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Abstract
The steplength selection is a crucial issue for the effectiveness of the stochastic gradient methods for large-scale optimization
problems arising in machine learning. In a recent paper, Bollapragada et al. (SIAM J Optim 28(4):3312–3343, 2018) propose
to include an adaptive subsampling strategy into a stochastic gradient scheme, with the aim to assure the descent feature in
expectation of the stochastic gradient directions. In this approach, theoretical convergence properties are preserved under the
assumption that the positive steplength satisfies at any iteration a suitable bound depending on the inverse of the Lipschitz
constant of the objective function gradient. In this paper, we propose to tailor for the stochastic gradient scheme the steplength
selection adopted in the full-gradient method knows as limited memory steepest descent method. This strategy, based on the
Ritz-like values of a suitable matrix, enables to give a local estimate of the inverse of the local Lipschitz parameter, without
introducing line search techniques, while the possible increase in the size of the subsample used to compute the stochastic
gradient enables to control the variance of this direction. An extensive numerical experimentation highlights that the new
rule makes the tuning of the parameters less expensive than the trial procedure for the efficient selection of a constant step in
standard and mini-batch stochastic gradient methods.

Keywords Stochastic gradient methods · Learning rate selection rule · Ritz-like values · Adaptive subsampling strategies ·
Reduction variance techniques

1 Introduction

The problem we consider is the unconstrained minimization
of the form

min
x∈Rd

F(x) ≡ E[ f (x, ξ)], (1)

where ξ is a multi-value random variable, f represents a cost
function, and the mathematical expectation E is defined with
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respect to ξ in the probability space (Ξ,F ,P). It is assumed
that the function f : Rd × Ξ → R is known analytically or
it is provided by a black box oracle within a prefixed accu-
racy. In practice, since the probability distribution of ξ is
unknown, we seek the solution of a problem that involves
an estimate of the objective function F(x). The most com-
mon approximation is the Sample Average Approximation,
defined as

min
x∈Rd

Fn(x) ≡ Fn(x, ξ
(n)), (2)

where the objective function is the empirical risk

Fn(x, ξ
(n)) = 1

n

n∑

i=1

f (x, ξ (n)
i ) = 1

n

n∑

i=1

fi (x), (3)

based on a random sample ξ (n) = {ξ (n)
1 , . . . , ξ

(n)
n } of size

n of the variable ξ . In the machine learning framework,
each fi (x) ≡ f (x, ξ (n)

i ) denotes the loss function related

to the instance ξ
(n)
i of the training set. In the big data frame-
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work, since n can be a very large number, it is prohibitively
expensive to deal with the objective function Fn(x, ξ (n)),
its gradient or its Hessian matrix. A common approach to
address the problem (1) or its approximation (2)–(3) is the
Stochastic Gradient (SG) method and its variants, requiring
only the gradient of one or few terms of Fn(x) at each itera-
tion, so that the cost of the overall optimization procedure is
limited.

Starting from a vector x (0) ∈ R
d , the basic iteration of the

SG method can be written as

x (k+1) = x (k) − αkg(x
(k), ξ (nk)), (4)

where ξ (nk) denotes a set of nk realizations of the random
variable ξ , randomly chosen from the sample data ξ (n),
g(x (k), ξ (nk )) is the stochastic gradient vector at the current
iterate x (k) and αk is a positive steplength, known also as
learning rate. The main strategies for the choices of ξ (nk)

give rise to the standard SG method, when nk = 1 for
all k, and its mini-batch version, for nk > 1. In partic-
ular, given a randomly chosen subset Sk ⊂ {1, . . . , n} of
|Sk | = nk indices, nk ≥ 1, and a subsample of the training
set ξ (nk) = {ξ (nk)

i }i∈Sk , the stochastic gradient is defined as

g(nk)
k ≡ g(x (k), ξ (nk)) = 1

nk

∑

i∈Sk
∇ fi (x

(k)). (5)

As concerns the convergence results of the standard SG
method (4) and its variant with fixed subsample size nk , a
very deep survey is given in Bottou et al. (2018). The results
provided inBottou et al. (2018) hold in the case of the solution
of both problems (1) and (2). Under the crucial assump-
tion that the gradient of the objective function is L-Lipschitz
continuous and some additional conditions on the first and
secondmoments of the stochastic gradient, when the positive
steplength αk is bounded from above by a constant αmax, the
expected optimality gap for strongly convex objective func-
tions, or the expected sum of gradients for general objective
functions, asymptotically converge to values proportional to
αmax. In practice, if the steplength is sufficiently small and
k → ∞, the method generates iterates in the neighborhood
of the optimal or stationary value.

Nevertheless, since the constants related to the assump-
tions, such as the Lipschitz parameter or the parameters
involved in the bounds of the moments of the stochastic
directions, are unknown and not easy to approximate, there
is no guidance on the specific choice of the steplength. A
selection of a too small value of a steplength without an accu-
rate tuning, can give rise to a very slow learning process. In
the literature, there exist a number of different proposals to
overcome this drawback without resorting to second-order
methods or introduce line search techniques.

In particular, we refer to Tan et al. (2016) and Yang et al.
(2018), where the updating rule of the steplength is borrowed
from the Barzilai’s rules, well known in the deterministic
context. In the case of strongly convex objective functions,
in order to obtain a linear convergence in expectation to zero
for the optimality gap (Yang et al. 2018) or to a solution for
the sequence of the iterates (Tan et al. 2016), the updating
rules are inserted in variance reducing schemes as SVRG
(Johnson and Zhang 2013) or SAGA (Defazio et al. 2014).
These methods require to periodically compute the full gra-
dient or to store the last computed term of each gradient in
the sum (3).

