Non-minimum tensor rank Gabidulin codes ${ }^{\text {Th }}$

Daniele Bartoli ${ }^{\text {a,* }}$, Giovanni Zini ${ }^{\text {b }}$, Ferdinando Zullo ${ }^{\text {c }}$
${ }^{\text {a }}$ Department of Mathematics and Informatics, University of Perugia, Perugia, Italy
${ }^{\text {b }}$ Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, Modena, Italy
${ }^{\text {c }}$ Department of Mathematics and Physics, University of Campania, Caserta, Italy

A R T I C L E I N F O

Article history:

Received 11 February 2022
Accepted 9 June 2022
Available online 14 June 2022
Submitted by H. Gluesing-Luerssen

MSC:

94B05
12E20
Keywords:
Rank metric codes
Tensor rank
Minimal tensor rank
MRD codes
Delsarte-Gabidulin code

Abstract

The tensor rank of some Gabidulin codes of small dimension is investigated. In particular, we determine the tensor rank of any rank metric code equivalent to an 8-dimensional \mathbb{F}_{q}-linear generalized Gabidulin code in $\mathbb{F}_{q}^{4 \times 4}$. This shows that such a code is never minimum tensor rank. In this way, we detect the first infinite family of Gabidulin codes which are not minimum tensor rank.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

Rank metric codes were introduced by Delsarte [10] in 1978 and have been used in several contexts, such as crisscross error correction [24], cryptography [15], and network

[^0]coding [27]. Because of their ubiquitous applications, they attracted increasing attention in the last years; see e.g. [16,23,25].

Very recently, rank-metric codes have been investigated through their tensor rank; see $[6,4,5]$. Indeed, a rank-metric code \mathcal{C} in $\mathbb{F}_{q}^{n \times m}$ can be seen as the slice space of an associated generator 3 -tensor, similarly to the case of linear codes in the Hamming metric, where a code can be described as the row space of a generator matrix. Therefore, after Byrne, Neri, Ravagnani and Sheekey [6], the tensor rank of \mathcal{C} is defined as the tensor rank of a generator tensor of \mathcal{C}. Determining the tensor rank of a certain rank-metric code is a hard problem in general and the exact value is known only for specific classes of codes; indeed the problem of computing the rank of a 3 -tensor is NP-complete over any finite field [17]. Several lower and upper bounds for the tensor rank of a rank-metric code were presented in [6] and [4]. In particular, as a consequence of Kruskal's bound [12], the tensor rank of an h-dimensional \mathbb{F}_{q}-linear rank-metric code \mathcal{C} in $\mathbb{F}_{q}^{n \times m}$ of minimum distance d is lower bounded by $h+d-1$. The code \mathcal{C} is said to be minimum tensor rank (MTR for short) if its tensor rank is exactly $h+d-1$. The interest for rank-metric codes with a low tensor rank is due to the following fact: the smaller the tensor rank of the generating tensors, the more efficient the encoding. Via the correspondence in [9] between full rank codes and semifields, the notion of tensor rank for rank-metric codes extends the same notion for semifields, which was used as an invariant by Lavrauw in [18]. Moreover, some criteria by Kruskal [12, Section 4] use the rank of a tensor to assure its identifiability, i.e. the uniqueness of the pure tensors appearing in its decomposition, which is of interest for the numerical applications within statistics; see [7] and [1, Section $2]$.

A family of particular interest among rank-metric codes is the one of square Gabidulin codes $\mathcal{G}_{k, s}$ in $\mathbb{F}_{q}^{n \times n}$, as they are maximum rank distance, and indeed they have been deeply investigated. However, their tensor rank is not known in general; exact results have been provided in [6] and [4] when $k \in\{1, n-1\}$ and in few other cases. Interestingly, when q is large enough, Gabidulin codes with $k \in\{1, n-1\}$ turn out to be MTR codes.

In this paper we are interested in determining the tensor rank of those codes which are equivalent to an \mathbb{F}_{q}-linear 8-dimensional Gabidulin code in $\mathbb{F}_{q}^{4 \times 4}$. The strategy that we apply makes use of [6, Proposition 3.4], which involves rank-one matrices. The framework of our arguments is the one of linearized polynomials, where rank-one matrices correspond to trace functions of the shape $\alpha \operatorname{Tr}(\beta x)$ for some nonzero $\alpha, \beta \in \mathbb{F}_{q^{4}}$ (see [22, Theorem 2.24]), where $\operatorname{Tr}: \mathbb{F}_{q^{4}} \rightarrow \mathbb{F}_{q}$ and $\operatorname{Tr}(x)=x+x^{q}+x^{q^{2}}+x^{q^{3}}$. Our main result is the following.

Theorem 1.1. Let q be a prime power, and \mathcal{C} be a code which is equivalent to an \mathbb{F}_{q}-linear 8-dimensional generalized Gabidulin code in $\mathbb{F}_{q}^{4 \times 4}$. Then the tensor rank of \mathcal{C} is 11 if $q \geq 3$, and 12 if $q=2$. In particular, \mathcal{C} is not MTR.

The paper is organized as follows. Section 2 contains preliminary notions on rankmetric codes and on the correspondence with linearized polynomials in the case of square
codes. Section 3 describes basic definitions and known results about tensors and the tensor rank of square generalized Gabidulin codes. Section 4 is devoted to the proof of Theorem 1.1: Section 4.1 shows that \mathcal{C} is not MTR, while in Section 4.2 we determine the tensor rank of \mathcal{C} for $q \geq 5$. The remaining small values of q, are worked out computationally in Section 5, as well as other Gabidulin codes in $\mathbb{F}_{q}^{n \times n}$ with small values of q and n. Finally, the Appendix contains two auxiliary results which are needed in Section 4.1, whose proof are quite technical.

2. Rank metric codes and linearized polynomials

The set $\mathbb{F}_{q}^{n \times m}$ of matrices can be equipped with the rank-metric, defined as

$$
d(A, B)=\operatorname{rk}(A-B), \quad \text { for } A, B \in \mathbb{F}_{q}^{n \times m}
$$

A rank-metric code is a subset \mathcal{C} of $\mathbb{F}_{q}^{n \times m}$ endowed with the rank-metric and its minimum rank distance is defined as

$$
d=d(\mathcal{C})=\min \{d(A, B): A, B \in \mathcal{C}, A \neq B\}
$$

Two \mathbb{F}_{q}-linear rank-metric codes \mathcal{C} and \mathcal{C}^{\prime} in $\mathbb{F}_{q}^{n \times m}$ are linearly equivalent if and only if there exist $X \in \operatorname{GL}(n, q)$ and $Y \in \operatorname{GL}(m, q)$ such that

$$
\mathcal{C}^{\prime}=\{X C Y: C \in \mathcal{C}\}
$$

or, if $m=n$,

$$
\mathcal{C}^{\prime}=\left\{X C^{\top} Y: C \in \mathcal{C}\right\}
$$

where C^{\top} denote the transpose of C. Since in this paper we will only consider linear equivalence, we will refer to it simply as equivalence.

Delsarte showed in [10] that the parameters of a rank-metric code \mathcal{C} satisfy a Singletonlike bound, namely

$$
|\mathcal{C}| \leq q^{\max \{m, n\}(\min \{m, n\}-d+1)}
$$

When equality holds, we call \mathcal{C} a maximum rank distance (MRD for short) code.
In this paper we are interested only in the square case $m=n$, and in this case rank-metric codes can be described in terms of linearized polynomials. Indeed, consider the \mathbb{F}_{q}-linearized (or simply linearized) polynomials of degree less than q^{n} over $\mathbb{F}_{q^{n}}$, i.e. elements of the form

$$
f(x)=\sum_{i=0}^{n-1} f_{i} x^{q^{i}}, \quad f_{i} \in \mathbb{F}_{q^{n}}
$$

The set of linearized polynomials is an \mathbb{F}_{q}-algebra $\mathcal{L}_{n, q}$ with the usual addition, scalar multiplication by elements of \mathbb{F}_{q} and composition modulo $x^{q^{n}}-x$. It is well-known that the $\mathbb{F}_{q^{-}}$-algebras $\mathcal{L}_{n, q}$ and $\operatorname{End}_{\mathbb{F}_{q}}\left(\mathbb{F}_{q^{n}}\right)$ are isomorphic, via the correspondence between the linearized polynomial $f(x)$ and the $\mathbb{F}_{q^{-}}$-endomorphism

$$
\alpha \longmapsto \sum_{i=0}^{n-1} f_{i} \alpha^{q^{i}}
$$

of $\mathbb{F}_{q^{n}}$. Hence, $\mathcal{L}_{n, q}$ is also isomorphic to the $\mathbb{F}_{q^{-}}$-algebra $\mathbb{F}_{q}^{n \times n}$ of $n \times n$ matrices over \mathbb{F}_{q}. In this correspondence, the rank of a matrix in $\mathbb{F}_{q}^{n \times n}$ equals the rank of the corresponding linearized polynomial in $\mathcal{L}_{n, q}$ as an $\mathbb{F}_{q^{-}}$-endomorphism of $\mathbb{F}_{q^{n}}$. Therefore, rank-metric codes in $\mathbb{F}_{q}^{n \times n}$ can be seen as sets of linearized polynomials in $\mathcal{L}_{n, q}$, so that we can speak of rank-metric codes in $\mathcal{L}_{n, q}$. Notice that the set of matrices of rank 1 in $\mathbb{F}_{q}^{n \times n}$ corresponds to the set of elements of $\mathcal{L}_{n, q}$ of the shape $\alpha \operatorname{Tr}(\beta x)$ for some $\alpha, \beta \in \mathbb{F}_{q^{n}}^{*}$, where $\operatorname{Tr}(z)=z+z^{q}+\cdots+z^{q^{n-1}}$; see [22, Theorem 2.24]. For a reference on linearized polynomials see [28].

The first class of square MRD codes was the one of generalized Gabidulin codes, namely the $\mathbb{F}_{q^{n}}$-subspaces

$$
\mathcal{G}_{k, s}=\left\langle x, x^{q^{s}}, \ldots, x^{q^{s(k-1)}}\right\rangle_{\mathbb{F}_{q^{n}}}
$$

of $\mathcal{L}_{n, q}$, where $1 \leq k \leq n$ and $\operatorname{gcd}(s, n)=1$; they are MRD codes with \mathbb{F}_{q}-dimension $k n$ and minimum distance $n-k+1$. Gabidulin codes were first introduced by Delsarte in [10] and later by Gabidulin in [14] in the case $s=1$, and by Gabidulin and Kshevetskiy in [13] in the general case.

