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Abstract
Bayesian disease mapping, yet if undeniably useful to describe
variation in risk over time and space, comes with the hurdle of prior
elicitation on hard-to-interpret random effect precision parameters.
We introduce a reparametrized version of the popular spatio-
temporal interaction models, based on Kronecker product intrinsic
Gaussian Markov Random Fields, that we name the variance
partitioning (VP) model. The VP model includes a mixing parameter
that balances the contribution of the main and interaction effects
to the total (generalized) variance and enhances interpretability.
The use of a penalized complexity prior on the mixing parameter
aids in coding prior information in a intuitive way. We illustrate the
advantages of the VP model using two case studies.
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1 Introduction5

The Covid-19 pandemic has put the world at stake. In Italy, the first two6

cases were confirmed on 31st January 2020 and on 9th March 2020 a7

national lockdown was put in place by the authorities to control and reduce8

the expansion of the virus. Data on newly infected people have been9

routinely collected since then to monitor the evolution of the disease. The10

study of the pandemic evolution can be tackled using disease mapping.11

Knowledge of how the infection has spread can help to evaluate the12

performance of containment measures. In particular, the quantification13

of the space-time interaction, which describes how the spatial patterns14

change over time, has been proposed as a way to deepen our understanding15

on the evolution of the disease1.16

Disease mapping models2–5 aim to describe the variation in risk of17

a particular disease over space and time. Data are usually available in18

the form of aggregrated counts at some spatial level, such as counties,19

municipalities, etc. Additive time and space models have been long used20

to model disease rates6. More recently, the availability of complex data21

has made it possible to consider more complex models that include22

an interaction term to appropriately capture space-time relationships in23

the data (see for example Abellan et al.7, Knorr-Held8, Waller et al.9,24

Bernardinelli et al.10 to cite a few). Understanding the spatial distribution25

of disease risk or how it has evolved over time might be useful for public26

health authorities in planning resource allocation and identification of27

areas to be prioritized. In particular, the space-time interaction may reveal28

important information regarding the nature of the disease, for example29
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suggesting whether a new disease is possibly infectious11 or the existence30

of additional causes in non-infectious cases12. Thus a model that is able31

to quantify the importance of this term is desirable from a practical point32

of view; in this paper we introduce a model parametrization that partitions33

the total variance into main and interaction effects so that the contribution34

of each of those can be quantified.35

Crude disease rates are unrealiable due to sampling variability so36

smoothing is used to borrow information across neighbouring areas and37

time points. For this reason, disease mapping has been developed mainly38

in a Bayesian hierarchical model formulation where the building blocks39

of a smooth in one and more dimensions can be modelled using intrinsic40

Gaussian Markov Random Fields (IGMRF) such as the first and second41

order random walk13 or the ICAR14 models. For modelling interactions42

statisticians have used tensor products smoothers, where, in a Bayesian43

framework, the penalty can be seen as a special type of GMRF called44

Kronecker product GMRFs15.45

In Bayesian spatio-temporal disease mapping the precision parameter of46

the IGMRFs plays a role in controlling the degree of smoothing applied47

over time and space. A number of issues related to prior elicitation need48

to be addressed when dealing with intrinsic models. Firstly, the precision49

matrix is singular, which means that the total variance that we aim to50

partition is not finite. In order to define priors on the variance components51

we can rely upon the concept of generalized variance of an IGMRF; this52

has been defined by Sørbye and Rue16 as the geometric mean of the53

diagonal elements of the generalized inverse of the precision matrix of54

the IGMRF, and can only be computed upon linear constraints.55

A second issue to bear in mind is that the generalized variance of an56

IGMRF depends on the structure matrix, and hence it changes depending57

on things like the temporal and spatial resolution or the size of the dataset58

at hand. This means that interpretation of the precision parameter becomes59
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case-dependent, making prior elicitation and paremeter interpretation60

difficult. To avoid this problem, Sørbye and Rue16 advise scaling the61

structure matrix so that the generalized variance is equal to 1; this way the62

precision parameter is automatically rescaled and the prior has the same63

meaning regardless of the graph structure17. Scaling becomes particularly64

relevant in the context of space-time models, as otherwise differences65

in the structure matrices of the spatial, temporal and spatio-temporal66

terms would have an impact on the priors for the corresponding precision67

parameters that we cannnot control. By scaling the structure matrix of the68

temporal and spatial random effects, the structure matrix of the interaction,69

defined as a Kronecker IGMRF, is automatically scaled.70

Further to the issues mentioned above, the choice of priors for variance71

parameters has received much attention in the literature5,18–20. Part of72

the hassle in choosing a prior stems from the difficulty of interpreting73

variance parameters, especially for intrinsic processes, where the standard74

deviation is to be interpreted as a conditional one19,21. On top of that, in75

models with various terms, the tendency is to set priors independently for76

each precision parameter, while some authors are beginning to recognize77

that it might be more practical to think about total variability and how each78

term in the model contributes to that rather than to concentrate on single79

variance components separately5,21–23. In the context of disease mapping,80

Wakefield5 proposes using an inverse Gamma prior on the total variability,81

along with a Beta prior that distributes the variance between a spatially82

correlated random field and a spatially unstructured effect (the so called83

BYM model24). Using a similar parametrization, Riebler et al.21 present84

a prior that shrinks towards no spatial effect following the penalized85

complexity (PC) prior approach of Simpson et al.20. Outside the disease86

mapping literature, Ventrucci et al.23 develop a PC prior in one-factor87

mixed models for the relative contribution of group-specific variability.88

In a more general context, Fuglstad et al.22 introduce a framework for89
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hierarchically distributing the variance in additive models, where, at each90

level of the total variance decomposition, ignorance or preference about91

the variance contribution of a term is expressed via a Dirichlet or a92

PC prior, respectively. We add to the literature by considering also the93

temporal dimension in disease mapping models. In particular, all the terms94

in the model (main effects and interaction) are assumed to follow intrinsic95

models. This differentiates our work from the literature mentioned above.96

In this work, we revisit the spatio-temporal models proposed by Knorr-97

Held8, where the space-time interaction term can be one of four different98

types, depending on the degree of dependence assumed between time and99

space. These four types are characterized by different prior assumptions,100

expressed in terms of a Kronecker product. We propose an intuitive101

reparametrization that leads to partitioning the generalized variance102

between the main effects and interaction. The main and interaction effects103

are not independent, and hence using a joint prior on those terms is104

preferable. We do so by including a mixing parameter that 1) easies105

interpretation and 2) naturally leads to a prior that is intuitive to elicit. One106

of the advantages of the Bayesian framework is that whenever information107

on the disease process is available, it can be encoded into the prior12.108

Often, the epidemiologist might have an intuition on how important109

the interaction term is in explaining the spatio-temporal variation of110

a particular disease. However, translating this information in terms of111

a precision parameter is not trivial at all. We follow the penalized112

complexity prior (PC) framework of Simpson et al.20 to derive a prior for113

the mixing parameter that avoids overfitting by construction and allows114

the user to code any prior information easily. This way we alleviate both115

problems, by considering an interaction model that not only enhances116

interpretability but also permits a more intuitive construction of the prior.117

We call this reparametrized version the variance partitioning (VP) model.118
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The proposed methodology is applicable to any of the four space-time119

interactions described in Knorr-Held8.120

The rest of the paper is organized as follows. Section 2 covers spatio-121

temporal disease mapping models, with a particular emphasis on the122

space-time interaction framework by Knorr-Held8, followed by a brief123

discussion of priors for variance parameters with special attention to the124

PC prior approach. In Section 3 the VP model is described in detail and125

the PC prior for the mixing parameter is presented, while the technical126

details are relegated to the supplementary material. Section 4 illustrates127

the proposed model on two case studies, a well known example in the128

disease mapping literature and an Italian Covid-19 dataset. The paper129

closes with a discussion in Section 5.130

2 Spatio-temporal disease mapping131

Consider data on n1 time points and n2 non-overlapping areas, yij is the132

observed number of cases at time i = 1, . . . , n1 and area j = 1, . . . , n2.133

The most commonly used models for yij are the binomial and the Poisson;134

in either case, the model in the linear predictor scale can be written as135

ηij = α + f1(i) + f2(j) + f12(i, j), where f1(i) and f2(j) represent the136

main temporal and spatial effects respectively and the function f12(i, j)137

captures the space-time interaction. The model can be parametrized with138

random effects as139

ηij = α + β1i + β2j + δij, (1)

where β1 = (β1,1, . . . , β1,n1)
T and β2 = (β2,1, . . . , β2,n2)

