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A B S T R A C T

The distribution of the temperature and heat flux fields around a couple of unequal nonconduc-
tive tangent spherical inhomogeneities (or pores) embedded in an infinite medium under a
steady-state and remotely applied heat flux is addressed in the present work. Owing to the 3D
geometrical layout of the inhomogeneity, use is made of the tangent sphere coordinate system. A
corrective temperature field expressed in terms of convergent integrals is superposed to the fun-
damental one to fulfill the BCs at the surfaces of the spheres. When the heat flux is aligned to the
symmetry axis (axisymmetric problem), the solution can be found straightforwardly by intro-
ducing a stream function, which allows for transforming the Neumann BCs into a Dirichlet
boundary value problem. Conversely, for the transversal heat flux (non-axisymmetric problem),
the problem is formulated in terms of temperature, thus leading to a system of two ODEs which
is handled numerically through a Euler shooting method, after preliminary asymptotic expan-
sions. Once the temperature fields are known, the components of the resistivity contribution ten-
sor are assessed varying the aspect ratio of the two spheres. It is found that the extrema of the
thermal resistivity are achieved for spheres of equal size. The study allows assessing the effective
thermal conductivity of a wide range of smart composites involving insulating inhomogeneities
resembling sphere doublets.

1. Introduction

A wide range of materials, ranging from natural rocks to sintered ceramics, smart composites, metamaterials, etc., involves inclu-
sions or pores having particular shapes, which geometrical properties need to be accounted for to assess properly its performances. In
particular, several experimental researches focus on the chance to impart specific physical properties to composites by driving the for-
mation and growth of micro (or nano) inclusions into the background material, giving rise to optimized microstructures. Among such
investigations, some concern the formation of dumbbell nanoparticles as basic components in colloidal crystals (e.g. Johnson et al.,
2005) with anisotropic properties. As an example, starting from colloidal solution of monodisperse silica nanoparticles, new kinds of
photonic materials can be obtained by following proper processes of synthesis (Park et al., 2010). The aspect ratio of such dumbbell-
shaped nanoparticles depends upon the synthesis conditions. Methods of synthetization include centrifugation techniques of a solu-
tion of dispersed spherical nanoparticles, that leads to dumbbells (or triplets or, in some cases, larger clusters of spherical particles)
having typically a dimension of some μm. Smaller particles, on the order of some tens of nanometers, can be obtained by exploiting
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chemical reactions starting from seed particles dispersed in microemulsions. This latter approach typically applies to silica colloids
aimed at obtaining synthetic or hybrid (organic-inorganic) particles to realize optical sensors, photonic crystals and, in general, a new
generation of smart composites (Kim et al., 2007). The possibility to obtain challenging microstructures for new functional materials
is well elucidated in Wang et al. (2012).

Voids resembling sphere doublets can be observed also in austenitic stainless steel irradiated at certain temperature and pressure
conditions (Porollo et al., 2006). It has been shown that nuclear radiations can drive void swelling and dislocation loops in steel and
other metal alloys, thus affecting the microstructure of the material and, in turn, its short-term mechanical properties. Pore growth
process, pore coalescence and pore interruption can be driven in Gasar metals to obtain a microstructure exhibiting specific physical
and mechanical properties (Liu et al., 2018). In particular, by tailoring properly the synthesis conditions, the process of pore coales-
cence can be affected to obtain pores resembling a pair of bubbles characterized by different cross-sectional perimeter and aspect ra-
tio. Challenging pore morphologies can be achieved by optimizing the solidification process.

Silica aerogels are nanoporous ultralight materials derived from a gel, in which the liquid component for the gel has been replaced
with a gas, thus resulting in low density, high porosity synthetic materials. They present many interesting physical properties leading
to several applications in the sector of building thermal insulation, due to their extremely low thermal conductivity. They are usually
formed by spherical grains fused together into clusters and thus they are represented by regular packings of spheres in contact in or-
der to define their effective thermal properties (e.g. He & Xie, 2015; Spagnol et al., 2008).

