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Abstract Despite the numerous applications of pressurized graphene membranes in new technologies, there

is still a lack of accurate mechanical models. In this work we propose a continuum model for circular graphene

membranes subjected to uniform lateral pressure. We adopt a semi-inverse method by defining the kinematics

of deformation and we describe the material behavior with a stored energy function that takes into account

both nonlinearity and anisotropy of graphene. From the equilibrium we obtain an expression of the applied

pressure as a function of the deflection of the membrane. A finite element (FE) model in nonlinear elasticity is

presented and the results are used to validate the analytical model. A comparison with other models, numerical

simulations and experiments from the literature demonstrates the advantages of the model proposed in this

work. Differently from our entirely nonlinear approach, all the continuum models in the literature are based

on the assumption of linear elastic material, which is suitable only when deformations are small. The present

model gives a comprehensive description of the mechanics of pressurized graphene membranes.

Keywords Graphene membrane · Nonlinear elasticity · Anisotropy · Hyperelasticity · Finite element

Mathematics Subject Classification (2010) 74B20 · 74G05 · 74K15 · 74S05 · 74E10

1 Introduction1

Numerous applications in new technologies involve the use of graphene. The extraordinary mechanical, thermal2

and electrical properties of this material attracted the interest of researchers from many engineering fields. In3

fact, graphene is used in micro-and nano-electronic devices [37,46], biomedicine [38], nanocomposite materials4

[5, 27,36], energy generation and storage [33,35], electrochemical sensors [14], and many other applications.5

Graphene membranes are impermeable to standard gases and therefore they are often used for pressure sen-6

sors [2]. Pressurized graphene membranes provide a one-atom-thick separation barrier that can support large7
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pressure differences. Liu et al. [21] reported the outstanding molecular separation properties of graphene mem-8

branes, which can be applied to pressure filtration, pervaporation and gas separation. Graphene membranes9

are also used as piezoresistive pressure sensors [48] and as pressure sensors for detecting human motions [39].10

Wang et al. [43] presented a graphene-based microelectromechanical system (MEMS) pressure sensor and11

showed that, thanks to its high sensitivity, it outperforms most existing MEMS sensors. Moreover, polymer12

nanocomposite membranes based on graphene find new and promising technological applications [15,24].13

Despite the enormous potential of pressurized graphene membranes, there is still a lack of accurate me-14

chanical models. Wang et al. [42] analyzed the problem of circular graphene membranes subjected to uniform15

lateral pressure and proposed approximated analytical solutions based on the assumption of linear elastic ma-16

terial. They carried out molecular dynamics simulations on a nanoscale membrane and it was found that the17

approximated solutions are suitable only for small deflections (linear elasticity). Jiang et al. [13] and Wang et18

al. [40] carried out FE simulations by modeling the graphene sheet with, respectively, plate and shell elements19

composed of linear elastic material. Li et al. [20] proposed a continuum model based on the large deflection20

elastic theory of circular membranes and investigated the effect of variations of the membrane parameters by21

using FE simulations.22

The above models are all based on the hypothesis of linear elastic constitutive response of graphene.23

However, experiments and numerical simulations showed that graphene exhibits a pronounced material non-24

linearity, which derives from the nonlinear carbon-carbon interactions in the hexagonal lattice [19, 22, 30, 32].25

In addition, graphene is isotropic only for infinitesimal deformations, while in the theory of large deformations26

its anisotropy must be taken into account [12]. This behavior of graphene is not considered in the models27

mentioned above. Against this background, there are still important issues that must be addressed to provide28

a comprehensive description of the mechanics of circular pressurized graphene membranes.29

In the present work, we derive a solution to this problem in finite elasticity. We adopt a semi-inverse30

method by defining the kinematics of deformation of the circular pressurized membrane. Consequently, we31

consider the anisotropic hyperelastic material model for graphene proposed by Höller et al. [11] and we derive32

the stress measures. The equilibrium is then written and an expression of the applied pressure as a function33

of the deflection of the central point of the membrane is derived. Differently from the other models in the34

literature, the material nonlinearity of graphene is accurately described.35

The proposed analytical model is validated with the results of a FE simulation. The FE simulation was36

carried out in software COMSOL Multiphysics. Both material and geometric nonlinearities were considered.37

After validating the model, we present a comparison with other results from experiments and simulations38

found in the literature. The comparison demonstrates the advantages of the present model and points out the39

importance of considering the nonlinear material response of graphene.40

The model proposed in this work represents a straightforward tool for an accurate analysis of the mechanics41

of pressurized graphene membranes. Having at hand a direct expression of pressure as a function of deflection42

is a great advantage. Instead, atomistic and FE simulations are complex and require high computational effort.43
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Fig. 1: (a) Circular graphene membrane subjected to uniform lateral pressure and (b) kinematics of deformation
in the 𝑅-𝑍 plane based on the assumption that the membrane transforms into a spherical cap with origin in
𝐶.

Especially atomistic simulations, which are accurate but can be applied only to systems composed of a small44

number of atoms.45

The paper is organized as follows. The hyperelastic model for circular graphene membranes under uniform46

lateral pressure is presented in Section 2. The FE model is described in Section 3. The results are given in47

Section 4, where we first validate the model and subsequently we present a comparison with other results from48

the literature. Conclusions are drawn in Section 5.49

2 Hyperelastic model for circular graphene membranes subjected to uniform lateral pressure50

The circular pressurized graphene membrane is depicted in Fig. 1a. The undeformed flat membrane has radius51

𝑎 and thickness 𝑡. We introduce a Cartesian coordinate system (𝑋,𝑌, 𝑍) and a cylindrical coordinate system52

(𝑅,Θ, 𝑍), both with origin in 𝑂. Directions 𝑋 and 𝑌 correspond respectively to zigzag and armchair directions53

in the graphene hexagonal lattice [3, 17]. The membrane is subjected to the uniform pressure 𝑝 and material54

point 𝑃 moves to 𝑃′. We assume that the membrane preserves its rotational symmetry after deformation,55

therefore Θ′ = Θ. The coordinates of 𝑃′ in deformed configuration are (𝑅′,Θ, 𝑍 ′).56

We assume that the initially flat membrane transforms into a spherical cap. Note that the ultimate strain57

of graphene subjected to uniaxial elongation is around 15-20% [41, 44, 47]. Since the deformations involved58

are moderately large, the assumption that the membrane transforms into a spherical cap gives an appropriate59

description of the kinematics of deformation [45]. This hypothesis will be validated by the FE simulation of60

Section 3.61

The membrane deforms according to the kinematics of Fig. 1b. The spherical cap is centered in point 𝐶62

and has radius 𝜌. Displacement field u(𝑃) of point 𝑃 with coordinates (𝑅,Θ, 0) has the following expression63
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in cylindrical coordinates:64

𝑢𝑅 (𝑃) = 𝑅′ − 𝑅 = 𝜌 sin𝜓 − 𝑅,

𝑢Θ (𝑃) = 0,

𝑢𝑍 (𝑃) = 𝑍 ′ = 𝜌 (cos𝜓 − cos𝜓0) ,

where 𝜓0 ∈ (0, 𝜋) and65

𝜌 =
𝑎

sin𝜓0
, 𝜓 =

𝜓0𝑅

𝑎
.

