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Abstract—Efficient link configuration in millimeter wave (mmWave)
communication systems is a crucial yet challenging task due to the
overhead imposed by beam selection. For vehicle-to-infrastructure (V2I)
networks, side information from LIDAR sensors mounted on the vehicles
has been leveraged to reduce the beam search overhead. In this letter,
we propose a federated LIDAR aided beam selection method for V2I
mmWave communication systems. In the proposed scheme, connected
vehicles collaborate to train a shared neural network (NN) on their
locally available LIDAR data during normal operation of the system.
We also propose a reduced-complexity convolutional NN (CNN) classifier
architecture and LIDAR preprocessing, which significantly outperforms
previous works in terms of both the performance and the complexity.

Index terms— Federated learning, mmWave beam selection, LIDAR.

I. INTRODUCTION

Millimeter wave (mmWave) is a promising technology for high
data rate vehicle-to-infrastructure (V2I) communications. However,
efficient beam selection in mmWave communications is challenging
due to the overhead imposed by the beam search process. Recently it
was shown that side information from sensors mounted on vehicles
can be exploited to reduce the beam-selection overhead for mmWave
links. For instance, position information can be used to query the most
prominent mmWave beams [1]. Inertial sensors placed on vehicle’s
antenna arrays enable efficient antenna element configuration by
tracking the orientation of the vehicle [2]. Furthermore, position
and motion information can be jointly processed to further reduce
the alignment overhead [3]. From the infrastructure side, a radar
located at the base station (BS) can help estimate the direction of
arrival and aid the beam search [4]. Spatial information obtained
from out of band measurements is exploited in [5]–[8] where [7], [8]
used sub-6GHz channel measurements to train neural network (NN)s
for mmWave beamforming. Vision-aided approaches are considered
in [9]–[11]. BSs equipped with cameras are proposed to employ
computer vision and deep learning techniques to predict mmWave
blockage and beam strength in [10]. The authors in [11] build a
panoramic point cloud from images taken within the cellular coverage
area. This point cloud is then input to a neural network (NN) to
predict the optimal beams.

The use of light detection and ranging (LIDAR) technology is
considered in [12], [13], where a NN architecture is trained over
simultaneous LIDAR and ray-tracing channel datasets to identify K
beam directions that include the beam pair with the best channel
condition between the vehicle and the BS with the highest probability.
The approach in [12], [13] is distributed, in the sense that, each
vehicle uses the trained NN on the measurements from its own
LIDAR sensor to infer its top-K beam directions. It is shown in
[13] that such a distributed approach outperforms centralized beam
selection, where a NN at the BS infers the best beams for all
the vehicles in its coverage area either by combining LIDAR data
from all the vehicles or using a single LIDAR sensor mounted at
the BS. Although the NN performs beam selection inference in a
distributed fashion in [12], [13], it is trained offline on LIDAR and
channel measurements from all the vehicles gathered in a centralized
dataset. However, in practice, gathering a large centralized dataset
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of individual LIDAR measurements from vehicles in each individual
cell is challenging as it requires communicating a large amount of
LIDAR point cloud data over the uplink channel.

This paper builds upon the unpublished work of the authors
that recently won the “AI/ML in 5G” competition ranking second
in “ML for mmWave beam selection” challenge organized by the
International Telecommunications Union (ITU) [14], [15].In this
work, we propose fully a distributed LIDAR-aided beam selection
method for V2I mmWave communication systems, in which both
the inference and training of the NN are performed in a distributed
fashion at the vehicles in the coverage area of the BS. We propose
a three-phase procedure, which enables the vehicles to periodically
collect up-to-date data and train or fine-tune the NN in a federated
manner during normal operation of the system. After the training
phase, each vehicle leverages the trained NN and its locally available
LIDAR data to infer a subset of beams that are most likely to contain
the best transmitter/receiver beam pair. We also propose a reduced-
complexity convolutional NN (CNN) architecture along with LIDAR
preprocessing, which significantly outperforms previous works. The
proposed architecture achieves a top-10 classification accuracy of
91.17% on the benchmark Raymobtime dataset [16], which is a
significant improvement over the previous works in [12], [13], while
reducing the number of floating point operations (FLOPs) and param-
eter complexity of the NN by factors of 100 and 55, respectively. For
further reproduction of the reported results, our codes are available
at: https://github.com/galidor/ITU Beam Selection TF

