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Abstract
Purpose of Review  The present narrative systematic review summarizes current knowledge on germline gene mutations 
predisposing to solid tumors in adolescents and young adults (AYAs).
Recent Findings  AYAs with cancer represent a particular group of patients with specific challenging characteristics and yet 
unmet needs. A significant percentage of AYA patients carry pathogenic or likely pathogenic variants (PV/LPVs) in cancer 
predisposition genes. Nevertheless, knowledge on spectrum, frequency, and clinical implications of germline variants in 
AYAs with solid tumors is limited.
Summary  The identification of PV/LPV in AYA is especially critical given the need for appropriate communicative strate-
gies, risk of second primary cancers, need for personalized long-term surveillance, potential reproductive implications, 
and cascade testing of at-risk family members. Moreover, these gene alterations may potentially provide novel biomarkers 
and therapeutic targets that are lacking in AYA patients. Among young adults with early-onset phenotypes of malignancies 
typically presenting at later ages, the increased prevalence of germline PV/LPVs supports a role for genetic counseling and 
testing irrespective of tumor type.
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Introduction

Adolescents and young adults (AYAs) with cancer represent 
a particular group of patients whose specific challenging 
characteristics are currently recognized by the scientific 
community. According to the most recent definition [1, 2], 
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the AYA population is defined as those subjects diagnosed 
with cancer at ages 15 through 39. This represents a het-
erogeneous and challenging group of patients with increas-
ing cancer incidence, modest survival gains compared with 
other age groups, and unique and often unmet needs [3, 4]. 
Tumor in AYAs shows substantial differences in etiology, 
cancer type, molecular profile, psychosocial implications, 
prognosis, and long-term treatment side effects from cancer 
affecting other age groups [4–7], and relevant differences 
persist also across AYA age groups themselves [8].

Various AYA oncology programs have been developed in 
the last year in several parts of the world (involving numer-
ous organizations, healthcare providers, academic societies, 
and governments) [7, 9]. In particular, the European adult 
and pediatric oncology societies—the European Society for 
Medical Oncology (ESMO) and the European Society for 
Paediatric Oncology (SIOPE)—established a joint Work-
ing Group dedicated to AYA, with the aims of increasing 
awareness among the scientific community, exchanging 
knowledge, and foreseeing integrated programs to improve 
the standard of care for AYA with cancer across Europe [4•]. 
In the wake of this experience, also in Italy, a collaboration 
between pediatric and adult oncologists on the AYA theme 
has been recently formalized, and in April 2021, the national 
adult medical oncology society (AIOM—Associazione Itali-
ana di Oncologia Medica) joined the pediatric hematology-
oncology group (AIEOP—Associazione Italiana Ematologia 
Oncologia Pediatrica) in the creation of a formal AIEOP-
AIOM Working Group dedicated to AYAs. Among the dif-
ferent initiatives of this group, it has been decided to focus 
on the specific need of counseling and genetic testing, as 
essential part of cancer journey of AYA patients and their 
family. To implement this aspect in Italian centers, we pre-
sent a review of the cancer predisposition genes in this age 
range. Since the new-born AIEOP-AIOM Working Group 
involves pediatricians specialized in hematology-oncology 
and medical oncologists, who in Italy treat solid neoplasms, 
the work focuses on solid cancers rather than hematologic 
disorders. This topic appears relevant because it is known 
that a significant percentage of AYA patients carry patho-
genic or likely pathogenic variants in cancer predisposition 
genes. A recent analysis of 1,507 patients with solid tumors 
showed 12% of germline pathogenic and/or likely patho-
genic variants (PV/LPVs) in known cancer-predisposing 
genes [10••]. Nevertheless, this study also included chil-
dren and only AYAs under 29 years of age. Previous stud-
ies showed that 7–8% of patients diagnosed <20 years of 
age have PV/LPV in known cancer predisposition genes, 
with adrenocortical carcinoma (50%) and high-grade glioma 
(25%) having the highest percentage of variants [11–14].

The presence of a germline PV/LPV in known cancer-
predisposing genes brings several implications of utmost 
importance. First, germline variants may provide novel 

biomarkers and therapeutic targets that are lacking in AYA 
patients, as recently happened with the introduction of PARP 
inhibitors [15•]. Second, mutation carriers present elevated 
risk of secondary neoplasms that need specific surveillance 
programs [16]. Third, the identification of a hereditary can-
cer syndrome has an impact on all the relatives carrying 
the same mutation in terms of primary and secondary pre-
vention. Despite all these implications, knowledge on spec-
trum, frequency, and implications of germline variants in 
AYAs with solid tumors is limited. Therefore, the objective 
of this systematic review was to summarize current knowl-
edge regarding genes predisposing to solid tumors in AYA 
patients.

Methods

The search was carried out in the PubMed database (http://​
www.​ncbi.​nlm.​nih.​gov/​pubmed (accessed date 6 April 
2021)). Key search terms used were as follows: “germline” 
AND “cancer” OR “neoplasm” AND “adolescent” OR 
“young adult” OR “AYA.” The eligibility criteria for arti-
cles reviewed included all types of articles published from 
January 2018 on AYA patients with a diagnosis of solid 
neoplasm that was associated with a germline PV/PLV in 
any cancer susceptibility gene. Then, reference lists were 
examined. Studies published in a language other than Eng-
lish were excluded. The systematic search identified the 
main predisposition genes described in the present review 
and summarized in Fig. 1.

Cancer Predisposition Genes in AYA​

Genes Involved in the DNA Double‑Strand Break 
Repair Mechanism

ATM (Ataxia Telangiectasia Mutated)

Homozygous or compound heterozygous ATM mutations 
cause ataxia telangiectasia, a syndrome characterized by 
progressive cerebellar ataxia, oculomotor apraxia, immuno-
deficiency, and general increased risk of malignancies [17] 
with an overall cumulative incidence of cancer by age 40 of 
38.2% [18]. On the other hand, heterozygous ATM germline 
PV/LPV can be found in 0.35–1% of the general population 
[19] and are associated with an increased risk for breast can-
cer (BC) at a higher median age of onset (46.9 years) [20]. 
Maxwell et al. [21] identified 8 patients with a ATM ger-
mline PV/LPV out of 278 (2.9%) BRCA1/2-negative patients 
with BC diagnosed at less than 40 years of age. Moreover, 
a significant association between ATM heterozygous PV/
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LPV and ovarian cancer [22, 23], pancreatic cancer [24], 
and prostate cancer [25] has been described.