3. Tensor rank of generalized Gabidulin codes

The tensors we will investigate in this paper are 3-tensors in $\mathbb{F}_{q}^{h} \otimes \mathbb{F}_{q}^{n} \otimes \mathbb{F}_{q}^{m}$. If $\left\{u_{1}, \ldots, u_{h}\right\},\left\{v_{1}, \ldots, v_{n}\right\}$, and $\left\{w_{1}, \ldots, w_{n}\right\}$ are bases of $\mathbb{F}_{q}^{h}, \mathbb{F}_{q}^{n}$, and \mathbb{F}_{q}^{m} respectively, then an \mathbb{F}_{q}-basis of $\mathbb{F}_{q}^{h} \otimes \mathbb{F}_{q}^{n} \otimes \mathbb{F}_{q}^{m}$ is given by

$$
\left\{u_{l} \otimes v_{i} \otimes w_{j}: 1 \leq l \leq h, 1 \leq i \leq n, 1 \leq j \leq m\right\}
$$

The tensors of the form $u \otimes v \otimes w$, with $u \in \mathbb{F}_{q}^{h}, v \in \mathbb{F}_{q}^{n}$ and $w \in \mathbb{F}_{q}^{m}$, are called simple (or pure) tensors. The tensor rank of a tensor $X \in \mathbb{F}_{q}^{h} \otimes \mathbb{F}_{q}^{n} \otimes \mathbb{F}_{q}^{m}$ is defined as

$$
\operatorname{trk}(X)=\min \left\{R \in \mathbb{N}_{0}: X=\sum_{i=1}^{R} u_{i} \otimes v_{i} \otimes w_{i}, u_{i} \in \mathbb{F}_{q}^{h}, v_{i} \in \mathbb{F}_{q}^{n}, w_{i} \in \mathbb{F}_{q}^{m}\right\}
$$

Let $[i]=\{1, \ldots, i\}$. A 3-tensor $X \in \mathbb{F}_{q}^{h} \otimes \mathbb{F}_{q}^{n} \otimes \mathbb{F}_{q}^{m}$ can be represented as a map $X:[h] \times$ $[n] \times[m] \rightarrow \mathbb{F}_{q}$ given by $X=\left(X_{l i j}: 1 \leq l \leq h, 1 \leq i \leq n, 1 \leq j \leq m\right)$. Therefore
$\mathbb{F}_{q}^{h} \otimes \mathbb{F}_{q}^{n} \otimes \mathbb{F}_{q}^{m}$ can be identified with the space $\mathbb{F}_{q}^{h \times n \times m}$, and the tensor X can be written as $X=\left(X_{1}, \ldots, X_{h}\right)$ with $X_{i} \in \mathbb{F}_{q}^{n \times m}$. The first slice space of X (also known as first contraction space), denoted by $\mathrm{ss}_{1}(X)$, is the \mathbb{F}_{q}-subspace of $\mathbb{F}_{q}^{n \times m}$ generated by X_{1}, \ldots, X_{h}. If $\operatorname{dim}_{\mathbb{F}_{q}}\left(\mathrm{ss}_{1}(X)\right)=h$, we say that X is 1-nondegenerate.

The following result will be a key tool in our investigation.
Proposition 3.1. (see [6, Proposition 3.4] and [3, Proposition 14.45]) Let $X \in \mathbb{F}_{q}^{h \times n \times m}$ and R be a positive integer. The following are equivalent:

1. $\operatorname{trk}(X) \leq R$;
2. there exist $A_{1}, \ldots, A_{R} \in \mathbb{F}_{q}^{n \times m}$ of rank 1 such that $\mathrm{ss}_{1}(X) \subseteq\left\langle A_{1}, \ldots, A_{R}\right\rangle_{\mathbb{F}_{q}}$.

In particular, $\operatorname{trk}(X)=R$ if and only if R is the minimum integer such that there exist $A_{1}, \ldots, A_{R} \in \mathbb{F}_{q}^{n \times m}$ of rank 1 satisfying $\operatorname{ss}_{1}(X) \subseteq\left\langle A_{1}, \ldots, A_{R}\right\rangle_{\mathbb{F}_{q}}$.

Kruskal in [12] bounded the tensor rank of a 3-tensor, using the following map:

$$
m_{1}: \mathbb{F}_{q}^{s \times h} \times \mathbb{F}_{q}^{h \times n \times m} \rightarrow \mathbb{F}_{q}^{s \times n \times m}, \quad\left(A, \sum_{i} u_{i} \otimes v_{i} \otimes w_{i}\right) \mapsto \sum_{i}\left(A u_{i}\right) \otimes v_{i} \otimes w_{i}
$$

Theorem 3.2. (see [12, Corollary 1]) Let $X \in \mathbb{F}_{q}^{h \times n \times m}$ be 1-nondegenerate, then

$$
\operatorname{trk}(X) \geq h+\min \left\{\operatorname{trk}\left(m_{1}(u, X)\right): u \in \mathbb{F}_{q}^{h} \backslash\{0\}\right\}-1
$$

Tensors are related to rank-metric codes as follows. Let \mathcal{C} be an \mathbb{F}_{q}-linear code in $\mathbb{F}_{q}^{n \times m}$ of dimension h and minimum distance d. A generator tensor for \mathcal{C} is a 3-tensor $X \in \mathbb{F}_{q}^{h \times n \times m}$ such that $\mathrm{ss}_{1}(X)=\mathcal{C}$. Note that

$$
d=\min \left\{\operatorname{trk}\left(m_{1}(u, X)\right): u \in \mathbb{F}_{q}^{h} \backslash\{0\}\right\}
$$

As proved in [6, Proposition 4.2], two generator tensors of the same rank-metric code \mathcal{C} have the same tensor rank. Therefore, we can define the tensor rank $\operatorname{trk}(\mathcal{C})$ of \mathcal{C} as the tensor rank of any generator tensor of \mathcal{C}.

Proposition 3.3. (see [6, Proposition 4.5]) If $\mathcal{C}, \mathcal{C}^{\prime}$ are equivalent codes, then $\operatorname{trk}(\mathcal{C})=$ $\operatorname{trk}\left(\mathcal{C}^{\prime}\right)$.

By Theorem 3.2,

$$
\begin{equation*}
\operatorname{trk}(\mathcal{C}) \geq h+d-1 \tag{3.1}
\end{equation*}
$$

If \mathcal{C} attains equality in (3.1), it is called a minimum tensor rank (MTR for short) code.

Although Gabidulin codes form the most studied family of rank-metric codes, the complete determination of their tensor rank is still missing. We now describe the known results on the tensor rank of square Gabidulin codes $\mathcal{G}_{k, s} \subset \mathcal{L}_{n, q}$. Since in this case $d=n-k+1$, the bound (3.1) reads as follows.

Theorem 3.4. For every $k \leq n$, we have $\operatorname{trk}\left(\mathcal{G}_{k, s}\right) \geq(k+1) n-k$.

The tensor rank of $\mathcal{G}_{1, s}$ coincides with the tensor rank of the field $\mathbb{F}_{q^{n}}$ (see [11] and [21] where semifields were described for the first time in terms of tensors). By [3, Propositions 14.47 and 14.48] and a link with a well-studied tensor pointed out in [6, Lemma 5.13], it follows that $\operatorname{trk}\left(\mathcal{G}_{1, s}\right)=2 n-1$ if $q \geq 2 n-1$, and $\operatorname{trk}\left(\mathcal{G}_{1, s}\right)>2 n-1$ if $q \leq 2 n-2$. For $n=3, \operatorname{trk}\left(\mathcal{G}_{1, s}\right)=6$ if $q \in\{2,3\}$ (see [20, Lemma 15] and also [19]). For $n=4$, $\operatorname{trk}\left(\mathcal{G}_{1, s}\right)=9$ if $q=2$ (as proved by Chudnovsky-Chudnovsky [8], see also [6, Example $6.4]$), or $q=3$ (see [20, Theorem 4]), while $\operatorname{trk}\left(\mathcal{G}_{1, s}\right)$ is unknown for $n=4$ and $q \in\{4,5\}$.

Further bounds and asymptotic results for the tensor rank of $\mathbb{F}_{q^{n}}$ are known, see e.g. [2].

The following upper bound follows from the tensor rank of $\mathcal{G}_{1, s}$.

Theorem 3.5. (see [6, Proposition 5.15]) Let $q \geq 2 n-2$. For every $k \leq n$, we have $\operatorname{trk}\left(\mathcal{G}_{1, s}\right) \leq \min \left\{n^{2}, k(2 n-1)\right\}$.

A partial result is known also in the case of Gabidulin codes $\mathcal{G}_{n-1, s}$.
Theorem 3.6. (see [4, Theorem 5.15]) Let $q \geq n$. Then $\operatorname{trk}\left(\mathcal{G}_{n-1, s}\right)=n^{2}-n+1$.

The tensor rank of Gabidulin codes $\mathcal{G}_{k, s}$ with $k \notin\{1, n-1\}$ is not known. In this paper we study the first open case, namely $k=2$ and $n=4$. In Section 5 we will investigate the remaining open cases when $n \leq 4$.

4. The tensor rank of $\mathcal{G}_{2,1} \subset \mathcal{L}_{4, q}$

The two 8-dimensional generalized Gabidulin codes $\mathcal{G}_{2,1}$ and $\mathcal{G}_{2,3}$ in $\mathcal{L}_{4, q}$ are easily seen to be equivalent. Therefore, by Proposition 3.3, in order to prove Theorem 1.1 it is enough to prove it for the Gabidulin code $\mathcal{G}=\mathcal{G}_{2,1}=\left\langle x, x^{q}\right\rangle_{\mathbb{F}_{q^{4}}}$. In Section 4.1 we show that the tensor rank of \mathcal{G} is not 10 for any q. In Section 4.2 we prove that the tensor rank of \mathcal{G} is 11 if $q \geq 5$. We complete the proof in Section 5, where we determine the tensor rank of some Gabidulin codes for some values of q.

4.1. The tensor rank of \mathcal{G} is larger than 10

This section is devoted to the proof of the following theorem.

Theorem 4.1. For any prime power q, we have $\operatorname{trk}(\mathcal{G}) \geq 11$. Thus, \mathcal{G} is not an $M T R$ code.

By Proposition 3.1 and Section $2, \operatorname{trk}(\mathcal{G})=10$ if and only if there exist 10 trace functions $\alpha_{i} \operatorname{Tr}\left(\beta_{i} x\right)$ such that $\mathcal{G} \subseteq\left\langle\alpha_{1} \operatorname{Tr}\left(\beta_{1} x\right), \ldots, \alpha_{10} \operatorname{Tr}\left(\beta_{10} x\right)\right\rangle_{\mathbb{F}_{q}}$ which are \mathbb{F}_{q}-linearly independent. Note that this happens if and only if the two sets $\left\{\alpha_{i}: 1 \leq i \leq 10\right\}$ and $\left\{\beta_{i}: 1 \leq i \leq 10\right\}$ are \mathbb{F}_{q}-linearly independent. Moreover, $\alpha_{i} \operatorname{Tr}\left(\beta_{i} x\right)$ and $\alpha_{j} \operatorname{Tr}\left(\beta_{j} x\right)$ are \mathbb{F}_{q}-linear dependent if and only if $\left(\alpha_{i}, \beta_{i}\right)=\rho\left(\alpha_{j}, \beta_{j}\right)$, for some $\rho \in \mathbb{F}_{q}$. This is equivalent to say that there exist $\alpha_{1} \operatorname{Tr}\left(\beta_{1} x\right), \alpha_{2} \operatorname{Tr}\left(\beta_{2} x\right)$ such that there exists an \mathbb{F}_{q}-basis of

$$
\left\langle x, x^{q}\right\rangle_{\mathbb{F}_{q^{4}}} \oplus\left\langle\alpha_{1} \operatorname{Tr}\left(\beta_{1} x\right), \alpha_{2} \operatorname{Tr}\left(\beta_{2} x\right)\right\rangle_{\mathbb{F}_{q}}
$$

only composed of traces. So, consider $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2} \in \mathbb{F}_{q^{4}}$ such that $H=\left\langle x, x^{q}\right\rangle_{\mathbb{F}_{q^{4}}} \oplus$ $\left\langle\alpha_{1} \operatorname{Tr}\left(\beta_{1} x\right), \alpha_{2} \operatorname{Tr}\left(\beta_{2} x\right)\right\rangle_{\mathbb{F}_{q}}$ has dimension 10 over \mathbb{F}_{q}. Since the stabilizer of \mathcal{G} acts transitively on rank one elements, ${ }^{1}$ we may assume that $\alpha_{1}=\beta_{1}=1$.