II. SYSTEM MODEL

We consider a downlink orthogonal frequency division multiplex-
ing (OFDM) mmWave system, where a BS located on the street curb
serves connected vehicles in its coverage area over Nc subcarriers.
The BS and the vehicles are equipped with Nt and Nr antennas,
respectively. Denote by Hn the downlink channel matrix from the
BS to a vehicle over the n’th subcarrier. We assume that both the BS
and the vehicle have antenna arrays with only one radio frequency
(RF) chain and apply analog beamforming. We assume fixede beam
codebooks Ct = {fi}Ct

i=1 and Cr = {wj}Cr
j=1 at the transmitter and

receiver sides, respectively.
Utilizing a pair (i, j) ∈ Ct×Cr of precoder and combiner vectors,

the resulting channel gain at subcarrier n is wH
j Hnfi, where (·)H

denotes the conjugate transpose. For fair comparison with previous
works [12], [13], we also assume a noise-free mmWave setting.For
the (i, j) pair, the sum power gain over all subcarriers is given
by yij =

∑Nc
n=1 |w

H
j Hnfi|2. Hence, the optimum beam label is

b∗ = (i∗, j∗) = argmax
(i,j)

yij . Without any side information, the

transmitter and receiver would search through all CtCr beam pairs
to identify b∗. Our goal is to infer a small subset of K beam pairs
S = {(ik, jk)}Kk=1 ⊂ Ct×Cr using the available position and LIDAR
data, such that b∗ ∈ S. This results in a reduction of K

Ct×Cr
in the

search space for beam selection. In the next section, we propose a
novel NN architecture as well as a federated training approach for
top-K beam classification from simultaneous position and LIDAR
data.
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Fig. 1: Preprocessing of the LIDAR point cloud.
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Fig. 2: The proposed model architecture.

III. FEDERATED BEAM SELECTION UTILIZING LIDAR DATA

We propose a novel data-driven beam selection scheme, where
connected vehicles in the coverage area of a BS collaborate to
train a shared NN for top-K beam classification using their position
and LIDAR data in a distributed manner. Collaborative training is
orchestrated by the BS, and takes place during normal operation of
the network.

A. Three-Phase Network Operation
Our proposed solution consists of three network operation phases:

(i) data collection phase, (ii) federated training phase, and (iii)
distributed inference phase.

During phase (i), a subset of connected vehicles in the coverage
area of the BS, denoted by V = {v}Vv=1, each acquires a local dataset
Dv = {(Pv,Bv)}v∈V , where Pv = {Pi}|Dv|

i=1 contains instances of
the point cloud Pi recorded by the LIDAR sensor and Bv = {b∗i }

|Dv|
i=1

contains the corresponding best beam pair labels b∗i ∈ Ct × Cr , i.e.,
index of the best beam pair. During this phase the vehicles employ
any beam selection or tracking technique of their choice to identify
the best beam pair.

During phase (ii), vehicles with local datasets collaborate in a
federated learning scheme to train or fine-tune a shared NN for top-
K beam classification. In particular, the vehicles employ federated
averaging (FedAvg) [17], where a global model is sent to the
vehicles by the BS at each round, and the vehicles perform mini-
batch stochastic gradient descent (SGD) updates based on their local
datasets. The local updates are aggregated by the BS, and used to
update the global model for the next round. The duration of this phase
is proportional to the number of global aggregation rounds required
to train the model, denoted by Na. Note that, the vehicles train a
single site-specific NN, which learns the statistical characteristics of
the coverage area of the BS for efficient beam selection.

Finally, in phase (iii), any vehicle in the coverage area of the BS
utilizes the most up-to-date trained/tuned NN on its local LIDAR
data to infer K beams and reduce the beam search overhead. Note
that, in this phase, the BS can use a low frequency control channel
to transmit the trained NN model to any new vehicle entering its
coverage area.