T are vectors140

of random effects describing the temporal and spatial main effect,141

respectively, and δ = {δij}, i = 1, . . . , n1, j = 1, . . . , n2 is the vectorized142

spatio-temporal interaction term. The random effects β1,β2 and δ are143

typically assumed as smooth processes modelled using intrinsic Gaussian144

Markov Random Fields (IGMRF,15), a special type of improper GMRF,145
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defined below. Appropriate constraints25 need to be imposed to ensure146

identifiability of the terms in (1). The constraints on the interaction term147

are summarized on Table 1, while on the temporal and spatial main effects148

it is enough to impose a sum to zero constraint. As usual, any available149

covariates can be included in model (1) as fixed effects.150

Definition 1. Improper GMRF. Let Q be an n× n symmetric151

positive semi-definite (SPSD) matrix with rank n− p > 0. Then x =152

(x1, . . . , xn)T is an improper GMRF of rank n− p with parameters153

(µ,Q) if its density is154

π(x) = (2π)
−(n−p)

2 (|Q|∗)1/2 exp

(
−1

2
(x− µ)TQ(x− µ)

)
,

where |Q|∗ is the generalized determinant of the precision matrix Q.155

Improper GMRFs are used as smoothing priors in structured additive156

regression (STAR) models, a flexible class including generalized linear157

mixed models, temporally dynamic models, spatial varying coefficient158

models, etc; for an account of STAR models see Fahrmeir et al.26 and159

references therein.160

Following Rue and Held15 we define an IGMRF of order 1 as an161

improper GMRF whereQ1 = 0, i.e., the precision matrix is singular with162

null space spanned by a column vector of ones, 1n of length n. Popular163

examples of an IGMRF of order 1 are the first order random walk (RW1),164

which is a possible option to model the temporal main effect β1, and the165

intrinsic conditional autoregressive (ICAR) model by Besag14, which is166

often assumed in disease mapping to model the spatial effect β2 when167

smoothing across neighbouring regions is required.168

An IGMRF of order 2 is an improper GMRF whose precision matrix is169

singular and its null space is spanned by a constant vector 1n and a linear170

vector (1, . . . , n)T . A popular example is the second order random walk171

(RW2;13), popularly used for modelling smooth covariate effects in STAR172
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models, and often implemented in spatio-temporal disease mapping for173

modelling the main temporal effect β1 when smoothness in the disease174

risk over time is anticipated.175

All the IGMRFs described above have in common that their precision176

matrix can be written as Q = τR, where τ is a precision parameter and177

R is a known structure matrix that encodes the dependence structure. In178

particular, for the RW1179

Rk,l =


1 k = l ∈ {1, n}
2 k = l ∈ {2, . . . , n− 1}
−1 k ∼ l

0 otherwise,

where notation k ∼ l indicates contiguous time points. For the ICAR, the180

structure matrix is given by181

Rk,l =


mk k = l

−1 k ∼ l

0 otherwise,

where mk is the number of neighbours for region k and notation k ∼ l182

indicates contiguous areas that share a common border. The structure183

matrix of a RW2 can be written asR = DTD whereD is a second order184

difference matrix of dimension (n− 2)× n.185

It is common in the disease mapping literature to consider one or both186

main effects f1 and f2 as a sum of structured and unstructured effects, so187

that model (1) becomes188

ηij = α + β1i + ε1i + β2j + ε2j + δij, (2)

where ε1 ∼ N (0, τε1In1), ε2 ∼ N (0, τε2In2). Typically, a RW1 or RW2189

model is assumed for the temporal effect β1 ∼ N
(
0, τ−1

1 R−
1

)
and an190
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ICAR is assumed for the spatial effect β2 ∼ N
(
0, τ−1

2 R−
2

)
, where191

notation M− indicates the generalized inverse of matrix M . The192

combination of the structured and unstructured spatial terms β2j + ε2j is193

commonly known as the BYM model24.194

2.1 Modelling interactions via Kronecker product IGMRFs195

We describe now the interaction term δ in Eq. (2). Smoothness is induced
by assuming

δ ∼ N(0, τ−1
12 R

−
I ),

which is a Kronecker product IGMRF with precision Q = τ12RI , i.e.196

an improper GMRF with precision given by the Kronecker product197

of two IGMRFs. These models are used for smoothing spatial and198

spatio-temporal data, and they are the Bayesian equivalent of tensor199

product spline models27. Knorr-Held8 envisions four different types of200

interactions, reported in Table 1. Interaction type I can be seen as201

unstructured variation due to unobserved covariates, while interaction202

types II and III allow for the temporal trend to change from location to203

location and the spatial trend to change over time, respectively, but in204

an independent manner. Interaction type IV is the most complex one,205

assuming that the temporal trend changes with location in a spatially206

dependent way, or equivalently, that the way in which the spatial trend207

changes over time is time-dependent.208

Table 1. The four types of interactions in spatio-temporal smoothing according to
Knorr-Held8. The IGMRF on the interaction parameter vector δ has structure RI given
by a Kronecker product; r1 = 1 or 2 depending on the order of the RW assumed for the
time effect.

type RI rank(RI) linear constraints on δ
I In2 ⊗ In1 n1n2 not needed
II In2 ⊗R1 n2(n1 − r1) [In2 ⊗ 1n1 ]

T δ = 0n2

III R2 ⊗ In1 (n2 − 1)n1 [1n2 ⊗ In1 ]
T δ = 0n1

IV R2 ⊗R1 (n2 − 1)(n1 − r1) [In2 ⊗ 1n1 ]
T δ = 0n2 ; [1n2 ⊗ In1 ]

T δ = 0n1
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Model (1) includes different precision parameters τ1 and τ2 for209

smoothing over time and space and an additional one, τ12, controlling the210

variance of the interaction term, which yields a model able to capture the211

smooth spatio-temporal structure underlying the data with high flexibility.212

However, these models have limitations in terms of interpretation of the213

results, as precision parameters are not informative about the total variance214

explained by the associated components and the priors are not easy to elicit215

(see Section 2.2). We propose an alternative parametrization to address216

these issues in Section 3.217

2.2 Priors for the precision parameters218

There are two main challenges in prior choice for the precision parameters219

in model (1). The first problem regards the so called scaling issue that220

affects IGMRFs in general; Sørbye and Rue16 proposed addressing this221

issue by scaling the precision structure R so that the geometric mean of222

the diagonal elements in R− is 1. In this way, the prior for τ will roughly223

encode the same degree of complexity across different types of structures224

and hence will have the same interpretation. Of particular interest is the225

spatial case where, after scaling the precision of the ICAR, the prior for226

the precision parameter becomes transferable across different applications227

using different graph structures.228

The second challenge regards the structure of the Kronecker product229

IGMRF, which can be thought of as an extra layer of flexibility on top230

of the main effects model. The common practice is to set independent231

priors on each precision parameter, but this totally disregards the model232

structure. Popular choices are Gamma for τ , or half-t and uniform on the233

standard deviation 1/
√
τ 18. The Gamma prior has repeatedly been pointed234

out as a poor choice often made by convenience; among the reasons why235

it should be avoided is that it forces overfitting or underfitting depending236

on the choice of its parameters19,20,28–30.237
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In Section 3 we propose a novel modelling framework where the238

interaction is seen as a flexible extension of the main effects model, and the239

prior is set so that the interaction term shrinks to the main effects following240

the PC prior framework. Recently, PC priors have been proposed as a241

way to prevent overfitting, based on four simple principles, that we briefly242

summarize and illustrate below for the precision parameter τ of a Gaussian243

random effect. For further details the reader is referred to Simpson et al.20.244

Let π1 denote the density of a model component w with precision245

parameter τ . This model component can be seen as a flexible extension of246

a based model with density π0 and τ =∞ (i.e. absence of random effects).247

The four principles are:248

1. Parsimony: The prior for τ should give proper shrinkage to τ =∞249

and decay with increasing complexity of π1, so that the simplest250

model is favoured unless there is evidence for a more flexible one.251

2. The increased complexity of π1 with respect to π0 is measured using252

the Kullback-Leibler divergence KLD, 31,253

KLD(π1||π0) =

∫
π1(w) log

(
π1(w)

π0(w)

)
dw.