ATR​ (Ataxia Telangiectasia and Rad3 Related)

Mutations in ATR​ gene are rare. Homozygous hypomorphic 
mutations in ATR​ have been detected in Seckel syndrome, 
characterized by developmental delay and premature aging 
[26]. A different kind of genetic disorder due to heterozy-
gous mutations in ATR​ comprises skin telangiectasis; mild 
developmental anomalies of the hair, teeth, and nails; and 
an increased risk of oropharyngeal cancer typically in the 
third decade of life or thereafter [27]. Other malignancies 
reported included nonmelanoma skin cancer, breast cancer, 
and cervical cancer, although data on these associations are 
still conflicting [28, 29].

BARD1 (BRCA1 Associated RING Domain 1)

BARD1 is a BC moderate-risk gene [30, 31] with a lifetime 
risk approximately doubled than that in the general popula-
tion. Deleterious BARD1 germline variants are significantly 

associated with early-onset BC. The mean age at first BC 
diagnosis in BARD1 mutation carriers was 42.3 years (range 
24–60 years) in a German cohort [32]. Particularly, two 
recent studies confirmed that BARD1 PV/LPVs are enriched 
among triple-negative BC patients compared to other BC 
subtypes [33, 34].

BRCA1 (BReast CAncer Gene 1) and BRCA2 (Breast Cancer 
Gene 2)

Germline mutations in the tumor suppressor genes BRCA1 
and BRCA2 account for most cases of hereditary breast and 
ovarian cancer syndrome [35]. The population frequency of 
BRCA1/2 PV/LPV has been historically estimated 1:400, 
except for populations with high-frequency founder muta-
tions, such as the Ashkenazi Jewish population [36]. How-
ever, recent unselected population-based genomic screen-
ing efforts have found a higher, almost doubled prevalence 
(1:190), predominantly in European ancestry individuals 
[37]. The cumulative BC risk to age 40 years in women 
was estimated 24% (95%CI, 21–29%) for BRCA1 and 13% 
(95%CI, 9–19%) for BRCA2 carriers [38], whereas the 

Fig. 1   From the tumor to the 
gene. The figure represents the 
principal predisposition genes 
associated with increased risk 
of cancer in each organ and 
apparatus
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cumulative BC risk to age 40 in men was 0.12% (95%CI, 
0.012–0.58%) for BRCA1 and 1.2% (95%CI, 0.3–3.6%) for 
BRCA2 carriers [39]. OC risk is almost null until 30 years 
and remains low from 31 to 40 years: 2% (95%CI, 1–3%) for 
BRCA1 and 0% (95%CI, 0–2%) for BRCA2 carriers [38]. In 
AYA with PV/LPV in BRCA1/2, the risk for prostate and 
pancreatic cancer is negligible [40, 41]. On these bases, sur-
veillance in female BRCA​ carriers should start at 25 years 
of age with breast MRI, and at the same time, preventive 
surgeries can be discussed [42].

BRIP1 (BRCA1 Interacting Protein C‑terminal Helicase 1)

Pathogenic mutations in BRIP1 have been described for the 
first time in two patients with early-onset BC [43]. Weber-
Lassalle et al. [44] observed a barely significant association 
of BRIP1 PV/LPV mutations with BC in the subgroup of 
patients with an age at first diagnosis < 61 years. However, 
the role of pathogenic BRIP1 mutations in BC risk remains 
conflicting [31, 45]. OC risk is almost null until 40 years 
[46].

RAD51C and RAD51D (RAD51 Recombinase Paralog C 
and Paralog D)

Genetic testing through multigene cancer panel revealed an 
association between PV/LPV in RAD51C and RAD51D and 
the increased risk of OC [47, 48]. The estimated cumulative 
risk of developing OC to age 40 years was 0.2% (95%CI, 
0.08–0.4%) for a woman with a RAD51C PV/LPV and 0.1% 
(95%CI, 0.06–0.3%) for a woman with a RAD51D PV/
LPV. The relative risk of OC in the third decade was 2.85 
(95%CI, 0.46–17.70) in carriers of RAD51C PV/LPV and 
3.60 (0.78 to 16.75) in carriers of RAD51D PV/LPV [49]. 
Recent findings highlighted the evidence of an association 
between protein-truncating variants of RAD51C/D and BC 
risk [31, 50]. The estimated cumulative risk of developing 
BC to age 40 years was 1% (95%CI, 0.7–1%) for a woman 
with a RAD51C PV/LPV and 0.9% (95%CI, 0.6–1%) for a 
woman with a RAD51D PV/LPV. The relative risk of BC 
in the third decade was 3.25 (95%CI, 1.60–6.62) in carriers 
of RAD51C PV/LPV; in carriers of RAD51D PV/LPV, the 
relative risk of BC between 20 and 39 years of age was 2.25 
(95%CI, 1.25–4.04) [49].

