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The tensor rank of some Gabidulin codes of small dimension 
is investigated. In particular, we determine the tensor rank of 
any rank metric code equivalent to an 8-dimensional Fq-linear 
generalized Gabidulin code in F4×4

q . This shows that such a 
code is never minimum tensor rank. In this way, we detect the 
first infinite family of Gabidulin codes which are not minimum 
tensor rank.
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1. Introduction

Rank metric codes were introduced by Delsarte [10] in 1978 and have been used in 
several contexts, such as crisscross error correction [24], cryptography [15], and network 
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coding [27]. Because of their ubiquitous applications, they attracted increasing attention 
in the last years; see e.g. [16,23,25].

Very recently, rank-metric codes have been investigated through their tensor rank; 
see [6,4,5]. Indeed, a rank-metric code C in Fn×m

q can be seen as the slice space of 
an associated generator 3-tensor, similarly to the case of linear codes in the Hamming 
metric, where a code can be described as the row space of a generator matrix. Therefore, 
after Byrne, Neri, Ravagnani and Sheekey [6], the tensor rank of C is defined as the tensor 
rank of a generator tensor of C. Determining the tensor rank of a certain rank-metric 
code is a hard problem in general and the exact value is known only for specific classes of 
codes; indeed the problem of computing the rank of a 3-tensor is NP-complete over any 
finite field [17]. Several lower and upper bounds for the tensor rank of a rank-metric code 
were presented in [6] and [4]. In particular, as a consequence of Kruskal’s bound [12], 
the tensor rank of an h-dimensional Fq-linear rank-metric code C in Fn×m

q of minimum 
distance d is lower bounded by h + d − 1. The code C is said to be minimum tensor 
rank (MTR for short) if its tensor rank is exactly h + d − 1. The interest for rank-metric 
codes with a low tensor rank is due to the following fact: the smaller the tensor rank 
of the generating tensors, the more efficient the encoding. Via the correspondence in [9]
between full rank codes and semifields, the notion of tensor rank for rank-metric codes 
extends the same notion for semifields, which was used as an invariant by Lavrauw in 
[18]. Moreover, some criteria by Kruskal [12, Section 4] use the rank of a tensor to assure 
its identifiability, i.e. the uniqueness of the pure tensors appearing in its decomposition, 
which is of interest for the numerical applications within statistics; see [7] and [1, Section 
2].

A family of particular interest among rank-metric codes is the one of square Gabidulin 
codes Gk,s in Fn×n

q , as they are maximum rank distance, and indeed they have been deeply 
investigated. However, their tensor rank is not known in general; exact results have been 
provided in [6] and [4] when k ∈ {1, n − 1} and in few other cases. Interestingly, when q
is large enough, Gabidulin codes with k ∈ {1, n − 1} turn out to be MTR codes.

In this paper we are interested in determining the tensor rank of those codes which 
are equivalent to an Fq-linear 8-dimensional Gabidulin code in F4×4

q . The strategy that 
we apply makes use of [6, Proposition 3.4], which involves rank-one matrices. The frame-
work of our arguments is the one of linearized polynomials, where rank-one matrices 
correspond to trace functions of the shape αTr(βx) for some nonzero α, β ∈ Fq4 (see [22, 
Theorem 2.24]), where Tr : Fq4 → Fq and Tr(x) = x + xq + xq2 + xq3 . Our main result 
is the following.

Theorem 1.1. Let q be a prime power, and C be a code which is equivalent to an Fq-linear 
8-dimensional generalized Gabidulin code in F4×4

q . Then the tensor rank of C is 11 if 
q ≥ 3, and 12 if q = 2. In particular, C is not MTR.

The paper is organized as follows. Section 2 contains preliminary notions on rank-
metric codes and on the correspondence with linearized polynomials in the case of square 
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codes. Section 3 describes basic definitions and known results about tensors and the ten-
sor rank of square generalized Gabidulin codes. Section 4 is devoted to the proof of 
Theorem 1.1: Section 4.1 shows that C is not MTR, while in Section 4.2 we determine 
the tensor rank of C for q ≥ 5. The remaining small values of q, are worked out computa-
tionally in Section 5, as well as other Gabidulin codes in Fn×n

q with small values of q and 
n. Finally, the Appendix contains two auxiliary results which are needed in Section 4.1, 
whose proof are quite technical.

2. Rank metric codes and linearized polynomials

The set Fn×m
q of matrices can be equipped with the rank-metric, defined as

d(A,B) = rk (A−B), for A,B ∈ Fn×m
q .

A rank-metric code is a subset C of Fn×m
q endowed with the rank-metric and its minimum 

rank distance is defined as

d = d(C) = min{d(A,B) : A,B ∈ C, A �= B}.

Two Fq-linear rank-metric codes C and C′ in Fn×m
q are linearly equivalent if and only if 

there exist X ∈ GL(n, q) and Y ∈ GL(m, q) such that

C′ = {XCY : C ∈ C},

or, if m = n,

C′ = {XC�Y : C ∈ C},

where C� denote the transpose of C. Since in this paper we will only consider linear 
equivalence, we will refer to it simply as equivalence.

Delsarte showed in [10] that the parameters of a rank-metric code C satisfy a Singleton-
like bound, namely

|C| ≤ qmax{m,n}(min{m,n}−d+1).

When equality holds, we call C a maximum rank distance (MRD for short) code.
In this paper we are interested only in the square case m = n, and in this case 

rank-metric codes can be described in terms of linearized polynomials. Indeed, consider 
the Fq-linearized (or simply linearized) polynomials of degree less than qn over Fqn , i.e. 
elements of the form

f(x) =
n−1∑

fix
qi , fi ∈ Fqn .
i=0
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The set of linearized polynomials is an Fq-algebra Ln,q with the usual addition, scalar 
multiplication by elements of Fq and composition modulo xqn − x. It is well-known that 
the Fq-algebras Ln,q and EndFq

(Fqn) are isomorphic, via the correspondence between 
the linearized polynomial f(x) and the Fq-endomorphism

α �−→
n−1∑
i=0

fiα
qi

of Fqn . Hence, Ln,q is also isomorphic to the Fq-algebra Fn×n
q of n ×n matrices over Fq. In 

this correspondence, the rank of a matrix in Fn×n
q equals the rank of the corresponding 

linearized polynomial in Ln,q as an Fq-endomorphism of Fqn . Therefore, rank-metric 
codes in Fn×n

q can be seen as sets of linearized polynomials in Ln,q, so that we can 
speak of rank-metric codes in Ln,q. Notice that the set of matrices of rank 1 in Fn×n

q

corresponds to the set of elements of Ln,q of the shape αTr(βx) for some α, β ∈ F∗
qn , 

where Tr(z) = z + zq + · · ·+ zq
n−1 ; see [22, Theorem 2.24]. For a reference on linearized 

polynomials see [28].
The first class of square MRD codes was the one of generalized Gabidulin codes, 

namely the Fqn-subspaces

Gk,s = 〈x, xqs , . . . , xqs(k−1)〉Fqn

of Ln,q, where 1 ≤ k ≤ n and gcd(s, n) = 1; they are MRD codes with Fq-dimension kn
and minimum distance n − k + 1. Gabidulin codes were first introduced by Delsarte in 
[10] and later by Gabidulin in [14] in the case s = 1, and by Gabidulin and Kshevetskiy 
in [13] in the general case.