In recent applications, nanospherical particles are also added to fluids to increase their thermal conductivity. According to the
thermal properties of the particles, the resulting suspensions, called nanofluids, are typically employed as heat transfer fluids due to
their enhanced thermal conductivity compared to conventional liquids. A review on nanofluids modeling and applications was pre-
sented by Fan and Wang (2011) and Mahian, Kolsi and Amani (2019). The mechanisms of heat transfer enhancement of nanofluids
have been studied by Pang, Jung and Kang (2014), who experimentally proved that the aggregation of nanoparticles can lead to the
improvement of the thermal conductivity coefficient.

As known, the inhomogeneities embedded in a background matrix or dispersed in a fluid significantly affects the behavior of the
composite or suspension. While a wide range of studies about the effective properties of materials containing spherical or ellipsoidal
inclusions has been well developed, the same does not occur for inhomogeneities of different shape. On the other hand, adoption of
“equivalent” ellipsoids to simulate inhomogeneities with challenging shape can leads to erroneous predictions (e.g. Kachanov &
Sevostianov, 2018). For this motivation, some investigations have been recently addressed to evaluate the effective thermal and elas-
tic properties of composites containing voids or rigid particles with some specific shape different from the ellipsoidal one.

The effects of various concave pore, cracks and helical inhomogeneities on the effective conductive properties of porous, cracked
or reinforced materials have been investigated analytically and numerically by Chen et al., (2015); Sevostianov (2006); Sevostianov
et al., (2016); Trofimov et al., (2017) and Trofimov and Sevostianov (2017) using various homogenization methods. Applicability of
these results to overall conductivity of the porous rock and cathode material in Li-ion batteries has been discussed by Chen et al.
(2017) and Vilchevskaya and Sevostianov (2020), respectively. Kushch and Sevostianov (2014) showed that shape, orientation, and
spatial arrangement of the inhomogeneities in particulate composites may produce macroscopic anisotropy of the overall conductiv-
ity, whereas volume content of inhomogeneities yields the change in the anisotropy extent. Radi and Sevostianov (2016) and Lanzoni
et al. (2018, 2020, 2022) worked out the components of the resistivity contribution tensor for insulating inhomogeneities having the
shape of a torus as well as that two overlapping cylinders or spheres of arbitrary size. The analytical results were then compared with
the predictions provided by equivalent spheroids, finding a reasonable agreement within a definite range of variation of the geometri-
cal parameters. To examine the case where strong interactions between particles exist, the problem of two equal spheres in contact
was investigated in Lanzoniet al. (2020) by using the tangent sphere coordinate system, as the limit case of two overlapping spheres.
Moreover, the problem of two overlapping spheres of different sizes was recently solved in Lanzoni et al. (2022). The analysis was
also extended to assess the effective elastic properties of composites containing rigid inhomogeneities with the shapes of a torus or
two overlapping cylinders (Krasnitckii et al., 2019; Lanzoni et al., 2019). However, no results were provided up to now for the resis-
tivity contribution tensor of two insulating spheres of different sizes touching each other in a single point.

The present work extends the number of investigations performed on the effective conductive properties of clusters of two insulat-
ing spheres. Indeed, it deals with the analytical and numerical evaluation of the overall thermal conductivity of a composite material
or fluid containing pairs of nonconducting unequal touching spheres. The effective thermal property is assessed through the evalua-
tion of the second-rank resistivity contribution tensor (Sevostianov & Kachanov, 2002), which gives the extra temperature variation
related to the presence of the inhomogeneity embedded into the background matrix under a steady-state remotely applied heat flux.
Owing to the geometrical layout of the inhomogeneity, reference is made to tangent sphere coordinates. The axisymmetric problem of
a remotely applied heat flux acting along the symmetry axis of the insulating inhomogeneity is solved first by introducing a proper
stream function (Section 3). This allows transforming the Neumann BCs at the surfaces of the spheres into a Dirichlet problem, thus
leading to the temperature distribution in terms of a convergent series expansion. Then, the axial component of the resistivity contri-
bution tensor is found in closed form by performing the heat flux vector across the surface of the spheres. The problem of a remote
heat flux acting transversally to the symmetry axis of the inhomogeneity (skew problem) has been considered separately in Section 4.
In such a case, the problem is directly formulated in terms of temperature as the stream function does not exist in this case. The tem-
perature field encompasses the basic solution for a homogeneous medium and a corrective extra field due to the presence of the non-
conductive inhomogeneity. Both terms are expressed in terms of convergent integrals. The condition of insulating spherical inhomo-
geneities leads to a couple of ODEs of second order for two unknown functions, with boundary conditions at both ends, which cannot
be solved in closed form. However, an asymptotic analysis allows identifying the behavior of the unknown functions in the neighbor-
ing of the origin out of two unknown constants, as well as the exponential decaying at infinity. Therefore, a straightforward Euler
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shooting procedure has been implemented for finding the two unknown constants, thus obtaining the temperature distribution
around the two spheres and, in turn, the transverse components of the resistivity contribution tensor. The approach developed here
for the 3D non-axisymmetric problem takes inspiration from the method proposed by O'Neill (1969) and then employed by Latta and
Hess (1973), Davis (1977), Cox and Cooker (2000) and Lanzoni et al. (2020, 2022) for the case of two equal spheres, which has been
generalized here to the problem of two spheres of different sizes.