For ease of interpretation, the KLD is transformed to a unidirectional
distance measure

d(τ) = d(π1||π0) =
√

2KLD(π1||π0)

that can be interpreted as the distance from the flexible model π1 to254

the base model π0.255

3. The PC prior is defined as an exponential distribution on the distance,

π(d(τ)) = λ exp(−λd(τ)),
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with rate λ > 0. The PC prior for τ follows by a change of variable256

transformation, leading in this case to a type-2 Gumbel distribution257

with parameters (1/2, λ):258

π(τ) =
λ

2
τ−3/2 exp(−λτ−1/2), τ > 0, λ > 0. (3)

4. The parameter λ in (3) can be selected by the user based on his prior259

knowledge of τ (or an interpretable transformation of it such as the260

standard deviation). This can be expressed in an intuitive way with a261

probability statement, e.g. setting U and a such that P(1/
√
τ > U) =262

a, so that λ = − log(a)/U . Knowledge on the marginal standard263

deviation can aid in choosing a sensible value for U ; Simpson et264

al.20 provide a practical rule of thumb: once the precision τ is265

integrated out, the marginal standard deviation of the random effect266

for a = 0.01 is about 0.31U .267

3 Partitioning the variance between main and interaction268

We present below the VP model assuming model (1), but everything269

applies straightforwardly to model (2) as well; details about the VP version270

of model (2) can be found in Section 4.271

From model (1) it is hard to quantify the relative contribution of272

the main and interaction components to the total variance, because the273

involved precision parameters are not interpretable in terms of the variance274

explained by the associated components. Our proposal is to reparametrize275

model (1) as a weighted sum of two IGMRFs representing the main and276

interaction components by means of a mixing parameter γ ∈ [0, 1]. We277

include a further mixing parameter φ ∈ [0, 1] to distribute the variance278

between the temporal and spatial main effects. Assume model (1), the279

reparametrized version of the linear predictor is280
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ηij = α +
√
τ−1

[√
1− γ

(√
1− φβ1i +

√
φβ2j

)
+
√
γδij

]
,

β1 ∼ N
(
0, R̃−

1

)
, β2 ∼ N

(
0, R̃−

2

)
, δ ∼ N

(
0, R̃−

I

)
,

(4)
where τ > 0 is an overall precision parameter, 0 < γ < 1, 0 < φ < 1. We281

consider a RW1 or a RW2 prior on the temporal main effect β1 and282

an ICAR prior on the spatial main effect β2 as specified in Section 2.283

Note that, differently from model (1), the precision structures R̃1, R̃2284

have been scaled according to Sørbye and Rue16. The interaction term285

δ is modelled as a Kronecker product IGMRF; following Knorr-Held8 we286

consider interaction types I, II, III, and IV as described in Table 1.287

Model (4) includes the same vectors of random effects as model (1), but288

in contrast to model (1), we now have very intuitive hyperparameters: τ is289

the total precision, i.e. τ−1 is the total generalized variance, and γ and φ290

are two interpretable mixing parameters. The value of γ can be interpreted291

as the proportion of total variance explained by the interaction δ. The292

variance explained by the main effects is therefore given by τ−1(1− γ):293

1− φ quantifies the proportion of such variance which can be attributed294

to the temporal random effects β1, with φ being the proportion attributed295

to the spatial random effects β2.296

We need to assign priors to the overall precision parameter τ and the297

mixing parameters γ and φ. In the next section we focus on the prior for298

γ, and leave prior choice for the remaining parameters to Section 4.299

3.1 A Penalized Complexity prior for γ300

Our choice of a PC prior for γ follows naturally from the model301

reparametrization in Eq. (4) and provides a way of eliciting the prior in a302

very intuitive way. Furthermore, it avoids overfitting by construction hence303

guaranteeing a parismonious model. Our PC prior for γ (see Result 1304
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below) is based on the assumption that the interaction model in (4) shrinks305

to the main effects model (β1 + β2).306

Result 1. Let us assume a model of the form (4), for all types of307

interaction in Table 1:308

1. The distance from the base model is

d(γ) ' √γ, 0 < γ < 1

2. The PC prior for γ with base model γ = 0 is309

π(γ) =
θ exp(−θ√γ)

2
√
γ(1− exp(−θ))

0 < γ < 1, θ > 0. (5)

The proof can be found in Supplemental material 6.1-6.3.310

The scaling of the PC prior for γ, i.e. the choice of θ in Eq. (5), is311

done by defining the probability of a tail event on γ. The parameter θ312

controls the strength of penalisation for deviating from the base model;313

the higher the θ the greater the penalty. We suggest setting U and a such314

that P(γ < U) = a; this way θ is obtained by numerically solving:315

1− exp(−θ
√
U)

1− exp(−θ)
= a, a >

√
U.

Note that it is not possible to assign equal weight to the main and316

interaction terms in the model, i.e. U = a = 0.5 because of the constraint317

a >
√
U . However, we can always encode a fair amount of uncertainty318

into the prior by choosing a close to 1 and large values of U . In the319

left panel of Figure 1, θ is obtained using a = 0.99 and three different320

values for U . A large U allows for more flexibility as the corresponding321

density curve decreases steadly towards zero as γ increases, while for322

a small value of U the density curve drops towards zero quite sharply,323

strongly penalizing any deviation from the base model. For comparison,324
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Figure 1. Left panel: PC prior π(γ) using a = 0.99 and three different values for U . Right
panel: implied prior on γ when a Gamma prior is used on all three precision parameters
τ1, τ2, τ12.

the right panel in Figure1 shows the prior on γ that corresponds to using325

a Gamma prior on all three precision parameters in model (1) for three326

different parameter choices. The figure illustrates how the resulting prior327

on γ depends strongly on the chosen values for the Gamma parameters,328

going from one extreme to the other in terms of prior weight on the base329

model.330

Results from a simulation study reported in Supplemental material 7331

indicate that the posterior mean estimates of γ are reasonably close to the332

true value under different scenarios. We have observed stable results for333

several choices of U , unless one defines on purpose an unflexible prior,334

where most of the probability mass is placed near the base model (e.g.335

when adopting a = 0.99 and a small U = 0.05). Results are comparable336

to those obtained using a Uniform prior on γ unless there is no interaction337

(i.e. γ = 0), in which case the uniform leads to greater bias when the338

population at risk is small.339
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4 Examples340

As introduced in Section 2, model (2) is more common in practice and
indeed it is the model adopted in this section for both case-studies. In the
case of structured and unstructured main effects, another set of parameters
ψ1 and ψ2 can be included to further distribute the variance, so that model
(4) becomes:

ηij = α +
√
τ−1
(√

1− γ
(√

1− φ
(√

1− ψ1β1i +
√
ψ1ε1i

)
+√

φ
(√

1− ψ2β2j +
√
ψ2ε2j

))
+
√
γδij

)
, (6)

where τ > 0, 0 < γ < 1, 0 < φ < 1, 0 < ψ1 < 1, 0 < ψ2 < 1,341

ε1 ∼ N (0, In1), ε2 ∼ N (0, In2) and β1, β2 and δ as in model (4).342

Result 1 about the PC for γ still holds; see Supplemental material 6.3.343

Note that the parameters in model (6) are identifiable as the model is344

just a reparametrized version of the classic space-time interaction model345

(2), where each random effect has its corresponding precision parameter.346

The number of parameters is exactly the same; in fact, it can be shown that347

there is a one-to-one mapping between the parameters of both versions of348

the model. As in model (1), appropriate constraints need to be imposed to349

ensure identifiability of the terms in (6). The constraints on the interaction350

term are summarized on Table 1, while on the temporal and spatial351

structured main effects it is enough to impose a sum to zero constraint.352

In the next two examples, we use the PC prior in Eq. (3) for τ and the PC353

prior in Eq. (5) for γ. Regarding φ, ψ1 and ψ2, we simply choose a uniform354

on (0,1) as a prior for each of them, but other choices are possible. In fact,355

a PC prior could also be used for φ following the work by Fuglstad et356

al.22, who also consider the use of a Dirichlet prior where the base model357

attributes equal weights to each component, thus expressing ignorance358

about how the variance is distributed. Similarly, one could use a PC prior359
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on each ψ1 and ψ2 as in Riebler et al.21, considering as base model the360

absence of structured effects.361

All the VP models presented in the next two examples were run using362

R-INLA32, see code in Supplemental material 9.363

4.1 Ohio lung cancer364

We illustrate our model using the Ohio lung cancer data6,8,9 which365

is available at http://www.biostat.umn.edu/˜brad/data2.366

html. These data report yearly counts of lung cancer deaths for white367

males from 1968 to 1988, in the 88 counties of Ohio. Figure 2 left panel368

displays the time series of mortality rate for all counties. Our aim is not to369

find the best model for this data, but to show what our approach can add370

in terms of interpretability of the results compared to a classical analysis371

as performed in Knorr-Held8.372

4.1.1 Model Let yij be the number of deaths at time i = 1, . . . , 21373

in county j = 1, . . . , 88 and popj be the population at risk in county374

j, we consider the model proposed in Knorr-Held8 assuming structured375

and unstructured effects for both space and time main effects, plus a376

space-time interaction term. The classical parameterization in Knorr-377

Held8 follows,378

yij ∼ Bin(popj, exp(ηij)/ exp(1 + ηij)),

ηij = α + β1i + ε1i + β2j + ε2j︸ ︷︷ ︸
main

+ δij︸︷︷︸
int

, (7)

where the main effects are modelled as:379

ε1 ∼ N
(
0, τ−1

ε1
In1

)
; ε2 ∼ N

(
0, τ−1

ε2
In2

)
;