The deformation of point 𝑃 is 𝛗(𝑃) = id(𝑃) + u(𝑃)1 and its representation in cylindrical coordinates is66

φ𝑅 (𝑃) = 𝜌 sin𝜓,

φΘ (𝑃) = Θ,

φ𝑍 (𝑃) = 𝜌 (cos𝜓 − cos𝜓0) .

In order to derive the deformation gradient F we must introduce the contraction of the membrane thickness,67

which is expressed by stretch _𝑍 . However, we are considering a single-layer graphene sheet whose thickness68

corresponds to the diameter of the carbon atom. From a physical point of view it is not possible that such thin69

membrane undergoes a transverse contraction, because it would produce a reduction of the dimension of the70

atom. In light of this, the only possible and reasonable assumption is that _𝑍 = 1 throughout the deformation71

process. Hence, thickness 𝑡 of the undeformed membrane remains unchanged (𝑡′ = 𝑡). The deformation gradient72

is thus derived as follows:73

[F] =



𝜕φ𝑅

𝜕𝑅

1
𝑅

𝜕φ𝑅

𝜕Θ
sin𝜓

φ𝑅

𝜕φΘ

𝜕𝑅

φ𝑅

𝑅

𝜕φΘ

𝜕Θ
0

𝜕φ𝑍

𝜕𝑅

1
𝑅

𝜕φ𝑍

𝜕Θ
cos𝜓


=


𝜌
𝜕𝜓

𝜕𝑅
cos𝜓 0 sin𝜓

0 𝜌 sin𝜓

𝑅
0

−𝜌 𝜕𝜓
𝜕𝑅

sin𝜓 0 cos𝜓


.

The polar decomposition of the deformation gradient, F = RU, allows us to write rotation tensor R and pure74

deformation tensor U as75

[R] =


cos𝜓 0 sin𝜓

0 1 0

− sin𝜓 0 cos𝜓


, [U] =


𝜌
𝜕𝜓

𝜕𝑅
0 0

0 𝜌 sin𝜓

𝑅
0

0 0 1


. (1)

Tensor U is diagonal and therefore the cylindrical coordinate system (𝑅,Θ, 𝑍) is principal. Hence, from (1) we76

derive the following expressions of the principal stretches:77

_𝑅 = 𝜌
𝜕𝜓

𝜕𝑅
=

𝜌𝜓0
𝑎

, _Θ =
𝜌 sin𝜓

𝑅
. (2)

1 id(𝑃) indicates the position vector of point 𝑃.
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Radial stretch _𝑅 is is not a function of position because we assumed that the membrane deforms into a78

spherical cap.79

The right Cauchy-Green deformation tensor, C = F𝑇F, is computed and expressed in cylindrical coordinates80

as81

[C] =


_2
𝑅

0 0

0 _2
Θ

0

0 0 1


,

with _𝑅 and _Θ given by (2). The Green-Lagrange strain tensor, E = (C − I) /2, has the following diagonal82

form:83

[E] =


𝐸𝑅 0 0

0 𝐸Θ 0

0 0 𝐸𝑍


=

1
2


_2
𝑅
− 1 0 0

0 _2
Θ
− 1 0

0 0 0


. (3)

The extensive number of investigations on the mechanical behavior of graphene demonstrated that this84

material is isotropic only for small deformations, while anisotropy arises when deformations become large85

[12, 26]. This is due to the particular symmetry and periodicity of the graphene honeycomb lattice. To this86

regard, Kumar and Parks [18] used the isotropicization theorem [34] to define an additional invariant of87

the Green-Lagrange strain tensor that reproduces the anisotropic nature of graphene. We introduce tensors88

M = n𝑋 ⊗ n𝑋 − n𝑌 ⊗ n𝑌 2 and N = n𝑋 ⊗ n𝑌 + n𝑌 ⊗ n𝑋, which define the material symmetry group of graphene.89

Thereby, the strain energy density of graphene is written as a function of the following strain invariants:90

𝐼1 = trE = 𝐸𝑅 + 𝐸Θ,

𝐼2 =
1
2

[
(trE)2 − tr

(
E2

)]
= 𝐸𝑅𝐸Θ,

𝐼3 = (M · E)3 − 3 (M · E) (N · E)2 = (𝐸𝑅 − 𝐸Θ)3 cos (6𝜙) ,

(4)

where 𝜙 ∈ [0, 𝜋/6] and it represents the angle that principal direction 1 forms with zigzag direction (Fig. 2).91

Symmetry and periodicity of graphene allows us to investigate its material behavior in the domain between92

zigzag and armchair directions, inside which 𝜙 = Θ. Note that, in (4), 𝐼1 and 𝐼2 are the isotropic principal93

invariants of the Green-Lagrange strain tensor [29]. Anisotropy is introduced with the third invariant 𝐼3, which94

plays a role only when deformations are relatively large and 𝐸𝑅 ≠ 𝐸Θ. Equation (4) is rewritten as a function95

of the principal stretches as follows:96

𝐼1 =
1
2

(
_2
𝑅 + _2

Θ − 2
)
,

𝐼2 =
1
4

(
_2
𝑅 − 1

) (
_2
Θ − 1

)
,

𝐼3 =
1
8

(
_2
𝑅 − _2

Θ

)3
cos (6𝜙) .

(5)

In general, circular membranes composed of anisotropic materials lose their rotational symmetry when97

subjected to uniform lateral pressure. Nevertheless, this effect is negligible for the particular case of graphene98

2 Unit vectors n𝑋 and n𝑌 identify respectively directions 𝑋 and 𝑌 of the Cartesian coordinate system. Symbols ⊗ and
(·) denote dyadic product and second-order tensor contraction, respectively.
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Fig. 2: Representation of the periodicity in the lattice structure of graphene, which repeats itself allowing to
study its mechanical response within the domain identified by 𝜙 ∈ [0, 𝜋/6].

and the reason is as follows. As already pointed out, graphene breaks for deformations that are not very large.99

The ultimate value of strain is reached before that invariant 𝐼3 assumes a sensible importance. Specifically,100

term
(
_2
𝑅
− _2

Θ

)3 is negligible with respect to the values assumed by the isotropic invariants 𝐼1 and 𝐼2. Given101

the above, the hypothesis of axisymmetric kinematics of deformation is still valid and gives a simplified but102

effective description of the actual behavior of graphene. In any case, this assumption will be validated by the103