3. Tensor rank of generalized Gabidulin codes

The tensors we will investigate in this paper are 3-tensors in Fh
q ⊗ Fn

q ⊗ Fm
q . If 

{u1, . . . , uh}, {v1, . . . , vn}, and {w1, . . . , wn} are bases of Fh
q , Fn

q , and Fm
q respectively, 

then an Fq-basis of Fh
q ⊗ Fn

q ⊗ Fm
q is given by

{ul ⊗ vi ⊗ wj : 1 ≤ l ≤ h, 1 ≤ i ≤ n, 1 ≤ j ≤ m}.

The tensors of the form u ⊗ v ⊗ w, with u ∈ Fh
q , v ∈ Fn

q and w ∈ Fm
q , are called simple

(or pure) tensors. The tensor rank of a tensor X ∈ Fh
q ⊗ Fn

q ⊗ Fm
q is defined as

trk(X) = min
{
R ∈ N0 : X =

R∑
i=1

ui ⊗ vi ⊗ wi, ui ∈ Fh
q , vi ∈ Fn

q , wi ∈ Fm
q

}
.

Let [i] = {1, . . . , i}. A 3-tensor X ∈ Fh
q ⊗Fn

q ⊗Fm
q can be represented as a map X : [h] ×

[n] × [m] → Fq given by X = (Xlij : 1 ≤ l ≤ h, 1 ≤ i ≤ n, 1 ≤ j ≤ m). Therefore 
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Fh
q ⊗ Fn

q ⊗ Fm
q can be identified with the space Fh×n×m

q , and the tensor X can be 
written as X = (X1, . . . , Xh) with Xi ∈ Fn×m

q . The first slice space of X (also known 
as first contraction space), denoted by ss1(X), is the Fq-subspace of Fn×m

q generated by 
X1, . . . , Xh. If dimFq

(ss1(X)) = h, we say that X is 1-nondegenerate.
The following result will be a key tool in our investigation.

Proposition 3.1. (see [6, Proposition 3.4] and [3, Proposition 14.45]) Let X ∈ Fh×n×m
q

and R be a positive integer. The following are equivalent:

1. trk(X) ≤ R;
2. there exist A1, . . . , AR ∈ Fn×m

q of rank 1 such that ss1(X) ⊆ 〈A1, . . . , AR〉Fq
.

In particular, trk(X) = R if and only if R is the minimum integer such that there exist 
A1, . . . , AR ∈ Fn×m

q of rank 1 satisfying ss1(X) ⊆ 〈A1, . . . , AR〉Fq
.

Kruskal in [12] bounded the tensor rank of a 3-tensor, using the following map:

m1 : Fs×h
q × Fh×n×m

q → Fs×n×m
q ,

(
A,

∑
i

ui ⊗ vi ⊗ wi

)
�→

∑
i

(Aui) ⊗ vi ⊗ wi.

Theorem 3.2. (see [12, Corollary 1]) Let X ∈ Fh×n×m
q be 1-nondegenerate, then

trk(X) ≥ h + min{trk(m1(u,X)) : u ∈ Fh
q \ {0}} − 1.

Tensors are related to rank-metric codes as follows. Let C be an Fq-linear code in 
Fn×m
q of dimension h and minimum distance d. A generator tensor for C is a 3-tensor 

X ∈ Fh×n×m
q such that ss1(X) = C. Note that

d = min{trk(m1(u,X)) : u ∈ Fh
q \ {0}}.

As proved in [6, Proposition 4.2], two generator tensors of the same rank-metric code C
have the same tensor rank. Therefore, we can define the tensor rank trk(C) of C as the 
tensor rank of any generator tensor of C.

Proposition 3.3. (see [6, Proposition 4.5]) If C, C′ are equivalent codes, then trk(C) =
trk(C′).

By Theorem 3.2,

trk(C) ≥ h + d− 1. (3.1)

If C attains equality in (3.1), it is called a minimum tensor rank (MTR for short) code.
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Although Gabidulin codes form the most studied family of rank-metric codes, the 
complete determination of their tensor rank is still missing. We now describe the known 
results on the tensor rank of square Gabidulin codes Gk,s ⊂ Ln,q. Since in this case 
d = n − k + 1, the bound (3.1) reads as follows.

Theorem 3.4. For every k ≤ n, we have trk(Gk,s) ≥ (k + 1)n − k.

The tensor rank of G1,s coincides with the tensor rank of the field Fqn (see [11] and [21]
where semifields were described for the first time in terms of tensors). By [3, Propositions 
14.47 and 14.48] and a link with a well-studied tensor pointed out in [6, Lemma 5.13], 
it follows that trk(G1,s) = 2n − 1 if q ≥ 2n − 1, and trk(G1,s) > 2n − 1 if q ≤ 2n − 2. 
For n = 3, trk(G1,s) = 6 if q ∈ {2, 3} (see [20, Lemma 15] and also [19]). For n = 4, 
trk(G1,s) = 9 if q = 2 (as proved by Chudnovsky-Chudnovsky [8], see also [6, Example 
6.4]), or q = 3 (see [20, Theorem 4]), while trk(G1,s) is unknown for n = 4 and q ∈ {4, 5}.

Further bounds and asymptotic results for the tensor rank of Fqn are known, see e.g. 
[2].

The following upper bound follows from the tensor rank of G1,s.

Theorem 3.5. (see [6, Proposition 5.15]) Let q ≥ 2n − 2. For every k ≤ n, we have 
trk(G1,s) ≤ min{n2, k(2n − 1)}.

A partial result is known also in the case of Gabidulin codes Gn−1,s.

Theorem 3.6. (see [4, Theorem 5.15]) Let q ≥ n. Then trk(Gn−1,s) = n2 − n + 1.

The tensor rank of Gabidulin codes Gk,s with k /∈ {1, n −1} is not known. In this paper 
we study the first open case, namely k = 2 and n = 4. In Section 5 we will investigate 
the remaining open cases when n ≤ 4.

4. The tensor rank of G2,1 ⊂ L4,q

The two 8-dimensional generalized Gabidulin codes G2,1 and G2,3 in L4,q are easily 
seen to be equivalent. Therefore, by Proposition 3.3, in order to prove Theorem 1.1 it is 
enough to prove it for the Gabidulin code G = G2,1 = 〈x, xq〉Fq4

. In Section 4.1 we show 
that the tensor rank of G is not 10 for any q. In Section 4.2 we prove that the tensor 
rank of G is 11 if q ≥ 5. We complete the proof in Section 5, where we determine the 
tensor rank of some Gabidulin codes for some values of q.