CHEK2 (Checkpoint Kinase 2)

CHEK2 has the highest mutation prevalence in individuals 
of European descent, while the spectrum and frequency of 
pathogenic variants vary among specific European popu-
lations [51]. Different case-control studies had revealed a 
significant association between CHEK2 1100delC mutation 
and early-onset BC [52]. In a Swedish cohort, the mean 

age at diagnosis of CHEK2 1100delC carriers was 12 years 
lower than that of non-carriers (46 vs 58 years, p=0.001) 
[52] and this has been recently confirmed in an Italian cohort 
of CHEK2 mutation carriers (median age at first BC onset 
46.1 years) [20]. Relative risk of developing BC to age 35 
years was 2.59 (95%CI, 1.23–5.47) for CHEK2 1100delC 
carriers, whereas the cumulative risk to age 40 years was 
< 5% [51]. Greville-Heygate et al. [53] detected 53 (2.3%) 
patients carrying a germline CHEK2 PV/LPV out of 2344 
women with early-onset BC and CHEK2-associated tumors 
showed a worse prognosis. Moreover, a case-control enrich-
ment analysis recently provided evidence for CHEK2 as a 
novel moderate-penetrance testicular germ cell tumor sus-
ceptibility gene [54]. Finally, pathogenic CHEK2 variants 
were associated with an increased risk of other malignancies 
including colon, prostate, kidney, bladder, and thyroid can-
cers, according to specific mutations (frameshift or missense 
substitutions) at a more mature age [55].

PALB2 (Partner and Localizer of BRCA2)

PALB2 is a BC susceptibility gene [56]. The risk of BC for 
women with a PALB2 PV/LPV was 8 to 9 times as high 
among those younger than 40 years of age compared with 
the general population with a cumulative risk estimated to 
be 14% (95%CI, 9–20) by 50 years of age [57]. Some studies 
highlight a possible association between PALB2 mutations 
and OC and pancreatic cancer [58].

FANCA (Fanconi Anemia Complementation Group A) Family

Fanconi anemia (FA) is a rare autosomal recessive genetic 
disorder that comprises a broad spectrum of clinical features 
of variable penetrance, mainly progressive bone marrow 
failure, congenital abnormalities, and cancer predisposition 
[59]. Until now, 22 genes have been described as FA genes: 
FANCA, FANCB, FANCC, FANCD1/BRCA2, FANCD2, 
FANCE, FANCF, FANCG/XRCC9, FANCI, FANCJ/BRIP1, 
FANCL/PHF9, FANCM, FANCN/PALB2, FANCO/RAD51C, 
FANCP/SLX4, FANCQ/ERCC4, FANCR/RAD51, FANCS/
BRCA1, FANCT/UBE2T, FANCU/XRCC2, FANCV/REV7, 
and FANCW/RFWD3 [60]. FA patients develop acute mye-
loid leukemia at an incidence 700-fold higher compared to 
the general population. The median age at diagnosis is 19 
(range 16–27) years, with a cumulative incidence of 10% 
by 50 years of age. FA patients who overcome severe bone 
marrow failure following a successful bone marrow trans-
plant are still likely to develop solid tumors (head and neck, 
esophageal, gastrointestinal, vulvar, and anal cancers) at an 
incidence approximately 50-fold higher, with a median onset 
age of 30 (range 4–44) years and a cumulative risk of 10% 
by 40 years of age [61, 62]. Finally, heterozygous muta-
tions in FA genes (e.g., BRCA1, BRCA2, BRIP1, PALB2, 
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and RAD51C) are associated with hereditary breast and/or 
ovarian cancer predisposition (paragraphs above) [63].

Genes Involved in the Nucleotide Excision Repair 
(NER) Mechanism

ERCC4 (Human Excision Repair Cross‑complementing 
Rodent Repair Deficiency, Complementation Group 4)

ERCC4 mutations are associated with three clinically dis-
tinct disorders: xeroderma pigmentosum, XFE progeroid 
syndrome, and Fanconi anemia [64, 65]. In xeroderma pig-
mentosum, there is a 1000-fold increased frequency of early-
onset basal cell or squamous cell carcinomas and melanomas 
of the skin, often with multiple primary tumors, by age 20. 
The median age at first skin neoplasm diagnosis is 8 years, 
nearly 50 years younger than that found in the general popu-
lation. A 5% risk of malignant melanoma is reported [66].

POLE (DNA Polymerase Epsilon)

Germline missense pathogenic variants in the exonuclease 
domain of polymerases epsilon (POLE) predispose to mul-
tiple colorectal adenomas and carcinomas, causing the so-
called polymerase proofreading–associated polyposis (MIM 
615083; 612591) [67]. Evidence of extracolonic tumors has 
been reported, including endometrial, brain, breast, ovarian, 
stomach, pancreas, and skin tumors, among others [68–70].

Genes Involved in the Mismatch Mediated Repair 
(MMR) Mechanism

MLH1 (MutL Homolog 1), MSH2 (MutL Homolog 2), MSH6 
(MutS Homolog 6), PMS2 (PMS1 Homolog 2)

Germline heterozygous PV/LPVs in MLH1, MSH2, MSH6, 
or PMS2 cause Lynch syndrome (LS). LS, also called 
hereditary nonpolyposis colorectal cancer (HNPCC), leads 
to various types of tumors, including most of all colorectal 
(CRC) and endometrial cancers, but also ovarian, stomach, 
small bowel, urinary tract, biliary tract, brain, skin (seba-
ceous adenomas, sebaceous carcinomas, and keratoacan-
thomas), pancreatic, and prostate cancers [71]. The MLH1 
variant is correlated with the highest risk of developing CRC 
with a cumulative incidence at 40 years of age of 15.3% in 
females and 18.9% in males, and a cumulative incidence of 
endometrial cancer of 1.9% at 40 years [72]. PV/LPVs in 
MSH2 are correlated with the second highest risk of CRC 
and the highest risk of developing other non-colorectal can-
cers, with cumulative cancer incidences at 40 years of 6.9% 
for CRC in females, 9.9% for CRC in males, and 2.3% for 
endometrial cancer [72]. Cancers in MSH6 mutation carri-
ers occur later than those in the MLH1 or MSH2 PV/LPVs, 

with cumulative CRC incidences at 40 of 2.5% (females) and 
6.3% (males), and 2.3% for endometrial cancer. The cumula-
tive incidence of overall cancers for PMS2 mutation carriers 
is the lowest among the four genes, with cumulative cancer 
incidences of 0% at the age of 40. On these bases, the Lynch 
syndrome surveillance should start at 20–25 years of age 
with colonoscopy and, in selected individuals, upper endos-
copy, urinalysis, and physical and neurologic examination 
may be considered starting between 25 and 40 years of age. 
Hysterectomy and bilateral salpingo-oophorectomy should 
be individualized [73, 74].