FE simulation, which will be presented in Section 3. It is worth saying that without this hypothesis on the104

kinematics it would be impossible to derive an analytical solution for the problem addressed in the present105

work. This clarifies the necessity and effectiveness of such assumption.106

The most innovative and refined stored energy function for graphene was firstly introduced by Höller et107

al. [11] by fitting density functional theory (DFT) simulations. Subsequent works [28, 31] showed its validity108

and accuracy in the prediction of the graphene response subjected to large in-plane deformations. Therefore,109

we assume such hyperelastic material model for graphene. The stored energy function proposed in [11] is110

𝜔(𝐼1, 𝐼2, 𝐼3) =
1
𝑡

3∑︁
𝑘=1

𝑐𝑘 𝐼𝑘 +
1
𝑡

11∑︁
ℎ=1

𝑐ℎ+3𝐽ℎ, (6)

where 𝑐1 – 𝑐14 are polynomial fitting coefficients with dimension of energy per unit area, whose values are111

reported in Tab. 3 of work [28]. Invariants 𝐽ℎ are defined as polynomial combinations of 𝐼1, 𝐼2 and 𝐼3 and their112

expressions are given in [11]. Being graphene a one-atom-thick layer, it is often treated as a two-dimensional113

material. In the expression of the stored energy function (6), we divided by thickness 𝑡 so as to regard the114

graphene membrane as a three-dimensional solid and evaluate stress components with the usual dimension of115

force per unit area.116

The second Piola-Kirchhoff stress tensor is energetically conjugated to the Green-Lagrange strain tensor117

and thus it is computed as118

Σ =
𝜕𝜔

𝜕E (𝐼1, 𝐼2, 𝐼3) =
3∑︁

𝑘=1

𝜕𝜔

𝜕𝐼𝑘

𝜕𝐼𝑘

𝜕E , (7)
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where the derivatives of the principal invariants with respect to E are119

𝜕𝐼1
𝜕E = n𝑋 ⊗ n𝑋 + n𝑌 ⊗ n𝑌 ,

𝜕𝐼2
𝜕E = 𝐼1 (n𝑋 ⊗ n𝑋 + n𝑌 ⊗ n𝑌 ) − E, 𝜕𝐼3

𝜕E = S,

with S = 3
[
(M · E)2 − (N · E)2] M − 6 [(M · E) (N · E)] N, whose representation in the cylindrical coordinate120

system is121

[S] = 3 (𝐸𝑅 − 𝐸Θ)2


cos (6𝜙) − sin (6𝜙) 0

− sin (6𝜙) − cos (6𝜙) 0

0 0 0


.

We introduce invariants 𝛽1, 𝛽2 and 𝛽3, defined as122

𝛽1 = 𝑐1 + 𝑐2𝐼1 − 3𝑐5𝐼2 + 𝑐6
(
𝐼2
1 + 𝐼2

)
− 4𝑐7𝐼1𝐼2 + 2𝑐8𝐼1𝐼2 + 𝑐9

(
𝐼3
1 − 2𝐼1𝐼2

)
+ 5𝑐10

(
𝐼2
2 − 𝐼2

1 𝐼2
)
+ 𝑐11

(
𝐼4
1 − 3𝐼2

2 − 3𝐼2
1 𝐼2

)
+ 𝑐12

(
𝐼2
2 + 2𝐼2

1 𝐼2
)
+ 𝑐13𝐼3,

𝛽2 = − 𝑐2 + 2𝑐4 + 3𝑐5𝐼1 − 𝑐6𝐼1 + 4𝑐7
(
𝐼2
1 − 𝐼2

)
− 2𝑐8𝐼2 + 𝑐9

(
4𝐼2 − 𝐼2

1

)
+ 5𝑐10

(
𝐼3
1 − 2𝐼1𝐼2

)
+ 𝑐11

(
6𝐼1𝐼2 − 𝐼3

1

)
− 2𝑐12𝐼1𝐼2 + 2𝑐14𝐼3,

𝛽3 = 𝑐3 + 𝑐13𝐼1 + 𝑐14
(
𝐼2
1 − 2𝐼2

)
.

(8)

From (7) we derive the following expressions for the components of the symmetric second Piola-Kirchhoff123

stress tensor:124

Σ𝑅𝑅 =
𝛽1
𝑡

+ 𝛽2
2𝑡

(
_2
𝑅 − 1

)
+ 3𝛽3

4𝑡

(
_2
𝑅 − _2

Θ

)2
cos(6𝜙),

ΣΘΘ =
𝛽1
𝑡

+ 𝛽2
2𝑡

(
_2
Θ − 1

)
− 3𝛽3

4𝑡

(
_2
𝑅 − _2

Θ

)2
cos(6𝜙),

Σ𝑅Θ = −3𝛽3
4𝑡

(
_2
𝑅 − _2

Θ

)2
sin(6𝜙),

Σ𝑅𝑍 = ΣΘ𝑍 = Σ𝑍𝑍 = 0.

(9)

It is assumed that the graphene undeformed configuration is stress free and therefore 𝑐1 = 0.125

Having at hand the second Piola-Kirchhoff stress tensor, the other stress measures can be derived. The126

first Piola-Kirchhoff stress tensor, T𝑅 = FΣ, reads127

[T𝑅] =


_𝑅Σ𝑅𝑅 cos𝜓 _𝑅Σ𝑅Θ cos𝜓 0

_ΘΣ𝑅Θ _ΘΣΘΘ 0

−_𝑅Σ𝑅𝑅 sin𝜓 −_𝑅Σ𝑅Θ sin𝜓 0


. (10)

We immediately observe that, as required by the plane stress state, boundary conditions ±T𝑅n𝑍 = 0 are128

satisfied. This guarantees that the two external faces of the membrane are traction-free and all the stress129

components act in the plane of the deformed membrane. T𝑅 is not diagonal in reference system (𝑅,Θ, 𝑍),130

which is principal regarding the deformation. Hence, the principal strain directions do not coincide with the131

principal stress directions. This is not a surprise given that graphene is described by an anisotropic material132

model. In order to write the equilibrium in deformed configuration, we now derive the Cauchy stress tensor133
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T = T𝑅F𝑇/detF. By definition, tensor T is symmetric and its components are134

𝑇𝑅𝑅 =
_𝑅

_Θ
Σ𝑅𝑅 cos2 𝜓, 𝑇ΘΘ =

_Θ

_𝑅

ΣΘΘ, 𝑇𝑍𝑍 =
_𝑅

_Θ
Σ𝑅𝑅 sin2 𝜓,

𝑇𝑅Θ = Σ𝑅Θ cos𝜓, 𝑇𝑅𝑍 = −_𝑅

_Θ
Σ𝑅𝑅 cos𝜓 sin𝜓, 𝑇Θ𝑍 = −Σ𝑅Θ sin𝜓.