4.1. The tensor rank of G is larger than 10

This section is devoted to the proof of the following theorem.
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Theorem 4.1. For any prime power q, we have trk(G) ≥ 11. Thus, G is not an MTR 
code.

By Proposition 3.1 and Section 2, trk(G) = 10 if and only if there exist 10 trace 
functions αiTr(βix) such that G ⊆ 〈α1Tr(β1x), . . . , α10Tr(β10x)〉Fq

which are Fq-linearly 
independent. Note that this happens if and only if the two sets {αi : 1 ≤ i ≤ 10} and 
{βi : 1 ≤ i ≤ 10} are Fq-linearly independent. Moreover, αiTr(βix) and αjTr(βjx) are 
Fq-linear dependent if and only if (αi, βi) = ρ(αj , βj), for some ρ ∈ Fq. This is equivalent 
to say that there exist α1Tr(β1x), α2Tr(β2x) such that there exists an Fq-basis of

〈x, xq〉Fq4
⊕ 〈α1Tr(β1x), α2Tr(β2x)〉Fq

only composed of traces. So, consider α1, α2, β1, β2 ∈ Fq4 such that H = 〈x, xq〉Fq4
⊕

〈α1Tr(β1x), α2Tr(β2x)〉Fq
has dimension 10 over Fq. Since the stabilizer of G acts tran-

sitively on rank one elements,1 we may assume that α1 = β1 = 1.
The proof strategy relies on two steps:

Step 1: To find explicit necessary and sufficient conditions on α3, β3 ∈ Fq4 such that 
α3Tr(β3x) ∈ H.
Step 2: To prove the non-existence of ten Fq-linearly independent traces in H.

In Steps 1 and 2 we will also need auxiliary results (Theorems A.1 and A.2 respec-
tively) which are in the Appendix, due to their technicality.

Proof. Step 1: Let us find explicit conditions on the coefficients of α3Tr(β3x) in such a 
way that it belongs to H. Suppose that α3Tr(β3x) is in H. Then there exist γ, δ ∈ Fq4 , 
c1, c2 ∈ Fq such that

α3Tr(β3x) = γx + δxq + c1Tr(x) + c2α2Tr(β2x).

This polynomial identity implies that γ, δ, c1, and c2 satisfy the following system:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

γ + c1 + c2α2β2 = α3β3,

δ + c1 + c2α2β
q
2 = α3β

q
3 ,

c1 + c2α2β
q2

2 = α3β
q2

3 ,

c1 + c2α2β
q3

2 = α3β
q3

3 .

(4.1)

We will now obtain information on α3 and β3 manipulating System (4.1).
It cannot happen that β2 and α2 are both in Fq, otherwise α3Tr(β3) and Tr(x) are 

Fq-linearly dependent and hence dimFq
(H) < 10.

1 Here we consider the action of A = {(g, h) : g, h ∈ Ln,q are invertible} on the Fq-subspaces of Ln,q

induced by f ∈ Ln,q �→ g ◦ f ◦ h ∈ Ln,q, where (g, h) ∈ A.
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Note that c1c2 �= 0, since the sum of a map of rank at least 3 (that is γx + δxq) and 
one of rank one (either c1Tr(x) or c2α2Tr(β2x)) cannot have rank one. Therefore, we 
may assume that c2 = 1.

From now on we always assume c1 �= 0. By the last two equations in System (4.1) one 
gets

βq−1
3 = c1 + αq2

2 βq
2

c1 + αq2

2 β2
. (4.2)

Note that, since β3 �= 0, c1 + αq2

2 βq
2 = 0 if and only if c1 + αq2

2 β2 = 0, that is 1/β2 and 
1/α2 both belong to F∗

q . Again, this is a contradiction to our assumptions.
An element β3 ∈ Fq4 satisfying Equation (4.2) exists if and only if

(
c1 + αq2

2 βq
2

c1 + αq2

2 β2

)1+q+q2+q3

= 1,

that is,

(c1 + αq2

2 βq
2)(c1 + αq3

2 βq2

2 )(c1 + α2β
q3

2 )(c1 + αq
2β2) =

(c1 + αq2

2 β2)(c1 + αq3

2 βq
2)(c1 + α2β

q2

2 )(c1 + αq
2β

q3

2 ). (4.3)

We are interested in bounding the number of non-Fq-proportional elements c1, with 
c1 �= 0. Indeed, this will allow us to determine explicit conditions on β3. The above 
polynomial in c1 is of degree at most three in c1, and its coefficients are as follows:

i) the coefficient of degree 0 is zero;
ii) the coefficient of degree 1 is

−αq+q2+q3

2 β1+q+q3

2 + αq+q2+q3

2 β1+q+q2

2 + α1+q2+q3

2 βq+q2+q3

2 − α1+q2+q3

2 β1+q+q2

2

−α1+q+q3

2 βq+q2+q3

2 + α1+q+q3

2 β1+q2+q3

2 − α1+q+q2

2 β1+q2+q3

2 + α1+q+q2

2 β1+q+q3

2 ,

iii) the coefficient of degree 2 is

αq2+q3

2 βq+q2

2 − αq2+q3

2 β1+q
2 − αq+q3

2 βq+q3

2 + αq+q3

2 β1+q2

2 − αq+q2

2 β1+q3

2 + αq+q2

2 β1+q
2

+α1+q3

2 βq2+q3

2 − α1+q3

2 βq+q2

2 + α1+q2

2 βq+q3

2 − α1+q2

2 β1+q2

2 − α1+q
2 βq2+q3

2 + α1+q
2 β1+q3

2 ,

iv) the coefficient of degree 3 is

αq3

2 βq2

2 − αq3

2 βq
2 + αq2

2 βq
2 − αq2

2 β2 − αq
2β

q3

2 + αq
2β2 + α2β

q3

2 − α2β
q2

2 .



256 D. Bartoli et al. / Linear Algebra and its Applications 650 (2022) 248–266
Therefore the number of non-Fq-proportional solutions in c1 with c1 �= 0 is at most 2, 
if the polynomial is non-vanishing. Moreover, this polynomial vanishes if and only if
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y Zq − Y Zq2 + Y qZq2 − Y qZq3 − Y q2
Z + Y q2

Zq3 + Y q3
Z − Y q3

Zq = 0

Y q+1Zq2+q − Y q+1Zq3+q2 − Y q2+1Zq2+1 + Y q2+1Zq3+q

+Y q3+1Zq+1 − Y q3+1Zq2+q − Y q2+qZq3+1 + Y q2+qZq3+q2 + Y q3+qZq2+1

−Y q3+qZq3+q − Y q3+q2
Zq+1 + Y q3+q2

Zq3+1 = 0

Y q2+q+1Zq3+q2+1 − Y q2+q+1Zq3+q2+q − Y q3+q+1Zq2+q+1 + Y q3+q+1Zq3+q2+q

+Y q3+q2+1Zq2+q+1 − Y q3+q2+1Zq3+q+1 + Y q3+q2+qZq3+q+1 − Y q3+q2+qZq3+q2+1 = 0,
(4.4)

where Y = 1/β2 and Z = 1/α2. The solutions (Y, Z) ∈ Fq4 of System (4.4) are given 
in Theorem A.1. From now on we will suppose that Y = 1/β2 and Z = 1/α2 are 
solutions of System (4.4). In this case, by Equation (4.2), the maximum number of 
non-Fq-proportional possible values of β3 ∈ Fq4 is q − 1 when c1 runs in F∗

q . By System 
(4.1), to each such value of β3 there corresponds at most one value of α3 ∈ Fq4 .