The proof strategy relies on two steps:
Step 1: To find explicit necessary and sufficient conditions on $\alpha_{3}, \beta_{3} \in \mathbb{F}_{q^{4}}$ such that $\alpha_{3} \operatorname{Tr}\left(\beta_{3} x\right) \in H$.
Step 2: To prove the non-existence of ten \mathbb{F}_{q}-linearly independent traces in H.
In Steps 1 and 2 we will also need auxiliary results (Theorems A. 1 and A. 2 respectively) which are in the Appendix, due to their technicality.

Proof. Step 1: Let us find explicit conditions on the coefficients of $\alpha_{3} \operatorname{Tr}\left(\beta_{3} x\right)$ in such a way that it belongs to H. Suppose that $\alpha_{3} \operatorname{Tr}\left(\beta_{3} x\right)$ is in H. Then there exist $\gamma, \delta \in \mathbb{F}_{q^{4}}$, $c_{1}, c_{2} \in \mathbb{F}_{q}$ such that

$$
\alpha_{3} \operatorname{Tr}\left(\beta_{3} x\right)=\gamma x+\delta x^{q}+c_{1} \operatorname{Tr}(x)+c_{2} \alpha_{2} \operatorname{Tr}\left(\beta_{2} x\right) .
$$

This polynomial identity implies that γ, δ, c_{1}, and c_{2} satisfy the following system:

$$
\begin{cases}\gamma+c_{1}+c_{2} \alpha_{2} \beta_{2} & =\alpha_{3} \beta_{3}, \tag{4.1}\\ \delta+c_{1}+c_{2} \alpha_{2} \beta_{2}^{q} & =\alpha_{3} \beta_{3}^{q}, \\ c_{1}+c_{2} \alpha_{2} \beta_{2}^{q^{2}} & =\alpha_{3} \beta_{3}^{q^{2}}, \\ c_{1}+c_{2} \alpha_{2} \beta_{2}^{q^{3}} & =\alpha_{3} \beta_{3}^{q^{3}}\end{cases}
$$

We will now obtain information on α_{3} and β_{3} manipulating System (4.1).
It cannot happen that β_{2} and α_{2} are both in \mathbb{F}_{q}, otherwise $\alpha_{3} \operatorname{Tr}\left(\beta_{3}\right)$ and $\operatorname{Tr}(x)$ are \mathbb{F}_{q}-linearly dependent and hence $\operatorname{dim}_{\mathbb{F}_{q}}(H)<10$.

[^1]Note that $c_{1} c_{2} \neq 0$, since the sum of a map of rank at least 3 (that is $\gamma x+\delta x^{q}$) and one of rank one (either $c_{1} \operatorname{Tr}(x)$ or $c_{2} \alpha_{2} \operatorname{Tr}\left(\beta_{2} x\right)$) cannot have rank one. Therefore, we may assume that $c_{2}=1$.

From now on we always assume $c_{1} \neq 0$. By the last two equations in System (4.1) one gets

$$
\begin{equation*}
\beta_{3}^{q-1}=\frac{c_{1}+\alpha_{2}^{q^{2}} \beta_{2}^{q}}{c_{1}+\alpha_{2}^{q^{2}} \beta_{2}} . \tag{4.2}
\end{equation*}
$$

Note that, since $\beta_{3} \neq 0, c_{1}+\alpha_{2}^{q^{2}} \beta_{2}^{q}=0$ if and only if $c_{1}+\alpha_{2}^{q^{2}} \beta_{2}=0$, that is $1 / \beta_{2}$ and $1 / \alpha_{2}$ both belong to \mathbb{F}_{q}^{*}. Again, this is a contradiction to our assumptions.

An element $\beta_{3} \in \mathbb{F}_{q^{4}}$ satisfying Equation (4.2) exists if and only if

$$
\left(\frac{c_{1}+\alpha_{2}^{q^{2}} \beta_{2}^{q}}{c_{1}+\alpha_{2}^{q^{2}} \beta_{2}}\right)^{1+q+q^{2}+q^{3}}=1
$$

that is,

$$
\begin{align*}
& \left(c_{1}+\alpha_{2}^{q^{2}} \beta_{2}^{q}\right)\left(c_{1}+\alpha_{2}^{q^{3}} \beta_{2}^{q^{2}}\right)\left(c_{1}+\alpha_{2} \beta_{2}^{q^{3}}\right)\left(c_{1}+\alpha_{2}^{q} \beta_{2}\right)= \\
& \quad\left(c_{1}+\alpha_{2}^{q^{2}} \beta_{2}\right)\left(c_{1}+\alpha_{2}^{q^{3}} \beta_{2}^{q}\right)\left(c_{1}+\alpha_{2} \beta_{2}^{q^{2}}\right)\left(c_{1}+\alpha_{2}^{q} \beta_{2}^{q^{3}}\right) \tag{4.3}
\end{align*}
$$

We are interested in bounding the number of non- \mathbb{F}_{q}-proportional elements c_{1}, with $c_{1} \neq 0$. Indeed, this will allow us to determine explicit conditions on β_{3}. The above polynomial in c_{1} is of degree at most three in c_{1}, and its coefficients are as follows:
i) the coefficient of degree 0 is zero;
ii) the coefficient of degree 1 is

$$
\begin{aligned}
& -\alpha_{2}^{q+q^{2}+q^{3}} \beta_{2}^{1+q+q^{3}}+\alpha_{2}^{q+q^{2}+q^{3}} \beta_{2}^{1+q+q^{2}}+\alpha_{2}^{1+q^{2}+q^{3}} \beta_{2}^{q+q^{2}+q^{3}}-\alpha_{2}^{1+q^{2}+q^{3}} \beta_{2}^{1+q+q^{2}} \\
& -\alpha_{2}^{1+q+q^{3}} \beta_{2}^{q+q^{2}+q^{3}}+\alpha_{2}^{1+q+q^{3}} \beta_{2}^{1+q^{2}+q^{3}}-\alpha_{2}^{1+q+q^{2}} \beta_{2}^{1+q^{2}+q^{3}}+\alpha_{2}^{1+q+q^{2}} \beta_{2}^{1+q+q^{3}}
\end{aligned}
$$

iii) the coefficient of degree 2 is

$$
\begin{aligned}
& \alpha_{2}^{q^{2}+q^{3}} \beta_{2}^{q+q^{2}}-\alpha_{2}^{q^{2}+q^{3}} \beta_{2}^{1+q}-\alpha_{2}^{q+q^{3}} \beta_{2}^{q+q^{3}}+\alpha_{2}^{q+q^{3}} \beta_{2}^{1+q^{2}}-\alpha_{2}^{q+q^{2}} \beta_{2}^{1+q^{3}}+\alpha_{2}^{q+q^{2}} \beta_{2}^{1+q} \\
& +\alpha_{2}^{1+q^{3}} \beta_{2}^{q^{2}+q^{3}}-\alpha_{2}^{1+q^{3}} \beta_{2}^{q+q^{2}}+\alpha_{2}^{1+q^{2}} \beta_{2}^{q+q^{3}}-\alpha_{2}^{1+q^{2}} \beta_{2}^{1+q^{2}}-\alpha_{2}^{1+q} \beta_{2}^{q^{2}+q^{3}}+\alpha_{2}^{1+q} \beta_{2}^{1+q^{3}}
\end{aligned}
$$

iv) the coefficient of degree 3 is

$$
\alpha_{2}^{q^{3}} \beta_{2}^{q^{2}}-\alpha_{2}^{q^{3}} \beta_{2}^{q}+\alpha_{2}^{q^{2}} \beta_{2}^{q}-\alpha_{2}^{q^{2}} \beta_{2}-\alpha_{2}^{q} \beta_{2}^{q^{3}}+\alpha_{2}^{q} \beta_{2}+\alpha_{2} \beta_{2}^{q^{3}}-\alpha_{2} \beta_{2}^{q^{2}}
$$

Therefore the number of non- \mathbb{F}_{q}-proportional solutions in c_{1} with $c_{1} \neq 0$ is at most 2 , if the polynomial is non-vanishing. Moreover, this polynomial vanishes if and only if

$$
\left\{\begin{array}{l}
Y Z^{q}-Y Z^{q^{2}}+Y^{q} Z^{q^{2}}-Y^{q} Z^{q^{3}}-Y^{q^{2}} Z+Y^{q^{2}} Z^{q^{3}}+Y^{q^{3}} Z-Y^{q^{3}} Z^{q}=0 \tag{4.4}\\
Y^{q+1} Z^{q^{2}+q}-Y^{q+1} Z^{q^{3}+q^{2}}-Y^{q^{2}+1} Z^{q^{2}+1}+Y^{q^{2}+1} Z^{q^{3}+q} \\
+Y^{q^{3}+1} Z^{q+1}-Y^{q^{3}+1} Z^{q^{2}+q}-Y^{q^{2}+q} Z^{q^{3}+1}+Y^{q^{2}+q} Z^{q^{3}+q^{2}}+Y^{q^{3}+q} Z^{q^{2}+1} \\
-Y^{q^{3}+q} Z^{q^{3}+q}-Y^{q^{3}+q^{2}} Z^{q+1}+Y^{q^{3}+q^{2}} Z^{q^{3}+1}=0 \\
Y^{q^{2}+q+1} Z^{q^{3}+q^{2}+1}-Y^{q^{2}+q+1} Z^{q^{3}+q^{2}+q}-Y^{q^{3}+q+1} Z^{q^{2}+q+1}+Y^{q^{3}+q+1} Z^{q^{3}+q^{2}+q} \\
+Y^{q^{3}+q^{2}+1} Z^{q^{2}+q+1}-Y^{q^{3}+q^{2}+1} Z^{q^{3}+q+1}+Y^{q^{3}+q^{2}+q} Z^{q^{3}+q+1}-Y^{q^{3}+q^{2}+q} Z^{q^{3}+q^{2}+1}=0
\end{array}\right.
$$

where $Y=1 / \beta_{2}$ and $Z=1 / \alpha_{2}$. The solutions $(Y, Z) \in \mathbb{F}_{q^{4}}$ of System (4.4) are given in Theorem A.1. From now on we will suppose that $Y=1 / \beta_{2}$ and $Z=1 / \alpha_{2}$ are solutions of System (4.4). In this case, by Equation (4.2), the maximum number of non- $\mathbb{F}_{q^{-}}$-proportional possible values of $\beta_{3} \in \mathbb{F}_{q^{4}}$ is $q-1$ when c_{1} runs in \mathbb{F}_{q}^{*}. By System (4.1), to each such value of β_{3} there corresponds at most one value of $\alpha_{3} \in \mathbb{F}_{q^{4}}$.