β1 ∼ N
(
0, τ−1

1 R−
1

)
; β2 ∼ N

(
0, τ−1

2 R−
2

)
.
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where R1 and R2 are the unscaled structure matrices of a RW1 (for380

time) and an ICAR (for space). The space-time interaction is modelled381

by a Kronecker product IGMRF built on the precision matrices of the382

structured components β1 and β2. All the interaction types in Table 1 are383

considered in the following analysis. This model would require priors for384

the precision hyperparameters τε1 , τε2 , τ1, τ2, τ12.385

Instead of working with the above model, we assume the VP model in386

Eq. (6), with scaled structure matrices, with the priors for τ, γ, φ, ψ1, ψ2387

stated in Section 4. For τ ’s PC prior we set a = 0.01 and U = 1/0.31388

following the rule of thumb described in Section 2.2. The PC prior for γ389

is scaled by imposing U = 0.5, a = 0.99; results (not shown here) were390

stable for varying U = {0.05, 0.5, 0.95}.391

4.1.2 Results Table 2 reports various model selection criteria for the392

VP model, for interaction types I, II, III and IV, namely DIC33, WAIC34,393

leave-one-out log score (LOOLS), computed as−
∑n

i=1 log π(yi|y−i), and394

the log-marginal likelihood (logMLIK), π(y|M), which quantifies the395

likelihood of the data y under a given model M. PC priors enhance396

the marginal likelihood as a simple and effective tool for fair model397

comparison, when the compared models have similar structure and only398

differ on a particular component23,35. Assume M1 and M2 are the399

interaction type I and II models, respectively: these models are the same400

except for a different type of interaction. The Bayes factor36 is defined as401

K =
π(y|M1)

π(y|M2)
=
π(M1|y)

π(M2|y)

π(M2)

π(M1)
. (8)

The scale parameter θ of the PC prior for γ, which controls the decay402

rate from the base model (the model with no interaction), has to be403

chosen for both M1 and M2. We can handle this choice conveniently404

by setting the same θ forM1 andM2, which implies that π(M2)/π(M1)405

in Eq.(8) cancels out and the Bayes factor turns out to be the ratio of406
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the posterior odds. For all the four interaction models in Table 2 we407

follow this strategy and set the same decay rate for the PC prior on γ.408

The advantage is that the a priori contribution of the interaction to the409

total (generalized) variance is the same, no matter what interaction type is410

assumed; this is a desirable feature when having to choose among different411

types of interaction models the one that best fits the data. Therefore, we412

suggest comparing the logMLIK values for model choice purposes here;413

furthermore, DIC is known to favour complexity in models with many414

random effects37.415

From Table 2 we see that DIC, WAIC and LOOLS point to type II416

(followed by type IV) as the best model; a similar conclusion based on417

DIC was found in Knorr-Held8. Interestingly, logMLIK is largest for type418

I which indicates that the model with main effects plus an individual-419

level random effects capturing unstructured variation may be a better420

description of the Ohio data.421

Table 2. Model comparison criteria (computed using R-INLA) for the VP model, under
the four interaction types.

interaction type logMLIK DIC (deviance; pD) WAIC LOOLS
I -5623.52 10945.23 (10722.68; 222.55) 10957.75 5489.75
II -6759.84 10916.00 (10739.09; 176.91) 10931.3 5469.43
III -6098.89 10957.86 (10792.68; 165.18) 10980.99 5496.28
IV -7200.13 10919.23 (10755.06; 164.17) 10934.82 5470.89

In order to show now the gain of using our approach compared to a422

classical analysis we start by discussing some plots obtained for type I423

interaction about the main effects. The top right panel in Figure 2 displays424

the estimated main temporal effect, in the scale of the linear predictor,425

decomposed into its structured and unstructured (iid) components. The426

unstructured effects looks very flat compared to the structured ones which427

is probably responsible for most of the temporal variation in the relative428

risk. The relative risk increases roughly linearly in time, with a less429

steep increase towards the end of the time window. The bottom panels430
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in Figure 2 display the estimated structured (left) and iid (right) spatial431

effects in the scale of the linear predictor. Here the unstructured effect432

shows larger variability than the structured one which shows a very433

smooth spatial gradient from north-west to south-east. A visual inspection434

of this sort, also possible when the classical model is used, gives useful435

insights into the spatial and temporal patterns in the data. However, it does436

not allow proper quantification of the variance attributable to the various437

sources (main, interaction, spatial and temporal effects, etc), while this438

quantification is readily available from our VP model.439

Table 3 reports the mean (with 2.5 and 97.5 quantiles between brackets)440

of the posterior distribution of the mixing parameters γ, φ, ψ1, ψ2, from441

which we can understand quantitatively the contribution of the main442

sources of variation. In particular, rows 1 and 2 report the total variance443

partitioned into interaction versus main effects; rows 3 and 4 quantify how444

the variance attributable to the main effects is partitioned into space and445

time; rows 5 to 6 and 7 to 8 give the variance partitioning for the structured446

versus iid for space and time, respectively. The main findings about the447

variation of the spatio-temporal mortality risk pattern are as follows. First,448

the estimated contribution of the interaction is about 4.8%, which means449

that the main effects are responsible for most of the variability in mortality450

risk with the interaction playing a minor role in describing this data. This451

is reasonable for non-infectious diseases such a cancer7. Second, space452

is responsible for about 87.5% of the variation in risk explained by the453

main effects, which is hard to grasp from only looking at the plot of the454

main temporal and spatial effects in Figure 2. This result highlights the455

fact that lung cancer in Ohio had, in the period of time considered, larger456

variability over space than time which could be informative for policy457

makers and epidemiologists and may contribute to generate hypothesis on458

the role played by possible environmental risk factors in the region. Third,459

within the main spatial and temporal effects, the structured component is460
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predominant for time, while the iid component is predominant for space.461

However, these estimated contributions, and in particular the latter, are462

affected by greater uncertainty than the previous estimates, indicating that463

the data are less informative about the posterior for ψ1 and ψ2 than they464

are for γ and φ. These findings are stable across the different types of465

interactions (see Supplemental material 8).466

Table 3. Variance partitioning table for Ohio lung cancer, type I interaction. The column
named contribution reports the posterior mean of the hyper-parameters displayed in the
column named estimator, with 0.025 and 0.975 posterior quantiles between brackets. All
values are in a (0, 1) interval and indicate the proportional contribution of the model
component level 2 to the variance explained by the model component level 1.

Model component Variance Partitioning
level 1 level 2 estimator contribution
main+int main 1− γ̂ 0.952 (0.913, 0.979)

int γ̂ 0.048 (0.021, 0.087)
main space φ̂ 0.875 (0.765, 0.946)

time 1− φ̂ 0.125 (0.054, 0.235)
time iid ψ̂1 0.069 (0.010, 0.229)

str 1− ψ̂1 0.931 (0.771, 0.990)
space iid ψ̂2 0.658 (0.273, 0.925)

str 1− ψ̂2 0.342 (0.075, 0.727)

4.2 Covid-19 in Italy467

We use the VP model to study Covid-19 incidence variations across space468

and time in Italy. Data cover all of the 107 Italian provinces and span a469

period of time that goes from the onset of the pandemic on 24th February470

2020 to late July 2021 for a total of 70 weeks; the full dataset is made471

available by the Italian National Institute of Health through the website472

https://github.com/pcm-dpc/COVID-19. Data are originally473

available on a daily basis, but we aggregate them by week to smooth out474

artefactual patterns mainly due to delays in reporting new cases. The final475

dataset consists of weekly counts of new Covid-19 cases yij , for week476

i = 1, ..70 and province j = 1, . . . , 107, and the population at risk for each477

province popj .478
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Figure 2. Top left panel: time series of lung cancer (white males) disease rates per
10000 population at risk, for the 88 counties in the Ohio dataset. Top right panel:
temporally structured and temporally unstructured components for type I interaction
model, in the scale of the linear predictor. Bottom left and right panels show, respectively,
the spatially structured and unstructured components for type I interaction model, in the
scale of the linear predictor.