(11)

At this point, the equilibrium allows us to derive a relationship between applied pressure and deflection135

of the membrane. We adopted a semi-inverse approach, with which we set an appropriate kinematics of136

deformation and accordingly we obtained the stress tensors. The kinematics of the model is not exact and thus137

the local equilibrium equations can not be solved in every internal point of the membrane. The exact solution138

to the local equilibrium can not be derived in closed-form and it would include a more general kinematics.139

Nevertheless, we derive an analytical solution by imposing the equilibrium between applied pressure and140

internal stresses in the neighborhood of the central point of the membrane, which is the most representative141

point in this problem. With this aim, we firstly compute the Cauchy stress tensor for the limit case of 𝑅 → 0.142

In this circumstance, radial and circumferential stretches correspond (_𝑅 = _Θ |𝑅→0 = _). Third invariant 𝐼3143

goes to zero and the only non-zero components of the Cauchy stress tensor are144

𝑇𝑅𝑅 |𝑅→0 = 𝑇ΘΘ |𝑅→0 = 𝑇0 =
1
𝑡
𝛽1 |𝑅→0 + 1

2𝑡

(
𝜓2

0 csc𝜓2
0 − 1

)
𝛽2 |𝑅→0 . (12)

In the neighborhood of the central point, equilibrium along 𝑍 direction reads145

𝑝

(
𝜋𝜌2𝑑𝜓2

)
= 𝑇0 (2𝜋𝜌𝑑𝜓𝑡) 𝑑𝜓,

from which we derive the following relationship between lateral pressure and kinematic parameter 𝜌:146

𝑝 =
2𝑇0𝑡

𝜌
. (13)

Using (12), (8) and (5) and recalling that 𝜌 = 𝑎/sin𝜓0, equation (13) takes the form147

𝑝 =
1
8𝑎 sin𝜓0

4∑︁
𝑗=1

^ 𝑗

(
𝜓2

0 csc2 𝜓0 − 1
) 𝑗

, (14)

where148

^1 = 8 (𝑐2 + 2𝑐4) , ^2 = 12 (𝑐5 + 𝑐6) , ^3 = 4 (2𝑐7 + 𝑐8 + 2𝑐9) , ^4 = 5 (𝑐10 + 𝑐11 + 𝑐12) .

Angle 𝜓0 is related to displacement 𝛿 of the central node through 𝜓0 = 2 tan−1 𝛿, with 𝛿 = 𝛿/𝑎 denoting149

the normalized deflection. By substitution into (14), the pressure-deflection relation for circular graphene150

membranes is finally obtained.151
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2.1 Linear elastic constants of graphene152

Graphene is isotropic when deformations are small. Hence, in linear elasticity its material behavior is entirely153

described by two constants: Young’s modulus 𝐸 and Poisson’s ratio a. Expressions for 𝐸 and a can be derived154

from the finite theory by introducing the hypothesis that both displacements and displacement gradients are155

small [4,7]. To this aim, strain and stress measures are developed in Taylor series as functions of 𝜓0 and they156

are truncated at the second order. The Green-Lagrange strain tensor, expressed by (3), assumes the following157

linearized expression:158

[E] �



𝜓2
0

6 0 0

0
(𝑎 − 𝑅) (𝑎 + 𝑅)𝜓2

0
6𝑎2 0

0 0 0


. (15)

Tensor E in linear elasticity is simply called strain tensor.159

The linearization of the second Piola-Kirchhoff stress tensor Σ, given by (9), provides160

[Σ] �



𝜓2
0

6𝑡

[(
1 − 𝑅2

𝑎2

)
𝑐2 + 2𝑐4

]
0 0

0
𝜓2

0
6𝑡

[
𝑐2 + 2

(
1 − 𝑅2

𝑎2

)
𝑐4

]
0

0 0 0


. (16)

The development in Taylor series of both TR and T (equations (11) and (10) respectively), with truncation at161

the second order in 𝜓0, gives the same result as (16). Therefore, as it should be, in the linearized theory all162

the stress measures coincide and we may refer only to a single stress tensor, expressed by (16). Furthermore,163

we notice that the representation of the stress tensor in the principal strain system is diagonal. This indicates164

that in the linearized theory principal strain and stress directions coincide. This because graphene is isotropic165

for small deformations.166

The Navier’s constitutive relationships for plane stress are167

𝜎𝑅 =
𝐸

1 − a2 (𝜖𝑅 + a𝜖Θ) ,

𝜎Θ =
𝐸

1 − a2 (𝜖Θ + a𝜖𝑅) .
(17)

Stress components 𝜎𝑅 and 𝜎Θ are given respectively by the radial and circumferential components of the168

linearized stress tensor (16). Same goes for strain components 𝜖𝑅 and 𝜖Θ, which are expressed by the strain169

tensor (15). Equation (17) transforms into the following linear system of two equations in the two unknown170

variables 𝐸 and a:171

8𝑎2𝑐4 + 4𝑐2 (𝑎 − 𝑅) (𝑎 + 𝑅)
𝑡

+
𝐸

[
4𝑎2 (a + 1) − 4a𝑅2]

a2 − 1 = 0,

4𝑎2𝑐2 + 8𝑐4 (𝑎 − 𝑅) (𝑎 + 𝑅)
𝑡

+
𝐸

[
4𝑎2 (a + 1) − 4𝑅2]

a2 − 1 = 0,
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whose solution gives the expressions of the elastic constants of graphene in linear elasticity172

𝐸 =
1
𝑡

(
2𝑐4 −

𝑐2
2

2𝑐4

)
, a =

𝑐2
2𝑐4

. (18)

This result corresponds to that derived by Höller et al. [11]. Under the hypothesis of homogeneous deformations,173

the authors obtained the expression of the tangent elasticity tensor. The linearization of such tensor with E → 0174

provided the Young’s modulus and Poisson’s ratio given in (18).175

3 Finite element simulation176

The FE model was realized by using software COMSOL Multiphysics version 6.0 [25]. The 3D membrane177

interface of the structural mechanics module was selected. This interface allows to model plane stress elements178

without bending stiffness that can deform both in the in-plane and out-of-plane directions.179

The geometry of the membrane was defined through a work plane, in which a circle with radius 𝑎 = 2.375180

`m was built. This value of 𝑎 is the one considered in the experimental and numerical investigations of181

works [13,16,40]. We will present comparisons of the results in the next section. The thickness of the membrane182

was set to 𝑡 = 0.335 nm. A fixed constraint was assigned along the perimeter. This reproduces the condition for183

which, along the constrained geometry, displacements are zero in all directions. A pressure load was applied184

to the free face of the membrane. The pressure load is a follower load, therefore its direction changes with185

deformation in the geometrically nonlinear analysis.186

In the COMSOL membrane analysis it is necessary to apply a tensile prestress. This in order to avoid187

the singularity due to the fact that the undeformed membrane has no transverse stiffness. In our model, the188

prestress was introduced as an external in-plane force of 0.001 N/m, which is negligible compared to the stress189

values acting in the graphene membrane during the simulation. The sole scope of the prestress was to avoid190

the singularity and allow the solver to find a solution.191

The material behavior was defined through the user-defined compressible hyperelastic material. In detail,192

the isotropic invariants were introduced as local variables according to (4). Anisotropy was added by sub-193

dividing the domain into subdomains. To do this, the membrane was cut by planes parallel to direction 𝑧194

and containing central point 𝑂. Starting from direction 𝑥, a plane was defined for every angle increment of 5195

degrees (see Fig. 3a). The entire domain was thus partitioned into 72 subdomains. In each of them, invariant 𝐼3196

was defined as a local variable with the corresponding value of cos (6𝜙). In other words, the variation of term197

cos (6𝜙) in the expression of 𝐼3 was introduced in a discrete way by subdividing the membrane domain into198

several subdomains. It goes without saying that this is a simplification, but it gives a reasonable approximation199

of the continuous variation of 𝐼3 as a function of 𝜙. One may further subdivide the domain in order to reach200

more accuracy, but as we will see in the following the contribution of graphene anisotropy is negligible in the201

problem analyzed. The subdivision into 72 subdomains is already enough.202
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(a) (b)