Define λ = c1 ∈ F∗
q , so that β3 = β3(λ) satisfies

βq−1
3 (λ) = λ + αq2

2 βq
2

λ + αq2

2 β2
. (4.5)

Now, let N(λ) = λZq2
Y q + 1 and D(λ) = λZq2

Y + 1, so that βq−1
3 (λ) =

βq−1
2 N(λ)/D(λ) and, by the third equation of System (4.1),

α3β3 = c2α2β
q2

2 Dq2
(λ)/βq2−1

3 = c2α2β2D
q2+q+1(λ)/Nq+1(λ), (4.6)

and α3Tr(β3x) reads

α3β3(x + βq−1
3 xq + βq2−1

3 xq2
+ βq3−1

3 xq3
)

= c2α2β2D
q2+q+1(λ)

Nq+1(λ)

(
x + βq−1

2
N(λ)
D(λ)x

q + βq2−1
2

Nq+1(λ)
Dq+1(λ)x

q2
+ βq3−1

2
Nq2+q+1(λ)
Dq2+q+1(λ)

xq3

)

= c2

(
α2β2

Dq2+q+1(λ)
Nq+1(λ) x + α2β

q
2
Dq2+q(λ)
Nq(λ) xq + α2β

q2

2 Dq2
(λ)xq2

+ α2β
q3

2 Nq2
(λ)xq3

)
.

Step 2: In the previous step, we have determined all the possible expressions of a 
trace function to be in H depending on a certain value λ. We now prove that there exist 
no eight distinct values λ1, . . . , λ8 ∈ F∗

q such that the eight rank-one linear functions 

Fi(x) = α2β2
Dq2+q+1(λi)
Nq+1(λi) x +α2β

q
2
Dq2+q(λi)
Nq(λi) xq +α2β

q2

2 Dq2(λi)xq2 +α2β
q3

2 Nq2(λi)xq3 and 
F9(x) = Tr(x), F10(x) = alpha2Tr(β2x) are Fq-linearly independent. By Proposition 3.1, 
this will yield that trk(G) ≥ 11.
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Equivalently, we prove the existence of μ1, . . . , μ10 ∈ Fq such that

μ1F1(x) + · · · + μ10F10(x) = 0

and not all the μi’s are zero, so that the ten traces Fi(x), i = 1, . . . , 10, are Fq-linearly 
dependent. Let μ1, . . . , μ10 ∈ Fq be such that

μ1F1(x) + · · · + μ10F10(x) = 0. (4.7)

In particular, Equation (4.7) can be seen as a polynomial identity; the coefficients of 
degree q3 and q2 yield to

α2β
q3

2

( 8∑
i=1

μiN
q2

(λi) + μ10

)
+ μ9 = 0 = α2β

q2

2

( 8∑
i=1

μiD
q2

(λi) + μ10

)
+ μ9.

Since N(λi) = λiZ
q2
Y q + 1 and D(λi) = λiZ

q2
Y + 1,

8∑
i=1

μi + μ10 = −
( 8∑

i=1
μiλi + μ9

)
Y q3

Z and
8∑

i=1
μi + μ10 = −

( 8∑
i=1

μiλi + μ9

)
Y q2

Z.

Suppose that Y q3
Z = Y q2

Z, which is equivalent to Y ∈ Fq. Then N(λ) = D(λ) and 
β3(λ)q−1 = βq−1

2 = 1. By System (4.1), this implies α3Tr(β3x) = c1Tr(x) +c2α2Tr(β2x) ∈
〈Tr(x), α2Tr(β2x)〉Fq

and hence the Fi’s, i = 1, . . . , 10, are linearly dependent.
We can then assume that Y q3

Z �= Y q2
Z, so that

μ9 +
8∑

i=1
μiλi =

8∑
i=1

μi + μ10 = 0. (4.8)

Also, by looking at the coefficients of degree 1 and q in Equation (4.7),

α2β2

8∑
i=1

μi
Dq2+q+1(λ)
Nq+1(λ) + μ9 + μ10α2β2 = 0 = α2β

q
2

8∑
i=1

μi
Dq2+q(λ)
Nq(λ) + μ9 + μ10α2β

q
2 .

(4.9)
Equations (4.9) and their images under the q-Frobenius map, together with Equations 

(4.8), form a homogeneous linear system of ten equations whose matrix is
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M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 0 1
λ1 λ2 · · · 1 0

Dq2+q+1(λ1)
Nq+1(λ1)

Dq2+q+1(λ2)
Nq+1(λ2) · · · Y Z 1

Dq3+q2+q(λ1)
Nq2+q(λ1)

Dq3+q2+q(λ2)
Nq2+q(λ2)

· · · Y qZq 1
Dq3+q2+1(λ1)
Nq3+q2 (λ1)

Dq3+q2+1(λ2)
Nq3+q2 (λ2)

· · · Y q2
Zq2 1

Dq3+q+1(λ1)
Nq3+1(λ1)

Dq3+q+1(λ2)
Nq3+1(λ2)

· · · Y q3
Zq3 1

Dq2+q(λ1)
Nq(λ1)

Dq2+q(λ2)
Nq(λ2) · · · Y qZ 1

Dq3+q2 (λ1)
Nq2 (λ1)

Dq3+q2 (λ2)
Nq2 (λ2)

· · · Y q2
Zq 1

Dq3+1(λ1)
Nq3 (λ1)

Dq3+1(λ2)
Nq3 (λ2)

· · · Y q3
Zq2 1

Dq+1(λ1)
N(λ1)

Dq+1(λ2)
N(λ2) · · · Y Zq3 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (4.10)

Since the rows of M form orbits under the q-Frobenius map, the solutions of the 
associated system have entries in Fq. By Theorem A.2, the rank of M is either 2 or 6, 
and hence smaller than 10. Therefore, there are non-trivial solutions (μ1, . . . , μ10) ∈ F10

q

of μ1F1(x) + · · ·+μ10F10(x) = 0. Then 〈F1(x), . . . , F10(x)〉Fq
has dimension smaller than 

10. This shows that trk(G) ≥ 11. Thus, Theorem 4.1 is proved. �
4.2. The tensor rank of G is 11 for q ≥ 5

In this section we use the notations of Section 4.1, and assume that q ≥ 5. By Theo-
rem 4.1, trk(G) ≥ 11. We prove the following theorem.

Theorem 4.2. For any prime power q ≥ 5, we have trk(G) = 11.