Our goal is to analyze the sources of variation in Covid-19 incidence479

rates in a scale between 0 and 1, which is easy to interpret and visualize480

and provides a clear idea of the contribution of each source. We follow the481

ideas in Picado et al.38 in considering the interaction term as a measure482
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of local heterogeneity, which can be seen as an indirect measure of483

how effective the control measures are. Hence a primary interest is to484

quantify the contribution of the interaction to the total variability, i.e. the485

posterior estimate for γ. Our second interest is to investigate changes in486

the estimated local heterogeneity across geographical macro-regions and487

time windows. We run two analysis: in the first one we fit the VP to the full488

dataset, in the second one we run the same VP model to separate subsets of489

the data which are constructed using combinations of geographical area,490

with levels north (N), centre (C) and south (S), and pandemic wave, with491

levels W1 and W2. The first wave (W1) covers the first 18 weeks and492

roughly indicates the national lock down period, while the second wave493

(W2) covers the rest of the time frame and indicates the period where494

restriction measures were set at a regional level. Data are displayed in495

Figure 3.496

4.2.1 Model We consider the binomial model in Eq. (7), where497

structured and unstructured random effects are specified for both space498

and time as main effects. We model the temporally structured effects as499

a RW1 (as we do not anticipate smoothness) and the spatially structured500

effects as an ICAR, and assume a type IV space-time interaction to capture501

potential complex space-time patterns which are not explained by the502

main space and time components. In this particular example, the spatial503

main effect may reflect differences on the public health policy strategies504

adopted in each area (for example different testing rates across provinces).505

Again, we avoid the classic parametrization and take advantage of the VP506

approach described in (6). Doing so, we can elicit the prior easily and507

describe the various sources of variability in the data in an intuitive way508

in terms of the mixing parameters γ, φ, ψ1, ψ2.509

Available information on the nature of the disease can be used to aid in510

parameter choice for the PC priors on γ and τ . Since we know that we are511

dealing with a contagious disease which evolves over time possibly in a512

Prepared using sagej.cls



24 Journal Title XX(X)

different manner across provinces we anticipate a relevant contribution of513

the interaction term. Thus we choose θ in Eq. (5) by setting U = 0.95, a =514

0.99, which implies a large probability that γ < 0.95. In choosing the scale515

parameter λ of the PC prior for τ in Eq. (3) we consider the scale of the516

logit transformed incidence rates and use the rule of thumb described in517

Simpson et al.20, imposing a marginal standard deviation equal to 2 for518

the incidence rates in the linear predictor (logit) scale.519

4.2.2 Results The left panel in Figure 4 reports the variance520

partitioning plot for the full Covid-19 dataset; this plot is just a graphical521

version of the variance partitioning table that was presented in Table 3 for522

the Ohio lung cancer data. This plot resembles the graphs in Gelman39
523

that summarize anova results in terms of estimated standard deviation524

for each bunch of random effects in the model. Our variance partitioning525

plot follows the same idea but represents the contribution of each source526

in a scale (0, 1). The main effects acount for the greatest proportion of527

the total variation. Within the main effects, the variability in incidence528

rates is mostly driven by the spatial component, in particular by the529

unstructured part of it (although the corresponding posterior estimates are530

highly uncertain), while for the temporal part is the structured component531

that explains most of the variability.532

The middle and right panels in Figure 4 report the variance partitioning533

plot for the models fitted to different subsets of the full dataset to534

investigate whether the spatio-temporal pattern in Covid-19 cases is535

consistent or not across geographical areas (N, C, S) and pandemic waves536

(W1, W2). It is interesting to see that the impact of the interaction term537

is greater in the second wave than in the first one for all three areas,538

suggesting greater local heterogeneity during the second wave. This could539

reflect the fact that restricition measures went from being national in540

the first wave to being regional in the second one, so we expect greater541

heterogeneity over space during the latter. Within the first wave, the main542
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Figure 3. Weekly Covid-19 incidence rates in the North (left panel), Centre (central
panel) and South (left panel) of Italy. The vertical dashed line marks the separation
between the first (W1) and second (W2) wave.
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Figure 4. Variance partitioning plot for Covid-19 full dataset (left panel), first wave
(middle panel) and second wave (right panel). The middle and right panels allow
comparison across northern (black), central (green) and southern (red) areas in Italy.

effects are responsible for a greater proportion of variation in all three543

areas, but that attributable to the interaction is slightly greater in the South,544

followed by the North and then the Centre.545

5 Discussion546

In this paper, we revisit spatio-temporal disease mapping, with particular547

attention to the interaction models discussed in Knorr-Held8, and propose548

a new model that allows variance partitioning among the main effects and549

the space-time interaction. When defining priors on the hyperparameters550

that control complexity of each intrinsic GMRF component, it is important551
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to bear in mind that the main effects belong to the null space of the552

interaction term. This means that the interaction can naturally be regarded553

as an extension of the model including the main effects alone. This554

idea leads to a model reparametrization where a mixing parameter γ555

balances out the contribution of the main and interaction effects to the556

total variance. The proposed approach implicitly defines a joint prior on557

the precision parameters of the various terms in the classic parametrization558

of the model.559

The advantages of this reparametrization are twofold; on the one hand,560

prior choice can be made in an intuitive manner using a PC prior, avoiding561

the issue of eliciting priors on hard-to-interpret precision parameters. In562

space-time disease mapping, the nature of the disease can provide useful563

information to elicit the prior; for example, for non-infectious diseases564

such as the one considered in the first case study most of the variation565

is expected to be explained by the main effects7. This knowledge can be566

easily passed onto the PC prior for the mixing parameter γ, while coding567

this information into a precision parameter in the classic parametrization568

would be far from easy. On the other hand, the posterior for γ becomes569

a useful tool to investigate variations in disease risk on a very practical570

scale and can provide useful insights into epidemiological interpretations.571

We have illustrated the use of the VP model in two examples; the variance572

partitioning tables and plots summarize the contribution of the different573

sources of variation in terms of proportion of explained (generalized)574

variance.575

In a broader perspective, our work falls within the framework of576

variance distributing models as introduced by Fuglstad et al.22, and577

adds to the literature in considering intrinsic GMRF models. The578

variance partitioning approach proposed here may be adopted in all579

those applications where intrinsic GMRFs are meant as tools to perform580
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smoothing in more than one dimension; for instance in the analysis of grid-581

data such as those arising from agricultural field trials or spatio-temporal582

data from environmental studies and ecological surveys.583
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6 Proofs680

For ease of presentation, we first prove Result 1 for model (4) type IV interaction in Appendix681

6.1 and then show that it is also valid for types I, II and III in Appendix 6.2. Details regarding the682

proof for the model including unstuctured and structured main effects (model (6)) can be found683

in Appendix 6.3. Throughout the proof, we assume a RW2 model on the temporal random effect684

and an ICAR on the spatial one. The modification of the proof when a RW1 model is used on the685

temporal effect is straightforward.686

6.1 Proof of Result 1 for type IV interaction687

Model (1) can be written in general form (in the linear predictor scale) as688

η = α1n +
√
τ−1

(√
1− γω0 +

√
γω1

)
, (9)

where τ > 0 is the precision parameter, 0 < γ < 1 is the mixing parameter, ω0, ω1 are n-689

dimensional IGMRFs with precision matricesQ0 andQ1 respectively, with690

Q−0 = (1− φ)(1n2 ⊗ In1)R̃
−
1 (1n2 ⊗ In1)

T + φ(In2 ⊗ 1n1)R̃
−
2 (In2 ⊗ 1n1)

T

and691

Q1 = R̃2 ⊗ R̃1

where R̃1 and R̃2 are the scaled structure matrices of a RW2 and an ICAR, respectively. Note that692

rank(R̃1) = n1 − 1 and rank(R̃2) = n2 − 2, so it follows that rank(Q1) = n1n2 − n2 − 2n1 +693