Fig. 3: FE simulation: (a) subdivided domain to define the anisotropic material properties of graphene and
(b) mesh used for the analysis.

Fig. 4: Deformed configuration of the circular graphene membrane during the FE simulation.

The mesh was composed of triangular elements with minimum and maximum size of, respectively, 0.019203

and 0.26 `m (Fig. 3b). A stationary simulation was carried out and the applied pressure was increased from 5204

Pa to 17 MPa. The stationary solver MUMPS was employed. The simulation stopped when a stationary value205

for the pressure was reached and thus, for further increasing values, convergence was not found anymore. Fig.206

4 shows the deformed configuration of the circular graphene membrane for a certain value of applied pressure.207

208

4 Results and comparison209

In this section we put in comparison the results of the analytical model and the FE simulation. Note that in210

the FE software it is not possible to develop a 3D membrane model with no dependence on the transverse211

deformation. Therefore, the FE simulation takes into account the contraction of the membrane, which means212

that _𝑍 may assume values other than 1. This is in contrast with the assumption of the analytical model,213

according to which the graphene membrane can not undergo transverse contraction. Hence, to provide a214

consistent comparison, we derive the analytical solution by introducing _𝑍 in the equilibrium problem. The215

derivation of such solution is given in Appendix A. It is stressed that this solution has the sole scope of216

comparison with the FE simulation and thus validation of the model. The reference analytical solution remains217
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(ultimate value)

Fig. 5: Profiles of deformation from the FE simulation represented in the 𝑅-𝑍 plane and given in terms of
dimensionless coordinates 𝑅/𝑎 and 𝑍/𝑎 (𝑎 = 2.375 `m). The deformed shapes along diameters with different
angle 𝜙 coincide and therefore the kinematics of deformation is axisymmetric.

the one derived in Section 2, which is more consistent with reality. After validating the model, a comparison218

with other results from experimental data and numerical simulations is presented.219

4.1 Validation of the model220

The analytical model is based on the assumption that the kinematics of deformation maintains its rotational221

symmetry throughout the deformation process caused by the application of lateral pressure. This assumption222

is valid for isotropic materials, but in general not for anisotropic materials. However, due to the particular223

form of anisotropic invariant 𝐼3, anisotropy of graphene plays a role only when deformations are large enough224

and the principal stretches do not coincide. For instance, anisotropy of graphene does not activate when it is225

subjected to equibiaxial loads.226

In our problem, the difference between stretches _𝑅 and _Θ is not large enough to activate anisotropy227

of graphene. This is demonstrated by Fig. 5, which shows the profiles of deformation along diameters of the228

membrane identified by different angles 𝜙. We observe that variations of 𝜙 do not cause appreciable variations229

in the deformed shape, represented in the 𝑅-𝑍 plane. This means that the three-dimensional deformed con-230

figuration is axisymmetric with respect to 𝑍. Further confirmation of this is given by Fig. 6a, which shows231

normalized displacement 𝑢𝑍/𝑎 in the 𝑋-𝑌 plane for the ultimate value of pressure computed during the FE232

simulation. It is clearly visible that 𝑢𝑍 is axisymmetric. In addition, Fig. 6b shows the trend of invariant 𝐼3233

in the membrane domain. Its values are very close to zero in the entire domain, except from the areas close234

to the perimeter. This because is such areas, due to the influence of the constrained boundary, stretches _𝑅235

and _Θ differ more than in the inner region. Nevertheless, the values assumed by 𝐼3 are largely negligible with236

respect to the other deformation quantities and therefore anisotropy of graphene does not play a noticeable237

role. The above discussion demonstrates that the assumption of rotational symmetry in the analytical model238

is accurate and in accordance with the FE simulation.239

We now focus on the comparison of the pressure-deflection curves, which is reported in Fig. 7. Both240

analytical models with and without transverse contraction are represented. The accuracy of the analytical241
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(a) (b)

Fig. 6: (a) Normalized deflection 𝑢𝑍/𝑎 and (b) invariant 𝐼3 at the ultimate value of pressure from the FE
simulation. The values of 𝐼3 are negligible and thus anisotropy of graphene does not activate.

Fig. 7: Pressure-deflection curves with 𝛿 = 𝛿/𝑎 of a circular graphene sheet with radius 2.375 `m. Black and
red curves represent respectively the analytical models with and without transverse contraction, while the
blue curve is the FE simulation.

model is demonstrated by the good agreement between FE simulation and analytical model with transverse242

contraction, expressed by Eq. (14). The two pressure-deflection curves match until 𝛿 assumes values greater243

than 0.4. Afterwards, the curve from the FE model is less stiff and the simulation ended as soon as the244

stationary value of pressure was reached. This discrepancy is explained by observing the comparison of the245

deformation profiles given in Fig. 8. The analytical and FE deformed configurations almost coincide for 𝛿 ≤ 0.4,246

but then the membrane in the FE model experienced a higher deformation concentrated in the area close to247

the center. This produced a reduction of the stiffness and a rapid attainment of the ultimate value of pressure248

𝑝𝑢 = 13.13 MPa. The ultimate value of stretch at the pole in the FE simulation is _𝑢 = 1.17, which corresponds249

to the ultimate normalized displacement 𝛿𝑢 = 0.42.250

In light of the above considerations, the analytical model proposed in this work can be considered very251

accurate. The hypothesis on the kinematics of deformation generates some discrepancies in the pressure-252

deflection curve only when the system is close to the ultimate configuration. The value of pressure at 𝛿𝑢253

predicted by the model is 13.67 MPa and the relative error with respect to the FE prediction is 4%, which is254
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p=0.3 MPa

p=2 MPa

p=6 MPa

p=10 MPa

p=13.13 MPa

Z/a

Fig. 8: Profiles of deformation from analytical model (with transverse contraction) and FE simulation repre-
sented in the 𝑅-𝑍 plane and given in terms of dimensionless coordinates 𝑅/𝑎 and 𝑍/𝑎.