Another way to obtain the linear convergence for strongly
convex objective functions consists in increasing nk at a
geometric rate (Byrd et al. 2012) (see also Friedlander and
Schmidt 2012). Despite this very strong condition, from the
practical point of view, a procedure based on the so-called
norm test, enables to control the sample size nk so that

E

[
‖g(nk)

k − ∇F(x (k))‖2
]

≤ ζ‖∇F(x (k))‖2

for some ζ > 0 (Hashemi et al. 2014). In the practical
implementation, the left side of the last inequality can be
approximated with the sample variance and the gradient
∇F(x (k)) on the right side with a sample gradient (Byrd et al.
2012; Bottou et al. 2018). Similar techniques are developed
in Cartis and Scheinberg (2015), relaxing the norm test by
the use of a line search technique based on the true value of
the objective function.

A recent proposal suggested in Bollapragada et al. (2018)
is to increase the sample on the basis of an inner product test,
combined with an orthogonality test. These conditions guar-
antee that the negatives of the stochastic gradients based on
subsamples of suitable size are descent directions in expecta-
tion.Numerical evidencehighlights that themechanismgives
rise to an increase in nk slower than the one induced by the
norm test; on the other hand, linear rate of convergence for
objective functions satisfying the Polyak–Lojasiewicz (P–
L) condition is preserved and other theoretical convergence
features hold for general problems. These results strongly
depend on the knowledge of the Lipschitz parameter L or on
its suitable (local) estimate. Consequently, motivated by the
numerical experiences shown in Franchini et al. (2020), in
this paper we propose to tailor the steplength selection rule
adopted in the Limited Memory Steepest Descent (LMSD)
method (Fletcher 2012) to give a local estimate of the inverse
of L in the SG framework, combining this strategy with the
technique for increasing the subsample size detailed in Bol-
lapragada et al. (2018) to adaptively control the variance of
the stochastic directions.

The paper is organized as follows. In Sect. 2, we briefly
recall the inner product test, the orthogonality test and the
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related theoretical convergence results. Section 3 is devoted
to address the Ritz-like values in the context of the LMSD
deterministic method and to tailor this technique to the
stochastic framework; more precisely, the SG iteration based
on the steplength defined by a Ritz-like value is combined
with the adaptive subsampling technique proposed in Bol-
lapragada et al. (2018). In Sect. 4 we describe the results of
an extensive numerical experimentation. The conclusions are
drawn in Sect. 5.

2 Theoretical results on SGmethod
equipped with inner product and
orthogonality tests

The convergence results on SG iteration (4) require that the
stochastic gradient g(nk)

k based on the subsample ξ (nk) is a
descent direction sufficiently often, i.e., assuming that Sk is
chosen uniformly at random from {1, . . . , n} and g(nk)

k is an
unbiased estimate of ∇F(x (k)), we can write

E

[
g(nk)
k

T∇F(x (k))
]

= ‖∇F(x (k))‖2, (6)

for all k ≥ 0. The variance of the term on the left-hand side
of (6) can be controlled by determining the sample size nk at
the k-th iteration so that the stochastic gradient is guaranteed
to be a suitable estimate of the corresponding gradient. In
particular, the following condition can be imposed on the
sample size nk of ξ (nk):

E

[
(g(nk)

k

T∇F(x (k)) − ‖∇F(x (k))‖2)2
]

≤ θ2‖∇F(x (k))‖4,
(7)

for some θ > 0. Furthermore, the inner product test can
be combined with the orthogonality test, guaranteeing that
the step direction is bounded away from orthogonality with
∇F(x (k)):

E

⎡

⎣‖g(nk )
k − g(nk )

k

T∇F(x (k))

‖∇F(x (k))‖2 ∇F(x (k))‖2
⎤

⎦ ≤ ν2‖∇F(x (k))‖2, (8)

for some ν > 0. The combination of the two tests (7) and (8)
is also known as augmented inner product test.

Borrowing the results stated in Bollapragada et al. (2018),
we perform the following additional assumptions:

A. ∇F is L-Lipschitz continuous;
B. the Polyak–Lojasiewicz (P–L) condition holds

‖∇F(x)‖2 ≥ 2c(F(x) − F∗), ∀x ∈ R
d , (9)

where c is a positive constant and F∗ = infx∈Rd F(x);

C. αk ∈ (αmin, αmax], and αmax ≤ 1
(1+θ2+ν2)L

, for given
positive constants θ, ν in (7) and (8).

We remark that assumption B holds when F is c-strongly
convex, but it is also satisfied for other functions that are not
convex (see Karimi and Nutini 2016). In addition we observe
that assumptions A and B do not guarantee the existence of a
stationary point for F ; nevertheless, under the two assump-
tions, any stationary point for F is a global minimizer.

Furthermore, in view of the assumption C, the iteration (4)
can be equipped by a variable steplength, as long as it belongs
to the interval (αmin, αmax], where αmax is proportional to the
inverse of L .

Following the arguments of Bollapragada et al. (2018),
the following theorems can be stated.

Theorem 1 Suppose the assumptions A andB hold. Let {x (k)}
be the sequence generated by (4), where the size nk of any
subsample is chosen so that the conditions (7) and (8) are
satisfied and αk satisfies the assumption C. Then, we have
that

E

[
F(x (k)) − F∗

]
≤ ρk

(
F(x (0)) − F∗

)
, (10)

where ρ = 1−c αmin. In particular, for a constant steplength
αk ≡ αmax = 1

(1+θ2+ν2)L
, for all k ≥ 0, we have ρ =

1 − c
(1+θ2+ν2)L

.

The proof follows as in Theorem 3.2 of Bollapragada et al.
(2018), by using the (P–L) condition instead of the strongly
convexity of F and the inequality αk ≤ αmax ≤ 1

(1+θ2+ν2)L
.

In the case of a convex function F such that the P-L condi-
tion does not hold, we can state the following theorem,whose
proof runs as the one of Theorem 3.3 of Bollapragada et al.
(2018), taking account of αk ≤ αmax and of the additional
strict bound on αmax.