Each BS in a large network can orchestrate training of a site-
specific NN for its own coverage area following the above three
phases. Note that the above operation may either be initialized
randomly, or from a NN pre-trained on a centralized dataset offline.
As the above three phases take place periodically, the NN can
automatically adapt to changes in the statistics of data over time
through periodic fine-tuning of the NN with up-to-date data. Also

Algorithm 1: FedAvg for LIDAR-assisted beam selection

Init: Initial parameters θ(0)v = θ(0), ∀v ∈ V .
1 for each m = 1, 2, . . . do
2 Each vehicle performs a local epoch using mini-batch

gradient decent iterations according to (2) ;
3 if m is an integer multiple of Nv then
4 Each vehicle v sends g(m)

v = θ
(m)
v − θ(m−Nv)

v to BS;
5 BS computes θ(m) = θ(m−Nv) + µ

|V|
∑
g(m)
v ;

6 BS distributes θ(m) such that θ(m)
v = θ(m), ∀v ∈ V;

7 end
8 end

Output: Trained θ(m) shared among all vehicles.

note that the above phases take place during normal operation of
the vehicular network and impose no interruption. The vehicles
keep communicating with the BS as they would do without the
above phases (utilizing any beam selection or tracking technique of
their choice) but just record and collect the beam labels and the
corresponding LIDAR inputs for training. Only some vehicles with
sufficient dataset would transmit model updates when fine-tuning the
NN is required. Once the NN is trained up to a desired accuracy, it
is used for beam selection thereby significantly reducing the beam
search space.

B. LIDAR and Location Preprocessing
For each scene, the LIDAR sensor mounted on each vehicle

outputs a point cloud P = {(xp, yp, zp)}|P |p=1, representing obstacles
measured by the LIDAR sensor. Each vehicle v also has its own loca-
tion information (xv, yv, zv), and the BS location (xBS , yBS , zBS),
which is broadcast to all the vehicles. We preprocess this data to
obtain a tensor of fixed size, which contains both the location and
LIDAR data and is input to the NN for each scene. To reduce
both the NN dimension and the computation load, we propose a
two-dimensional (2D) representation of the LIDAR measurements,
where we partition the coverage area of the BS into a grid of
equal-size square cells from the top view (see Fig. 1). We define
the corresponding 2D tensor L, where the cells containing the BS
and the vehicle are set to -1 and -2, respectively, while each of the
remaining cells is populated with a 1 if it accommodates at least one
of the cloud points, and with a 0 otherwise. We remark that this 2D
representation discards the height data along the z-axis, resulting in
a significant reduction in the input size, and hence, the complexity
of the NN, which in turn reduces the communication overhead for
federated training.

C. NN Architecture
Our NN architecture consists of 6 convolutional layers followed by

2 linear layers as depicted in Fig. 2. In the convolutional layers, we
vary the value of stride between 1 and 2, depending on whether we
intend to downscale the intermediate features, or not. We apply batch
normalization and parametric rectified linear unit (PReLU) activation
after each convolutional layer. The first linear layer is followed by
rectified linear unit (ReLU) activation, and softmax is used at the
output to obtain the predictions. To achieve better generalization,
convolutional layers downscale the features and ensure that only
essential information is preserved. This helps avoid overfitting to
the training data [18]. Note that, to reduce the communication
overhead for federated training, we have minimized the trainable
model parameters utilizing a convolutional structure with limited
kernel sizes. We denote the NN model function by π(L;θ), which
is a vector of length CtCr at the softmax output. L denotes the
preprocessed LIDAR and location input, while θ denotes the trainable



TABLE I: Comparison between the proposed NN architecture and the baseline in [12], [13], both trained in a centralized manner.

Model Top-10 accuracy Top-10 throughput ratio FLOPs # of NN parameters, |θ|
Proposed centralized 91.17± 0.28% 94.78± 0.61% 1.72× 106 7462

Baseline [12], [13] 83.92± 0.93% 86.15± 0.82% 179.01× 106 403677

NN parameters. The best beam is predicted as b̂∗ = argmax
b∈S

yb,

where the prediction set S is given by the top-K softmax outputs.