RECQL (RecQ Like Helicase)

RECQL was first identified as a novel breast cancer suscepti-
bility gene in 2015, by two independent research groups [75, 
76]. In a cohort of early-onset BC patients from Poland (<40 
years), the increased risk of BC in carriers of the RECQL 
mutation was found to be 1.9 (95%CI 0.27–13.6) [77]. Never-
theless, several subsequent studies have failed to support the 
association [78]. No high-quality penetrance study showed 
statistical significance for additional diseases beyond BC.

Genes Involved in the MAP Kinase Pathway

PTPN11, SOS1, RAF1, RIT1, KRAS, NRAS, BRAF, MAP2K1, 
RRAS, RASA2, A2ML1, SOS2, LZTR1

The RASopathies are a collective group of phenotypically 
related conditions caused by germline PV/LPV in genes 
within the Ras/mitogen-activated protein kinase (Ras/
MAPK) signaling pathway. RASopathy conditions, such as 
Noonan syndrome (NS; MIM# 163950), cardiofaciocuta-
neous syndrome (CFC; MIM# 115150), and Costello syn-
drome (CS; MIM# 218040), typically present with multiple 
phenotypic features, including poor growth, cardiac anoma-
lies, ectodermal abnormalities, neurodevelopmental deficits, 
and increased tumor risk [79, 80]. NS is caused by germline 
mutations of PTPN11 (50%); SOS1 (13%); RAF1 (5%); RIT1 
(5%); or more rarely, KRAS, NRAS, BRAF, MAP2K1, RRAS, 
RASA2, A2ML1, SOS2, or LZTR1 [81]. Children with NS are 
at an approximately 8-fold increased risk for a spectrum of 
different cancers [82]. These include (but are not limited to) 
gliomas such as dysembryoplastic neuroepithelial tumors, 
acute lymphoblastic leukemia, neuroblastoma, and rhabdo-
myosarcoma [80, 82–84].

CFC syndrome is due to germline mutation of KRAS, 
MAP2K1, MAP2K2, or BRAF [81]. Affected persons have NS 
features and tend to have significant mental and neurologic 
impairment, more severe ectodermal involvement, and char-
acteristic facies. Several cases of childhood cancer have been 
reported, and the cancer risk may be mildly increased [80, 82].
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The CS is due to germline mutations of HRAS [85]. In 
addition to NS features, CS patients have mental deficits, 
poor feeding, hypertrophic cardiomyopathy, tachycardia, 
typical skin and hair, a coarse face, and a high childhood 
cancer risk, especially for embryonal rhabdomyosarcoma 
(ERMS), NBL, and early-onset bladder cancer. The occur-
rence of bladder carcinoma in adolescents is distinctly unu-
sual as this is typically a neoplasm of older adults and is not 
seen with increased frequency in other tumor predisposition 
syndromes. The cumulative incidence of cancer is 15% by 
age 20 years [80, 82, 86, 87]. The HRAS G12A mutation 
appears to be associated with the highest cancer risk [88].

NF1 (Neurofibromatosis type 1) and NF2 
(Neurofibromatosis type 2)

Neurofibromatosis (NF1) is a dominantly inherited syn-
drome with variable disease manifestations, affecting mul-
tiple organs, childhood development, and neurocognitive 
status. NF1 causes significantly increased malignancy risks 
compared with the general population. Specifically, muta-
tion in NF1 gene is associated with highly elevated risk of 
malignant peripheral nerve sheath tumors (MPNST), rhab-
domyosarcoma, and primary brain tumors. Because of the 
risk of MPNST being associated with high internal tumor 
burden, whole-body MRI should be considered between 
ages 16 and 20 years [89]. Furthermore, women with NF1 
ages 30 to 50 showed an increased breast cancer risks of 
4- to 5-fold [90].

Neurofibromatosis type 2 (NF2, also known as central 
neurofibromatosis) is an autosomal dominant disorder that 
is distinct from NF1 on both genetic and clinical grounds. 
Around 30% of NF2 presents symptomatically in childhood 
and nearly 50% by 20 years of age. A hallmark of NF2 is the 
occurrence of bilateral schwannomas that affect the vestibu-
lar branch of the eighth cranial nerve (acoustic neuromas). 
NF2 patients are also at elevated risk for meningiomas, spi-
nal schwannomas, and ependymomas [89].

Genes Involved in the Cell Cycle Regulation

CDKN2A (Cyclin‑Dependent Kinase Inhibitor 2A)

CDKN2A germline mutations are associated with a 65-fold 
increase in the risk of melanoma development [91], and 
these have been identified in approximately 20–40% of 
families showing a predisposition to melanoma [92, 93]. 
Mean age at melanoma diagnosis is earlier in CDKN2A 
mutation carriers than in the general population (mean of 
35 years vs 59 years). Lifetime penetrance of CDKN2A 
mutations is 0.58 in Europe, 0.76 in the USA, and 0.91 in 
Australia [94]. Accordingly, the median age of melanoma 
diagnosis was also younger in Australian melanoma-prone 

families compared to European families [95]. Importantly, 
CDKN2A mutation carriers have been reported to be at 
increased risk of developing other early-onset cancers, 
including breast, lung, pancreatic, and nonmelanoma skin 
cancers and soft tissue sarcomas [96]. These additional 
cancer risks are not consistently observed, and this may 
indicate that the risk of other cancers varies with the spe-
cific PV/LPV [97, 98].