Theorem 2 Suppose the assumptionAholds. Let {x (k)} be the
sequence generated by (4), where the size nk of any subsam-
ple is chosen so that the conditions (7) and (8) are satisfied
and αk satisfies the assumption C, with αmax < 1

(1+θ2+ν2)L
.

Assume that X∗ = argminx F(x) = ∅. Then, we have that

min
0≤k≤K

E

[
F(x (k)) − F∗

]
≤ 1

2αkγ K
‖x (0) − x∗‖2, (11)

where x∗ ∈ X∗ and γ = 1 − αmaxL(1 + θ2 + ν2).

Finally, along the lines of Theorem 3.4 in Bollapragada et al.
(2018), taking into account that αk > αmin, we state the
following proposition for the case of a general non-convex
objective function F . In this case, {∇F(x (k))} converges to
zero in expectation, with a sub-linear rate of convergence of
the smallest gradients arising after K iterations.
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Theorem 3 Suppose the assumption A holds and F is
bounded below from F∗. Let {x (k)} be the sequence generated
by (4), where the size nk of any subsample is chosen so that
the conditions (7) and (8) are satisfied and αk satisfies the
assumption C. Assume that X∗ = argminx F(x) = ∅. Then,
we have that

lim
k→∞E

[
‖∇F(x (k))‖2

]
= 0. (12)

Furthermore, for any K > 0, we have

min
0≤k≤K−1

E

[
‖∇F(x (k))‖2

]
≤ 1

2αminK

(
F(x (0)) − F∗

)
. (13)

To make a robust implementation of the iteration (4), Bol-
lapragada et al. propose to determine the current steplength
by a backtracking line search, aimed at providing a (local)
estimate of Lipschitz parameter.

Exploiting the assumption of αk belonging to a suitable
bounded interval, we propose an updating rule for the defi-
nition of the current αk , based on a stochastic version of the
LMSD computation of Ritz-like values. In the next section
we recall the deterministic procedure and we describe the
stochastic version in detail.

3 Steplength selection via Ritz and harmonic
Ritz values

Among the state-of-the-art steplength selection strategies for
deterministic gradientmethods, the limitedmemory rule pro-
posed in Fletcher (2012) is one of the most effective ideas for
capturing second-order information on the objective func-
tion. In order to describe our strategy for extending this
approach to the stochastic gradient methods, in the following
we recall the basic details on the rule (Fletcher 2012).

3.1 The deterministic framework

The limited memory rule (Fletcher 2012) provides the
steplengths for performing groups of m ≥ 1 iterations,
where m is a small number (generally not larger than 7).
After each group of m iterations, called sweep, a symmetric
tridiagonal m ×m matrix is defined by exploiting the gradi-
ents computed within the sweep. The m eigenvalues of the
tridiagonal matrix are interpreted as approximations of the
eigenvalues of the Hessian of the objective function at the
current iteration and their inverses define the m steplengths
for the new sweep. The crucial point of this approach con-
sists in building the tridiagonal matrix in an inexpensive way,
starting from the information acquired in the last sweep.
To this end, in Fletcher (2012) the following strategy is
proposed: suppose that the iterate x ( j) and m steplengths
α j+k, k = 0, . . . ,m − 1, are available for performing a new

sweep and store the gradients and the steplengths usedwithin
the sweep in the following way:

G j = [g j , g j+1, . . . , g j+m−1], (14)

J j =

⎛

⎜⎜⎜⎜⎜⎜⎝

1
α j

− 1
α j

. . .

. . . 1
α j+m−1

− 1
α j+m−1

⎞

⎟⎟⎟⎟⎟⎟⎠
. (15)

From the d×m matrixG j , an upper triangularm×m matrix
R j such that GT

j G j = RT
j R j can be obtained, for example

by means of the Cholesky factorization of GT
j G j ; the matrix

R j is non-singular if G j is full rank. By using G j , J j and
R j define the matrix

Tj = R−T
j GT

j [G j g j+m]J j R−1
j = [R j r j ]J j R−1

j (16)

where r j is the solution of the linear system RT
j r j =

GT
j g j+m . In the case of quadratic strictly convex objective

function, Tj is the symmetric tridiagonal matrix provided by
m steps of the Lanczos process applied to the Hessian matrix
of the objective function, with starting vector g j/‖g j‖; this
means that its eigenvalues, called Ritz values, are special
approximations of the Hessian eigenvalues. In the general
non-quadratic case, Tj is upper Hessenberg and a symmetric
tridiagonal matrix T j can be obtained as

T j = tril(Tj ) + tril(Tj ,−1)′, (17)

where the Matlab notation is used for denoting the lower tri-
angular of Tj . The limited memory steplength rule (Fletcher
2012) proposes to use the eigenvalues of T j , λi , i =
1, . . . ,m, as approximations of the eigenvalues of the Hes-
sian of the objective function at the iteration ( j +m), and to
exploit the inverses of these approximations as steplengths
for the next sweep:

α j+m−1+i = 1

λi
, i = 1, . . . ,m. (18)

Following the terminology used in the quadratic case, we call
Ritz-like values the eigenvalues of T j .

InFletcher (2012) another idea is also introduced for defin-
ing the steplengths for the sweeps, based on a similar strategy.
In the strictly convex quadratic case, this idea consists in
obtaining the steplengths as eigenvalues of thematrix P−1

j Tj ,
where
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Pj = R−T
j JTj

(
R j r j
0 ρ j

)T (
R j r j
0 ρ j

)
J j R

−1
j

=
(
T T
j t j

) (
Tj

tTj

)
, (19)

ρ j =
√
gTj+mg j+m − rTj r j and t j is the solution of the linear

system RT
j t j = JTj

(
0
ρ j

)
. The reciprocals of the eigenvalues

of P−1
j Tj are called harmonic Ritz.