largely acceptable. The analytical model should be applied by assuming as ultimate displacement 𝛿𝑢 = 0.42,255

which comes from the FE prediction.256

We recall that the model with transverse contraction described in Appendix A was introduced with the257

sole purpose of comparison with the FE simulation and consequent validation. As already pointed out, the258

model that is most consistent with the real response of graphene is the one without transverse contraction,259

expressed by relation (14). The pressure-deflection curve given by such model is depicted in Fig. 7. As expected,260

the fact that graphene can not deform along its thickness makes its response sensibly stiffer, especially when261

deformations become moderately large. Indeed, the ultimate pressure value is 15.16 MPa, with an increment262

of 15% with respect to the FE prediction, which includes transverse contraction of the membrane. In light of263

this, FE simulations of graphene subjected to large deformations should be carried out carefully, reminding264

that the response might be sensibly underestimated.265

In the following we present a comparison with other results from the literature. In light of the above266

discussion, from now on the reference analytical model is the one without transverse contraction.267

4.2 Comparison with other results268

The results are now put in comparison with other models, numerical simulations and experiments found in269

the literature. The well-known Fitcher’s model [6] is considered and, for the sake of brevity, it is outlined270

in Appendix B. The experimental data that we consider are reported in the work by Koenig et al. [16]. In271

that work, the authors produced monolayer graphene sheets through mechanical exfoliation over predefined272

microcavities etched in a silica substrate. The microcavities had diameter of around 4.75 `m. A bulge test273

was performed using a pressure chamber and the deformed shape of the graphene membrane was measured274

with an atomic force microscope. For the comparison we also consider the FE simulation carried out by Jiang275

et al. [13]. The FE model was built in software COMSOL Multiphysics using a plate element composed of276

linearly elastic and isotropic material. The circular plate had diameter of 4.75 `m and it was clamped along277

the boundary. Geometric nonlinearity was included in the solution.278
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■●

0.1 0.2 0.3 0.4 0.5

Fig. 9: Comparison of the pressure-deflection curves obtained with the proposed model, Fitcher’s model [6],
experiment from Koenig et al. [16] and FE simulation carried out by Jiang et al. [13] for a graphene membrane
with diameter 4.75 `m.

Figure 9 shows the comparison of the pressure-deflection curves. The black curve (present model) is ex-279

pressed by equation (14). The Fitcher’s solution is in good agreement with our model only for small values of280

𝛿. This because Fitcher’s model is based on the assumption of linear elastic material. Such assumption is not281

suitable for graphene, which exhibits material nonlinearity even for relatively small values of strain [10,23]. In282

particular, the uniaxial stress-strain response of graphene shows a progressive reduction of its stiffness until283

the attainment of the ultimate stress. This is not taken into account in Fitcher’s model and the result is that,284

as the strain increases, the gap between its prediction and our model increases. Fitcher’s model is always stiffer285

because it does not include the stiffness reduction of graphene due to nonlinearity.286

From the right side of Fig. 9 we observe a good agreement of our model with the experimental data287

by Koenig et al. [16]. However, at some point of the experiment a delamination of graphene from the silica288

substrate took place. This explains why the last two experimental data (red dots) deviate from the analytical289

prediction. Very good agreement is found also with the FE simulation of Jiang et al. [13]. Note that their290

simulation was based on the assumption of linear elastic material. In fact, when 𝛿 exceeds 0.12 their prediction291

becomes slightly stiffer than the response of our model.292

Further comparisons are presented in Fig. 10. In particular, in Fig. 10a we consider the FE simulation293

carried out by Wang et al. [40] using software ANSYS. The authors used 2-node axisymmetric shell elements294

composed of a linear elastic material with 𝐸 = 1 TPa and a = 0.17. As expected, for the same reasons295

explained previously, the FE simulation matches well with our model only for relatively small deflections. It296

is demonstrated once again that the material nonlinearity of graphene plays an important role and must be297

considered.298

Fig. 10b shows a comparison with the molecular dynamics (MD) simulation carried out by Wang et299

al. [42], which is displayed in green color. The graphene membrane had diameter 10 nm. The choice of such300

a small diameter is due to the fact that MD simulations require a large computational effort and therefore301

they can be applied only to systems with a relatively small number of atoms. Although the computational302

strategy is different from the continuum modeling, the simulation is in good agreement with the present303
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(a) (b)

Fig. 10: Comparison with (a) FE simulation of a graphene sheet with diameter 50 `m, reported in Wang et
al. [40], and (b) nonlinear membrane model (NMM) and molecular dynamics (MD) simulation of a graphene
sheet with diameter 10 nm, reported in Wang et al. [42].

model. The gap is mainly due to the parametrization of the interatomic potential describing the carbon-304

carbon interactions in graphene. Wang et al. [42] adopted the second-generation reactive empirical bond-order305

(REBO-2) potential [1], but there are several potentials that can be used and may lead to sensibly different306

results [8, 9, 26]. The coefficients of the stored energy function (6) adopted in this work were estimated by307

fitting molecular mechanics simulations based on the modified Morse potential [28], which is considered the308

most reliable for describing the carbon-carbon interactions in graphene.309

A nonlinear membrane model (NMM) was also proposed by Wang et al. [42] (equations (3.4) and (3.5)310

in [42]). The corresponding response of the pressurized graphene membrane is depicted in Fig. 10b. We observe311

again a good match with our analytical prediction for relatively small deflections. The model proposed in [42]312

does not take into account material nonlinearity and thus it deviates from our model as the deflection increases.313

5 Conclusions314

In the present work we analyzed the problem of circular graphene membranes subjected to uniform lateral315

pressure. The analytical formulation was developed in finite elasticity, considering both material and geometric316

nonlinearities. The kinematics of deformation was described by assuming that the membrane preserves the317

axisymmetry and deforms into a spherical cap. Such assumptions are accurate up to moderately large strains318

and therefore are suitable to describe the behavior of graphene, which reaches failure for uniaxial elongations319

of around 15-20%.320

The material behavior was described by a hyperelastic stored energy function that takes into account both321

nonlinearity and anisotropy of graphene. The isotropicization theorem allowed us to derive the Piola-Kirchhoff322

and Cauchy stress tensors. The equilibrium for 𝑅 → 0 was written and an expression of the applied pressure323

as a function of the deflection of the membrane was derived.324

A FE model was built in software COMSOL Multiphysics using the 3D membrane interface. Both material325

nonlinearity and anisotropy of graphene were included. It was shown that for circular pressurized graphene326
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membranes the effect of material anisotropy is negligible and thus the deformed configuration remains ax-327

isymmetric. Furthermore, it was demonstrated that a spherical cap provides an accurate description of the328

kinematics of deformation. The hypotheses of the analytical formulation proposed in this work were thus329

validated. The results of the simulation were in good agreement with the prediction of the analytical model.330

We presented a comparison with other models, numerical simulations and experiments found in the lit-331

erature. Good agreement in the pressure-deflection curves was found only for relatively small deflections.332