TP53 (Tumor Protein 53)

Germline PV/LPVs of TP53 gene have a high penetrance 
and cause Li-Fraumeni Syndrome (LFS). LFS is associ-
ated with increased risk of breast cancer, soft tissue sar-
coma, osteosarcoma, leukemia, brain tumors, adrenocor-
tical carcinoma, and other cancers [99, 100]. The cancer 
risk imparted by TP53 mutations is evident at an early 
age, with female carriers having a cumulative 49% risk 
of developing cancer by the age of 30, and men having 
a 21% cancer risk at the same age [101]. Indeed, regard-
less of familial history, the rate of disease associated with 
germline TP53 PV/LPV has been estimated to be between 
3.8 and 7.7% in females with breast carcinoma before 31 
years of age [102]. On these bases, the Li-Fraumeni syn-
drome surveillance should start from the birth with US of 
abdomen and pelvis, neurologic examination, and possibly 
whole-body and brain MRI, at 18 years of age with der-
matologic examination, at 20 with breast MRI, and at 25 
with colonoscopy and upper endoscopy [74].

BAP1 (BRCA1‑Associated Protein 1)

Heterozygous germline mutations of BAP1 confer 
increased susceptibility for the development of several 
tumors, mostly uveal and cutaneous melanomas, epithe-
lioid atypical Spitz tumors, and mesotheliomas but also 
other neoplasms, including renal cell carcinoma, lung 
adenocarcinoma, and meningioma (BAP1-TPDS, OMIM 
614327) [103]. However, the complete tumor spectrum 
associated with germline BAP1 mutations is still uncertain.

The prevalence of germline BAP1 alterations in unse-
lected patients with metastatic uveal melanoma ranges 
from 2 to 8% [104], whereas the prevalence in patients 
with mesothelioma was 4.4% [105]. BAP1 mutation car-
riers showed a lower age at diagnosis in comparison with 
the general population, and median age of onset associated 
with null variants was younger than that with missense 
variants (in null variants: 53 years for uveal melanoma, 55 
years for mesothelioma, 39 years for cutaneous melanoma, 
50 years for renal tumors, and 44 years for nonmelanoma 
skin cancer) [106].
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CDC73 (Cell Division Cycle 73)

Because of its incomplete penetrance, patients with germline 
CDC73 mutation can present with a spectrum of phenotypes 
including seemingly sporadic parathyroid cancer (CDC73 
PV/LPVs have been identified in 20–29% of parathyroid 
carcinomas), familial isolated hyperparathyroidism (FIHP) 
with or without parathyroid cancer, or full expression of 
hyperparathyroidism-jaw tumor syndrome (HPT-JT) [107, 
108]. HPT-JT is a rare autosomal dominant syndrome with 
typical onset in late adolescence or early adulthood that 
causes familial hyperparathyroidism associated with ossi-
fying fibromas of the maxillofacial bones and increased 
risk of parathyroid carcinoma. Renal abnormalities occur 
in 15% of patients and include Wilms’ tumors, hamartomas, 
renal cell carcinoma, and polycystic disease [109]. Uterine 
tumors affect up to 75% of female HPT-JT patients and may 
be benign or malignant (e.g., adenosarcomas) [110].

Genes Encoding for Transmembrane Receptors

EGFR (Epidermal Growth Factor Receptor)

EGFR germline mutations, including the mutations 
p.T790M and p.R776H in exon 20 and p.V843I in exon 21, 
are associated with genetic susceptibility to lung cancer 
[111–114]. Overall, the estimated risk of developing lung 
cancer among nonsmoking EGFR T790M carriers is 31%, 
compared with a 0.2% risk in a general population of non-
smokers and an approximately 23% risk in a general popu-
lation of smokers [115]. Diagnosis of lung adenocarcinoma 
was accelerated 9.0 years (95%CI, 0.5–16.5 years) by EGFR 
germline PV/LPV [116, 117].

Furthermore, EGFR could be a novel underlying germline 
predisposition factor for adrenocortical carcinoma (ACC) 
especially in the AYA population [117].

EPCAM (Epithelial Cell Adhesion Molecule)

Deletions of EPCAM can cause Lynch syndrome through 
epigenetic silencing of MSH2 in EPCAM-expressing tissues, 
resulting in tissue-specific MSH2 deficiency. Carriers of an 
EPCAM deletion had a 75% cumulative risk of colorectal 
cancer before the age of 70 years (mean age at diagnosis 43 
years). Women with EPCAM deletions had a 12% cumula-
tive risk of endometrial cancer (mean age at diagnosis 47 
years) [118].

KIT (Receptor Tyrosine Kinase)

Somatic mutations of KIT are frequently found in masto-
cytosis and gastrointestinal stromal tumor (GIST), while 
germline mutations of KIT are rare, and only found in few 

cases of familial GIST and mastocytosis [119]. GISTs are 
reported predominantly in patients who are 40 to 70 years 
old but in rare cases may occur in younger persons. Beghini 
et al. studied an Italian family in which 4 members over 3 
generations, including a father and son, had multiple hyper-
pigmented spots. At 18 years of age, the father developed 
multiple GISTs with diffuse hyperplasia of the myenteric 
plexus. The proband was the 14-year-old son whose hyper-
pigmented lesions were found to be cutaneous mastocytosis 
[120].

RET (REarranged During Transfection)

Inherited mutations in the RET proto-oncogene, which 
encodes a receptor tyrosine kinase, predispose individuals 
to the multiple endocrine neoplasia type 2 (MEN 2) cancer 
syndromes. The major component tumor of these syndromes 
is medullary thyroid carcinoma (MTC) [121]. Different 
mutations in the RET gene produce varying phenotypes for 
the disease, including age of onset and aggressiveness of 
MTC, and the presence or absence of other endocrine neo-
plasms, such as pheochromocytoma or hyperparathyroidism.

RET mutations can be classified into 3 groups based on 
aggressiveness of MTC or level of risk. Level 1 RET muta-
tions (codons 609, 768s790, 791, 804, and 891) are the 
lowest risk for aggressive MTC marked by later onset of 
tumor development and a more indolent biological course. 
Patients with level 1 mutations rarely develop tumors before 
the age of 10 years of age. Level 2 RET mutations (codons 
611, 618, 620, and 634 mutations) are considered high risk 
for aggressive MTC. Patients with level 2 RET mutations 
should undergo thyroidectomy before age 5 years. Level 3 
RET mutations (codons 883, 918, and 922) are the most 
aggressive of all the RET mutations. Patients with level 3 
mutations can have metastasis in the first years of life [122].