By Proposition 3.1, it is enough to show the existence of 11 Fq-linearly independent 
trace functions whose Fq-span contains G. Our key tool is Step 1 in Section 4.1, where 
we have determined some necessary and sufficient criteria on the coefficients of a trace 
function for it being in H.

Proof. Let α0, β0 ∈ F∗
q4 and λ1, λ′

1, . . . , λ4, λ′
4 ∈ F∗

q with λi �= λj and λ′
i �= λ′

j for i �= j. 
Let α, β, α′, β′ ∈ F∗

q4 be such that Y = β/β0, Z = α/α0, Y ′ = β′/β0 and Z ′ = α′/α0

satisfy Z, Z ′ /∈ Fq2 and Y = 1/Zq2+q, Y ′ = 1/(Z ′)q2+q. By Theorem A.1, (Y, Z) and 
(Y ′, Z ′) are solutions of System (4.4). As in the proof of Theorem 4.1, by (4.5) and (4.6)
for any i ∈ {1, . . . , 4} there exist αi, βi, α′

i, β
′
i ∈ F∗

q4 such that

• βq−1
i = βq−1

0 N(λi)/D(λi);
• (β′

i)q−1 = βq−1
0 N ′(λ′

i)/D′(λ′
i);

• αi = ciα0β0D(λi)q
2+q+1/N(λi)q+1;

• α′
i = c′iα0β0D

′(λ′
i)q

2+q+1/N ′(λ′
i)q+1,
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where ci, c′i ∈ F∗
q , N(λi) = λiZ

q2
Y q +1, N ′(λ′

i) = λ′
i(Z ′)q2(Y ′)q +1, D(λi) = λiZ

q2
Y +1

and D′(λ′
i) = λ′

i(Z ′)q2
Y ′ + 1.

Define the rank-one functions F0(x) = α0Tr(β0x), F (x) = αTr(βx), F ′(x) =
α′Tr(β′x) and, for i ∈ {1, . . . , 4}, Fi(x) = 1

ci
αiTr(βix), F ′

i (x) = 1
c′i
α′
iTr(β′

ix). All 
such functions are elements of the linear Fq4-space V = G + 〈F (x), F ′(x), F0(x)〉Fq4

because of Step 1 in Section 4.1. We show that, for some suitable choice of the el-
ements λi, λ′

i, α0, β0, α, β, α′, β′, the 11 elements F (x), F ′(x), F0(x), F1(x), . . . , F4(x), 
F ′

1(x), . . . , F ′
4(x) are Fq-linearly independent, which implies trk(G) = 11.

Let μ, μ′, μ0, μ1, μ′
1, . . . , μ4, μ′

4 ∈ Fq be such that

μF (x) + μ′F ′(x) + μ0F0(x) + μ1F1(x) + · · ·μ4F4(x) + μ′
1F

′
1(x) + · · ·μ′

4F
′
4(x) = 0,

which can be seen a polynomial identity and hence implies
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

μαβ + μ′α′β′ + μ0α0β0 + α0β0
∑4

i=1

(
μi

Dq2+q+1(λi)
Nq+1(λi) + μ′

i
(D′)q

2+q+1(λi)
(N ′)q+1(λi)

)
= 0

μαβq + μ′α′(β′)q + μ0α0β
q
0 + α0β

q
0
∑4

i=1

(
μi

Dq2+q(λi)
Nq(λi) + μ′

i
(D′)q

2+q(λi)
(N ′)q(λi)

)
= 0

μαβq2 + μ′α′(β′)q2 + μ0α0β
q2

0 + α0β
q2

0
∑4

i=1

(
μiD

q2(λi) + μ′
i(D′)q2(λi)

)
= 0

μαβq3 + μ′α′(β′)q3 + μ0α0β
q3

0 + α0β
q3

0
∑4

i=1

(
μiN

q2(λi) + μ′
i(N ′)q2(λi)

)
= 0.

(4.11)
The four equations in (4.11), together with their images under the q-Frobenius map, 
provide a homogeneous linear system of twelve equations with solutions in F11

q , of which 
(μ, μ′, μ0, μ1, μ′

1, . . . , μ4, μ′
4) is a solution. The matrix M of such a system is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Y Z Y ′Z′ 1 Dq2+q+1(λ1)
Nq+1(λ1)

(D′)q
2+q+1(λ′

1)
(N ′)q+1(λ′

1)
· · · Dq2+q+1(λ4)

Nq+1(λ4)
(D′)q

2+q+1(λ′
4)

(N ′)q+1(λ′
4)

Y qZq (Y ′)q(Z′)q 1 Dq3+q2+q(λ1)
Nq2+q(λ1)

(D′)q
3+q2+q(λ′

1)
(N ′)q2+q(λ′

1)
· · · Dq3+q2+q(λ4)

Nq2+q(λ4)
(D′)q

3+q2+q(λ′
4)

(N ′)q2+q(λ′
4)

Y q2
Zq2 (Y ′)q2(Z′)q2 1 D1+q3+q2 (λ1)

Nq3+q2 (λ1)
(D′)1+q3+q2 (λ′

1)
(N ′)q3+q2 (λ′

1)
· · · D1+q3+q2 (λ4)

Nq3+q2 (λ4)
(D′)1+q3+q2 (λ′

4)
(N ′)q3+q2 (λ′

4)

Y q3
Zq3 (Y ′)q3(Z′)q3 1 Dq+1+q3 (λ1)

N1+q3 (λ1)
(D′)q+1+q3 (λ′

1)
(N ′)1+q3 (λ′

1)
· · · Dq+1+q3 (λ4)

N1+q3 (λ4)
(D′)q+1+q3 (λ′

4)
(N ′)1+q3 (λ′

4)

Y qZ (Y ′)qZ′ 1 Dq2+q(λ1)
Nq(λ1)

(D′)q
2+q(λ′

1)
(N ′)q(λ′

1)
· · · Dq2+q(λ4)

Nq(λ4)
(D′)q

2+q(λ′
4)

(N ′)q(λ′
4)

Y q2
Zq (Y ′)q2(Z′)q 1 Dq3+q2 (λ1)

Nq2 (λ1)
(D′)q

3+q2 (λ′
1)

(N ′)q2 (λ′
1)

· · · Dq3+q2 (λ4)
Nq2 (λ4)

(D′)q
3+q2 (λ′

4)
(N ′)q2 (λ′

4)

Y q3
Zq2 (Y ′)q3(Z′)q2 1 D1+q3 (λ1)

Nq3 (λ1)
(D′)1+q3 (λ′

1)
(N ′)q3 (λ′

1)
· · · D1+q3 (λ4)

Nq3 (λ4)
(D′)1+q3 (λ′

4)
(N ′)q3 (λ′

4)

Y Zq3
Y ′(Z′)q3 1 Dq+1(λ1)

N(λ1)
(D′)q+1(λ′

1)
N ′(λ′

1)
· · · Dq+1(λ4)

N(λ4)
(D′)q+1(λ′

4)
N ′(λ′

4)
Y q2

Z (Y ′)q2
Z′ 1 Dq2 (λ1) (D′)q2(λ′

1) · · · Dq2 (λ4) (D′)q2(λ′
4)