This because, differently from our entirely nonlinear approach, all the continuum models in the literature are333

based on the assumption of linear elastic material. This emphasizes the novelty of the present work and the334

advantages of the proposed model.335

The model is an effective and useful tool for an accurate prediction of the response of pressurized graphene336

membranes. For the first time, a pressure-deflection relation in nonlinear elasticity was proposed. This is337

a great advantage in terms of applicability because it does not require any computational effort, which is338

the main concern in atomistic and FE simulations. Moreover, it is not easy to define the nonlinear material339

behavior of graphene in FE models. In addition, FE models in finite elasticity include transverse contraction,340

which is not present in the real behavior of a single layer graphene sheet. It was shown that this leads to an341

underestimation of the response of the membrane, especially when deformations become relatively large.342
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A Analytical solution with transverse contraction350

After deformation, thickness 𝑡 transforms into 𝑡 ′ = _𝑍 𝑡. This transverse contraction is introduced by defining the deformation351

gradient as follows:352

[F] =


𝜌
𝜕𝜓

𝜕𝑅
cos 𝜓 0 _𝑍 sin 𝜓

0 𝜌 sin 𝜓

𝑅
0

−𝜌 𝜕𝜓
𝜕𝑅

sin 𝜓 0 _𝑍 cos 𝜓


.
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Rotation tensor R remains unchanged and pure deformation tensor U becomes353

[U] =


𝜌
𝜕𝜓

𝜕𝑅
0 0

0 𝜌 sin 𝜓

𝑅
0

0 0 _𝑍


.

The right Cauchy-Green deformation tensor and the Green-Lagrange strain tensor expressed in cylindrical coordinates354

assume the form355

[C] =


_2
𝑅

0 0

0 _2
Θ

0

0 0 _2
𝑍


, [E] = 1

2


_2
𝑅
− 1 0 0

0 _2
Θ
− 1 0

0 0 _2
𝑍
− 1


,

where _𝑅 and _Θ are given by (2).356

Strain invariants 𝐼1 and 𝐼2 become357

𝐼1 =
1
2

(
_2
𝑅 + _2

Θ
+ _2

𝑍 − 3
)
,

𝐼2 =
1
4

(
_2
𝑅 − 1

) (
_2
Θ
− 1

)
+ 1

4

(
_2
𝑅 − 1

) (
_2
𝑍 − 1

)
+ 1

4

(
_2
Θ
− 1

) (
_2
𝑍 − 1

)
,

(19)

while invariant 𝐼3 has the same expression as in (5). The second Piola-Kirchhoff stress tensor is computed using (7),358

obtaining359

Σ𝑅𝑅 =
𝛽1
𝑡

+ 𝛽2
2𝑡

(
_2
𝑅 − 1

)
+ 3𝛽3

4𝑡

(
_2
𝑅 − _2

Θ

)2
cos(6𝜙) ,

ΣΘΘ =
𝛽1
𝑡

+ 𝛽2
2𝑡

(
_2
Θ
− 1

)
− 3𝛽3

4𝑡

(
_2
𝑅 − _2

Θ

)2
cos(6𝜙) ,

Σ𝑍𝑍 =
𝛽1
𝑡

+ 𝛽2
2𝑡

(
_2
𝑍 − 1

)
,

Σ𝑅Θ = − 3𝛽3
4𝑡

(
_2
𝑅 − _2

Θ

)2
sin(6𝜙) , Σ𝑅𝑍 = ΣΘ𝑍 = 0,

(20)

where 𝛽1, 𝛽2 and 𝛽3 are given in (8). The first Piola-Kirchhoff stress tensor is thus derived360

[T𝑅 ] =


_𝑅Σ𝑅𝑅 cos 𝜓 _𝑅Σ𝑅Θ cos 𝜓 _𝑍Σ𝑍𝑍 sin 𝜓

_ΘΣ𝑅Θ _ΘΣΘΘ 0

−_𝑅Σ𝑅𝑅 sin 𝜓 −_𝑅Σ𝑅Θ sin 𝜓 _𝑍Σ𝑍𝑍 cos 𝜓


.

Boundary conditions ±T𝑅n𝑍 = 0 require that361

_𝑍Σ𝑍𝑍 sin 𝜓 = 0 and _𝑍Σ𝑍𝑍 cos 𝜓 = 0, ∀𝜓 ∈ [0, 𝜋/6] , (21)

which are satisfied only if Σ𝑍𝑍 = 0. From this condition and recalling (20), we derive the following implicit expression of362

stretch _𝑍 :363

_𝑍 =

√︄
1 − 2 𝛽1

𝛽2
. (22)

Finally, the components of the Cauchy stress tensor read364

𝑇𝑅𝑅 =
_𝑅

_Θ_𝑍
Σ𝑅𝑅 cos2 𝜓, 𝑇ΘΘ =

_Θ

_𝑅_𝑍
ΣΘΘ, 𝑇𝑍𝑍 =

_𝑅

_Θ_𝑍
Σ𝑅𝑅 sin2 𝜓,

𝑇𝑅Θ =
1
_𝑍

Σ𝑅Θ cos 𝜓, 𝑇𝑅𝑍 = − _𝑅

_Θ_𝑍
Σ𝑅𝑅 cos 𝜓 sin 𝜓, 𝑇Θ𝑍 = − 1

_𝑍
Σ𝑅Θ sin 𝜓,

with _𝑍 expressed by (22).365

As we did in Section 2, we now write the equilibrium in the neighborhood of the central point of the membrane. With366

this aim, we firstly compute the Cauchy stress tensor for the limit case of 𝑅 → 0. Radial and circumferential stretches367

correspond (_𝑅 = _Θ |𝑅→0 = _) and third invariant 𝐼3 goes to zero. The only non-zero components of the Cauchy stress368
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tensor are369

𝑇𝑅𝑅 |𝑅→0 = 𝑇ΘΘ |𝑅→0 = 𝑇0 =
𝜓2

0 csc 𝜓2
0 − _2

𝑍

��
𝑅→0

2𝑡 _𝑍 |𝑅→0
𝛽2 |𝑅→0 . (23)

Hereinafter, for the sake of simplicity, we indicate _𝑍 |𝑅→0 simply with _𝑍 . Equilibrium equation (13) becomes370

𝑝 =
2𝑇0_𝑍 𝑡

𝜌
,

from which, using (23), (8) and (19), we derive the following expression of the applied pressure:371

𝑝 =
sin 𝜓0

8𝑎

(
𝜓2

0 csc2 𝜓0 − _2
𝑍

) 3∑︁
𝑗=0

Z 𝑗𝜓
2 𝑗

0 csc2 𝑗 𝜓0, (24)

where372

Z0 = _2
𝑍

[
_2
𝑍

(
5𝑐10_

2
𝑍 − 𝑐11_

2
𝑍 − 25𝑐10 − 3𝑐11 + 4𝑐12

)
+ 8𝑐7

(
_2
𝑍 − 4

)
− 2𝑐9

(
_2
𝑍 + 2

)
− 4𝑐6 + 8𝑐8 + 9 (5𝑐10 + 3𝑐11 − 2𝑐12 )