The variation of the components of the resistivity contribution tensor as a function of the ratio between the radii of the two touch-
ing spheres is then provided, finding the extrema of both the components when the spheres have the same size. As discussed in
Section 5, in such a situation the approximation given by “equivalent” prolate spheroids can lead to rough predictions, thus confirm-
ing the need to properly accounting for the actual geometry of the inclusions. Finally, concluding remarks are drawn in Section 6.

2. Formulation of the problem in tangent sphere coordinates

In this section, we derive the expressions for the resistivity contribution tensor components in the limiting case of two touching
spheres with different diameters, namely D and D/ρ. We use the tangent sphere coordinate system (ξ, η, φ) sketched in Fig. 1 (see
Moon and Spencer, 2012). Coordinate surfaces of this system are formed by toroids and spheres tangent to the xy coordinate plane at
the origin. The tangent sphere coordinates are related to the Cartesian coordinates by the following relations

(2.1)

A constant value of ξ defines the surface of a sphere of radius D/(2|ξ|) touching the origin of the coordinate system with the center
laying on the z-axis at z = D/(2ξ), for 0 ≤ η < ∞ and 0 ≤ φ < 2π. The surfaces of the two touching spheres of diameter D and D/ρ
considered in the present section are defined by the coordinate ξ = 1 and ξ = −ρ, respectively, with ρ > 0.

The temperature distribution T under steady-state heat flux must satisfy the Laplace equation

(2.2)

The heat flux then follows the isotropic Fourier law

(2.3)

where k is the heat conduction coefficient (W m−1 K−1). Then, the insulating condition of vanishing normal heat flux on the surface
of the two sphere requires

(2.4)

Fig. 1. a) Sketch of a sphere doublet referred to Cartesian (O, x, y, z) and toroidal (ξ, η, φ) coordinate systems and b) section of the sphere doublet in the rz plane.
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and thus, from (2.11), on the surface of both spheres the temperature field must satisfy the Neumann boundary condition

(2.5)

Far from the inhomogeneity (both ξ and η tend to zero) the heat flux must approach the unperturbed heat flux q0.
Let us calculate the temperature field and the components of the resistivity contribution tensor both for axial and transverse heat

flux.

3. Heat flux along the symmetry axis (axisymmetric problem)

By introducing the stream function ψ(η, ξ), the axisymmetric heat flux problem can be formulated as a Dirichlet boundary value
problem.

The condition div q = 0 allows for the following expression of the heat flux components in the tangent sphere coordinate system
(see Eq. (A.2) in the Appendix)

(3.1)

Since the heat flux is irrotational (curl q = 0), then the stream function ψ must satisfy the following equation (Fransaer et al.,
1990, see also Eq. (A.3) in the Appendix for qφ = 0)

(3.2)

We split the stream function onto the contribution ψ0 induced by the uniform heat flux q0 along the direction of the z-axis in a ho-
mogeneous medium and the corrective field ψ1 due to the presence of the inhomogeneity as follows

(3.3)

(3.4)

where J1 is the Bessel function of the first kind of the first order. The function ψ1 in (3.4) is the most general function satisfying Eq.
(3.2) in the tangent sphere coordinates that is vanishing at η = 0 (Fransaer et al., 1990). The unknown functions f1(s) and f2(s) must
be found by introducing (3.1)2, (3.3) and (3.4) into the boundary condition (2.4).