2 and rank(Q0) = n1 + n2 − 3. For ease of presentation, we simplify the notation and denote694

n = n1n2, r = 2n1 + n2 − 2, so that rank(Q1) = n− r. It is immediate to see that rank of Q0695

is smaller than the rank deficiency ofQ1, i.e.:696

n1 + n2 − 3 ≤ 2n1 + n2 − 2⇔ n1 ≤ 2n1 + 1,

so that rank(Q0) = r − l, where l ≥ 0 is the difference between rank(Q0) and r. For ease697

of presentation, we can assume l = 0 (note that if l 6= 0 then the adjustment of the proof is698

straightforward).699

700

Consider τ = 1 without loss of generality. To derive the PC prior for γ we will study the limiting701

behaviour of KLD(π1||π0) for γ = γ0 → 0 under the base model. The distributions π1 and π0 are702
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defined as follows:703

π1 ∼ N1(0,Σ1) with Σ1 = (1− γ)Q−0 + γQ−1

π0 ∼ N0(0,Σ0) with Σ0 = (1− γ0)Q−0 + γ0Q
−
1

The KLD is given by:704

KLD(π1||π0) =
1

2

(
trace(Σ−

0 Σ1)− (n− r)− log
|Σ1|
|Σ0|

)
. (10)

Expression (10) can be computed easily if we consider the eigendecomposition of the matrices705

Q0 = VQ0ΛQ0V
T
Q0

andQ1 = VQ1ΛQ1V
T
Q1

, with706

ΛQ0 = diag(λ̃1, λ̃2, . . . , λ̃r, 0, . . . , 0︸ ︷︷ ︸
n−r

) ; ΛQ1 = diag(0, . . . , 0︸ ︷︷ ︸
r

, λ′r+1, . . . , λ
′
n), (11)

707

VQ0 = [e1, e2, . . . , er, er+1, . . . , en] ; VQ1 = [ê1, . . . , êr, êr+1, . . . , ên]. (12)

where ΛQ0 , ΛQ1 represent the diagonal matrix of eigenvalues and VQ0 and VQ1 the matrices708

whose columns are the associated eigenvectors. A common eigenvector basis V can be formed as709

V = [e1, e2, . . . , er, êr+1, . . . , ên],

so thatQ0 = V ΛQ0V
T andQ1 = V ΛQ1V

T . If l 6= 0 then there would be a set of eigenvectors710

that are associated to zero eigenvalues in both matrices Q0 and Q1 contemporarily, so the711

common basis can still be formed.712

713

Matrices Σ−0 and Σ1 can be re-expressed as714

Σ−
0 =

{
V
[
(1− γ0)Λ−1

Q0
+ γ0Λ

−1
Q1

]
V T
}−1

= V
[
(1− γ0)Λ−1

Q0
+ γ0Λ

−1
Q1

]−1
V T

and715

Σ1 = V
(
(1− γ)Λ−1

Q0
+ γΛ−1

Q0

)
V T ,

where Λ−1
Q0

and Λ−1
Q1

are diagonal matrices with elements λi and λ̂i. Note that Q0 and Q1 are716

singular; following 20 appendix A2, λi = 1/λ̃i if λ̃i > 0 and λi = 0 when λ̃i = 0. Analogously,717

λ̂i = 1/λ′i if λ′i > 0 and λ̂i = 0 when λ′i = 0.718

719
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First, we compute trace(Σ−1
0 Σ1), for which we need the diagonal diag(Σ−1

0 Σ1). Let us define720

D(γ) = diag
(
(1− γ)λi + γλ̂i

)
i=1,...,n

we can re-express the diagonal as721

diag(Σ−1
0 Σ1) = V D(γ0)

−1D(γ)V T .

The trace simplifies to722

tr(V D(γ0)
−1D(γ)V T ) = tr(V TV D(γ0)

−1D(γ))

= tr(D(γ0)
−1D(γ))

=

n∑
i=1

(1− γ)λi + γλ̂i

(1− γ0)λi + γ0λ̂i

=

n∑
i=1

α(γ, γ0)i

(note that if l 6= 0, then we would sum over all indices i 6= r − l + j for j = 1, . . . , l).723

724

Second, we compute log |Σ1|
|Σ0|

in (10):725

log |Σ1| − log |Σ0| =

n∑
i=1

[
log
(
(1− γ)λi + γλ̂i

)
− log

(
(1− γ0)λi + γ0λ̂i

)]
=

n∑
i=1

log

(
(1− γ)λi + γλ̂i

(1− γ0)λi + γ0λ̂i

)

=

n∑
i=1

logα(γ, γ0)i (13)

It results:726

KLD(π1||π0) =
1

2

(
n∑
i=1

α(γ, γ0)i − (n− r)−
n∑
i=1

logα(γ, γ0)i

)
. (14)

Below we compute the term α(γ, γ0)i for i = 1, . . . , r and i = r + 1, . . . , n:727

• i = 1, . . . , r (λ̂i = 0):728

α(γ, γ0)i =

1−γ
1−γ0

λi +
γ

1−γ0
0

λi +
γ0

1−γ0
0

=
1− γ
1− γ0
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• i = r + 1, . . . , n (λi = 0):729

α(γ, γ0)i =

1−γ
1−γ0

0 + γ
1−γ0

λ̂i

0 + γ0
1−γ0

λ̂i
=

γ

γ0

Note that the eigenvalues of Q0 and Q1 turn out to be irrelevant for computing the KLD, as they730

cancel out in the α(γ, γ0)i terms above. Finally, the KLD is:731

KLD(π1||π0) =
1

2

[
r
1− γ
1− γ0

+ (n− r) γ
γ0
− (n− r)− r log 1− γ

1− γ0
− (n− r) log γ

γ0

]
.

(15)

For γ0 → 0 and γ0 � γ < 1 the dominant term in expression (15) is (n− r) γ
γ0

. Therefore, the732

distance from the base model, measured as d(γ) =
√
2KLD, is733

d(γ) = lim
γ0→0

√
r
1− γ
1− γ0

+ (n− r) γ
γ0
− (n− r)− r log 1− γ

1− γ0
+ (n− r) log γ

γ0

'
√

(n− r) γ
γ0

= c
√
γ,

for a constant c > 0 that does not depend on γ. Since 0 ≤ d(γ) ≤ c, assigning a truncated734

exponential with rate λ on d(γ) we have735

π(d(γ)) =
λ exp(−λc√γ)
1− exp(−λc) , 0 ≤ d(γ) ≤ c, λ > 0.

Applying a change of variable and reparametrizing θ = λc leads to the PC prior for γ:736

π(γ) =
θ exp(−θ√γ)

2
√
γ(1− exp(−θ)) 0 < γ < 1, θ > 0

which completes the proof.737

6.2 Proof of Result 1 for interaction types I, II and III738

From Appendix 6.1, it is clear that the proof works provided that a common eigenbasis can be739

found for matricesQ0 (which is the same as in Appendix 6.1) andQ1 (that changes depending on740

the type of interaction). We first illustrate that this is case for interaction types I, II and III, to then741

show that the KLD remains the unchanged.742

743

Interaction type I744

For the type I interaction, Q1 = In2 ⊗ In1 so it has a single eigenvalue equal to 1 with745
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multiplicity n1n2. Given that any vector of Rn1n2 is an eigenvector ofQ1, it is enough to use the746

eigenvectors from the eigendecomposition ofQ0 as a common eigenbasis.747

748

Interaction type II749

For the type II interaction, Q1 = In2 ⊗ R̃1 has 2n2 eigenvectors associated to null eigenvalues,750

and n2(n1 − 2) eigenvectors associated to non-null eigenvalues, that come from the tensor product751

of non-null eigenvectors from the matrices In2 and R1. Let eR1
1 , . . . , eR1

n1−2 be the eigenvectors752

associated to non-null eigenvalues of R1; the first n1 − 2 eigenvectors associated to non-null753

eigenvalues of the matrixQ0 are:754

1n2 ⊗ e
R1
1 , . . . ,1n2 ⊗ e

R1
n1−2 (16)

while the first n1 − 2 eigenvectors associated to non-null eigenvalues of the matrixQ1 are:755

e1 ⊗ eR1
1 , . . . , e1 ⊗ eR1

n1−2

where e1 is the first eigenvector of the identity matrix In2 . We can eigen decompose the identity756

matrix using the eigenbasis for R2, so that e1 = 1n2 ; this guarantees that a common matrix757

of eigenvectors V can be found. In particular, it would be formed of the n1 + n2 − 3 non null758

eigenvectors from Q0 and the n1n2 − 2n2 non null eigenvectors from Q1. Note that these two759

collection of vectors will have n1 − n2 − 3 vectors in common from the eigenvectors in (16) if760

n1 > n2 + 3.761

762

Interaction type III763

In the type III interaction, Q1 = R̃2 ⊗ In1 has n1 eigenvectors associated to null eigenvalues764

and n1n2 − n1 eigenvectors with non-null eigenvalues. In particular, let eR2
1 , . . . , eR2

n2−1 be the765

eigenvectors associated to non-null eigenvalues of R2; the following are n2 − 1 eigenvectors766

associated to non-null eigenvalues of the matrixQ0:767

eR2
1 ⊗ 1n1 , . . . , e

R2
n2−1 ⊗ 1n1 (17)

while for matrixQ1 we find the following n2 − 1 eigenvectors associated to non-null eigenvalues768