Replacing Tj in (19) by the non-singular tridiagonal
matrix T j , a pentadiagonal matrix P j is obtained. Thematri-

ces T j and T
−1

P j can have nonpositive eigenvalues. This
phenomenon is due firstly to the non-quadratic features of
the objective function and secondly to the presence of neg-
ative curvature. The first situation can arise also for convex
objective functions, whereas the second one concerns the
minimization of general functions. To overcome these draw-
backs, there are different strategies. In Fletcher (2012), di
Serafino et al. (2018), the authors suggest to simply discard
these values, hence providing fewer than m steplengths for
the next sweep; if no positive eigenvalues are available, any
tentative steplength can be adopted for a sweep of length 1. In
addition it can be convenient to discard also the oldest back
gradients. Another strategy, aimed at handling non-positive
curvature, is to adopt a local cubic model, that reduces to a
standard quadratic model when only positive eigenvalues are
computed (Curtis and Guo April 2016).

3.2 The Stochastic framework

The strategy suggested by the LMSDmethod for an adaptive
update of the steplength in the full gradient method performs
as well as an L-BFGS method also for the minimization of
non-quadratic and non-convex objective functions (Fletcher
2012 and di Serafino et al. 2018). In a stochastic framework,
where the computation of the Hessian matrix is very expan-
sive, even when it is based on a subsampling, the LMSD
approach can inspire a strategy for defining a selecting rule
of the steplength at the current iteration of SG. The main
difference with respect to the deterministic case is in the con-
struction of the matrix G j , where we have to replace the full
gradients computed at the m most recent iterations (m ≥ 1)
with the corresponding stochastic gradients at the iterates
x ( j+i), obtained by using different samples of data {ξ (n j+i )},
i = 0, ..,m − 1:

G j =
[
g

(n j )

j , g
(n j+1)

j+1 , . . . , g
(n j+m−1)

j+m−1

]
. (20)

Following the procedure developed in the deterministic
case combined with the approximation (17), the matrices T j

and P j can be computed, by replacing G j in (16) with G j .

When the collected stochastic gradients are suitable
approximations of the full gradients, i.e., they are in expec-
tation suitable descent directions at the current iterate with a
reduced variance, it is quite likely that from the inverses of

the eigenvalues of the matrices T j and T
−1
j P j , that are the

Ritz-like and harmonic Ritz-like values, useful approxima-
tions of the inverse of the local Lipschitz constant of∇F can
be obtained for the new sweep of iterations. For simplicity,
we refer in the following to the Ritz-like values, but, sim-
ilarly, the same considerations hold for harmonic Ritz-like
values. We observe that, in addition to the drawbacks high-
lighted in the deterministic context, in this case G j is only
an approximation of G j and, as a consequence, non-positive
Ritz-like values can arise. As in the deterministic case, these
values can be discarded, by removing also the oldest back
stochastic gradients from G j . As a consequence, fewer than
m Ritz-like values λi , i = 1, . . . ,mR, mR ≤ m, can be
available.

Furthermore, in order to avoid line search techniques, it
is convenient to consider only the values λi belonging to
a prefixed range [ 1

αmax
, 1

αmin
), where αmax > αmin > 0. In

particular, we redefine

λi ← max

(
1

αmax
,min

(
λi ,

1

αmin

))
, i=1, . . . ,mR,

(21)

and we eliminate the values λi = 1/αmin, reducing againmR

and discarding all the stochastic gradients giving rise to these
values. If mR = 0, a tentative steplength α ∈ (αmin, αmax]
can be adopted for a sweep of length 1. This reference value
is also used at the first iterate. If mR > 0, the steplengths in
the next sweep are defined as

α j+m+i = 1

λi
, i = 1, . . . ,mR . (22)

A similar procedure involving the harmonic Ritz-like values
enables us to define alternatively the steplengths in the next
sweep as

α j+m+i = 1

λi
, i = 1, . . . ,mH . (23)

We remark that, in view of Theorem 3.3 in Curtis and
Guo (April 2016), the positive harmonic Ritz-like values are
greater or equal than the corresponding Ritz-like values; as
a consequence, the rule (23) generates shorter steplengths
with respect to the ones defined by (22). The alternate use
of different rules to generate long and short stepsizes in the
full gradient methods has been deeply investigated (see, for
example, Dai and Yuan 2003; Zhou et al. 2006; Frassoldati
et al. 2008), showing a large increase in their practical per-
formance. Also in the stochastic framework, we can explore
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an alternate use of the Ritz-like and harmonic Ritz-like val-
ues. A first approach can be to simply toggle the use of the
Ritz-like values to the one of the harmonic Ritz-like values
at each sweep (Alternate Ritz-like values or A-R).

A second strategy may be to link the choice between Ritz-
like and harmonic Ritz-like values to the selection of the size
of the current subsample. We discuss in detail this selection.
A crucial point is how to check when the stochastic gradi-
ents assembling the matrix G j can be considered acceptable
estimates of the corresponding gradients. Inspired by the
adaptive sampling technique in Bollapragada et al. (2018),
the variance can be monitored by a suitable increase in the
sample size nk . More precisely, the inner test condition (7)
can be imposed on the sample size nk . Since the left-hand-
side term of (7) is bounded from above by the true variance
of individual gradient, the condition (7) holds when the fol-
lowing exact variance inner product test is satisfied:

E[(∇ fi (x (k))T∇F(x (k)) − ‖∇F(x (k))‖2)2]
nk

≤ θ2‖∇F(x (k))‖4. (24)

In order to implement condition (24), the variance can be
approximate with the sample variance

Vari∈Sk (∇ fi (x
(k))T∇F(x (k)))

and the gradient ∇F(x (k)) on the right side with a sample
gradient, so that the approximate inner product test is given
by the following condition

(
∑

i∈Sk (∇ fi (x (k))Tg(nk)
k − ‖g(nk)

k ‖2)2
nk(nk − 1)

≤ θ2‖g(nk)
k ‖4. (25)