Y q3
Zq (Y ′)q3(Z′)q 1 Dq3 (λ1) (D′)q3(λ′

1) · · · Dq3 (λ4) (D′)q3(λ′
4)

Y Zq2
Y ′(Z′)q2 1 D(λ1) D′(λ′

1) · · · D(λ4) D′(λ′
4)

Y qZq3 (Y ′)q(Z′)q3 1 Dq(λ1) (D′)q(λ′
1) · · · Dq(λ4) (D′)q(λ′

4)
Y q3

Z (Y ′)q3
Z′ 1 Nq2 (λ1) (N ′)q2(λ′

1) · · · Nq2 (λ4) (N ′)q2(λ′
4)

Y Zq Y ′(Z′)q 1 Nq3 (λ1) (N ′)q3(λ′
1) · · · Nq3 (λ4) (N ′)q3(λ′

4)
Y qZq2 (Y ′)q(Z′)q2 1 N(λ1) N ′(λ′

1) · · · N(λ4) N ′(λ′
4)

Y q2
Zq3 (Y ′)q2(Z′)q3 1 Nq(λ1) (N ′)q(λ′

1) · · · Nq(λ4) (N ′)q(λ′
4)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since |F∗
q | ≥ 4, we can choose λ1 �= 0, λ2

1 �= 1 and λ3
1 �= 1 and then
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• λ2 = λ2
1, λ3 = λ3

1 and λ4 = λ4
1;

• λi = λi−4 for any i ∈ {5, 6, 7, 8}.

We also choose α0, β0, α, β, α′, β′ such that Zq2+1 = 1 and Z ′ = Zq. By direct computa-
tion with MAGMA,

det(M) = λ40
1 (λ1 − 1)12(λ1 + 1)4(λ2

1 + λ1 + 1)2(Z2 − 1)6q+6(Zq − Z)4(Zq+1 − 1)4

·(Z3q+2 − Z2q+1 − 2Zq+2 + Zq + Z3)(Z3q+1 − Z2q+2 + Zq+3 − 2Zq+1 + 1)

·(Z3q + Z2q+3 − 2Z2q+1 − Zq+2 + Z)(Z3q+3 − 2Z2q+2 + Z2q − Zq+1 + Z2)2.

For some Z ∈ Fq4 \ Fq2 satisfying Zq2+1 = 1, we have det(M) �= 0; for q ≥ 16 this 
follows because q2 + 1 is greater than the sum of the degrees of the polynomials in 
parentheses, while for q < 16 this follows by direct checking. Therefore, for a suitable 
choice of λi, λ′

i, α0, β0, α, β, α′, β′, the matrix M has full rank 11 and hence

(μ, μ′, μ0, μ1, μ
′
1, . . . , μ4, μ

′
4) = (0, . . . , 0).

Thus, F (x), F ′(x), F0(x), F1(x), F ′
1(x), . . ., F4(x), F ′

4(x) are Fq-linearly independent 
and G has tensor rank 11. �
5. Tensor rank of n × n generalized Gabidulin codes for n ≤ 4

We compute the tensor rank of some generalized Gabidulin code C ⊆ Ln,q of dimension 
k over Fqn for n ≤ 4. Notice that, up to equivalence, C = Gk,1.

By Section 4.2 and [4, Table 1], the open cases are exactly for n, k, q as in the table 
below. Since the lower bound on the tensor rank of Gk,1 is nk + n − k, we start with 
the exhaustive search for t = n − k rank-one functions αiTr(βix) ∈ Fqn [x] such that 
the rank-one functions in C + 〈α1Tr(β1x), . . . , αtTr(βtx)〉Fq

generate an Fq-space U of 
dimension nk+ t. If this succeeds, then we compute explicitly a perfect basis of U (i.e. a 
basis of pure tensors). Otherwise, we increase t by 1 and perform the same search again. 
In this way we obtain the tensor rank and a perfect basis B = {ηiTr(ηjx) : (i, j) ∈ I} for 
Gk,1, where η is a primitive element of Fqn and I ⊆ {0, . . . , qn − 2}2. The precise value 
of the tensor rank is obtained for all but two cases, namely n = 4, k = 1 and q ∈ {4, 5}; 
in these cases, an upper bound is provided by means of a random search.

For instance, in the case (n, k, q) = (3, 2, 2) Table 1 provides the following perfect 
basis B for G2,1 ⊆ L3,2, where η ∈ F23 satisfies η3 + η + 1 = 0:

B =
{
η2Tr(x), (η + 1)Tr((η2 + η + 1)x), ηTr(η2x), Tr((η2 + η)x),

(η2 + 1)Tr((η2 + 1)x), (η2 + η + 1)Tr(ηx), (η2 + η)Tr((η + 1)x)
}
.

Remark 5.1. The fourth, fifth, and sixth rows of the table complete the proof of Theo-
rem 1.1.
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Table 1
Tensor rank of some generalized Gabidulin codes Gk,1 ⊆ Ln,q.

n k q TR(Gk,1) MTR MinPol(η) I

3 2 2 7 yes x3 + x + 1 (2,0),(3,5),(1,2),(0,4),(6,6),(5,1),(4,3)

4 1 4 8 no x8 + x4+
x3 + x2 + 1

(73,168),(22,202),(0,180),(69,249),
(80,90),(1,96),(33,213),(67,162)

4 1 5 8 no x4 + 4x2

+4x + 2
(16,432),(135,81),(21,405),(10,132),
(56,593),(24,556),(74,569),(54,268)

4 2 2 12 no x4 + x + 1 (14,12),(9,14),(4,0),(7,5),(1,13),(5,10),
(6,3),(2,1),(12,7),(3,2),(0,4),(13,6)

4 2 3 11 no x4 − x3 − 1 (23,8),(0,13),(28,14),(32,46),(2,1),(19,26),
(1,18),(6,37),(7,12),(36,28),(21,59)

4 2 4 11 no x8 + x4+
x3 + x2 + 1

(13,133),(56,175),(20,71),(30,31),(81,124),(0,51),
(3,88),(76,34),(70,215),(29,132),(9,24)

4 3 2 13 yes x4 + x + 1 (12,13),(8,6),(4,4),(9,4),(1,5),(3,1),(14,9),
(11,0),(10,2),(0,7),(6,10),(7,8),(5,12)

4 3 3 13 yes x4 − x3 − 1 (31,3),(29,49),(0,56),(25,61),(7,75),(26,18),(22,30),
(20,36),(39,19),(18,2),(13,57),(32,40),(3,47)

Remark 5.2. The examples provided in Table 1 for the case n = 4, k = 1 and q ∈ {4, 5}
only prove that TR(G1,1) ≤ 8. However, in [6, Corollary 5.14] it has been proved that a 
generator tensor for G1,1 is the 3-tensor

Tn,n,n : (g, h) ∈ Fq[x]<n × Fq[x]<n �→ gh (mod f) ∈ Fq[x]<n,

where Fq[x]<n is the set of all polynomials in Fq[x] with degree less than n and f is 
a fixed irreducible polynomial in Fq[x] of degree n. Therefore, Tn,n,n is also the tensor 
associated with the multiplication in Fqn . Applying the main result in [26] (see also [2, 
Theorem 9.1]) to the case n = 4 and q ∈ {4, 5} we obtain that trk(T4,4,4) = 8 and hence 
TR(G1,1) = 8.