:769

eR2
1 ⊗ e1, . . . , eR2

n2−1 ⊗ e1
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where e1 is the first eigenvector of the identity matrix In1 . Similarly to the type II interaction,770

we can use the eigenbasis for R1 to eigen decompose In1 so that a common eigenbasis can be771

found. It would be formed of the n1 + n2 − 3 non null eigenvectors from Q0 and the n1n2 − n1772

non-null eigenvectors fromQ1. Note that these two collection of vectors will have n2 − 3 vectors773

in common from the eigenvectors in (17) if n2 > 3.774

775

Regarding the KLD, which is calculated based on the eigenvalues of Q0 and Q1, whenever776

the rank of Q0 is not smaller than the rank defficiency of Q1, there will be a number of pairs of777

eigenvalues that are not zero contemporarily. This number is equal to n1 + n2 − 3 in the type I,778

n1 − n2 − 3 in the type II and n2 − 3 in the type III interaction. Nevertherless, the contribution779

of the corresponding term α(γ, γ0)i in the KLD is minimal and the dominant term when γ0 → 0780

remains the same as shown in Appendix 6.1 for the type IV interaction, so the PC prior does not781

change.782

6.3 Model with structured and unstructured main effects783

In the case of structured and unstructured main effects, matrixQ−0 :784

Q−0 = (1− φ)(1n2 ⊗ In1)
(
(1− ψ1)R̃

−
1 + ψ1In1

)
(1n2 ⊗ In1)

T +

φ(In2 ⊗ 1n1)
(
(1− ψ2)R̃

−
2 + ψ2In2

)
(In2 ⊗ 1n1)

T

and rank(Q0) ≤ n1 + n2.785

786

Interaction type IV787

Following the proof in Appendix 6.1, it is enough to show that rank(Q0) ≤ 2n2 + n1 − 2. Given788

that the rank of Q0 is at most n1 + n2, the rank condition is true provided that 0 ≤ n2 − 2, i.e.789

that there are at least 2 spatial locations, which is always true in practice.790

791

Interaction types I,II, III792

For interaction types I, II and III it is still possible to find a common eigenbasis, as adding a constant793

to the diagonal of a matrix does not change its eigenvectors. The eigenvalues do change though, so794

now the number of eigenvalues that are not zero contemporarily inQ0 andQ1 (whenever the rank795

ofQ0 is not smaller than the rank defficiency ofQ1) are n1 + n2 − 1 for type I, n1 − n2 − 1 for796

type II and n2 − 1 for type III, and the dominant term in the KLD remains the same as before.797
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7 Simulation study798

We run a simulation study to investigate the performance of the VP model when using the PC prior799

for γ proposed in Section 3.1 Eq. (5). We generate datasets based on the space and time patterns800

estimated from the Covid-19 data described in Section 4.2; to limit the computational burden we801

select a subset of the the full dataset (north provinces, wave 1) with n1 = 17 weeks and n2 = 47802

provinces. Assume i and j are indices for weeks and provinces, respectively, we simulate data as803

yij ∼ Bin(popj , µij), (18)

logit(µij) =
√

1/τ
{√

1− γ
[√

1− φβ̂1i +
√
φβ̂2j

]
+
√
γδ̂i,j

}
, (19)

where popj is the population in province j, µij the Covid-19 incidence rate at week i in804

province j. The vectors β̂1 = (β̂1,1, . . . , β̂1,n1)
T , β̂2 = (β̂2,1, . . . , β̂2,n2)

T and δ̂ = {δ̂ij}, i =805

1, . . . , n1, j = 1, . . . , n2 contain the posterior means for, time, space and space-time random806

effects, respectively. These estimates come from the VP model (Eq. (4) in Section 3) fitted to807

the Covid-19 data, north provinces wave 1, by assuming a type IV interaction (see the top panels808

in Figure 5 for the time and space main effects). We further assume τ = 1, φ = 0.5 and keep809

them fixed throughout the simulation study, while letting the mixing parameter γ vary, in order to810

create different scenarios according to the contribution of the interaction to the total (generalized)811

variance.812

Our goals are: 1) to check how well the true γ is recovered when estimated using our VP model813

Eq. (4) - where, as an estimator for γ we take the posterior mean; 2) to assess sensitivity to the814

choice of θ, the scaling parameter for the PC prior on γ.815

7.1 Simulation study scenarios816

The following scenarios are considered regarding the contribution of the interaction to the total817

variance:818

• SC1: γ = 0 (additive model, no interaction);819

• SC2: γ = 1/10 (low interaction);820

• SC3: γ = 1/3 (moderate interaction);821

• SC4: γ = 2/3 (strong interaction).822

Scenario SC1 (γ = 0) assumes an additive model where the time pattern remains the same across823

provinces. Scenarios SC2 and SC3 represent cases of, respectively, low and moderate interaction.824

Prepared using sagej.cls



37

SC4 is intended as a limiting case where the interaction between space and time main effects is825

very strong; as we can see from Figure 5 (bottom right panel), where one simulated dataset under826

SC4 is displayed, the temporal pattern can vary substantially across provinces and some of them827

show a decreasing trend at the beginning of the first wave period, which is clearly unrealistic for828

Covid-19 disease.829

We consider different scenarios by letting the number of trials of the Binomial model, popj , j =830

1, . . . , n2, vary. The following three sample size (i.e. population at risk) levels are considered:831

• Actual sample size: the population in province j is taken as popj ;832

• Smaller sample size: the population in province j is taken as popj/10;833

• Larger sample size: the population in province j is taken as popj · 10.834

The second scenario represents a smaller sample size case, where the data carries less information835

about γ thus we expect less accuracy in the model estimates; analogously, the third scenario836

represents a case where data are more informative about γ, hence we expect the model to provide837

improved estimates in this case.838

We simulated 100 datasets under SC1, SC2, SC3 and SC4, for each of the three different sample839

size levels described above. The VP model (Eq. (4), Section 3) was fitted to each dataset assuming a840

RW1 as the time main effect, an ICAR as the space main effect and a type IV space-time interaction.841

All the computations were done using R-INLA.842

The VP model was fitted under 4 different prior choices for γ:843

• prior 1: PC(U = 0.05, a = 0.99);844

• prior 2: PC(U = 0.5, a = 0.99);845

• prior 3: PC(U = 0.95, a = 0.99);846

• prior 4: Uniform(0, 1).847

The first three priors consider the different scalings of the PC prior displayed in Figure 1. This848

way, robustness of the results for changing U can be tested. The values U = {0.05, 0.5, 0.95}849

reflect, respectively, an unflexible, moderate and flexible prior on the space-time interaction random850

effects. We also estimated the model using a uniform prior for γ.851

Regarding τ and φ, we assigned a Gumbel type 2 PC prior on τ and a Uniform(0, 1) on φ852

to express ignorance about the variance contribution of space (and time). We considered two853

different scalings of the PC prior on τ (U = 2/0.31 and U = 100/0.31) but they did not make854

any difference on posterior estimates.855
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7.2 Simulation study results856

Figures 6 to 9 report the boxplots of the posterior mean of γ obtained by fitting the VP model to the857

100 simulated datasets under the four scenarios SC1, SC2, SC3 and SC4. The horizontal dashed858

line represents the true γ set by simulation in each scenario. Each figure has three panels that refer859

to actual (left), smaller (central) and larger (right) sample size cases. The four boxplots in each860

panel correspond to different priors on γ: the PC priors with scalings U = {0.05, 0.5, 0.95} and861

the Uniform prior.862

Regarding SC1 (Figure 6), where the true γ is zero, we see that the Uniform prior implies a863

larger bias than the PC prior choices do, which is presumably due to the Uniform being prone to864

overfitting. This behaviour is more evident in the small sample size case, as a result of the data865

being less informative about the proportion of variance explained by the interaction. In scenarios866

where the true γ > 0 (i.e. SC2, SC3 and SC4) we generally observe a negative bias under all prior867

choices, however the bias is smaller as the sample size increases.868

Regarding the first aim of the study, i.e. checking the ability to recover the true γ set by869

simulation, we can conclude that estimation of γ is reasonable in all cases. We would like to870

emphasize that while the bias achieved under the uniform prior is always slightly smaller than the871

bias obtained by the PC priors in scenarios SC2, SC3 and SC4, it becomes much larger in SC1872

because of the tendency to overfitting of the uniform. This highlights the fundamental advantage of873