]
+ 12𝑐5

(
_2
𝑍 − 3

)
− 8𝑐2 + 16𝑐4 + 3 (4𝑐6 + 16𝑐7 − 4𝑐8 + 2𝑐9 − 15𝑐10 − 9𝑐11 + 6𝑐12 ) ,

Z1 = 2_2
𝑍

[
3𝑐11

(
_2
𝑍 − 8

)
− 2𝑐12

(
_2
𝑍 − 7

)
+ 5𝑐10

(
_2
𝑍 − 4

)
− 4𝑐8 + 4𝑐9

]
+ 16𝑐7

(
_2
𝑍 − 4

)
+ 24𝑐5 − 8𝑐6 + 16𝑐8 − 8𝑐9 + 90𝑐10 + 54𝑐11 − 36𝑐12,

Z2 = 2
[
𝑐12

(
11 − 5_2

𝑍

)
+ 5𝑐10

(
_2
𝑍 − 7

)
+ 3𝑐11

(
3_2

𝑍 − 5
)
+ 12𝑐7 − 2𝑐8

]
,

Z3 = 4 (5𝑐10 + 𝑐11 − 𝑐12 ) .

An explicit expression of stretch _𝑍 is derived by satisfying condition (21) for the limit case of 𝑅 → 0, for which _𝑅 =373

_Θ |𝑅→0 = _. In this case, substitution of (8) and (19) into (22) gives374

√
[ −

√︄
Δ𝑛

Δ𝑑

= 0, (25)

with [ = _2
𝑍

and375

Δ𝑛 = − 8𝑐2
(
[ + 2_2 − 2

)
+ 16𝑐4 + 12𝑐5

[
−[ + 2 ([ − 1) _2 + _4]

− 4𝑐6
[
[2 − 7[ + 2 (3[ − 7) _2 + 5_4 + 9

]
+ 8𝑐7

[
−[2 + 5[ + (5[ − 8) _4 + 2 ([ − 5) ([ − 1) _2 + 2_6 − 3

]
− 4𝑐8 (_ − 1) (_ + 1)

(
2[ + _2 − 3

) (
[ + 2_2 − 2

)
− 2𝑐9

[
[3 − 4[2 + 11[ + 2 ([ − 7) _4 + 2

(
[2 − 6[ + 11

)
_2 + 4_6 − 12

]
+ 5𝑐10

{
−[3 + 6[2 − 15[ + 8 ([ − 2) _6 + [[ (5[ − 32) + 33] _4 + 2 ([ − 1) [ ([ − 6) [ + 15] _2 + 3_8 + 9

}
− 𝑐11

{
[

[
([ − 5) [2 + 9

]
+ 8 (1 − 2[) _6 − 3 [5 ([ − 4) [ + 9] _4 + 2

[
[

(
[2 + 9[ − 27

)
+ 9

]
_2 + _8

}
− 𝑐12 (_ − 1) (_ + 1)

(
2[ + _2 − 3

) [
2 ([ − 6) [ + 10[_2 + 9_4 − 24_2 + 15

]
,

Δ𝑑 = − 8𝑐2 + 16𝑐4 + 12𝑐5
(
[ + 2_2 − 3

)
− 4𝑐6

(
[ + 2_2 − 3

)
+ 8𝑐7

[
[2 + 2([ − 4)_2 − 4[ + 3_4 + 6

]
− 4𝑐8

(
_2 − 1

) (
2[ + _2 − 3

)
− 2𝑐9 ([ − 1)

(
[ − 4_2 + 3

)
+ 5𝑐10

(
[ + 2_2 − 3

) [
([ − 2) [ + 2_4 − 4_2 + 3

]
− 𝑐11

(
[ + 2_2 − 3

) [
[2 + 4(3 − 2[)_2 + 6[ − 2_4 − 9

]
− 2𝑐12 (_ − 1) (_ + 1)

(
2[ + _2 − 3

) (
[ + 2_2 − 3

)
.

Equation (25) admits four solutions in [. Two solutions are not real and another one does not respect condition [ = 1376

when _ = 1. The remaining solution is the correct one. We do not report this solution due to its very long mathematical377

expression. Having obtained an explicit expression for [, we compute _𝑍 =
√
[ and by substitution into (24) we finally378

derive the pressure-deflection equation. We recall that relation 𝜓0 = 2 tan−1 𝛿 allows us to obtain a direct expression of379

pressure as a function of deflection.380
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B Fitcher’s model381

Fitcher’s model is based on the assumption that the material is linearly elastic. In this case, the equilibrium equations are382

𝑁2
(
𝑅2 𝑑2𝑁

𝑑𝑅2 + 3𝑅 𝑑𝑁

𝑑𝑅

)
− 1

2𝑅3 𝑑𝑁

𝑑𝑅
+ 1

2 (3 + a) 𝑅2𝑁 + 1
4
𝑅2𝐸𝐻

𝑝𝐿
= 0,

𝑁
𝑑𝛿

𝑑𝑅
+ 1

2𝑅 = 0,
(26)

where 𝑅 = 𝑅/𝑎, 𝐸 is the Young’s modulus, a is the Poisson’s ratio and 𝑁 = 𝑁𝑅/(𝑝𝑎), with 𝑁𝑅 indicating the radial383

stress resultant. Young’s modulus and Poisson’s ratio of graphene are computed using (18), obtaining 𝐸 = 1042.9 GPa and384

a = 0.146. The solution for both stress resultant and deflection is found in the form of a power series385

𝑁
(
𝑅
)
=

∞∑︁
0

𝑛2𝑚𝑅2𝑚,

𝛿
(
𝑅
)
=

∞∑︁
0

𝑤2𝑛
(
1 − 𝑅2𝑛+2

)
.

(27)

Substituting (27)1 into (26)1 and equating coefficients of like powers of 𝑅 we obtain a system of equations that allows to386

derive the expressions of coefficients 𝑛2𝑚 as functions of 𝑛0. Likewise, substituting (27)2 into (26)2 and equating coefficients387

of like powers of 𝑅 we derive the expressions of coefficients 𝑤2𝑛 as functions of 𝑛0. Finally, 𝑛0 is evaluated by imposing the388

following boundary condition on radial displacement:389

{
𝑅

[
𝑑

𝑑𝑅

(
𝑅𝑁

)
− a𝑁 − 𝑅

𝑑𝛿

𝑑𝑅

]}����
𝑅=1

= 0.

This procedure was implemented in software Wolfram Mathematica. A vector of increasing pressure values was defined390

and, for each value, the solution was obtained by considering twelve terms in the power series (𝑚 = 12 and 𝑛 = 12). More391

terms did not cause sensible variations in the solutions and only increased the computational burden.392
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