Define $\lambda=c_{1} \in \mathbb{F}_{q}^{*}$, so that $\beta_{3}=\beta_{3}(\lambda)$ satisfies

$$
\begin{equation*}
\beta_{3}^{q-1}(\lambda)=\frac{\lambda+\alpha_{2}^{q^{2}} \beta_{2}^{q}}{\lambda+\alpha_{2}^{q^{2}} \beta_{2}} \tag{4.5}
\end{equation*}
$$

Now, let $N(\lambda)=\lambda Z^{q^{2}} Y^{q}+1$ and $D(\lambda)=\lambda Z^{q^{2}} Y+1$, so that $\beta_{3}^{q-1}(\lambda)=$ $\beta_{2}^{q-1} N(\lambda) / D(\lambda)$ and, by the third equation of System (4.1),

$$
\begin{equation*}
\alpha_{3} \beta_{3}=c_{2} \alpha_{2} \beta_{2}^{q^{2}} D^{q^{2}}(\lambda) / \beta_{3}^{q^{2}-1}=c_{2} \alpha_{2} \beta_{2} D^{q^{2}+q+1}(\lambda) / N^{q+1}(\lambda) \tag{4.6}
\end{equation*}
$$

and $\alpha_{3} \operatorname{Tr}\left(\beta_{3} x\right)$ reads

$$
\begin{aligned}
& \alpha_{3} \beta_{3}\left(x+\beta_{3}^{q-1} x^{q}+\beta_{3}^{q^{2}-1} x^{q^{2}}+\beta_{3}^{q^{3}-1} x^{q^{3}}\right) \\
& =\frac{c_{2} \alpha_{2} \beta_{2} D^{q^{2}+q+1}(\lambda)}{N^{q+1}(\lambda)}\left(x+\beta_{2}^{q-1} \frac{N(\lambda)}{D(\lambda)} x^{q}+\beta_{2}^{q^{2}-1} \frac{N^{q+1}(\lambda)}{D^{q+1}(\lambda)} x^{q^{2}}+\beta_{2}^{q^{3}-1} \frac{N^{q^{2}+q+1}(\lambda)}{D^{q^{2}+q+1}(\lambda)} x^{q^{3}}\right) \\
& =c_{2}\left(\alpha_{2} \beta_{2} \frac{D^{q^{2}+q+1}(\lambda)}{N^{q+1}(\lambda)} x+\alpha_{2} \beta_{2}^{q} \frac{D^{q^{2}+q}(\lambda)}{N^{q}(\lambda)} x^{q}+\alpha_{2} \beta_{2}^{q^{2}} D^{q^{2}}(\lambda) x^{q^{2}}+\alpha_{2} \beta_{2}^{q^{3}} N^{q^{2}}(\lambda) x^{q^{3}}\right) .
\end{aligned}
$$

Step 2: In the previous step, we have determined all the possible expressions of a trace function to be in H depending on a certain value λ. We now prove that there exist no eight distinct values $\lambda_{1}, \ldots, \lambda_{8} \in \mathbb{F}_{q}^{*}$ such that the eight rank-one linear functions $F_{i}(x)=\alpha_{2} \beta_{2} \frac{D^{q^{2}+q+1}\left(\lambda_{i}\right)}{N^{q+1}\left(\lambda_{i}\right)} x+\alpha_{2} \beta_{2}^{q} \frac{D^{q^{2}+q}\left(\lambda_{i}\right)}{N^{q}\left(\lambda_{i}\right)} x^{q}+\alpha_{2} \beta_{2}^{q^{2}} D^{q^{2}}\left(\lambda_{i}\right) x^{q^{2}}+\alpha_{2} \beta_{2}^{q^{3}} N^{q^{2}}\left(\lambda_{i}\right) x^{q^{3}}$ and $F_{9}(x)=\operatorname{Tr}(x), F_{10}(x)=$ alpha $a_{2} \operatorname{Tr}\left(\beta_{2} x\right)$ are $\mathbb{F}_{q^{\prime}}$-linearly independent. By Proposition 3.1, this will yield that $\operatorname{trk}(\mathcal{G}) \geq 11$.

Equivalently, we prove the existence of $\mu_{1}, \ldots, \mu_{10} \in \mathbb{F}_{q}$ such that

$$
\mu_{1} F_{1}(x)+\cdots+\mu_{10} F_{10}(x)=0
$$

and not all the μ_{i} 's are zero, so that the ten traces $F_{i}(x), i=1, \ldots, 10$, are \mathbb{F}_{q}-linearly dependent. Let $\mu_{1}, \ldots, \mu_{10} \in \mathbb{F}_{q}$ be such that

$$
\begin{equation*}
\mu_{1} F_{1}(x)+\cdots+\mu_{10} F_{10}(x)=0 \tag{4.7}
\end{equation*}
$$

In particular, Equation (4.7) can be seen as a polynomial identity; the coefficients of degree q^{3} and q^{2} yield to

$$
\alpha_{2} \beta_{2}^{q^{3}}\left(\sum_{i=1}^{8} \mu_{i} N^{q^{2}}\left(\lambda_{i}\right)+\mu_{10}\right)+\mu_{9}=0=\alpha_{2} \beta_{2}^{q^{2}}\left(\sum_{i=1}^{8} \mu_{i} D^{q^{2}}\left(\lambda_{i}\right)+\mu_{10}\right)+\mu_{9}
$$

Since $N\left(\lambda_{i}\right)=\lambda_{i} Z^{q^{2}} Y^{q}+1$ and $D\left(\lambda_{i}\right)=\lambda_{i} Z^{q^{2}} Y+1$,

$$
\sum_{i=1}^{8} \mu_{i}+\mu_{10}=-\left(\sum_{i=1}^{8} \mu_{i} \lambda_{i}+\mu_{9}\right) Y^{q^{3}} Z \text { and } \sum_{i=1}^{8} \mu_{i}+\mu_{10}=-\left(\sum_{i=1}^{8} \mu_{i} \lambda_{i}+\mu_{9}\right) Y^{q^{2}} Z
$$

Suppose that $Y^{q^{3}} Z=Y^{q^{2}} Z$, which is equivalent to $Y \in \mathbb{F}_{q}$. Then $N(\lambda)=D(\lambda)$ and $\beta_{3}(\lambda)^{q-1}=\beta_{2}^{q-1}=1$. By System (4.1), this implies $\alpha_{3} \operatorname{Tr}\left(\beta_{3} x\right)=c_{1} \operatorname{Tr}(x)+c_{2} \alpha_{2} \operatorname{Tr}\left(\beta_{2} x\right) \in$ $\left\langle\operatorname{Tr}(x), \alpha_{2} \operatorname{Tr}\left(\beta_{2} x\right)\right\rangle_{\mathbb{F}_{q}}$ and hence the $F_{i}{ }^{\prime} \mathrm{s}, i=1, \ldots, 10$, are linearly dependent.

We can then assume that $Y^{q^{3}} Z \neq Y^{q^{2}} Z$, so that

$$
\begin{equation*}
\mu_{9}+\sum_{i=1}^{8} \mu_{i} \lambda_{i}=\sum_{i=1}^{8} \mu_{i}+\mu_{10}=0 . \tag{4.8}
\end{equation*}
$$

Also, by looking at the coefficients of degree 1 and q in Equation (4.7),

$$
\begin{equation*}
\alpha_{2} \beta_{2} \sum_{i=1}^{8} \mu_{i} \frac{D^{q^{2}+q+1}(\lambda)}{N^{q+1}(\lambda)}+\mu_{9}+\mu_{10} \alpha_{2} \beta_{2}=0=\alpha_{2} \beta_{2}^{q} \sum_{i=1}^{8} \mu_{i} \frac{D^{q^{2}+q}(\lambda)}{N^{q}(\lambda)}+\mu_{9}+\mu_{10} \alpha_{2} \beta_{2}^{q} \tag{4.9}
\end{equation*}
$$

Equations (4.9) and their images under the q-Frobenius map, together with Equations (4.8), form a homogeneous linear system of ten equations whose matrix is

$$
M=\left(\begin{array}{ccccc}
1 & 1 & \cdots & 0 & 1 \tag{4.10}\\
\lambda_{1} & \lambda_{2} & \cdots & 1 & 0 \\
\frac{D^{q^{2}+q+1}\left(\lambda_{1}\right)}{N^{q+1}\left(\lambda_{1}\right)} & \frac{D^{q^{2}+q+1}\left(\lambda_{2}\right)}{N^{q+1}\left(\lambda_{2}\right)} & \cdots & Y Z & 1 \\
\frac{D^{q^{3}+q^{2}+q}\left(\lambda_{1}\right)}{N^{q^{2}+q}\left(\lambda_{1}\right.} & \frac{D^{q^{3}+q^{2}+q}\left(\lambda_{2}\right)}{N^{q^{2}+q}\left(\lambda_{2}\right)} & \cdots & Y^{q} Z^{q} & 1 \\
\frac{D^{q^{3}+q^{2}+1}\left(\lambda_{1}\right)}{N^{q^{3}+q^{2}\left(\lambda_{1}\right)}} & \frac{D^{q^{3}+q^{2}+1}\left(\lambda_{2}\right)}{N^{q^{3}+q^{2}\left(\lambda_{2}\right)}} & \cdots & Y^{q^{2}} Z^{q^{2}} & 1 \\
\frac{D^{q^{3}+++1}\left(\lambda_{1}\right)}{N^{3}+1\left(\lambda_{1}\right)} & \frac{D^{q^{3}+q+1}\left(\lambda_{2}\right)}{N^{q^{3+1}\left(\lambda_{2}\right)}} & \cdots & Y^{q^{3}} Z^{q^{3}} & 1 \\
\frac{D^{q^{2}+q}\left(\lambda_{1}\right)}{N^{q}\left(\lambda_{1}\right)} & \frac{D^{q^{2}+q}\left(\lambda_{2}\right)}{N^{q}\left(\lambda_{2}\right)} & \cdots & Y^{q} Z & 1 \\
\frac{D^{q^{3}+q^{2}\left(\lambda_{1}\right)}}{N^{q^{2}}\left(\lambda_{1}\right)} & \frac{D^{q^{3}+q^{2}\left(\lambda_{2}\right)}}{N^{q^{2}\left(\lambda_{2}\right)}} & \cdots & Y^{q^{2}} Z^{q} & 1 \\
\frac{D^{3}+1}{N^{q^{3}\left(\lambda_{1}\right)}} & \frac{D^{q^{3}+1}\left(\lambda_{1}\right)}{N^{q^{3}}\left(\lambda_{2}\right)} & \cdots & Y^{q^{3}} Z^{q^{2}} & 1 \\
\frac{D^{q+1}\left(\lambda_{1}\right)}{N\left(\lambda_{1}\right)} & \frac{D^{q+1}\left(\lambda_{2}\right)}{N\left(\lambda_{2}\right)} & \cdots & Y Z^{q^{3}} & 1
\end{array}\right) .
$$

Since the rows of M form orbits under the q-Frobenius map, the solutions of the associated system have entries in \mathbb{F}_{q}. By Theorem A.2, the rank of M is either 2 or 6 , and hence smaller than 10 . Therefore, there are non-trivial solutions $\left(\mu_{1}, \ldots, \mu_{10}\right) \in \mathbb{F}_{q}^{10}$ of $\mu_{1} F_{1}(x)+\cdots+\mu_{10} F_{10}(x)=0$. Then $\left\langle F_{1}(x), \ldots, F_{10}(x)\right\rangle_{\mathbb{F}_{q}}$ has dimension smaller than 10. This shows that $\operatorname{trk}(\mathcal{G}) \geq 11$. Thus, Theorem 4.1 is proved.

4.2. The tensor rank of \mathcal{G} is 11 for $q \geq 5$

In this section we use the notations of Section 4.1, and assume that $q \geq 5$. By Theo$\operatorname{rem} 4.1, \operatorname{trk}(\mathcal{G}) \geq 11$. We prove the following theorem.

Theorem 4.2. For any prime power $q \geq 5$, we have $\operatorname{trk}(\mathcal{G})=11$.

By Proposition 3.1, it is enough to show the existence of $11 \mathbb{F}_{q}$-linearly independent trace functions whose \mathbb{F}_{q}-span contains \mathcal{G}. Our key tool is Step 1 in Section 4.1, where we have determined some necessary and sufficient criteria on the coefficients of a trace function for it being in H.