PC priors which avoid overfitting by default as they shrink to the base model γ = 0 by construction.874

Regarding our second aim, i.e. studying sensitivity of the results to the choice of θ, we notice that875

as long as the unflexible choice of U = 0.05 is avoided, the mixing γ is estimated fairly well using876

the moderate and flexible choices, U = 0.5 or 0.95. In particular, U = 0.5 or U = 0.95 return877

comparable estimates of the mixing parameter γ under all scenarios. From these results, we suggest878

that in absence of strong prior information on γ the choice of a PC prior with U = 0.95, a = 0.99879

is a reasonable weakly informative prior on γ that allows flexibility and at the same time avoids880

model overfitting.881

As regards estimation of φ and τ , results (not reported here) show that the true values φ = 0.5882

and τ = 1 are accurately estimated in all scenarios by all priors.883
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Figure 5. Simulation scenarios. Top panels: plots of the main effects for time and space.
The central and bottom panels display one simulated dataset under each of the four
scenarios (SC1, SC2, SC3, SC4) varying according to the strength of the interaction γ.
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Figure 6. Simulation results for the mixing parameter γ, under scenario SC1; true γ = 0.
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Figure 7. Simulation results for the mixing parameter γ, under scenario SC2; true
γ = 1/10.
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Figure 8. Simulation results for the mixing parameter γ, under scenario SC3; true
γ = 1/3.

8 Additional material on Ohio and Covid-19 examples884
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Figure 9. Simulation results for the mixing parameter γ, under scenario SC4; true
γ = 2/3.
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9 R code885

Below the R-INLA code to fit model (6), with type 4 interaction, to the Covid-19 dataset in Section886

4.2. Note that the model can be estimated using the usual inla call; the R package inlaVP was887

written to aid the user in setting the interaction type, building the constraints and defining the joint888

prior. The R package inlaVP is not on CRAN yet, but it is available on github.889

890

1 rm(list=ls())891

2 library(INLA)892

3 # install inlaVP using devtools893

4 library(devtools)894

5 install_github("massimoventrucci/inlaVP")895

6 library(inlaVP)896

7897

8 ## load the data and create interaction index898

9 data(covid_italy)899

10 n1 <- length(unique(covid_italy$id.week))900

11 n2 <- italy_graph$n901

12 dat.tmp <- expand.grid(id.week=1:n1,902

13 id.province=1:n2)903

14 dat.tmp$id.int <- 1:(n1*n2)904

15 dat <- merge(covid_italy, dat.tmp,905

16 by=c("id.week", "id.province"),906

17 all.x=TRUE)907

18 dat.sort <- dat[order(dat$id.int),]908

19 # IMP: sorting the interaction indices is needed909

20910

21 # the graph for Italy is disconnected (3 connected component ’cc’):911

22 # set one separate intercept for each cc of size > 1912

23 intercept <- rep(NA, graph$n)913

24 for(i in seq_along(graph$cc$nodes))914

25 if (length(graph$cc$nodes[[i]]) > 1) intercept[graph$cc$nodes[[i]]] <-915

i916

26 intercept <- as.factor(intercept)917

27 dat.sort <- merge(dat.sort, data.frame(id.province=1:graph$n, intercept.918

cc=intercept))919

28920

29 ## inla call921

30 library(INLA)922

31 inla.setOption(num.threads = "1")923

32 # setting 1 core is needed when using joint prior (jp) inside control.924

expert = list(jp = ...),925
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Figure 10. Observed weekly cases of Covid-19 per 100000 residents in North Italy
during first wave, from week 1 to week 6.
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Figure 11. Observed weekly cases of Covid-19 per 100000 residents in North Italy
during first wave, from week 7 to week 12.
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Figure 12. Variance partitioning plots for the Covid-19 example; the analysis here refer
to different subset of the data for each combination of the factors geographical area, with
levels north (N), centre (C) and south (S), and pandemic wave, with levels W1 and W2.
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33926

34 # define the interaction model927

35 set.int <- control.interaction(928

36 m1 = m(covid_italy$id.week, igmrf.type = "rw1"),929

37 m2 = m(covid_italy$id.province, igmrf.type = "besag", g=italy_graph),930

38 interaction.type = 4)931

39932

40 # define the joint prior933

41 jp.vp.m2 <- function(theta, theta.desc = NULL) {934

42 ### the user must specify ’hyper’, with the scaling parameters of the935

PC priors for tau and gamma:936

43 hyper <- list(prec=list(u=2/0.31, a=0.01),937

44 gamma=list(u=0.95, a=0.99))938

45 fun_striid <- function(theta)939

46 {940

47 tau <- inlaVP:::theta.to.tau.striid(theta)941

48 gamma <- inlaVP:::theta.to.gamma.striid(theta)942

49 phi <- inlaVP:::theta.to.phi.striid(theta)943

50 psi1 <- inlaVP:::theta.to.psi1.striid(theta)944

51 psi2 <- inlaVP:::theta.to.psi2.striid(theta)945

52 return(c(phi,gamma,tau,psi1,psi2))946

53 }947

54948

55 if (!is.null(theta.desc)) {949

56 for(i in seq_along(theta.desc))950

57 print(paste0(" theta[", i, "]=", theta.desc[i]))951

58 }952

59 if (inlaVP:::theta.to.phi.striid(theta) >=0 & inlaVP:::theta.to.phi.953

striid(theta) <=1 &954

60 inlaVP:::theta.to.psi1.striid(theta) >=0 & inlaVP:::theta.to.psi1.955

striid(theta) <=1 &956

61 inlaVP:::theta.to.psi2.striid(theta) >=0 & inlaVP:::theta.to.psi2.957

striid(theta) <=1 ){958

62 lprior <- INLA:::inla.pc.dprec(prec=inlaVP:::theta.to.tau.striid(959

theta),960

63 u= hyper$prec$u, alpha=hyper$prec$a,961

log=TRUE) +962

64 inlaVP:::pc.gamma(gamma=inlaVP:::theta.to.gamma.striid(theta),963

65 lambda=inlaVP:::pcprior.interaction.lambda(964

66 u=hyper$gamma$u, alpha=hyper$gamma$a),965

67 log=TRUE) +966
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68 log(abs(det(numDeriv:::jacobian(fun_striid, as.numeric(theta),967

method="Richardson"))))968

69 } else {969

70 lprior <- -.Machine$double.xmax970

71 }971

72 return(lprior)972

73 }973

74 jpr.vp <- inla.jp.define(jp.vp.m2)974

75975

76 # set ini976

77 theta.ini <- taugammaphipsi1psi2.to.theta(taugammaphipsi1psi2 = c977

(1,0.25,0.5,0.5,0.5))978

78979

79 # run inla980

80 res.covid <- inla(y ˜ 1 + intercept.cc +981

81 f(id.time,982

82 model=’rw1’,983

83 constr = T,984

84 scale.model=T) +985

85 f(id.space,986

86 model=’besag’,987

87 graph=italy_graph,988

88 adjust.for.con.comp = T,989

89 constr = T,990

90 # Note: if adjust.for.con.comp = T,991

91 # then ’constr = T’ interpreted as a sum-to-zero992

constr on each cc of size > 1993

92 scale.model=T) +994

93 f(id.int,995

94 model="generic0",996

95 Cmatrix = set.int$Rkron,997

96 constr = F,998

97 extraconstr = set.int$constr) +999

98 f(id.time2, model=’iid’) +1000

99 f(id.space2, model=’iid’),1001

100 data = list(y = dat.sort$new_cases,1002

101 id.time=dat.sort$id.week,1003

102 id.time2=dat.sort$id.week,1004

103 id.space=dat.sort$id.province,1005

104 id.space2=dat.sort$id.province,1006

105 id.int=dat.sort$id.int,1007

106 pop=dat.sort$pop_province),1008
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107 family = ’binomial’, Ntrials=pop,1009

108 control.expert = list(jp = jpr.vp),1010

109 control.predictor = list(link=1),1011

110 control.compute = list(config=TRUE,1012

111 dic=TRUE,1013

112 waic = TRUE,1014

113 cpo=TRUE))1015

1141016

115 ## VP plot1017

116 vp.plot(res.covid, main=paste(’Vp plot’))1018
1019
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