When this condition is not satisfied by the current sample
size, the sample size is increased so that (25) is satisfied.
With regard to the orthogonality test, a sufficient condition
for (8) is the following exact variance orthogonality test:

E[‖∇ fi (x (k)) − ∇ fi (x (k))T∇F(x (k))

‖∇F(x (k))‖2 ∇F(x (k))‖2]
nk

≤ ν2‖∇F(x (k))‖2. (26)

As for the previous test (24), a practical variant, named
approximate variance orthogonality test, based on the sam-
ple approximation can be formulated as follows

∑
i∈Sk ‖∇ fi (x (k)) − ∇ fi (x (k))Tg

(nk )

k

‖g(nk )

k ‖2 g(nk )
k ‖2

nk(nk − 1)
≤ ν2‖g(nk )

k ‖2. (27)

In order to choose a new sample size nk when the conditions
(25) and (27) are not satisfied, we can compute

Z1 = Vari∈Sk (∇ fi (x (k))Tg(nk)
k

θ2‖g(nk)
k ‖4

,

Z2 =
Vari∈Sk (∇ fi (x (k)) − ∇ fi (x (k))Tg

(nk )

k

‖g(nk
k )‖2 g(nk)

k )

ν2‖g(nk)
k ‖2

(28)

and set nk = min(�max(Z1, Z2)�, n). We observe that,
when at the iteration k the size of the sample increases, the
stochastic gradients previously stored are related to subsam-
ples of lower size; then, we propose to discard the available
Ritz-like values and to exploit the current stored stochas-
tic gradients to determine a set of harmonic Ritz-like values.
Indeed this strategy, namedAdaptive Alternation of Ritz-like
values (AA-R), leads to shorter steplengths in this transition
phase.

The approximated version (25)–(27) of the augmented
inner test is a way to choose the size of the subsample at
the current iteration with the aim to control the goodness of
the estimate g(nk)

k of the full gradient ∇F(x (k)), but other
approaches in the literature can be found, as for example the
norm test in Byrd et al. (2012), Cartis and Scheinberg (2015),
Hashemi et al. (2014), or the rule based on the matrix Bern-
stein inequality (Tropp 2015, Th. 6.1.1, Cor. 6.2.1) (seeCartis
and Scheinberg 2015; Bellavia et al. 2019). We followed the
strategy based on the conditions (25) and (27) since numer-
ical experience highlights that they are not too restrictive,
slowly increasing the sequence {nk}.

4 Numerical experiments

In order to evaluate the effectiveness of the proposed
steplength rule for SGmethods, we consider the optimization
problems arising in training binary and multi-labels classi-
fiers for the following well-known data sets:

– the MNIST data set of handwritten digits, categorized
in 10 classes (downloadable from http://yann.lecun.com/
exdbmnist), commonly used for testing different systems
that process images; the images in gray-scale [0, 255] are
normalized in the interval [0, 1] and centered in a box of
28 × 28 pixels; the data set contains 60,000 images for
training, whereas further 10, 000 images can be used for
testing purposes;

– the web data set w8a downloadable from https://www.
csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html,
containing 49,749 examples, partitioned in 44,774 sam-
ples for training and 4975 for testing; each example is
described by 300 binary features.
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Table 1 Values of the best-tuned steplength αOPT in 20 epochs for the standard SG method in the case of the two data sets and the three loss
functions

MNIST w8a

Fn(x) LR SL SH LR SL SH

αOPT 10−3 10−4 10−3 10−1 10−3 5 10−2

Fig. 1 Behavior of standard SG in 20 epochs on theMNIST data set, with logistic regression (on the left panel) and square loss (in the right panel)

We consider two kinds of problems, the first relating to
convex objective functions and the second involving a
non-convex objective function. In the case of convex min-
imization problems, a binary classifier is searched for the
data sets MNIST and w8a. For the MNIST data set, the two
classes are the even and odd digits. In the non-convex case,
the objective function arises from the design of a multi-class
classifier for theMNIST data set. In both kinds of problems,
a regularization term was added to the loss function to avoid
overfitting.

4.1 Convex problems

We built linear classifiers corresponding to three different
convex loss functions. Thus the minimization problem has
the form

min
x∈Rd

Fn(x) + δ

2
‖x‖22, (29)

where δ > 0 is the regularization parameter. By denoting as
ai ∈ R

d and bi ∈ {1,−1} the feature vector and the class
label of the i-th sample, respectively, the loss function Fn(x)
assumes one of the following forms:

– logistic regression (LR) loss:

Fn(x) = 1

n

n∑

i=1

log
[
1 + e−bi aTi x

]
;

– square loss (SL):

Fn(x) = 1

n

n∑

i=1

(1 − bia
T
i x)

2;

– smooth hinge loss (SH):

Fn(x) = 1

n

n∑

i=1

⎧
⎪⎨

⎪⎩

1
2 − biaTi x, if biaTi x ≤ 0
1
2 (1 − biaTi x)

2, if 0 < biaTi x < 1

0, if biaTi x ≥ 1.

We compare the effectiveness of the following schemes:

– SG with a fixed mini-batch size in the version with fixed
steplength, denoted by SG mini;

– methods using Ritz-like values to adaptively select a suit-
able steplength; in particular, we consider:
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Fig. 2 Behavior of the optimality gap in 10 epochs for SG mini, A-R
and AA-R methods in the case of the MNIST data set Fig. 3 Behavior of the optimality gap in 10 epochs for SG mini, A-R

and AA-R methods in the case of the w8a data set
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– Alternate Ritz-like values in the scheme denoted by
A-R, which toggles the use of the Ritz-like values
to the one of the harmonic Ritz-like values at each
sweep;

– AdaptiveAlternationofRitz-like values in the scheme
denoted by AA-R; in this method, when at the iter-
ation k the size of the sample increases, we discard
the available Ritz-like values and we exploit the cur-
rent stored stochastic gradients to determine a set of
harmonic Ritz-like values.