By using (3.1)2, the insulating boundary conditions (2.4) requires indeed

(3.5)

Since the value of ξ along each of the two spherical surfaces is constant, it follows that the stream function must also be constant
therein and the value of the constant is set equal to zero for simplicity, namely

(3.6)

From these conditions, using the result 6.623.1 in Gradshteyn and Ryzhik (2007)

(3.7)

one can obtain the following equations for the functions f1 and f2 introduced in (3.4)

(3.8)

which admit the solution

(3.9)

Therefore, the stream function becomes
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(3.10)

By using the following Dirichlet series expansion

(3.11)

and the result

which holds for a > b > 0 and follows from the derivative with respect to η of the integral (3.7), then the definite integral in
(3.10) can be evaluated in closed form as

(3.12)

where

(3.13)

The Fourier law for heat conduction in tangent sphere coordinates writes (Fransaer et al., 1990; Moon & Spencer, 2012, see also
eqn (A.1) in the Appendix):

(3.14)

being k the (isotropic) thermal conductivity of the background material. Then, a comparison with Eq. (3.1) yields the following re-
lations between temperature and stream functions

(3.15)

By taking the derivative of ψ in (3.10) with respect to η, using Eqs (3.12) and (3.15)2, one has

(3.16)

and then integrating with respect to ξ, the following temperature distribution is obtained

(3.17)

which satisfies also Eq. (3.15)1 up to an arbitrary constant. It can be observed that the temperature distribution (3.17) satisfies the
insulating boundary conditions (2.5).

The temperature distribution (3.17) is illustrated in Fig. 2a, whereas the corresponding heat flux is represented through contour
lines in Fig. 2b, for ρ = 2. As expected, going away from the inhomogeneity, the temperature field assumes a linear trend with the z
coordinate according to the behavior of the basic temperature and, in turn, the heat flow approaches the unperturbed far field (0,0,
q0). Note also that the flow lines are tangent to the contour of the inhomogeneity, as required by the BCs. Fig. 3a and b display the di-
mensionless temperature distribution along the contour of the upper and lower spheres, respectively, from some values of the aspect
ratio ρ. As expected, the extrema of the temperature values arise at the top (θ = π / 2) and at the bottom (θ = − π / 2) for both the
spheres, being the applied heat flux aligned with the z axis. Moreover, as ρ increases, the temperature distribution on the contour of
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Fig. 2. Temperature and heat flow fields for ξ1 = 1 and ξ2 = −2 (ρ = 2) for a remote heat flux q0 along the symmetry axis (axisymmetric problem).

Fig. 3. Dimensionless temperature T(η, θ) k/(D q0) along the contour of the a) upper sphere (ξ = ξ1 = 1) and b) lower sphere (ξ = ξ2 = −ρ) for some values of the as-
pect ratio ρ (axisymmetric problem).

the upper sphere (that defined by coordinate ξ1) resembles the temperature distribution on the contour of a single nonconductive
sphere with center (0, 0, D/(2 ξ1)) embedded in an infinite isotropic medium subjected to a remotely applied heat flux (0, 0, q0):

The same behavior is retrieved at the surface of the lower sphere (that defined by coordinate ξ = −ρ) as ρ → 0 (D/ρ → ∞).

3.1. Axial component of the resistivity contribution tensor

The resistivity contribution tensor R for a pore or insulating inhomogeneity can be calculated using the relation:

(3.18)
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where q0 is the remote heat flux vector, and V* and S are the volume and surface of the two spheres, respectively. In particular, the
component R33 can be calculated using the axisymmetric solution given in Section 6. The change in temperature gradient due to the
insulating inhomogeneity bounded by surface ξ = ξj (j = 1, 2) is given by the surface integral

(3.19)

where n is the outer unit normal on the inhomogeneity surfaces Sj (j = 1, 2), being ξ1 = 1 and ξ2 = −ρ. Let x = (x, y, z) denote
the position vector on the sphere surface, then (2.1) yields:

(3.20)

where eη, eξ and eφ are the unit vectors of the tangent sphere coordinate system. Therefore, the non-vanishing component of heat
flux vector (3.19) across the upper half- inhomogeneity for remote heat flux directed along the symmetry axis is

namely

(3.21)

By calculating the finite sum for i = 1, 2, 3, 4 one has

(3.22)

namely

(3.23)

where ζ is the Riemann zeta function and ψ(2) is the second derivative of the digamma function ψ. Then, the axial component of the
resistivity contribution tensor is

(3.24)

where

(3.25)

is the volume of the two tangent spheres. Note that for ρ = 1 then Rzz = −1.3523/k and thus the result obtained by Lanzoni et al.
(2020) for two equal touching spheres is fully recovered. Note also that, keeping fixed the thermal conductivity k, one has Rzz
(ρ) = Rzz(1/ρ) and that k Rzz → 3/2 as ρ → 0, + ∞, as predicted for a single sphere (Kachanov & Sevostianov, 2018).

4. Heat flux orthogonal to the symmetry axis (non-axisymmetric problem)

The non-axisymmetric problem defined by the heat flux orthogonal to the z-axis, namely q0 = q0 ey, is considered in the present
section. Differently from the axisymmetric problem, in this case a stream function cannot be introduced. The problem is then formu-
lated directly in terms of the temperature field Τ = Τ0 + Τ1, where, using Eq. (2.1)2, the basic temperature T0 is taken as

(4.1)

and the corrective harmonic temperature field T1 is assumed in the form

7
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(4.2)

for −ρ ≤ ξ ≤ 1. The unknown functions a(s) and b(s) must be found by imposing the insulating boundary condition (2.4) at ξ = 1,
−ρ, as reported hereinafter. They must be sought in such a way to make the corrective heat flux q1 = − k ∇T1 vanishing at infinity and
finite everywhere. These conditions require the following asymptotic behavior of the unknown functions

(4.3)

and

(4.4)

According to the assumptions of nonconducting inhomogeneities, the introduction of the temperature fields (4.1) and (4.2) in the
insulating boundary condition (2.5) leads to

(4.5)

By exploiting the following identity, which holds for the Bessel function J1 (Gradshteyn & Ryzhik, 2007)

(4.6)

a double integration by parts of the last integral in Eq. (4.5) then yields

(4.7)

being

(4.8)

The introduction of (4.7) and the following result (Gradshteyn & Ryzhik, 2007, eqn 6.623.1)

(4.9)

in Eq. (4.5) then leads to a system of two ODEs of second order for the unknown functions a(s) and b(s), namely

(4.10)

The ODE system (4.10) with the boundary conditions (4.3) and (4.4) cannot be solved in closed form. However, to properly handle
a numerical solution of system (4.10), it is helpful to find the asymptotic behavior of the solution both for s → 0 and s → ∞. In partic-
ular, let us denote with a0 and b0 the asymptotic behavior of functions a and b as s → 0, then the system (4.10) provides

(4.11)

as s → 0. From (4.11) it follows

(4.12)

as s → 0. The inhomogeneous Euler ODEs (4.12) admit the following exact solutions for the functions a0 and b0 satisfying the
boundary conditions (4.3)
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(4.13)

where A0 and B0 are unknown constants, Φ, Lin and ψ(n) denote the Lerch transcendent function, the polylogarithm function, and
the n-th derivative of the digamma function ψ, respectively (Erdélyi et al., 1981).

On the other hand, as s → ∞ one has from (4.10)

(4.14)

The solutions of the two homogeneous ODEs (4.14) satisfying the boundary conditions (4.4) then provide the following asymp-
totic solution of the ODE system (4.10)

(4.15)

where A∞ and B∞ are unknown constants.
Since the coefficients multiplying the highest order derivative terms in the ODE system (4.10) are vanishing at s = 0, then the nu-

merical integration of (4.10) must be started at s = ε, where 0 < ε << 1. Therefore, the asymptotic solutions (4.13) will be used for
defining the initial values of the unknown functions a and b and their derivatives at s = ε in terms of the two unknown constants A0
and B0, namely

(4.16)