Proof. Let $\alpha_{0}, \beta_{0} \in \mathbb{F}_{q^{4}}^{*}$ and $\lambda_{1}, \lambda_{1}^{\prime}, \ldots, \lambda_{4}, \lambda_{4}^{\prime} \in \mathbb{F}_{q}^{*}$ with $\lambda_{i} \neq \lambda_{j}$ and $\lambda_{i}^{\prime} \neq \lambda_{j}^{\prime}$ for $i \neq j$. Let $\alpha, \beta, \alpha^{\prime}, \beta^{\prime} \in \mathbb{F}_{q^{4}}^{*}$ be such that $Y=\beta / \beta_{0}, Z=\alpha / \alpha_{0}, Y^{\prime}=\beta^{\prime} / \beta_{0}$ and $Z^{\prime}=\alpha^{\prime} / \alpha_{0}$ satisfy $Z, Z^{\prime} \notin \mathbb{F}_{q^{2}}$ and $Y=1 / Z^{q^{2}+q}, Y^{\prime}=1 /\left(Z^{\prime}\right)^{q^{2}+q}$. By Theorem A.1, (Y, Z) and $\left(Y^{\prime}, Z^{\prime}\right)$ are solutions of System (4.4). As in the proof of Theorem 4.1, by (4.5) and (4.6) for any $i \in\{1, \ldots, 4\}$ there exist $\alpha_{i}, \beta_{i}, \alpha_{i}^{\prime}, \beta_{i}^{\prime} \in \mathbb{F}_{q^{4}}^{*}$ such that

- $\beta_{i}^{q-1}=\beta_{0}^{q-1} N\left(\lambda_{i}\right) / D\left(\lambda_{i}\right)$;
- $\left(\beta_{i}^{\prime}\right)^{q-1}=\beta_{0}^{q-1} N^{\prime}\left(\lambda_{i}^{\prime}\right) / D^{\prime}\left(\lambda_{i}^{\prime}\right)$;
- $\alpha_{i}=c_{i} \alpha_{0} \beta_{0} D\left(\lambda_{i}\right)^{q^{2}+q+1} / N\left(\lambda_{i}\right)^{q+1}$;
- $\alpha_{i}^{\prime}=c_{i}^{\prime} \alpha_{0} \beta_{0} D^{\prime}\left(\lambda_{i}^{\prime}\right)^{q^{2}+q+1} / N^{\prime}\left(\lambda_{i}^{\prime}\right)^{q+1}$,
where $c_{i}, c_{i}^{\prime} \in \mathbb{F}_{q}^{*}, N\left(\lambda_{i}\right)=\lambda_{i} Z^{q^{2}} Y^{q}+1, N^{\prime}\left(\lambda_{i}^{\prime}\right)=\lambda_{i}^{\prime}\left(Z^{\prime}\right)^{q^{2}}\left(Y^{\prime}\right)^{q}+1, D\left(\lambda_{i}\right)=\lambda_{i} Z^{q^{2}} Y+1$ and $D^{\prime}\left(\lambda_{i}^{\prime}\right)=\lambda_{i}^{\prime}\left(Z^{\prime}\right)^{q^{2}} Y^{\prime}+1$.

Define the rank-one functions $F_{0}(x)=\alpha_{0} \operatorname{Tr}\left(\beta_{0} x\right), F(x)=\alpha \operatorname{Tr}(\beta x), F^{\prime}(x)=$ $\alpha^{\prime} \operatorname{Tr}\left(\beta^{\prime} x\right)$ and, for $i \in\{1, \ldots, 4\}, F_{i}(x)=\frac{1}{c_{i}} \alpha_{i} \operatorname{Tr}\left(\beta_{i} x\right), F_{i}^{\prime}(x)=\frac{1}{c_{i}^{\prime}} \alpha_{i}^{\prime} \operatorname{Tr}\left(\beta_{i}^{\prime} x\right)$. All such functions are elements of the linear $\mathbb{F}_{q^{4} \text {-space }} V=\mathcal{G}+\left\langle F(x), F^{\prime}(x), F_{0}(x)\right\rangle_{\mathbb{F}_{q^{4}}}$ because of Step 1 in Section 4.1. We show that, for some suitable choice of the elements $\lambda_{i}, \lambda_{i}^{\prime}, \alpha_{0}, \beta_{0}, \alpha, \beta, \alpha^{\prime}, \beta^{\prime}$, the 11 elements $F(x), F^{\prime}(x), F_{0}(x), F_{1}(x), \ldots, F_{4}(x)$, $F_{1}^{\prime}(x), \ldots, F_{4}^{\prime}(x)$ are \mathbb{F}_{q}-linearly independent, which implies $\operatorname{trk}(\mathcal{G})=11$.

Let $\mu, \mu^{\prime}, \mu_{0}, \mu_{1}, \mu_{1}^{\prime}, \ldots, \mu_{4}, \mu_{4}^{\prime} \in \mathbb{F}_{q}$ be such that

$$
\mu F(x)+\mu^{\prime} F^{\prime}(x)+\mu_{0} F_{0}(x)+\mu_{1} F_{1}(x)+\cdots \mu_{4} F_{4}(x)+\mu_{1}^{\prime} F_{1}^{\prime}(x)+\cdots \mu_{4}^{\prime} F_{4}^{\prime}(x)=0
$$

which can be seen a polynomial identity and hence implies

$$
\begin{cases}\mu \alpha \beta+\mu^{\prime} \alpha^{\prime} \beta^{\prime}+\mu_{0} \alpha_{0} \beta_{0}+\alpha_{0} \beta_{0} \sum_{i=1}^{4}\left(\mu_{i} \frac{D^{q^{2}+q+1}\left(\lambda_{i}\right)}{N^{q+1}\left(\lambda_{i}\right)}+\mu_{i}^{\prime} \frac{\left(D^{\prime}\right)^{q^{2}+q+1}\left(\lambda_{i}\right)}{\left(N^{\prime}\right)^{q+1}\left(\lambda_{i}\right)}\right) & =0 \tag{4.11}\\ \mu \alpha \beta^{q}+\mu^{\prime} \alpha^{\prime}\left(\beta^{\prime}\right)^{q}+\mu_{0} \alpha_{0} \beta_{0}^{q}+\alpha_{0} \beta_{0}^{q} \sum_{i=1}^{4}\left(\mu_{i} \frac{D^{q^{2}+q}\left(\lambda_{i}\right)}{N^{q}\left(\lambda_{i}\right)}+\mu_{i}^{\prime} \frac{\left(D^{\prime}\right)^{q^{2}+q}\left(\lambda_{i}\right)}{\left(N^{\prime}\right)^{q}\left(\lambda_{i}\right)}\right) & =0 \\ \mu \alpha \beta^{q^{2}}+\mu^{\prime} \alpha^{\prime}\left(\beta^{\prime}\right)^{q^{2}}+\mu_{0} \alpha_{0} \beta_{0}^{q^{2}}+\alpha_{0} \beta_{0}^{q^{2}} \sum_{i=1}^{4}\left(\mu_{i} D^{q^{2}}\left(\lambda_{i}\right)+\mu_{i}^{\prime}\left(D^{\prime}\right)^{q^{2}}\left(\lambda_{i}\right)\right) & =0 \\ \mu \alpha \beta^{q^{3}}+\mu^{\prime} \alpha^{\prime}\left(\beta^{\prime}\right)^{q^{3}}+\mu_{0} \alpha_{0} \beta_{0}^{q^{3}}+\alpha_{0} \beta_{0}^{q^{3}} \sum_{i=1}^{4}\left(\mu_{i} N^{q^{2}}\left(\lambda_{i}\right)+\mu_{i}^{\prime}\left(N^{\prime}\right)^{q^{2}}\left(\lambda_{i}\right)\right)=0 .\end{cases}
$$

The four equations in (4.11), together with their images under the q-Frobenius map, provide a homogeneous linear system of twelve equations with solutions in \mathbb{F}_{q}^{11}, of which $\left(\mu, \mu^{\prime}, \mu_{0}, \mu_{1}, \mu_{1}^{\prime}, \ldots, \mu_{4}, \mu_{4}^{\prime}\right)$ is a solution. The matrix M of such a system is

Since $\left|\mathbb{F}_{q}^{*}\right| \geq 4$, we can choose $\lambda_{1} \neq 0, \lambda_{1}^{2} \neq 1$ and $\lambda_{1}^{3} \neq 1$ and then

- $\lambda_{2}=\lambda_{1}^{2}, \lambda_{3}=\lambda_{1}^{3}$ and $\lambda_{4}=\lambda_{1}^{4}$;
- $\lambda_{i}=\lambda_{i-4}$ for any $i \in\{5,6,7,8\}$.

We also choose $\alpha_{0}, \beta_{0}, \alpha, \beta, \alpha^{\prime}, \beta^{\prime}$ such that $Z^{q^{2}+1}=1$ and $Z^{\prime}=Z^{q}$. By direct computation with MAGMA,

$$
\begin{aligned}
\operatorname{det}(M)= & \lambda_{1}^{40}\left(\lambda_{1}-1\right)^{12}\left(\lambda_{1}+1\right)^{4}\left(\lambda_{1}^{2}+\lambda_{1}+1\right)^{2}\left(Z^{2}-1\right)^{6 q+6}\left(Z^{q}-Z\right)^{4}\left(Z^{q+1}-1\right)^{4} \\
& \cdot\left(Z^{3 q+2}-Z^{2 q+1}-2 Z^{q+2}+Z^{q}+Z^{3}\right)\left(Z^{3 q+1}-Z^{2 q+2}+Z^{q+3}-2 Z^{q+1}+1\right) \\
& \cdot\left(Z^{3 q}+Z^{2 q+3}-2 Z^{2 q+1}-Z^{q+2}+Z\right)\left(Z^{3 q+3}-2 Z^{2 q+2}+Z^{2 q}-Z^{q+1}+Z^{2}\right)^{2} .
\end{aligned}
$$

For some $Z \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q^{2}}$ satisfying $Z^{q^{2}+1}=1$, we have $\operatorname{det}(M) \neq 0$; for $q \geq 16$ this follows because $q^{2}+1$ is greater than the sum of the degrees of the polynomials in parentheses, while for $q<16$ this follows by direct checking. Therefore, for a suitable choice of $\lambda_{i}, \lambda_{i}^{\prime}, \alpha_{0}, \beta_{0}, \alpha, \beta, \alpha^{\prime}, \beta^{\prime}$, the matrix M has full rank 11 and hence

$$
\left(\mu, \mu^{\prime}, \mu_{0}, \mu_{1}, \mu_{1}^{\prime}, \ldots, \mu_{4}, \mu_{4}^{\prime}\right)=(0, \ldots, 0) .
$$

Thus, $F(x), F^{\prime}(x), F_{0}(x), F_{1}(x), F_{1}^{\prime}(x), \ldots, F_{4}(x), F_{4}^{\prime}(x)$ are \mathbb{F}_{q}-linearly independent and \mathcal{G} has tensor rank 11 .

5. Tensor rank of $n \times n$ generalized Gabidulin codes for $n \leq 4$

We compute the tensor rank of some generalized Gabidulin code $\mathcal{C} \subseteq \mathcal{L}_{n, q}$ of dimension k over $\mathbb{F}_{q^{n}}$ for $n \leq 4$. Notice that, up to equivalence, $\mathcal{C}=\mathcal{G}_{k, 1}$.