For bothmethods, an adaptive strategy is used for increas-
ing the mini-batch size, as detailed in Sect. 3.2. In all the
numerical simulations, we set θ = 0.7 in (25) and ν = 7
in (27).

In all the numerical experiments, carried out in Matlab�

on 1.6 GHz Intel Core i5 processor, we use the following
setting:

– the regularization parameter δ is equal to 10−8;
– in SG mini the size of the mini-batch is set as |Sk | =

|S| = 50 for all k ≥ 0;
– in A-R and AA-R methods, the size of the initial mini-

batch is |n0| = 3; furthermore the maximum length of
the sweep is set as m = 3;

– each method is stopped after 10 epochs, i.e., after a time
interval equivalent to 10 evaluations of a full gradient
of Fn or 10 visits of the whole data set; in this way we
compare the behavior of the methods in a time equivalent
to 10 iterations of a full gradientmethod applied to Fn(x).

In the following, we report the results obtained by the consid-
ered methods on theMNIST and w8a, by using the three loss
functions (logistic regression, square and smooth hinge func-
tions). For any numerical simulationwe perform10 runswith
the same parameters, but leaving the possibility to the ran-
dom number generator to vary. Indeed, due to the stochastic
nature of the methods, the average values in different simu-
lations provide more reliable outcomes. In particular, for any
numerical test, we report the following results:

– the average value of the optimality gap Fn(x)−F∗, where
x is the iterate obtained at the end of the 10 epochs and F∗
is an estimate of the optimal objective value; this value is
obtained by a full gradient method with a huge number
of iterations;

– the related average accuracy A(x) at the end of the 10
epochs with respect to the testing set, i.e., the percentage
of well-classified examples.

First of all, we determine by a trial procedure the best
steplength αOPT for the standard SG method, i.e., the

Fig. 4 Mini-batch size in A-R and AA-R methods on theMNIST data
set with respect to the iterations
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Table 2 Values of the setting providing the best results for A-R method

MNIST w8a

Fn(x) LR SL SH LR SL SH

α 10−2 10−3 10−2 1 10−2 5 10−1

αmin 10−5 10−7 10−6 10−3 10−6 5 10−4

αmax 1 5 10−2 5 10−1 100 1 25

Table 3 Values of the setting providing the best results for AA-R method

MNIST w8a

Fn(x) LR SL SH LR SL SH

α 10−2 10−3 10−2 1 10−2 5 10−1

αmin 10−5 10−6 10−5 10−3 10−6 5 10−4

αmax 1 10−1 1 100 5 10−1 50

Table 4 Numerical results of the considered methods with Fn(x) given by the logistic regression after 10 epochs

Method MNIST w8a

Fn(x) − F∗ A(x) Fn(x) − F∗ A(x)

SG mini 0.0145 0.890 0.0062 0.901

A-R 0.0263 0.890 0.0165 0.903

AA-R 0.0222 0.893 0.0168 0.903

Table 5 Numerical results of the considered methods with Fn(x) given by the square loss after 10 epochs

Method MNIST w8a

Fn(x) − F∗ A(x) Fn(x) − F∗ A(x)

SG mini 0.0078 0.892 0.0041 0.890

A-R 0.0163 0.888 0.0109 0.888

AA-R 0.0144 0.890 0.0094 0.888

Table 6 Numerical results of the considered methods with Fn(x) given by the smooth hinge loss after 10 epochs

Method MNIST w8a

Fn(x) − F∗ A(x) Fn(x) − F∗ A(x)

SG mini 0.0079 0.897 0.0024 0.907

A-R 0.013 0.896 0.0067 0.904

AA-R 0.0149 0.896 0.0067 0.904

steplength corresponding to the best obtained results. Indeed,
following (Bottou et al. 2018), a suitable steplength for SG
mini is αSG mini = |S|αOPT , where αOPT is a fixed
steplength for the standard SG method. We have tried five
different steplengths for each combination of standard SG
and data set. In Table 1, we report the value of the steplength
αOPT corresponding to the best performance of standard SG
in 20 epochs. Furthermore, in order to highlight the trouble
to define a suitable learning rate, in Fig. 1 we show the trend

of the optimality gap for five values of the steplengths in the
case ofMNIST data set with logic regression and square loss
functions. The instability of the standard SG method behav-
ior with respect to the selection of the steplength motivates
the expensive trial process that produces Table 1. In the fol-
lowing, we report the numerical results of the comparison
between SG mini and A-R and AA-R methods. In partic-
ular, in A-R and AA-R methods, different settings of the
bounds αmax and αmin are used:
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Fig. 5 Mini-batch size in A-R and AA-R methods on the w8a data set
with respect to the iterations

1. αmin = αOPT 10−2, αmax = αOPT 500;
2. αmin = αOPT 10−3 and αmax = αOPT 500;
3. αmin = αOPT 10−2 and αmax = αOPT 1000;
4. αmin = αOPT 10−3 and αmax = αOPT 1000.

The tentative value of the steplength α is set as 10αOPT . Fig-
ures 3 and 4 show the behavior of the optimality gap with
respect to the first 10 epochs for MNIST and w8a, respec-
tively, in the case of the three loss functions. In particular,
the dashed black line refers to SG-mini, whereas the red
and the blues lines are related to A-R and AA-R methods,
respectively, in the above specified four settings. We observe
that the results obtained with the A-R and AA-R methods
are comparable with the ones obtained with the SG mini
equipped with the best tuned steplength. Indeed, the adap-
tive steplength rules in A-R and AA-R methods seem to be
slightly dependent on the values of αmax and αmin, making
the choice of a suitable learning rate a less difficult task with
respect to the selection of a good constant value in standard
SG and SG mini methods. In Tables 2 and 3, we summa-
rize the setting that provides the best results for A-R and
AA-R methods. In Tables 4, 5 and 6, we show the final opti-
mality gap (with respect to the training set) and accuracy
(with respect to the testing set) obtained at the end of 10
epochs for the logistic regression, square and smooth hinge
loss functions, respectively, for the best setting. The final
accuracy of the three methods differs at most to the third
decimal digit. This observation can also be extended to the
simulations obtained for A-R and AA-R methods with the
other settings. In Figs. 4 and 5, we show the increase in the
subsample size in A-R and AA-R methods in the case of all
the convex loss functions.