D. Federated Training
Gathering a large dataset of LIDAR measurements from various

vehicles for centralized training at the BS imposes significant com-
munication overhead, particularly due to the large size of LIDAR
point cloud measurements. Instead, we propose a federated learning
approach, where the vehicles collaborate to train a single NN archi-
tecture using their local datasets [17]. To train our NN we use the
empirical cross entropy loss, hence the local loss calculated at vehicle
v is given by

ψv(θ,Dv) = −
1

|Dv|

|Dv|∑
i=1

log[π (Li;θ)]b∗i , (1)

where [π]b denotes the b’th element of the model’s softmax output.
Each connected vehicle performs mini-batch SGD iterations to update
its local vector of model parameters, denoted by θv , via

θ(l)v = θ(l−1)
v − ρl∇ψv(θ(l−1)

v , {(bil , Lil)}il∈1,...,|Dv|), (2)

where l is the local iteration index, ρl > 0 is the local step-size, and
the set {(bil , Lil)}il∈1,...,|Dv| is a mini-batch of the local dataset
with il ∈ 1, . . . , |Dv|. The training consists of Nv local epochs at
each vehicle (i.e. Nv cycles of training on the vehicle’s local dataset)
and Na aggregation rounds at the BS as summarized in Algorithm 1.

Such distributed learning orchestrated by the BS during phase (ii)
requires the vehicles to periodically exchange and synchronize their
local model parameters θv through reliable low-rate communications
with the BS. This imposes an overhead of communicating OUL =
V ×Na×|θ| float32 variables in the uplink and ODL = Na×|θ| in
the downlink channel. Minimizing the number of trainable parameters
|θ| is hence critical to reduce the communication overhead during
phase (ii) of the network operation.

IV. NUMERICAL EVALUATIONS

We provide numerical evaluations on the benchmark Raymobtime
datasets [16], where we train the models on samples from dataset
s008 and test on those from s009. Our training dataset includes
6482 line-of-sight (LOS) and 4712 non-line-of-sight (NLOS) sam-
ples, while our test dataset includes 1473 LOS and 8165 NLOS
samples, respectively (refer to [16], [19] for details on these datasets
e.g. locations, frequencies, etc.).For performance comparison, we
use the top-K classification accuracy defined as the probability of
correctly identifying the optimal beam pair within the top-K output
of the network, and the top-K throughput ratio, R, defined as
R , (

∑T
t=1 log2(1+ yĩj̃))/(

∑T
t=1 log2(1+ yi∗j∗)), where T is the

number of test samples, and (i∗, j∗) and (̃i, ĩ) denote the optimum
beam pair index and the best beam pair within the top-K prediction
set S, respectively.

In Table I, we compare the performance of the NN architecture
presented in Subsection III-C with the baseline architecture proposed
in [12], [13], both trained in a centralized manner. In this experiment,
we trained our model using the Adam optimizer [20] with an initial
learning rate of 10−3 and batch size of 16, and train the models for
20 epochs. The grid dimensions to generate features in Section III.B
is set to 20 × 200. In Table I, we present 95% confidence intervals

for Top-10 accuracy and throughput ratio of the models calculated
from 10 Monte Carlo simulations.

According to Table I, our proposed architecture not only outper-
forms those in [12] and [13] in terms of both the top-10 accuracy and
the throughput ratio, but also significantly reduces the complexity of
the model. Our architecture reduces the FLOPs and the number of
trainable parameters roughly by factors of 100 and 55, respectively.
Such a significant reduction in the number of trainable model
parameters is specifically desirable in federated training as it leads
to a significant reduction of the communication overhead.