By Section 4.2 and [4, Table 1], the open cases are exactly for n, k, q as in the table below. Since the lower bound on the tensor rank of $\mathcal{G}_{k, 1}$ is $n k+n-k$, we start with the exhaustive search for $t=n-k$ rank-one functions $\alpha_{i} \operatorname{Tr}\left(\beta_{i} x\right) \in \mathbb{F}_{q^{n}}[x]$ such that the rank-one functions in $\mathcal{C}+\left\langle\alpha_{1} \operatorname{Tr}\left(\beta_{1} x\right), \ldots, \alpha_{t} \operatorname{Tr}\left(\beta_{t} x\right)\right\rangle_{\mathbb{F}_{q}}$ generate an \mathbb{F}_{q}-space U of dimension $n k+t$. If this succeeds, then we compute explicitly a perfect basis of U (i.e. a basis of pure tensors). Otherwise, we increase t by 1 and perform the same search again. In this way we obtain the tensor rank and a perfect basis $B=\left\{\eta^{i} \operatorname{Tr}\left(\eta^{j} x\right):(i, j) \in I\right\}$ for $\mathcal{G}_{k, 1}$, where η is a primitive element of $\mathbb{F}_{q^{n}}$ and $I \subseteq\left\{0, \ldots, q^{n}-2\right\}^{2}$. The precise value of the tensor rank is obtained for all but two cases, namely $n=4, k=1$ and $q \in\{4,5\}$; in these cases, an upper bound is provided by means of a random search.

For instance, in the case $(n, k, q)=(3,2,2)$ Table 1 provides the following perfect basis B for $\mathcal{G}_{2,1} \subseteq \mathcal{L}_{3,2}$, where $\eta \in \mathbb{F}_{2^{3}}$ satisfies $\eta^{3}+\eta+1=0$:

$$
\begin{aligned}
B= & \left\{\eta^{2} \operatorname{Tr}(x),(\eta+1) \operatorname{Tr}\left(\left(\eta^{2}+\eta+1\right) x\right), \eta \operatorname{Tr}\left(\eta^{2} x\right), \operatorname{Tr}\left(\left(\eta^{2}+\eta\right) x\right)\right. \\
& \left.\left(\eta^{2}+1\right) \operatorname{Tr}\left(\left(\eta^{2}+1\right) x\right),\left(\eta^{2}+\eta+1\right) \operatorname{Tr}(\eta x),\left(\eta^{2}+\eta\right) \operatorname{Tr}((\eta+1) x)\right\}
\end{aligned}
$$

Remark 5.1. The fourth, fifth, and sixth rows of the table complete the proof of Theorem 1.1.

Table 1
Tensor rank of some generalized Gabidulin codes $\mathcal{G}_{k, 1} \subseteq \mathcal{L}_{n, q}$.

n	k	q	$\operatorname{TR}\left(\mathcal{G}_{k, 1}\right)$	MTR	$\operatorname{MinPol}(\eta)$	I
3	2	2	7	yes	$x^{3}+x+1$	$(2,0),(3,5),(1,2),(0,4),(6,6),(5,1),(4,3)$
4	1	4	8	no	$\begin{aligned} & x^{8}+x^{4}+ \\ & x^{3}+x^{2}+1 \end{aligned}$	$\begin{aligned} & (73,168),(22,202),(0,180),(69,249), \\ & (80,90),(1,96),(33,213),(67,162) \end{aligned}$
4	1	5	8	no	$\begin{aligned} & x^{4}+4 x^{2} \\ & +4 x+2 \end{aligned}$	$\begin{aligned} & (16,432),(135,81),(21,405),(10,132), \\ & (56,593),(24,556),(74,569),(54,268) \end{aligned}$
4	2	2	12	no	$x^{4}+x+1$	$\begin{aligned} & (14,12),(9,14),(4,0),(7,5),(1,13),(5,10), \\ & (6,3),(2,1),(12,7),(3,2),(0,4),(13,6) \end{aligned}$
4	2	3	11	no	$x^{4}-x^{3}-1$	$\begin{aligned} & (23,8),(0,13),(28,14),(32,46),(2,1),(19,26), \\ & (1,18),(6,37),(7,12),(36,28),(21,59) \end{aligned}$
4	2	4	11	no	$\begin{aligned} & x^{8}+x^{4}+ \\ & x^{3}+x^{2}+1 \end{aligned}$	$\begin{aligned} & (13,133),(56,175),(20,71),(30,31),(81,124),(0,51), \\ & (3,88),(76,34),(70,215),(29,132),(9,24) \end{aligned}$
4	3	2	13	yes	$x^{4}+x+1$	$\begin{aligned} & (12,13),(8,6),(4,4),(9,4),(1,5),(3,1),(14,9), \\ & (11,0),(10,2),(0,7),(6,10),(7,8),(5,12) \end{aligned}$
4	3	3	13	yes	$x^{4}-x^{3}-1$	$\begin{aligned} & (31,3),(29,49),(0,56),(25,61),(7,75),(26,18),(22,30), \\ & (20,36),(39,19),(18,2),(13,57),(32,40),(3,47) \end{aligned}$

Remark 5.2. The examples provided in Table 1 for the case $n=4, k=1$ and $q \in\{4,5\}$ only prove that $\operatorname{TR}\left(\mathcal{G}_{1,1}\right) \leq 8$. However, in [6, Corollary 5.14] it has been proved that a generator tensor for $\mathcal{G}_{1,1}$ is the 3 -tensor

$$
T_{n, n, n}:(g, h) \in \mathbb{F}_{q}[x]_{<n} \times \mathbb{F}_{q}[x]_{<n} \mapsto g h \quad(\bmod f) \in \mathbb{F}_{q}[x]_{<n},
$$

where $\mathbb{F}_{q}[x]_{<n}$ is the set of all polynomials in $\mathbb{F}_{q}[x]$ with degree less than n and f is a fixed irreducible polynomial in $\mathbb{F}_{q}[x]$ of degree n. Therefore, $T_{n, n, n}$ is also the tensor associated with the multiplication in $\mathbb{F}_{q^{n}}$. Applying the main result in [26] (see also [2, Theorem 9.1]) to the case $n=4$ and $q \in\{4,5\}$ we obtain that $\operatorname{trk}\left(T_{4,4,4}\right)=8$ and hence $\operatorname{TR}\left(\mathcal{G}_{1,1}\right)=8$.

Remark 5.3. Notice that, although only one perfect basis is showed in the table, the computations provide a much larger number of perfect bases in each case. Therefore, no generator tensor of such codes is identifiable.

Declaration of competing interest

There are no conflict of interests.

Acknowledgements

The authors of this paper would like to thank Alessandro Neri for fruitful discussions and the reviewers for their valuable comments. This research was supported by the

Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM). The last two authors were supported by the project "VALERE: VAnviteLli pEr la RicErca" of the University of Campania Luigi Vanvitelli.

Appendix A

Theorem A.1. Let $Y, Z \in \mathbb{F}_{q^{4}}$. Then (Y, Z) is a solution of System (4.4) if and only if one of the following pairwise mutually exclusive conditions holds:
(C1) $Y \in \mathbb{F}_{q}$ or $Z \in \mathbb{F}_{q}$;
(C2) $Y \notin \mathbb{F}_{q^{2}}$ and $Z=\rho Y^{q+1}$ for some $\rho \in \mathbb{F}_{q}^{*}$;
(C3) $Z \notin \mathbb{F}_{q^{2}}$ and $Y=\rho / Z^{q^{2}+q}$ for some $\rho \in \mathbb{F}_{q}^{*}$.
Proof. For any $i=0,1,2,3$, write $y_{i}=Y^{q^{i}}$ and $z_{i}=Z^{q^{i}}$. Then System (4.4) reads

$$
\left\{\begin{array}{l}
f_{1}\left(y_{0}, y_{1}, y_{2}, y_{3}, z_{0}, z_{1}, z_{2}, z_{3}\right)=0 \tag{A.1}\\
f_{2}\left(y_{0}, y_{1}, y_{2}, y_{3}, z_{0}, z_{1}, z_{2}, z_{3}\right)=0 \\
f_{3}\left(y_{0}, y_{1}, y_{2}, y_{3}, z_{0}, z_{1}, z_{2}, z_{3}\right)=0
\end{array}\right.
$$

where

$$
\begin{aligned}
f_{1}\left(y_{0}, y_{1}, y_{2}, y_{3}, z_{0}, z_{1}, z_{2}, z_{3}\right)= & y_{0} z_{1}-y_{0} z_{2}+y_{1} z_{2}-y_{1} z_{3}-y_{2} z_{0}+y_{2} z_{3}+y_{3} z_{0}-y_{3} z_{1}, \\
f_{2}\left(y_{0}, y_{1}, y_{2}, y_{3}, z_{0}, z_{1}, z_{2}, z_{3}\right)= & y_{0} y_{1} z_{1} z_{2}-y_{0} y_{1} z_{2} z_{3}-y_{0} y_{2} z_{0} z_{2}+y_{0} y_{2} z_{1} z_{3}+y_{0} y_{3} z_{0} z_{1} \\
& -y_{0} y_{3} z_{1} z_{2}-y_{1} y_{2} z_{0} z_{3}+y_{1} y_{2} z_{2} z_{3}+y_{1} y_{3} z_{0} z_{2}-y_{1} y_{3} z_{1} z_{3} \\
& -y_{2} y_{3} z_{0} z_{1}+y_{2} y_{3} z_{0} z_{3} \\
f_{3}\left(y_{0}, y_{1}, y_{2}, y_{3}, z_{0}, z_{1}, z_{2}, z_{3}\right)= & y_{0} y_{1} y_{2} z_{0} z_{2} z_{3}-y_{0} y_{1} y_{2} z_{1} z_{2} z_{3}-y_{0} y_{1} y_{3} z_{0} z_{1} z_{2} \\
& +y_{0} y_{1} y_{3} z_{1} z_{2} z_{3}+y_{0} y_{2} y_{3} z_{0} z_{1} z_{2}-y_{0} y_{2} y_{3} z_{0} z_{1} z_{3} \\
& +y_{1} y_{2} y_{3} z_{0} z_{1} z_{3}-y_{1} y_{2} y_{3} z_{0} z_{2} z_{3} .
\end{aligned}
$$

We denote by $\operatorname{Res}_{x}\left(g_{1}, g_{2}\right)$ the resultant of two (multivariate) polynomials g_{1} and g_{2} with respect to the indeterminate x. We have

$$
\begin{aligned}
\operatorname{Res}_{z_{1}}\left(\operatorname{Res}_{z_{0}}\left(f_{3}, f_{1}\right), \operatorname{Res}_{z_{0}}\left(f_{2}, f_{1}\right)\right)= & -\left(z_{2}-z_{3}\right)^{2} y_{3}\left(y_{2}-y_{3}\right)\left(y_{2} z_{3}-y_{3} z_{2}\right) . \\
& \left(y_{1}-y_{2}\right)^{2}\left(y_{0}-y_{3}\right)\left(y_{0}-y_{1}\right)^{2}\left(y_{0} z_{2}-y_{3} z_{3}\right) . \\
& \left(y_{0} z_{2}-y_{2} z_{3}\right)^{2}\left(y_{0} y_{2}-y_{1} y_{3}\right)\left(y_{1}-y_{3}\right) .
\end{aligned}
$$

Thus, every solution $(Y, Z) \in \mathbb{F}_{q^{4}}^{2}$ of System (4.4) with $Y Z \neq 0$ satisfies one of the following conditions.