PDGFRA (Platelet‑Derived Growth Factor Receptor Alpha)

Familial gastrointestinal stromal tumor (GIST) is a rare auto-
somal dominant genetic disorder associated with KIT and 
PDGFRA germline mutations. Structure and organization 
of both human PDGFRA and KIT genes are very similar 
and could derive from a common ancestral gene. PDGF 
receptor α is member of the protein tyrosine kinase family 
subclass III, similar to that of the KIT protein. Chompret 
et al. described a French family in which 5 individuals had 
GISTs (age at onset 40–61 years) with germline mutation in 
PDGFRA gene [123]. A 22-year-old patient with multiple 
GISTs and small intestinal polyps, fibroid tumors, and lipo-
mas was also described in association with V561D germline 
PDGFRA mutation [124]. A unique phenotype including 
coarse facies and skin, broad hands and feet, and previously 
undescribed premature tooth loss was described in a family 
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with four first-degree relatives that harbor a PDGFRA exon 
18 (D846V) germline mutation. The index patient pre-
sented with multiple small bowel inflammatory fibroid pol-
yps (IFPs) and has a gastric gastrointestinal stromal tumor 
(GIST) [125].

Genes Involved in the Metabolic Mitochondrial 
Pathway

SDHx (SDHA, SDHB, SDHC, and SDHD) (Succinate 
DeHydrogenase Complex)

Germline alterations in the SDHB, SDHC, and SDHD genes 
and, to a lesser extent, the SDHA gene predispose to heredi-
tary phaeochromocytoma and/or paraganglioma (PPGL) 
[126]. Germline mutations in SDHx genes are responsible 
for approximately 20% of cases of PPGL and can also be 
associated with the presence of other SDHx-related tumors 
including renal cell carcinoma (RCC), GIST, and thyroid 
and pituitary tumors.

FH (Fumarate Hydratase)

FH inactivating mutations can cause hereditary leiomyoma-
tosis and renal cell cancer (HLRCC), a hereditary cancer 
syndrome that follows an autosomal dominant inheritance 
pattern with incomplete penetrance [127]. The age of onset 
for HLRCC is typically around adolescence to adult with 
penetrance increasing with age [128]. It is characterized by 
the development of multiple tumor types including skin leio-
myomas, uterine fibroids, and HLRCC kidney tumors with 
morphological and clinical features similar to those of type 
2 papillary renal cell carcinoma (PRCC2) [127]. In addi-
tion to the 3 main tumor types, bladder cancer and Leydig 
cell tumors of the testis have also been reported in HLRCC 
patients [129, 130].

Genes Involved in the PIK3, AKT mTOR/AMPK 
Pathway

TSC1 (Tuberous Sclerosis Complex 1), TSC2 (Tuberous 
Sclerosis Complex 2)

TSC is an autosomal dominant disorder caused by the muta-
tion of one of two tumor suppressor genes, TSC1 or TSC2, 
and characterized by skin manifestations and formation of 
multiple tumors in different organs, mainly in the central 
nervous system. The phenotypic expression can vary over 
the years, with neurological and cutaneous manifestations 
being more prevalent in childhood, and kidney and pulmo-
nary involvement more characteristic of adulthood. There 
is a 6–14% incidence of childhood brain tumors in patients 
with TSC, of which more than 90% are subependymal giant 

cell astrocytomas [131]. TSC is associated with a cumulative 
renal cancer incidence of 2.2–4.4%, higher than the esti-
mated incidence in the general population [131]; the average 
age at diagnosis is 28 years, with occasional early childhood 
cases [132].

TMEM127 (TransMEMbrane Protein 127)

Loss-of-function alterations in the tumor suppressor 
TMEM127 have been detected in familial pheochromocy-
tomas and paragangliomas (PCC/PGL) and associated with 
increased risk for RCC [133, 134].

STK11 (Serine/Threonine Kinase 11)

Peutz-Jeghers (PJ) syndrome is an autosomal dominant dis-
order caused by germline mutations of the STK11 gene and 
characterized by melanocytic macules of the lips, multiple 
gastrointestinal hamartomatous polyps, and an increased 
risk for various neoplasms, including gastrointestinal can-
cer [135, 136]. Cumulative risk for all cancer was 93% from 
ages 15 to 64 years old with a significant increase for esoph-
agus, stomach, small intestine, colon, pancreas, lung, breast, 
uterus, and ovary malignancies [136].

PTEN (Phosphatase and Tensin Homolog)

Individuals with germline mutations of the PTEN tumor 
suppressor gene have diverse phenotypic features affecting 
multiple systems, with the primary clinical concern of high 
lifetime risks of cancer. Elevated risks of breast, thyroid, 
endometrial, colorectal, and kidney cancers and melanoma 
were found. The particularly elevated penetrance of breast 
cancer in females with PTEN mutations is noted, beginning 
around age 30 and rising to an estimated 85% lifetime risk. 
PTEN-related endometrial cancer risk begins at age 25 rising 
to 30% by age 60, whereas for thyroid cancer, risk begins at 
birth and continues lifelong. Risks of colorectal and kidney 
cancers begin around age 40, with a lifetime risk of 9% and 
34% respectively. For melanoma, the earliest reported age 
of onset was 3 years [137].

Genes Involved in the Wnt/β‑Catenin Pathway

APC (Adenomatous Polyposis Coli)

The APC gene encodes a tumor suppressor protein that acts 
as an antagonist of the Wnt signaling pathway. Defects in 
this gene cause familial adenomatous polyposis (FAP), an 
autosomal dominant pre-malignant disease that usually pro-
gresses to colorectal cancer. Additionally, in infants and tod-
dlers, there is an increased risk of hepatoblastoma, while in 
teenagers and adults, duodenal carcinomas, desmoid tumors, 
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thyroid cancer, and medulloblastoma are more common in 
FAP than in the general population [138, 139].