Starting with n0 = 3, the size of current subsample is at
least 120 in the case ofMNIST data set and 900 in the case of
w8a data set at the end of the 10 epochs, much smaller than
the number of sample n of the training set.

Finally, in Figs. 6 and 7 , we compare the behavior of
SG mini and A-R and AA-R methods when the parameter
αSGmini is not the best-tuned value, as in the previous exper-
iments. In particular, SG mini method in Fig. 6 is carried
out with αOPT replaced by α = 10−5 for logistic regres-
sion function and α = 10−5 for smooth hinge loss function,
that is αSGmini = α|S|. In Fig. 7, SG mini is equipped with
α = 1 for logistic regression function and α = 10−5 for
square loss function. A-R and AA-R methods are executed
using the four previously specified settings, with αOPT set
as above.

Figures 6 and 7 highlight that a too small fixed steplength
in SG mini produces a slow descent of the optimality gap;
on the other hand, a steplength value larger than the best-
tuned one can cause oscillating behavior of the optimality
gap and, sometimes, it does not guarantee the convergence of
SGminimethod. As regardsA-R and AA-Rmethods, these
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(a) (b)

Fig. 6 Comparison between SG-mini with respect to A-R and AA-R in 10 epochs on the MNIST data set

approaches appear less dependent on an optimal setting of the
parameters and they enable us to obtain smaller optimality
gap values after the same number of epochs exploited by SG
mini.

Furthermore, we observe that in A-R method, the behav-
ior of the optimality gap ismore stable than inAA-Rmethod.
Nevertheless, AA-R method can produce a smaller optimal-
ity gap at the end of 10 epochs.

4.2 Some further experiments and remarks on
convex problems

In the previous experiments, A-R and AA-R methods are
equipped with the approximated version of the augmented
inner test, based on sample statistics. For small samples, the
conditions (25)–(27)may not be reliable enough in providing
a sample size able to control the errors in the gradient esti-
mates; indeed, in presence of noise, the norm of the current
stochastic gradient g(nk)

k can be greater than ‖∇F(x (k)‖, so
that the conditions (25)-(27) are verified for many iterations
before producing an increase in the sample size. To prevent
this drawback, in Bollapragada et al. (2018), when the sam-
ple size does not change for at least r consecutive iterations,
an average vector of the last r sample gradients is computed:

gavg = 1

r

k∑

j=k−r+1

g
(n j )

j . (30)

When ‖gavg‖ < γ ‖g(nk)
k ‖, for a prefixed γ ∈ (0, 1), the

augmented inner product test is performed by replacing the
current stochastic vector with the average vector gavg; the

possible consequence is an increase in the sample size. Typi-
cal values for r and γ are 10 and 0.38, respectively. For more
details, also on this special setting, see Bollapragada et al.
(2018); here, this practical procedure is viewed as a recov-
ery strategy to improve the stability of SGmethod equipped
with a line search rule for providing a suitable steplength.
On the other hand, after some epochs, the effectiveness of
the method can degrade for faster increase in the sequence
{nk}, although the adoption of the recovery procedure makes
smaller the total number of backtracking steps.

In order to highlight this remark, in Fig. 8 we show the
results obtained for MNIST when the problem (29) with
logistic regression function is addressed by SG method
equipped with a simple line search. In particular, we report
the optimality gap with respect to 10 epochs when the
augmented inner product test is coupled with the recovery
procedure (magenta line) and without this recovery proce-
dure (green line). In the latter case, the final sample size is 48
with a large number of backtracking steps (2700), while in
the former one the sample size increases until 3300 with very
fewbacktracking steps (110).As a consequence, the recovery
procedure appears crucial for the control of the effectiveness
of the line search and the sequence {nk}.

The numerical results of the previous section show that
A-R and AA-R methods are less dependent on the lack
of reliability of the augmented inner product test for small
values of nk . Nevertheless, we can introduce the recovery
procedurewhen the computation ofRitz-like values gives rise
to mR = 0 and the steplength at the next iteration is set to a
tentative value α. More precisely, when this situation occurs,
if the sample size has not changed in the last r iterations, the
novel sample size is determined by using the approximated
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(a) (b)

Fig. 7 Comparison between SG-mini with respect to A-R and AA-R in 10 epochs on the w8a data set

augmented inner product test with g(nk)
k replaced by the aver-

age vector (30). In Figs. 9 and 10 , we show the behavior of
the optimality gap obtained by using the modified versions
of A-R and AA-R methods and SG method equipped with
the line search rule for MNIST and w8a, respectively, in the
case of the three loss functions in the objective. The compar-
ison with Figs. 2 and 3 allows to observe that the recovery
procedure improves the stability of A-R and AA-Rmethods
with respect to the setting of αmin and αmax, preserving the
effectiveness of the approach. Indeed the accuracy of the two
versions at the end of 10 epochs differs at most to the third
decimal digit. The final value of the sample size is at most 10
times the one obtained without the use of the recovery pro-
cedure. As already observed in the previous section, AA-R
method allows to obtain better results with respect to A-R in
most experiments.