Remember that the beam search complexity of these schemes
depends on K, the size of the prediction set. Figure 3 plots the
top-K accuracy and throughput ratio for the proposed and baseline
architectures as a function of K, when trained in a centralized fash-
ion. It is observed that, our proposed model architecture significantly
outperforms [12], [13], e.g., to achieve a throughput ratio R ≥ 90%,
our proposed model architecture requires K ≥ 3 while the baseline
needs K ≥ 16. This is more than 5 times reduction in the required
search space for beam selection. Also, the proposed architecture can
achieve close to 80% of the optimal throughput with K = 1; that is,
with no beam search at all.

Note that the results reported in Table I and Fig. 4 are the
average values achieved on both LOS and NLOS samples. However,
the NLOS case is more challenging due to blockages of the rays
by other vehicles/objects. When measuring the Top-10 accuracy
of our proposed approach separately on LOS and NLOS samples,
we get 94.50% and 90.77%, respectively, which shows that the
proposed approach performs very well on NLOS samples as well
and significantly outperforms previous works [12], [13].

We also compare the performance of the proposed approach with
a NN-based approach that only assumes access to the location data.
Our NN architecture for the location-only approach is a 4-layer
fully connected NN with 16, 32 and 16 nodes in the hidden layers,
each followed by ReLU activation and batch normalization. This
architecture has been hand-crafted for the best performance, and
takes as input the relative location of the vehicle with respect to
the BS. It achieves top-10 accuracy and throughput ratio of 87.48%
and 91.96%, respectively. Hence, the performance is significantly
improved when the LIDAR data is used, which is expected, as
the LIDAR data gives a better understanding of the scene and
includes information on objects or obstacles that cause blockage of
the mmWave rays.

We next evaluate the performance of our proposed federated beam
selection scheme. To generate the local dataset at each connected
vehicle v, we choose |Dv| = 11000/V samples from the training
set s008 uniformly at random, where 11000 is the total number of
samples in s008. We use mini-batch SGD with an initial learning rate
of 0.2 and exponential rate decay of 0.001 with a batch size of 16 for
local optimization at the vehicles. We set the learning rate µ = 0.2 for
aggregation at the BS. We provide the performance of our proposed
federated beam selection scheme in Table II. Here, we start training
from a randomly initialized global model. The notation (Na)

0.88

in this table represents the number of global aggregation rounds
required for the training to achieve a top-10 accuracy larger than 88%.
This is an important measure as it determines the communication
overhead required to train the model to the specified accuracy.
Notations (ODL)

0.88 and (OUL)
0.88 used in this table represent this



Fig. 3: Top-K accuracy and throughput ratio as a function of K.

overhead in terms of the number of float32 variables needed to be
communicated over the downlink and uplink channels, respectively.
According to Table II, the number of aggregation rounds required
to achieve top-10 accuracy larger than 88% increases when more
vehicles take part in federated training. A larger (Na)

0.88 increases
the communication overhead. However, thanks to our simple NN
architecture, which only has |θ| = 7462 trainable parameters, the
maximum communication overhead required for federated training
(i.e., 1620× 7462 ∼ 1.2× 107 float32 communications for V = 20,
Nv = 1) is orders of magnitude smaller than the overhead that
would be imposed by offloading the LIDAR point clouds to the
BS for centralized training (i.e., ∼ 4 × 109 float32 communica-
tions for samples in s008). Note that the communication overhead
for federated training can further be significantly reduced utilizing
gradient quantization [21]–[23], gradient sparsification [24], [25], and
over-the-air aggregation [26], [27] techniques.Also note that utilizing
various neural architecture search (NAS) approaches [28]–[30], we
can design further simplified but well-performing NN architectures,
thereby reducing the communication overhead for federated training.

Note that the size of the local dataset at a vehicle, i.e. |Dv|, depends
on how long the vehicle stays in the coverage area of the BS and how
frequently it can collect samples. |Dv| is a design parameter to be set
for each specific site depending on dimensions of the coverage area
and the traffic flow speed. For the Raymobtime s008/s009 datasets
used in our simulations, the coverage area is a 337× 202m2 region
covering the intersection of Kent and 19th street in Rosslyn, Virginia,
the average vehicle speed is 8.2m

s
and the sampling period is 0.1s

[19]. Hence, an average vehicle traveling along the Kent street can
collect approximately 337

8.2×0.1
≈ 411 samples during its stay in the

coverage area of the BS, which is approximately the local dataset size
used in Table II for V = 20. Note that vehicles may collect more
samples if they are parked, move slower, return to the cell multiple
times, or have faster sampling equipment.