Remark 5.3. Notice that, although only one perfect basis is showed in the table, the 
computations provide a much larger number of perfect bases in each case. Therefore, no 
generator tensor of such codes is identifiable.
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Appendix A

Theorem A.1. Let Y, Z ∈ Fq4 . Then (Y, Z) is a solution of System (4.4) if and only if 
one of the following pairwise mutually exclusive conditions holds:

(C1) Y ∈ Fq or Z ∈ Fq;
(C2) Y /∈ Fq2 and Z = ρY q+1 for some ρ ∈ F∗

q ;
(C3) Z /∈ Fq2 and Y = ρ/Zq2+q for some ρ ∈ F∗

q .

Proof. For any i = 0, 1, 2, 3, write yi = Y qi and zi = Zqi . Then System (4.4) reads

⎧⎪⎪⎨
⎪⎪⎩
f1(y0, y1, y2, y3, z0, z1, z2, z3) = 0
f2(y0, y1, y2, y3, z0, z1, z2, z3) = 0
f3(y0, y1, y2, y3, z0, z1, z2, z3) = 0,

(A.1)

where

f1(y0, y1, y2, y3, z0, z1, z2, z3) = y0z1 − y0z2 + y1z2 − y1z3 − y2z0 + y2z3 + y3z0 − y3z1,

f2(y0, y1, y2, y3, z0, z1, z2, z3) = y0y1z1z2 − y0y1z2z3 − y0y2z0z2 + y0y2z1z3 + y0y3z0z1

−y0y3z1z2 − y1y2z0z3 + y1y2z2z3 + y1y3z0z2 − y1y3z1z3

−y2y3z0z1 + y2y3z0z3,

f3(y0, y1, y2, y3, z0, z1, z2, z3) = y0y1y2z0z2z3 − y0y1y2z1z2z3 − y0y1y3z0z1z2

+y0y1y3z1z2z3 + y0y2y3z0z1z2 − y0y2y3z0z1z3

+y1y2y3z0z1z3 − y1y2y3z0z2z3.

We denote by Resx(g1, g2) the resultant of two (multivariate) polynomials g1 and g2 with 
respect to the indeterminate x. We have

Resz1 (Resz0(f3, f1),Resz0(f2, f1)) = −(z2 − z3)2y3(y2 − y3)(y2z3 − y3z2) ·

(y1 − y2)2(y0 − y3)(y0 − y1)2(y0z2 − y3z3) ·

(y0z2 − y2z3)2(y0y2 − y1y3)(y1 − y3).

Thus, every solution (Y, Z) ∈ F2
q4 of System (4.4) with Y Z �= 0 satisfies one of the 

following conditions.
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1. y3 = 0, that is Y q3 = 0, a contradiction.
2. z2 − z3 = 0, that is Z ∈ Fq. Indeed (Y, Z) is a solution of System (4.4) whenever 

Z ∈ Fq. In the following cases we can then assume Z /∈ Fq.
3. y2 − y3 = 0, or y1 − y2 = 0, or y0 − y3 = 0, or y0 − y1 = 0. This is equivalent to 

Y ∈ Fq, and indeed (Y, Z) is a solution of System (4.4) whenever Y ∈ Fq. In the 
following cases we can then assume Y /∈ Fq.

4. y1 − y3 = 0, that is Y ∈ Fq2 . Then System (4.4) reads

⎧⎪⎪⎨
⎪⎪⎩
Zq2+q+1 − Zq3+q+1 + Zq3+q2+1 − Zq3+q2+q = 0
Z − Zq + Zq2 − Zq3 = 0
(Y q + Y )(Zq2+1 − Zq3+q) = 0.

The first equation yields Zq3+q2+1 + Zq2+q+1 ∈ Fq, that is Zq2+1(Zq2 + Z)q ∈ Fq, 
while the second equation yields Zq2 +Z ∈ Fq. Therefore Zq2+1 ∈ Fq, and hence the 
third equation is also satisfied. Now, the two conditions Zq2 +Z ∈ Fq and Zq2+1 ∈ Fq

yield Zq3 = Zq2 − Zq + Z and Zq3 = Zq2−q+1. This implies Z(Zq−1 − 1)q+1 = 0, 
whence Z ∈ Fq. In the following cases we can then assume Y /∈ Fq2 .

5. y2z3 − y3z2 = 0, that is Y q−1 = Zq−1, and hence Y = ρZ for some ρ ∈ F∗
q . Then 

yi = ρzi for any i = 1, . . . , 3, and System (A.1) reads

{
g1 = z0z1 − 2z0z2 + z0z3 + z1z2 − 2z1z3 + z2z3 = 0
g2 = z2

0z1z3 − z2
0z

2
2 + z0z

2
1z2 − 2z0z1z2z3 + z0z2z

2
3 − z2

1z
2
3 + z1z

2
2z3 = 0.

From Resz1(g1, g2) = 0 it follows that (z2 − z3)2(z3 − z0)2(z2 − z0)2 = 0, which is 
equivalent to Z ∈ Fq2 . Then Y = ρZ ∈ Fq2 .

6. y0z2 − y3z3 = 0, that is Y q−1 = 1/Z(q2+q+1)(q−1), and hence Y = ρ/Zq2+q+1 for 
some ρ ∈ F∗

q . Then yi = ρ/(zizi+1zi+2) for any i = 0, . . . , 3 (where the indices are 
modulo 4) and System (A.1) reads

{
h1 = z0z1 − 2z0z2 + z0z3 + z1z2 − 2z1z3 + z2z3 = 0
h2 = z2

0z1z3 − z2
0z

2
2 + z0z

2
1z2 − 2z0z1z2z3 + z0z2z

2
3 − z2

1z
2
3 + z1z

2
2z3 = 0.

From Resz3(h1, h2) = 0 it follows that z2 = z0. Then Z ∈ Fq2 and hence Y =
ρ/(Z2Zq). By System (4.4), this implies Z ∈ Fq.