Furthermore, we observe that the performance of our
approach appears generally better with respect to SG with
a line search procedure. The comparison is carried out by
considering only the number of scalar products performed in
all methods, that is n scalar products for each epoch. Indeed,
for the considered loss functions, the computational cost of
the evaluation of the stochastic gradient g(nk)

k is essentially
given by the nk scalar products aTi x

(k), i ∈ Sk .
As regards SGmethod with a line search rule, we observe

that, although the evaluation of an estimate of the objective
function 1

nk

∑
i∈Sk fi (x (k)) at x (k) does not require additional

scalar products and it is negligible, the computation of the
same estimate at x (k) − αg(nk)

k requires at least additional nk
scalar products. Thus, each iteration of SG with line search
has a computational cost at least equal to two evaluations of
the stochastic gradient on the same sample. Any backtrack-

Fig. 8 Behavior of the optimality gap in 10 epochs for SG method
equipped with a line search rule; magenta line is related to the version
of the method combined with the recovery procedure while the green
line is used for the version without this procedure. The parameters are
chosen as in Bollapragada et al. (2018). In the experiment, logistic
regression is the loss function and MNIST is the data set

ing step increases the count of total scalar products. This
preliminary analysis appears to favor schemes that avoid a
line search rule for the determination of the steplength, also
in the case of a few epochs when the sample size remains
low. This topic may be the subject of future investigations.
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Fig. 9 Behavior of the optimality gap in 10 epochs for the versions of
A-R and AA-R methods using with the recovery procedure and SG
equipped with a line search rule in the case of the MNIST data set

Fig. 10 Behavior of the optimality gap in 10 epochs for the versions
of A-R and AA-R methods using with the recovery procedure and SG
equipped with a line search rule in the case of the w8a data set
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Fig. 11 Artificial neural network structure

4.3 A non-convex problem: a convolutional neural
network

In the non-convex case, we consider as loss function an
artificial neural network. In particular, dealing with image
classification, we consider a convolutional neural network
(CNN). The network is composed of an input layer, two
sequences of convolutional and max-pooling layers, a fully
connected layer and an output layer. We make use of recti-
fied linear unit (ReLU) activations combined by a softmax
function for the output layer and of a cross entropy as loss
function (see Fig. 11).We consider the optimization problem
arising in training a multi-class classifier for theMNIST data
set.

We compare the effectiveness of the same methods con-
sidered in the previous section, i.e., SGmini,A-R andAA-R
methods. In all the numerical experiments we use the follow-
ing setting:

– regularization parameter δ = 10−4;
– the first convolutive layer is composed by 64 filters, each
filter has 5× 5 dimension; after we apply a max-pooling
of size 2 × 2;

– the second convolutive layer is composed by 32 filters,
each filter has 5 × 5 dimension; after we apply a max-
pooling of size 2 × 2;

– in SGmini, the size of the mini-batch, is set as |S| = 50;
– in A-R and AA-R methods, the length of any sweep is
at most m = 3; furthermore, θ = 0.7 in (25) and ν = 7
in (27) for all the numerical simulations;

The numerical experiments were carried out in Matlab�

on Intel(R) Core(TM) i7-6700 CPU @ 3.40GHz with 8
CPUs.

In Fig. 12, we can observe the different accuracies (with
respect to the testing set) provided by the CNN trained with
SG mini in 5 epochs; the fixed steplength is set to values
between 0.001 and 0.9. As we can see, the method provides
effective results for α = 0.5; a similar accuracy is obtained
forα = 0.1. In caseswith smaller steplengths, the accuracy in
5 epochs is unsatisfactory, while a higher steplength can lead
to thedivergenceof themethod.Hence, in amoremarkedway

Fig. 12 CNN Accuracy in the SG mini case

Fig. 13 Accuracy obtained by training the CNN with A-R and AA-R
methods

than the convex case, for non-convex problems, finding an
effective steplength requires a very expensive trial procedure.
Conversely, using a random steplength without a prior trial
phase can lead to inaccurate results due to slow convergence
or divergence of the method.

In Fig. 13, we report the results obtained by training the
CNN with the A-R and AA-R methods. In particular, we
show the behavior of the accuracy with respect to the testing
set in the first 5 epochs with the following settings:

– for A-R method, αmin = 10−3, αmax = 1, n0 = 10;
– for AA-R method, αmin = 10−2, αmax = 1, n0 = 3.

The parameter α is set as 0.1 in all cases. We observe
that A-R appears more robust with respect to the amplitude
of the interval where αk can belong. Furthermore, we notice
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that the subsample size increases up to a maximum of 204
and 182 in A-R and AA-R methods, respectively.

5 Conclusions

In this paper we proposed to tailor the steplength selec-
tion rule based on the Ritz-like values, used successfully in
the deterministic gradient schemes, to a stochastic scheme,
recently proposed by Bollapragada et al. (2018). This SG
method includes an adaptive subsampling strategy, aimed to
control the variance of the stochastic directions.We observed
that the theoretical properties of this approach hold under
the assumption that the steplength selection rule obeys to the
assumption αk ∈ (αmin, αmax], where αmax is proportional to
the inverse of the Lipschitz parameter of the objective func-
tion gradient. Consequently, we reformulate the procedure
for obtaining theRitz-like values in the stochastic framework,
by using the stochastic gradients instead of the standard gra-
dients. It is required that these stochastic directions, although
based on different subsamples, satisfy two conditions (the
inner product test and the orthogonality test), ensuring the
descent property in expectation. In particular, we proposed
two different ways to select the current steplength, by sim-
ply toggling the Ritz-like values with the harmonic Ritz-like
values (A-R method) or using the harmonic Ritz-like val-
ues only when the size of the subsample is increased (AA-R
method). The numerical experimentation highlighted that the
proposed methods enable to obtain an accuracy similar to
the one obtained with SG mini-batch with fixed best-tuned
steplength. Although also in this case it is necessary to care-
fully select a thresholding range for the steplengths, the
proposed approach appears slightly dependent on the bounds
imposed on the steplengths, making the parameters setting
less expensive with respect to the SG framework. In con-
clusion, the proposed technique provides a guidance on the
learning rate selection and it allows to perform similarly to
the SG approach equipped with the best-tuned steplength.
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