CDH1 (CaDHerin 1)

CDH1 is a tumor suppressor gene that is required to main-
tain cell adhesion, cell polarity, and cell survival signaling. 
Mutation or transcriptional silencing of the CDH1 gene 
is associated with hereditary diffuse gastric cancer. These 
patients have a 70% lifetime risk of gastric cancer in males 
and 56% in females with a median age of 38 years (range 
14–69 years). Women additionally have a 42% lifetime risk 
of lobular breast cancer. The current management for identi-
fied carriers includes prophylactic total gastrectomy between 
the ages of 20 and 40 years, and the initiation of high-risk 
breast cancer screening with annual mammography and MRI 
at ages 30–35 years for female carriers [140, 141].

Genes Involved in the BMP Signaling Pathway

BMPR1A (Bone Morphogenetic Protein Receptor Type 1A), 
SMAD4 (Mothers Against Decapentaplegic Homolog 4)

Germline mutations in SMAD4 and BMPR1A genes have 
been identified to cause juvenile polyposis syndrome (JPS). 
It is a rare autosomal dominant hereditary disorder char-
acterized by the development of multiple distinct juvenile 
polyps in the gastrointestinal tract with an increased risk 
of colorectal cancer [142]. The reported age at diagnosis of 
JPS was similar for both SMAD4 and BMPR1A pathogenic 
variant carriers (median 28 and 25 years, respectively). The 
incidence of colorectal cancer is 17–22% by age 35 years 
and approaches 68% by age 60 years. The median age at 
diagnosis is 42 years. The incidence of gastric cancer is 21% 
in those with gastric polyps [143].

Genes Encoding for Proteins of the SWI/SNF 
Complex

SMARCB1 (SWI/SNF‑Related, Matrix‑Associated, 
Actin‑Dependent Regulator of Chromatin, Subfamily b, 
Member 1), SMARCA4 (SWI/SNF‑Related, Matrix‑Associated, 
Actin‑Dependent Regulator of Chromatin, Subfamily A, 
Member 4)

Carriers of heterozygous constitutional mutations of 
SMARCB1 or SMARCA4 are prone to develop rhabdoid 
tumors (RT), which have been clinically named as rhabdoid 
tumor predisposition syndromes 1 (RTS1) and 2 (RTS2), 
respectively [144, 145]. The manifestation of RTS1 occurs 
at a very early age, with a median of 5.5 months in children 
with SMARCB1 germline mutations, but is very rare in older 
children or adults [146].

RTPS2 is a complex familial disorder with an autosomal 
dominant pattern of inheritance with variable penetrance 
predisposing to formation of tumors that develop in the 
brain, spine, lung, bladder, pelvis, kidney, or ovary of young 
children or adults [147]. Genetic profiling has demonstrated 
these mutations in small cell carcinoma of the ovary and 
hypercalcemic type (SCCOHT) and SMARCA4-deficient 
undifferentiated uterine sarcoma, as well as atypical teratoid 
rhabdoid tumors, malignant rhabdoid tumors, and aggressive 
SMARCA4-deficient thoracic sarcomas [148, 149].

Other Genes

COL7A1 (Collagen Type VII Alpha 1 Chain)

Mutations in COL7A1 cause the severe inherited blistering 
disorder recessive dystrophic epidermolysis bullosa (RDEB) 
affecting skin and mucosae, associated with a greatly 
increased risk of skin cancer [150]. In the severe generalized 
subtype of RDEB (Hallopeau-Siemens RDEB), recurrent 
blistering leads to extensive scarring with a cumulative risk 
of squamous cell carcinoma (SCC) of 70% by age 45 [151].

DICER1 (Double‑Stranded RNA‑Specific Endoribonuclease)

The DICER1 syndrome (OMIM 606241) is an autosomal 
dominant cancer predisposition disorder that is associated 
with a variety of benign and malignant tumors, including 
pleuropulmonary blastoma, cystic nephroma, Sertoli-Leydig 
cell tumors, multinodular goiter, thyroid cancer, rhabdomyo-
sarcoma, and pineoblastoma [152].

EXT2 (Exostosin Glycosyltransferase 2)

Germline mutations in EXT2 are causative for hereditary 
multiple exostoses (HME), also called multiple osteochon-
dromas (MO). The main complication in HME is malig-
nant transformation of an osteochondroma (exostosis) into 
chondrosarcoma, which is estimated to occur in 1–3% of the 
HME cases [153, 154].

GJB2 (Gap Junction Protein Beta 2)

GJB2 is mostly known for being associated with syndro-
mic hearing loss, for example, keratitis-ichthyosis-deafness 
(KID). It has been reported that these KID patients with 
germline GJB2 mutation have increased risks of develop-
ing epithelial malignancies, for example, 19% occurrence 
of squamous cell carcinoma of the skin and oral mucosa 
compared to the normal population [10••].
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HABP2 (Hyaluronan Binding Protein 2)

HABP2 G534E variant functions as a dominant-negative 
tumor suppressor gene and is a susceptibility gene for famil-
ial papillary thyroid cancer [155]. Nevertheless, this associa-
tion was not confirmed in several subsequent studies [156].

MUTYH (MutY DNA Glycosylase)

Biallelic pathogenic variants in the MUTYH gene cause 
MUTYH-associated polyposis (MAP). MAP is character-
ized by the presence of 15–100 colorectal polyps and an 
increased risk of colorectal adenomas and carcinomas [157]. 
Patients are diagnosed with MAP at a mean age of 45–50 
years and median age of CCR onset is 48 [158]. Moreo-
ver, carriers of biallelic mutation have an increased risk of 
ovarian cancer, urinary bladder cancer, cancer of the upper 
gastrointestinal tracts, breast cancer, endometrial cancer, 
and skin cancer. Carriers of monoallelic mutation have an 
approximately 2.5-fold increased risk of CRC compared 
with the general population [159], but the risk of developing 
extraintestinal cancer in heterozygotes is still unclear [157].