1. $y_{3}=0$, that is $Y^{q^{3}}=0$, a contradiction.
2. $z_{2}-z_{3}=0$, that is $Z \in \mathbb{F}_{q}$. Indeed (Y, Z) is a solution of System (4.4) whenever $Z \in \mathbb{F}_{q}$. In the following cases we can then assume $Z \notin \mathbb{F}_{q}$.
3. $y_{2}-y_{3}=0$, or $y_{1}-y_{2}=0$, or $y_{0}-y_{3}=0$, or $y_{0}-y_{1}=0$. This is equivalent to $Y \in \mathbb{F}_{q}$, and indeed (Y, Z) is a solution of System (4.4) whenever $Y \in \mathbb{F}_{q}$. In the following cases we can then assume $Y \notin \mathbb{F}_{q}$.
4. $y_{1}-y_{3}=0$, that is $Y \in \mathbb{F}_{q^{2}}$. Then System (4.4) reads

$$
\left\{\begin{array}{l}
Z^{q^{2}+q+1}-Z^{q^{3}+q+1}+Z^{q^{3}+q^{2}+1}-Z^{q^{3}+q^{2}+q}=0 \\
Z-Z^{q}+Z^{q^{2}}-Z^{q^{3}}=0 \\
\left(Y^{q}+Y\right)\left(Z^{q^{2}+1}-Z^{q^{3}+q}\right)=0
\end{array}\right.
$$

The first equation yields $Z^{q^{3}+q^{2}+1}+Z^{q^{2}+q+1} \in \mathbb{F}_{q}$, that is $Z^{q^{2}+1}\left(Z^{q^{2}}+Z\right)^{q} \in \mathbb{F}_{q}$, while the second equation yields $Z^{q^{2}}+Z \in \mathbb{F}_{q}$. Therefore $Z^{q^{2}+1} \in \mathbb{F}_{q}$, and hence the third equation is also satisfied. Now, the two conditions $Z^{q^{2}}+Z \in \mathbb{F}_{q}$ and $Z^{q^{2}+1} \in \mathbb{F}_{q}$ yield $Z^{q^{3}}=Z^{q^{2}}-Z^{q}+Z$ and $Z^{q^{3}}=Z^{q^{2}-q+1}$. This implies $Z\left(Z^{q-1}-1\right)^{q+1}=0$, whence $Z \in \mathbb{F}_{q}$. In the following cases we can then assume $Y \notin \mathbb{F}_{q^{2}}$.
5. $y_{2} z_{3}-y_{3} z_{2}=0$, that is $Y^{q-1}=Z^{q-1}$, and hence $Y=\rho Z$ for some $\rho \in \mathbb{F}_{q}^{*}$. Then $y_{i}=\rho z_{i}$ for any $i=1, \ldots, 3$, and System (A.1) reads

$$
\left\{\begin{array}{l}
g_{1}=z_{0} z_{1}-2 z_{0} z_{2}+z_{0} z_{3}+z_{1} z_{2}-2 z_{1} z_{3}+z_{2} z_{3}=0 \\
g_{2}=z_{0}^{2} z_{1} z_{3}-z_{0}^{2} z_{2}^{2}+z_{0} z_{1}^{2} z_{2}-2 z_{0} z_{1} z_{2} z_{3}+z_{0} z_{2} z_{3}^{2}-z_{1}^{2} z_{3}^{2}+z_{1} z_{2}^{2} z_{3}=0
\end{array}\right.
$$

From $\operatorname{Res}_{z_{1}}\left(g_{1}, g_{2}\right)=0$ it follows that $\left(z_{2}-z_{3}\right)^{2}\left(z_{3}-z_{0}\right)^{2}\left(z_{2}-z_{0}\right)^{2}=0$, which is equivalent to $Z \in \mathbb{F}_{q^{2}}$. Then $Y=\rho Z \in \mathbb{F}_{q^{2}}$.
6. $y_{0} z_{2}-y_{3} z_{3}=0$, that is $Y^{q-1}=1 / Z^{\left(q^{2}+q+1\right)(q-1)}$, and hence $Y=\rho / Z^{q^{2}+q+1}$ for some $\rho \in \mathbb{F}_{q}^{*}$. Then $y_{i}=\rho /\left(z_{i} z_{i+1} z_{i+2}\right)$ for any $i=0, \ldots, 3$ (where the indices are modulo 4) and System (A.1) reads

$$
\left\{\begin{array}{l}
h_{1}=z_{0} z_{1}-2 z_{0} z_{2}+z_{0} z_{3}+z_{1} z_{2}-2 z_{1} z_{3}+z_{2} z_{3}=0 \\
h_{2}=z_{0}^{2} z_{1} z_{3}-z_{0}^{2} z_{2}^{2}+z_{0} z_{1}^{2} z_{2}-2 z_{0} z_{1} z_{2} z_{3}+z_{0} z_{2} z_{3}^{2}-z_{1}^{2} z_{3}^{2}+z_{1} z_{2}^{2} z_{3}=0
\end{array}\right.
$$

From $\operatorname{Res}_{z_{3}}\left(h_{1}, h_{2}\right)=0$ it follows that $z_{2}=z_{0}$. Then $Z \in \mathbb{F}_{q^{2}}$ and hence $Y=$ $\rho /\left(Z^{2} Z^{q}\right)$. By System (4.4), this implies $Z \in \mathbb{F}_{q}$.
7. $y_{0} z_{2}-y_{2} z_{3}=0$, that is $Y Z^{q^{2}}-Y^{q^{2}} Z^{q^{3}}=0$. This is equivalent to $Z^{q-1}=Y^{q^{2}-1}$, and hence to $Z=\rho Y^{q+1}$ for some $\rho \in \mathbb{F}_{q}^{*}$. By direct checking, this is indeed a solution of System (4.4) for any $Y \in \mathbb{F}_{q^{4}}$. If we require $Y \notin \mathbb{F}_{q^{2}}$, this also implies $Z \notin \mathbb{F}_{q}$.
8. $y_{0} y_{2}-y_{1} y_{3}=0$, that is $y_{3}=y_{0} y_{2} / y_{1}$, or equivalently $Y^{q^{3}}=Y^{1+q^{2}} / Y^{q}$. Then System (A.1) reads

$$
\left\{\begin{aligned}
p_{1}= & y_{0} y_{1} z_{1}-y_{0} y_{1} z_{2}+y_{0} y_{2} z_{0}-y_{0} y_{2} z_{1}+y_{1}^{2} z_{2}-y_{1}^{2} z_{3}-y_{1} y_{2} z_{0}+y_{1} y_{2} z_{3}=0 \\
p_{2}= & y_{0} y_{1} z_{0} z_{1} z_{2}-y_{0} y_{1} z_{1} z_{2} z_{3}-y_{0} y_{2} z_{0} z_{1} z_{2}+y_{0} y_{2} z_{0} z_{1} z_{3}-y_{1}^{2} z_{0} z_{2} z_{3} \\
& \quad+y_{1}^{2} z_{1} z_{2} z_{3}-y_{1} y_{2} z_{0} z_{1} z_{3}+y_{1} y_{2} z_{0} z_{2} z_{3}=0 \\
p_{3}= & y_{0}^{2} y_{2} z_{0} z_{1}-y_{0}^{2} y_{2} z_{1} z_{2}+y_{0} y_{1}^{2} z_{1} z_{2}-y_{0} y_{1}^{2} z_{2} z_{3}-y_{0} y_{2}^{2} z_{0} z_{1} \\
& \quad+y_{0} y_{2}^{2} z_{0} z_{3}-y_{1}^{2} y_{2} z_{0} z_{3}+y_{1}^{2} y_{2} z_{2} z_{3}=0
\end{aligned}\right.
$$

From $\operatorname{Res}_{y_{2}}\left(p_{1}, p_{2}\right)=0$ it follows that $\left(z_{0}-z_{2}\right)\left(z_{0} z_{2}-z_{1} z_{3}\right)\left(y_{0} z_{1}-y_{1} z_{3}\right)=0$.
8.1 Suppose $z_{0}-z_{2}=0$, i.e. $Z \in \mathbb{F}_{q^{2}}$, whence also $z_{3}=z_{1}$. Then, by System (A.1), either $Y \in \mathbb{F}_{q}$ or $Z \in \mathbb{F}_{q}$.
8.2 Suppose $z_{0} z_{2}-z_{1} z_{3}=0$, so that $z_{3}=z_{0} z_{2} / z_{1}$. By System (A.1),

$$
\left\{\begin{aligned}
\ell_{1}= & y_{0}^{2} y_{2} z_{0} z_{1}-y_{0}^{2} y_{2} z_{1} z_{2}+y_{0} y_{1}^{2} z_{1} z_{2}-y_{0} y_{1}^{2} z_{2}^{2}-y_{0} y_{2}^{2} z_{0} z_{1} \\
& +y_{0} y_{2}^{2} z_{0} z_{2}-y_{1}^{2} y_{2} z_{0} z_{2}+y_{1}^{2} y_{2} z_{2}^{2}=0 \\
\ell_{2}= & y_{0} z_{0} z_{1}-y_{0} z_{1} z_{2}-y_{1} z_{0} z_{2}+y_{1} z_{1} z_{2}-y_{2} z_{0} z_{1}+y_{2} z_{0} z_{2}=0 \\
\ell_{3}= & y_{0} y_{1} z_{1}-y_{0} y_{1} z_{2}+y_{0} y_{2} z_{0}-y_{0} y_{2} z_{1}-y_{1} y_{2} z_{0}+y_{1} y_{2} z_{2}=0
\end{aligned}\right.
$$

From $\operatorname{Res}_{y_{2}}\left(\ell_{1}, \ell_{3}\right)=0$ it follows $y_{0} z_{1}-y_{1} z_{2}=0$, so that $Y^{q-1}=\left(1 / Z^{q}\right)^{q-1}$. This implies $Y=\rho / Z^{q}$ for some $\rho \in \mathbb{F}_{q}^{*}$, whence $y_{i}=\rho / z_{i+1}$ for any $i=0, \ldots, 3$ (indices modulo 4). Then, by System (A.1),

$$
\left\{\begin{array}{l}
m_{1}=z_{0}^{2} z_{1}-z_{0} z_{1} z_{2}-2 z_{0} z_{1} z_{3}+z_{0} z_{2} z_{3}+z_{1}^{2} z_{3}=0 \\
m_{2}=z_{0}^{2} z_{2}+z_{0} z_{1}^{2}-2 z_{0} z_{1} z_{2}-z_{0} z_{1} z_{3}+z_{1} z_{2} z_{3}=0 \\
m_{3}=z_{0}^{2} z_{1}+z_{0}^{2} z_{2}+z_{0} z_{1}^{2}-3 z_{0} z_{1} z_{2}-3 z_{0} z_{1} z_{3}+z_{0} z_{2} z_{3}+z_{1}^{2} z_{3}+z_{1} z_{2} z_{3}=0 .
\end{array}\right.
$$

From $\operatorname{Res}_{z_{3}}\left(m_{1}, m_{2}\right)=0$ it follows that $Z \in \mathbb{F}_{q}$.
8.3 Suppose $y_{0} z_{1}-y_{1} z_{3}=0$. This implies $Y^{q-1}=\left(1 / Z^{q^{2}+q}\right)^{q-1}$, whence $Y=$ $\rho / Z^{q^{2}+q}$ for some $\rho \in \mathbb{F}_{q}^{*}$. Then $y_{i}=\rho /\left(z_{i+2} z_{i+1}\right)$ for any $i=0, \ldots, 3$ (indices modulo 4), which is indeed a solution of System (A.1) and provide a solution (Y, Z) of System (4.4). Notice that the condition $Y=\rho / Z^{q^{2}+q}$ with $Z \in \mathbb{F}_{q^{4}}$ implies $Y^{q^{3}}=Y^{1+q^{2}} / Y^{q}$. For such a solution, the require $Z \notin \mathbb{F}_{q^{2}}$ is equivalent to $Y \notin \mathbb{F}_{q}$. Also, if $Y, Z \in \mathbb{F}_{q^{4}}^{*}$ are such that $Y=\rho / Z^{q^{2}+q}$ and $Z=\rho^{\prime} Y^{q+1}$ with $\rho, \rho^{\prime} \in \mathbb{F}_{q}$, then $Y^{q^{3}+q^{2}+q+1+q^{2}}=\rho / \rho^{\prime} \in \mathbb{F}_{q}^{*}$, whence $Y \in \mathbb{F}_{q}$.

