), [0,+∞)), with q increasing,
satisfying (36)-(37) and (38) for every t ∈ [0, T ], c, d ∈ R. If there exists R > 0 such
that condition (40) holds for every t ∈ (0, T ), x = ±R and |v| ≤ q−1(q(2R) + 2R

gR
), with

gR = max|x|≤R |g(x)|, then problem (33), (39) together with impulse conditions (34), (35) has
a solution x such that |x(t)| ≤ R, for every t ∈ [0, T ].

Remark 6.1 We stress that condition (40) is satisfied in many situations. For example,
assume that there exists r > 0 such that c · h(t, c) ≥ 0 for every t ∈ (0, T ) and c with |c| < r,
an usual sign condition in applications. Then, it is sufficient to assume a sign condition on g
and f , i.e. that, for some R < r, c·g(c) > 0 when |c| = R and f(t, v) > 0 when t ∈ (0, T ), v ∈ R
with |v| ≤ q−1(q(2R) + 2R

gR
). Alternatively we can suppose a growth condition on f and g i.e.

that
lim
c→0

c

gc
= 0 (41)

and that

lim
d→0

q(d)

d2
= l <

1

rgr
.

Fixed ε ∈ (0, 1
rgr
− l), there exists δ > 0 such that, for every d ∈ (0, δ) it holds q(d) <

(ε+l)d2. Since q is continuous and increasing, also q−1 is continuous and increasing. Therefore,
according to (41),

lim
c→0

q−1
(
q(2c) +

2c

gc

)
= q−1(q(0)) = 0.

Now choose R ≤ r such that q−1(q(2R) + 2R
gR

) ≤ δ. Then, according to (37), for every

t ∈ (0, T ), x = ±R, v ∈ R with |v| ≤ q−1(q(2R) + 2R
gR

),

v2 + xg(x)f(t, v) + xh(t, x) ≥ v2 − |xg(x)f(t, v)|+ xh(t, x) ≥ v2 −RgRq(|v|) + xh(t, x)
> v2[1−RgR(ε+ l)] + xh(t, x) > 0.

Remark 6.2 For the sake of simplicity, we considered the single-valued case, but we stress
that our results can be extended to the multivalued case, for which the literature is rare
and which can be e.g. used for modelling optimal control problems. Indeed, if we suppose,
for example, that f and h are upper-Carathéodory multimaps, Theorem 6.1 holds under the
same conditions as well, just replacing (40) by

v2 + xg(x)w + xz > 0

for every t ∈ (0, T ), x = ±R, v with |v| ≤ q−1(q(2R) + 2R
gR

), w ∈ f(t, v), z ∈ h(t, x).

Remark 6.3 In literature, only few results devoted to impulsive periodic or anti-periodic
solutions of the Liénard equation can be found. The majority of papers dealing with this topic
are related to non-impulsive solutions, sometimes also with delay. In both cases, however,
the authors usually consider g constant and/or f(t, x′) = x′ with additional strong regularity
conditions on the other terms of the equation, i.e. the continuity of g, f and h.
For example, in [23], the existence of an impulsive periodic solution is investigated under the
presence of a L1 forcing term, in the case when g(x) = 1 and f is a continuous and sublinear
function. Moreover, it is assumed there that xf(t, x′) ≥ β|x|2 for some positive constant
β, while h = h(x) is supposed to be continuous and superlinear. We point out that these
conditions directly guarantee (37)-(40).
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[4] Andres J., Malaguti L., Pavlačková M.: Dirichlet problem in Banach spaces: the bound
sets approach. Bound. Val. Probl. 25, 1–21 (2013).
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