The last column in Table II reports the final top-10 accuracy
achieved for each number of vehicles V and local epochs Nv . This
column shows a slight performance degradation when more vehicles
take part in federated training. This is due to the limited number of
training samples available to each vehicle. Although we distribute
the samples among vehicles uniformly at random, the local vehicle
datasets are still slightly skewed due to the limited number of training
samples (e.g., 11K samples available in s008). This leads to the
catastrophic forgetting phenomenon [31], [32], where increasing Nv
tends to overfit to local datasets, which may not efficiently represent
the true distribution across the cell. This can be mitigated utilizing
ideas similar to [31], [32], and is a direction for future research.

Finally, in Table III, we present the performance of our proposed
federated beam selection scheme when initialized from an offline-

TABLE II: Performance of federated beam selection when initialized
from an untrained global model.

V Nv (Na)
0.88 (ODL)

0.88 (OUL)
0.88 Top-10 Acc.

5
1 19 19|θ| 95|θ| 90.12%
2 13 13|θ| 65|θ| 90.34%
5 10 10|θ| 50|θ| 89.92%

10
1 31 31|θ| 310|θ| 89.77%
2 22 22|θ| 220|θ| 89.16%
5 15 15|θ| 150|θ| 88.64%

20
1 81 81|θ| 1620|θ| 88.81%
2 48 48|θ| 960|θ| 88.53%
5 NA NA NA 87.33%

TABLE III: Performance of federated beam selection when initialized
from an offline-trained model.

2K from s008 (Rosslyn) 2K from s007 (Beijing)
V Nv

(Na)
0.88 Top-10 Acc. (Na)

0.88 Top-10 Acc.
1 17 90.29% 23 89.35%
2 10 89.86% 14 88.73%10
5 6 89.31% 9 88.19%

trained model. We have considered two scenarios as below:
-The model is trained offline for 20 epochs on 2K samples

taken randomly from Raymobtime s008 achieving an initial Top-10
accuracy of 81% on the test dataset s009.

-The model is trained off-line for 20 epochs on 2K samples
taken randomly from Raymobtime s007 achieving an initial Top-10
accuracy of 56% on the test dataset s009.

In both cases, the offline-trained model is then used as the
initial global model for federated training. For federated training, 9K
samples from s008 are distributed randomly among the 10 vehicles
participating in federated training.

Referring to [16], [19], s007, s008 and s009 are Raymobtime
datasets from different locations (i.e., s008 and s009 are from
Rosslyn, while s007 is from Beijing) at the same 60GHz carrier
frequency. The purpose of the above two scenarios is not only to
study the effects of using an initial model trained offline, but also
to investigate how well the model can adapt if significant changes
happen in the coverage area of the BS. It can be concluded from
the results presented in Table III that using an offline trained NN
generally reduces the required number of aggregation rounds (hence,
reducing the communication overhead) as well as the number of
samples required to be collected by the vehicles (here from 11K to
9K). If the dataset used for offline training is a good representative of
the scattering environment, then a slight improvement in the accuracy
is observed as well. But even if it is not, the federated training scheme
can adapt the model to the new environment and still achieve a very
good accuracy.

V. CONCLUSIONS

We have studied efficient link configuration in mmWave V2I
communication networks, and considered exploiting side information
in the form of LIDAR and position data in a supervised learning
scheme to reduce the beam search overhead. In this letter, we first
proposed LIDAR preprocessing and a convolutional NN architecture
that improves the state-of-the-art classification accuracy with a signif-
icantly reduced model complexity. We have then proposed a federated
training scheme that enables connected vehicles to collaboratively
train a shared NN on their locally available LIDAR data. Once the
NN is collaboratively trained, any vehicle entering the coverage area
of the BS can employ it to reduce the beam search overhead.
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