Theorem A.2. Let $(Y, Z) \in \mathbb{F}_{q^{4}}^{2}$ be a solution of System (4.4), and M be the matrix in (4.10).
(R1) If $Y \in \mathbb{F}_{q}$ or $Z \in \mathbb{F}_{q}$, then $\operatorname{rank}(M)=2$.
(R2) If $Y \notin \mathbb{F}_{q^{2}}$ and $Z=\rho Y^{q+1}$ for some $\rho \in \mathbb{F}_{q}^{*}$, then $\operatorname{rank}(M)=6$.
(R3) If $Z \notin \mathbb{F}_{q^{2}}$ and $Y=\rho / Z^{q^{2}+q}$ for some $\rho \in \mathbb{F}_{q}^{*}$, then $\operatorname{rank}(M)=6$.
Proof. For any $i=1, \ldots, 10$, denote respectively by $M^{(i)}$ and $M_{(i)}$ the i-th row and the i-th column of M. Note that $M_{(9)}$ and $M_{(10)}$ are linearly independent. Note also that,
by construction of M, any possible \mathbb{F}_{q}-linear combination of the columns of M needs to be checked only on the first, second, third, and seventh rows of M.
(R1) Suppose $Y \in \mathbb{F}_{q}$. Then $N(\lambda)=D(\lambda)$, whence $\frac{D^{q^{2}+q+1}(\lambda)}{N^{q+1}(\lambda)}=\frac{D^{q^{2}+q}(\lambda)}{N^{q}(\lambda)}=\lambda Z Y+1$. Therefore $M_{(j)}=\lambda_{j} M_{(9)}+M_{(10)}$ for any $j=1, \ldots, 8$, and $\operatorname{rank}(M)=2$.
Suppose $Z \in \mathbb{F}_{q}$. Similarly, one has $N(\lambda)=D^{q}(\lambda)$ and $M_{(j)}=\lambda_{j} M_{(9)}+M_{(10)}$ for any $j=1, \ldots, 8$, so that $\operatorname{rank}(M)=2$.

For $i=6,7$, denote by S_{i} the $i \times i$ submatrix of M given by the first i rows and the last i columns of M. If for any distinct $\lambda_{4}, \ldots, \lambda_{8} \in \mathbb{F}_{q}^{*}$ one has $\operatorname{det}\left(S_{6}\right) \neq 0$ and $\operatorname{det}\left(S_{7}\right)=0$, then this is enough to conclude that $\operatorname{rank}(M)=6$ for any distinct $\lambda_{1}, \ldots, \lambda_{8} \in \mathbb{F}_{q}^{*}$. Indeed, this is due to the fact that the use of the column $M_{(j)}, j \in\{1,2,3\}$, instead of $M_{(4)}$, implies the replacement of λ_{4} with λ_{j} in $\operatorname{det}\left(S_{7}\right)$, and in this way the fourth column becomes any of the remaining columns. If S_{7}^{\prime} is obtained from S_{7} by replacing $M^{(7)}$ with $M^{(i)}, i \in\{8,9,10\}$, then the elementwise q^{i-7}-power Φ maps $M^{(7)}$ to $M^{(i)}$, while $M^{(1)}$ and $M^{(2)}$ are fixed by Φ, and $M^{(3)}, M^{(4)}, M^{(5)}, M^{(6)}$ are cyclically permuted by Φ. Therefore Φ maps the rows of S_{7} to the rows of S_{7}^{\prime}, so that $\operatorname{det}\left(S_{7}\right)=0$ if and only if $\operatorname{det}\left(S_{7}^{\prime}\right)=0$.
(R2) Suppose $Y \notin \mathbb{F}_{q^{2}}$ and $Z=\rho Y^{q+1}$ for some $\rho \in \mathbb{F}_{q}^{*}$. Then $\operatorname{det}\left(S_{6}\right)$ equals

$$
\begin{array}{r}
\rho^{10} Y^{4\left(q^{3}+q^{2}+q+1\right)}\left(\prod_{i=5}^{8} \lambda_{i}\right)\left(\prod_{5 \leq i<j \leq 8}\left(\lambda_{i}-\lambda_{j}\right)\right) \\
\left(\prod_{i=0}^{3}\left(Y^{q^{i}}-Y^{q^{i+1}}\right)^{2}\right)\left(\prod_{i=0}^{1}\left(Y^{q^{i}}-Y^{q^{i+2}}\right)^{3}\right)
\end{array}
$$

and hence $\operatorname{det}\left(S_{6}\right) \neq 0$ because $Y \notin \mathbb{F}_{q^{2}}$ and the λ_{i} 's are nonzero and distinct. Also, $\operatorname{det}\left(S_{7}\right)=0$. Therefore, $\operatorname{rank}(M)=6$.
(R3) Suppose $Z \notin \mathbb{F}_{q^{2}}$ and $Y=\rho / Z^{q^{2}+q}$ for some $\rho \in \mathbb{F}_{q}^{*}$. Then

$$
\begin{array}{r}
\operatorname{det}\left(S_{6}\right)=\rho^{10}\left(\prod_{i=5}^{8} \lambda_{i}\right)\left(\prod_{5 \leq i<j \leq 8}\left(\lambda_{i}-\lambda_{j}\right)\right) \\
\left(\prod_{i=0}^{3}\left(Z^{q^{i}}-Z^{q^{i+1}}\right)^{2}\right)\left(\prod_{i=0}^{1}\left(Z^{q^{i}}-Z^{q^{i+2}}\right)^{3}\right)
\end{array}
$$

is nonzero. Also, $\operatorname{det}\left(S_{7}\right)=0$. Therefore, $\operatorname{rank}(M)=6$.

References

[1] E. Allman, C. Matias, J. Rhodes, Identifiability of parameters in latent structure models with many observed variables, Ann. Stat. 37 (2009) 3099-3132.
[2] S. Ballet, J. Pieltant, M. Rambaud, H. Randriambololona, R. Rolland, J. Chaumine, On the tensor rank of multiplication in finite extensions of finite fields and related issues in algebraic geometry, Russ. Math. Surv. 76 (1) (2021) 1-29.
[3] P. Bürgisser, M. Clausen, M.A. Shokrollahi, Algebraic Complexity Theory, Grundlehren Math. Wiss., vol. 315, Springer, 1997.
[4] E. Byrne, G. Cotardo, Bilinear complexity of 3-tensors linked to coding theory, arXiv:2103.08544.
[5] E. Byrne, G. Cotardo, Tensor codes and their invariants, arXiv:2112.08100.
[6] E. Byrne, A. Neri, A. Ravagnani, J. Sheekey, Tensor representation of rank-metric codes, SIAM J. Appl. Algebra Geom. 3 (4) (2019) 614-643.
[7] L. Chiantini, G. Ottaviani, On generic identifiability of 3-tensors of small rank, SIAM J. Matrix Anal. Appl. 33 (3) (2012) 1018-1037.
[8] D.V. Chudnovsky, G.V. Chudnovsky, Algebraic complexities and algebraic curves over finite fields, J. Complex. 4 (4) (1988) 285-316.
[9] J. de la Cruz, M. Kiermaier, A. Wassermann, W. Willems, Algebraic structures of MRD codes, Adv. Math. Commun. 10 (3) (2016) 499.
[10] P. Delsarte, Bilinear forms over a finite field, with applications to coding theory, J. Comb. Theory, Ser. A 25 (1978) 226-241.
[11] D.E. Knuth, Finite semifields and projective planes, J. Algebra 2 (1965) 182-217.
[12] J.B. Kruskal, Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics, Linear Algebra Appl. 18 (1977) 95-138.
[13] A. Kshevetskiy, E. Gabidulin, The new construction of rank codes, in: International Symposium on Information Theory, 2005, pp. 2105-2108.
[14] E. Gabidulin, Theory of codes with maximum rank distance, Probl. Inf. Transm. 21 (3) (1985) 3-16.
[15] E. Gabidulin, A.V. Paramonovand, O.V. Tretjakov, Ideals over a non-commutative ring and their application in cryptology, in: Workshop on the Theory and Application of Cryptographic Techniques, Springer, Berlin, Heidelberg, 1991, pp. 482-489.
[16] E. Gorla, A. Ravagnani, Codes endowed with the rank metric, in: Network Coding and Subspace Designs, Springer, Cham, 2018, pp. 3-23.
[17] J. Hastad, Tensor rank is NP-complete, J. Algorithms 11 (4) (1990) 644-654.
[18] M. Lavrauw, Finite semifields and nonsingular tensors, Des. Codes Cryptogr. 68 (2013) 205-227.
[19] M. Lavrauw, A. Pavan, C. Zanella, On the rank of $3 \times 3 \times 3$-tensors, Linear Multilinear Algebra 61 (2013) 648-652.
[20] M. Lavrauw, J. Sheekey, The tensor rank of semifields of order 16 and 81, Linear Algebra Appl. 643 (2022) 99-124.
[21] R. Liebler, On nonsingular tensors and related projective planes, Geom. Dedic. 11 (1981) 455-464.
[22] R. Liedl, H. Niederreiter, Finite Fields, second edition, Encyclopedia of Mathematics and Its Applications, vol. 20, Cambridge University Press, Cambridge, 1997.
[23] O. Polverino, F. Zullo, Connections between scattered linear sets and MRD-codes, Bull. Inst. Comb. Appl. 89 (2020) 46-74.
[24] R. Roth, Maximum-rank array codes and their application to crisscross error correction, IEEE Trans. Inf. Theory 37 (2) (1991) 328-336.
[25] J. Sheekey, MRD codes: constructions and connections, in: K.-U. Schmidt, A. Winterhof (Eds.), Combinatorics and Finite Fields: Difference Sets, Polynomials, Pseudorandomness and Applications, in: Radon Series on Computational and Applied Mathematics, vol. 23, De Gruyter, 2019.
[26] M.A. Shokrollahi, Optimal algorithms for multiplication in certain finite fields using elliptic curves, SIAM J. Comput. 21 (6) (1992) 1193-1198.
[27] D. Silva, F.R. Kschischang, R. Koetter, A rank-metric approach to error control in random network coding, IEEE Trans. Inf. Theory 54 (9) (2008) 3951-3967.
[28] B. Wu, Z. Liu, Linearized polynomials over finite fields revisited, Finite Fields Appl. 22 (2013) 79-100.

[^0]: * Submitted to the editors DATE.
 * Corresponding author.

 E-mail addresses: daniele.bartoli@unipg.it (D. Bartoli), giovanni.zini@unimore.it (G. Zini), ferdinando.zullo@unicampania.it (F. Zullo).

[^1]: ${ }^{1}$ Here we consider the action of $\mathcal{A}=\left\{(g, h): g, h \in \mathcal{L}_{n, q}\right.$ are invertible $\}$ on the \mathbb{F}_{q}-subspaces of $\mathcal{L}_{n, q}$ induced by $f \in \mathcal{L}_{n, q} \mapsto g \circ f \circ h \in \mathcal{L}_{n, q}$, where $(g, h) \in \mathcal{A}$.