7. y0z2−y2z3 = 0, that is Y Zq2 −Y q2
Zq3 = 0. This is equivalent to Zq−1 = Y q2−1, and 

hence to Z = ρY q+1 for some ρ ∈ F∗
q . By direct checking, this is indeed a solution 

of System (4.4) for any Y ∈ Fq4 . If we require Y /∈ Fq2 , this also implies Z /∈ Fq.
8. y0y2−y1y3 = 0, that is y3 = y0y2/y1, or equivalently Y q3 = Y 1+q2

/Y q. Then System 
(A.1) reads
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⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p1 = y0y1z1 − y0y1z2 + y0y2z0 − y0y2z1 + y2
1z2 − y2

1z3 − y1y2z0 + y1y2z3 = 0
p2 = y0y1z0z1z2 − y0y1z1z2z3 − y0y2z0z1z2 + y0y2z0z1z3 − y2

1z0z2z3

+y2
1z1z2z3 − y1y2z0z1z3 + y1y2z0z2z3 = 0

p3 = y2
0y2z0z1 − y2

0y2z1z2 + y0y
2
1z1z2 − y0y

2
1z2z3 − y0y

2
2z0z1

+y0y
2
2z0z3 − y2

1y2z0z3 + y2
1y2z2z3 = 0.

From Resy2(p1, p2) = 0 it follows that (z0 − z2)(z0z2 − z1z3)(y0z1 − y1z3) = 0.
8.1 Suppose z0 − z2 = 0, i.e. Z ∈ Fq2 , whence also z3 = z1. Then, by System (A.1), 

either Y ∈ Fq or Z ∈ Fq.
8.2 Suppose z0z2 − z1z3 = 0, so that z3 = z0z2/z1. By System (A.1),

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

	1 = y2
0y2z0z1 − y2

0y2z1z2 + y0y
2
1z1z2 − y0y

2
1z

2
2 − y0y

2
2z0z1

+y0y
2
2z0z2 − y2

1y2z0z2 + y2
1y2z

2
2 = 0

	2 = y0z0z1 − y0z1z2 − y1z0z2 + y1z1z2 − y2z0z1 + y2z0z2 = 0
	3 = y0y1z1 − y0y1z2 + y0y2z0 − y0y2z1 − y1y2z0 + y1y2z2 = 0.

From Resy2(	1, 	3) = 0 it follows y0z1 − y1z2 = 0, so that Y q−1 = (1/Zq)q−1. 
This implies Y = ρ/Zq for some ρ ∈ F∗

q , whence yi = ρ/zi+1 for any i = 0, . . . , 3
(indices modulo 4). Then, by System (A.1),

⎧⎪⎨
⎪⎩
m1 = z2

0z1 − z0z1z2 − 2z0z1z3 + z0z2z3 + z2
1z3 = 0

m2 = z2
0z2 + z0z2

1 − 2z0z1z2 − z0z1z3 + z1z2z3 = 0
m3 = z2

0z1 + z2
0z2 + z0z2

1 − 3z0z1z2 − 3z0z1z3 + z0z2z3 + z2
1z3 + z1z2z3 = 0.

From Resz3(m1, m2) = 0 it follows that Z ∈ Fq.
8.3 Suppose y0z1 − y1z3 = 0. This implies Y q−1 = (1/Zq2+q)q−1, whence Y =

ρ/Zq2+q for some ρ ∈ F∗
q . Then yi = ρ/(zi+2zi+1) for any i = 0, . . . , 3 (indices 

modulo 4), which is indeed a solution of System (A.1) and provide a solution 
(Y, Z) of System (4.4). Notice that the condition Y = ρ/Zq2+q with Z ∈ Fq4

implies Y q3 = Y 1+q2
/Y q. For such a solution, the require Z /∈ Fq2 is equivalent 

to Y /∈ Fq. Also, if Y, Z ∈ F∗
q4 are such that Y = ρ/Zq2+q and Z = ρ′Y q+1 with 

ρ, ρ′ ∈ Fq, then Y q3+q2+q+1+q2 = ρ/ρ′ ∈ F∗
q , whence Y ∈ Fq. �

Theorem A.2. Let (Y, Z) ∈ F2
q4 be a solution of System (4.4), and M be the matrix in 

(4.10).

(R1) If Y ∈ Fq or Z ∈ Fq, then rank(M) = 2.
(R2) If Y /∈ Fq2 and Z = ρY q+1 for some ρ ∈ F∗

q , then rank(M) = 6.
(R3) If Z /∈ Fq2 and Y = ρ/Zq2+q for some ρ ∈ F∗

q , then rank(M) = 6.

Proof. For any i = 1, . . . , 10, denote respectively by M (i) and M(i) the i-th row and the 
i-th column of M . Note that M(9) and M(10) are linearly independent. Note also that, 
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by construction of M , any possible Fq-linear combination of the columns of M needs to 
be checked only on the first, second, third, and seventh rows of M .

(R1) Suppose Y ∈ Fq. Then N(λ) = D(λ), whence D
q2+q+1(λ)
Nq+1(λ) = Dq2+q(λ)

Nq(λ) = λZY + 1. 
Therefore M(j) = λjM(9) + M(10) for any j = 1, . . . , 8, and rank(M) = 2.
Suppose Z ∈ Fq. Similarly, one has N(λ) = Dq(λ) and M(j) = λjM(9) + M(10) for 
any j = 1, . . . , 8, so that rank(M) = 2.

For i = 6, 7, denote by Si the i × i submatrix of M given by the first i rows and the last 
i columns of M . If for any distinct λ4, . . . , λ8 ∈ F∗

q one has det(S6) �= 0 and det(S7) = 0, 
then this is enough to conclude that rank(M) = 6 for any distinct λ1, . . . , λ8 ∈ F∗

q . 
Indeed, this is due to the fact that the use of the column M(j), j ∈ {1, 2, 3}, instead 
of M(4), implies the replacement of λ4 with λj in det(S7), and in this way the fourth 
column becomes any of the remaining columns. If S′

7 is obtained from S7 by replacing 
M (7) with M (i), i ∈ {8, 9, 10}, then the elementwise qi−7-power Φ maps M (7) to M (i), 
while M (1) and M (2) are fixed by Φ, and M (3), M (4), M (5), M (6) are cyclically permuted 
by Φ. Therefore Φ maps the rows of S7 to the rows of S′

7, so that det(S7) = 0 if and only 
if det(S′

7) = 0.

(R2) Suppose Y /∈ Fq2 and Z = ρY q+1 for some ρ ∈ F∗
q . Then det(S6) equals

ρ10Y 4(q3+q2+q+1)

( 8∏
i=5

λi

)⎛
⎝ ∏

5≤i<j≤8
(λi − λj)

⎞
⎠ ·

( 3∏
i=0

(Y qi − Y qi+1
)2
)( 1∏

i=0
(Y qi − Y qi+2

)3
)
,

and hence det(S6) �= 0 because Y /∈ Fq2 and the λi’s are nonzero and distinct. 
Also, det(S7) = 0. Therefore, rank(M) = 6.

(R3) Suppose Z /∈ Fq2 and Y = ρ/Zq2+q for some ρ ∈ F∗
q . Then

det(S6) = ρ10

( 8∏
i=5

λi

)⎛
⎝ ∏

5≤i<j≤8
(λi − λj)

⎞
⎠ ·

( 3∏
i=0

(Zqi − Zqi+1
)2
)( 1∏

i=0
(Zqi − Zqi+2

)3
)

is nonzero. Also, det(S7) = 0. Therefore, rank(M) = 6. �
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