VHL (Von Hippel‑Lindau)

Germline inactivation of the VHL tumor suppressor gene 
causes the von Hippel-Lindau hereditary cancer syndrome 
(MIM 193300). Common VHL-associated clinical manifes-
tations include central nervous system hemangioblastoma, 
renal cell carcinoma or renal cyst, retinal angioma, pancre-
atic tumor or cyst, pheochromocytoma and paragangliomas, 
endolymphatic sac tumor, and epididymis or broad ligament 
cystadenoma [160]. Patients may be affected by cancers 
from childhood and throughout their lifetime [161]. In a 
recent analysis of a large cohort of Chinese VHL families, 
the mean ages at onset for central nervous system hemangio-
blastoma and renal cell carcinoma were 41.1 ± 9.1 (range = 
29–62) and 37.4 ± 12.9 (range = 23–65), respectively [160].

Genetic Counseling and Testing in AYA​

Genetic counseling involves three consecutive steps: pre-
test counseling, genetic testing, and post-test counseling 
[42, 162]. Each of these stages should be carried out by 
a healthcare professional with expertise and experience 
in cancer risk assessment and management of individuals 
with an inherited predisposition to cancer [163]. The first 
step includes an evaluation of patient’s needs and con-
cerns, a detailed collection of personal and family can-
cer history, a discussion on the possible testing results, 
subsequent management options, inherited cancer risk 
to relatives and the privacy of genetic information, and, 

finally, a written informed consent [164, 165]. The pre-
test counseling also guides the clinician towards the most 
appropriate test to order. The indication to genetic testing 
is based on the features of an individual’s personal or fam-
ily medical history. Particularly, age at onset of the tumor, 
recurrence of specific cancers in the same person or family 
(e.g., breast, ovarian or colon cancers), unusual cases of 
cancer (e.g., male breast cancer), the presence of less fre-
quent tumor histotypes (e.g., medullary thyroid carcinoma 
or triple-negative breast cancer), or birth defects that are 
known to be associated with inherited cancer syndromes 
(e.g., neurofibromas). For the most known syndromes, 
testing criteria are published and universally recognized, 
such as the Amsterdam criteria for the Lynch syndrome 
[166] or the Chrompret criteria for Li-Fraumeni syndrome 
[167]. However, for most of syndromes, testing criteria 
vary among institutions.

The introduction of multigene testing based on next-
generation sequencing (NGS) technology allowed to simul-
taneously analyze a set of cancer predisposition genes. It 
is sufficient for cancer risk assessment to evaluate genes of 
established clinical utility that are suggested by the patient’s 
personal and/or family history [163]. This approach may 
be more efficient and cost-effective than the previous tests 
for single syndrome. Notably, when a pathogenic variant 
of a predisposition gene is identified on tumor genetic test-
ing, a confirmatory germline testing is recommended. Ger-
mline genetic testing should be performed by laboratories 
equipped to provide analytically and clinically valid results 
[163]. When results of genetic testing are ready, in a post-
test counseling, clinicians should discuss results, related 
risks, and medical management options in the context of 
personal and family history.

Patients of reproductive age should also be advised about 
prenatal diagnosis and assisted reproduction and partners 
should be tested in case of identification of PV/LPV in genes 
associated with rare autosomal recessive conditions, such 
as Fanconi anemia [42, 168]. Moreover, the importance of 
sharing these results with family members should be dis-
cussed so they may benefit from this information [163].

Emotional distress following testing is influenced by 
factors including disease characteristics (e.g., severity, pre-
ventability), amount of uncertainty remaining after testing 
[169], and ethical and religious beliefs. Often, individuals 
with hereditary cancer predisposition syndromes worry 
about passing the condition down to their children and 
trouble starting a family because of employment and insur-
ance discrimination [170]. Questions about availability of 
prenatal genetic testing, and occurrence, timing, severity, 
course, and preventability of cancer may reduce or elevate 
distress in AYA patients. Young age, perception of high risk, 
pre-existing psychological distress, a passive way of coping, 
little social support, and family members with cancer were 
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predictive of psychological problems and/or reduced quality 
of life [171].

Predictive genetic testing in minors, including adoles-
cents, for conditions for which there are limited preventative 
or therapeutic measures has traditionally been deferred [42, 
172, 173]. Parents or guardians should be informed about the 
risks and benefits of testing, and in case of testing, their per-
mission should be obtained [174]. Ideally and when appro-
priate, the assent of the minor should be obtained as well. 
Then, the patient needs to be informed of the test results 
at an appropriate age. Finally, parents or guardians should 
be advised that, under most circumstances, a request by a 
mature adolescent for test results should be honored [173].

As clinical screening recommendations for many AYA 
CPS are now available, it is important to consider the fam-
ily’s lived experiences and their perceived challenges and 
benefits associated with cancer screening. Exploration of 
these issues allows the identification of appropriate supports, 
which may be important to ensure ongoing adherence with 
surveillance recommendations. The psychosocial impact 
specifically related to cancer surveillance in adolescents 
with CPS may be particularly problematic from a psycho-
social perspective, given that adolescents are in a key devel-
opmental stage of life during which uncertainty about their 
health is less easily managed [175]. A study looking at the 
experience of adolescents with hereditary cancer predisposi-
tion found that self-concept is influenced, but not defined by 
tumor risk, and that having this diagnosis allowed for new 
perspectives on health and illness [176]. The family narra-
tive, or the experiences the family has had with the CPS, has 
been shown to be an important predictor of one’s personal 
risk perception [177•]. Therefore, the opportunity to receive 
accurate, updated medical information at regular intervals 
is important, particularly as adolescents reach an age when 
they will assume responsibility for their own health [178].

Conclusions

The identification of germline pathogenic variants in AYA 
(summarized in Fig. 1) is especially critical given risk of 
second primary cancers, need for appropriate long-term sur-
veillance, potential reproductive implications, and cascade 
testing of at-risk family members, and potentially provides 
novel biomarkers and therapeutic targets. Among young 
adults with early-onset phenotypes of malignancies typi-
cally presenting at later ages, the increased prevalence of 
germline PVs supports a role for genetic testing irrespective 
of tumor type.
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