A shooting procedure is then performed on the values of A0 and B0 which yield exponentially decaying functions a(s) and b(s) as
s → ∞, according to the results (4.15) of the asymptotic analysis. In the numerical simulations, we assumed ε = 0.01 and then we im-
pose vanishing of functions a(s) and b(s) at s = 102. Such values reveal adequate for all the aspect ratio ρ hereinafter investigated. In
particular, for ρ = 2, a(ε) = 1.78574, b(ε) = 2.51386, a′(ε) = 0.494486, b′(ε) = 0.494453 and a constant step size equals to 5 ⋅
10−6 has been used to handle the shooting scheme, funding satisfactory accuracy.

The temperature distribution in the material for φ = π/2 is plotted in Fig. 4a, whereas the corresponding heat flux is represented
in Fig. 4b for ρ = 2. Similarly to the axisymmetric problem, also in this case the flow lines of the heat flux surround the contour of the

Fig. 4. Dimensionless temperature and heat flow fields for ξ1 = 1 and ξ2 = −2 (ρ = 2) for a remote heat flux q0 along the direction normal to the symmetry axis (non-
axisymmetric problem).
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spheres, and they become parallel to the y axis moving away from the origin. This confirms that the perturbation vanishes at infinity
and, in turn, that the basic solution is retrieved there.

The variation of the dimensionless temperature field along the contour of the spheres is plotted in Fig. 5. Since the applied heat
flux is aligned transversally to the symmetry axis, for both the spheres the extrema of the temperature take place near of the points
furthest from the z axis, namely for θ ≅ 0. Note that, as ρ decreases, the stationary points on the upper sphere tend to go towards the
xy plane, whereas they tend to move away from it for the lower sphere. Moreover, similarly to the case of the heat flux aligned with
the symmetry axis, as ρ increases (decreases), the temperature distribution on the contour of the upper (lower) sphere resembles that
found for an insulating single sphere embedded in an infinite medium under the action of a transverse remotely applied heat flux (q0,
0, 0), namely:

4.1. Transversal component of the resistivity contribution tensor

The substitution of the total temperature field T = T0 + T1 given by equations (6.20) and (6.21) into (6.31), yields the transversal
component of the heat flux across the two spherical surfaces ϕy = ϕy(0) + ϕy(1), where

(4.18)

and

(4.19)

namely

(4.20)

being

(4.21)

The numerical calculation of the definite integral in (4.20) is performed using the numerical solution of the ODE system (4.11).
Therefore, the transversal component of the resistivity contribution tensor is

Fig. 5. Dimensionless temperature T(η, θ) k/(D q0) along the contour of the a) upper sphere (ξ = ξ1 = 1) and b) lower sphere (ξ = ξ2 = −ρ) for some values of the as-
pect ratio ρ (non-axisymmetric problem).
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(6.35)

where V* is the volume of the double spherical cavity defined in (3.25).
The variation of both the components Ryy (or Rxx) and Rzz of the resistivity contribution tensor with the ratio ρ is shown in Fig. 6.

As expected, Ryy and Rzz tend to 3/2 as ρ → ∞, thus recovering the known result for a single sphere. The extrema of both the compo-
nents occur for two equal spheres. In detail, for ρ = 1, it is found Ryy ≅ 1.617 and Rzz ≅ 1.352.

5. Approximation by spheroidal inhomogeneities

The results obtained above in terms of the components Ryy and Rzz of the resistivity contribution tensor are here compared with
those of spheroidal inhomogeneities of the aspect ratio β = bs / as, where as is the radius of the spheroid in the xy plane and bs is the
semi-axis of the spheroid along the z-axis. In particular, for a single nonconducting spheroid one has (Kachanov & Sevostianov, 2018)

(5.1)

where

(5.2)

Therefore, the components of the resistivity contribution tensor for a couple of nonconductive spheres of different size with ρ > 1
can be reasonably approximated by the corresponding components calculated for an insulating prolate spheroid that has the same
volume and the same height along the z axis of the inhomogeneity (namely, 2bs = D(1 + ρ−1)). It follows the radius of the spheroid
in its aspect ratio as

(5.3)

Conversely, if the equivalent prolate spheroid is taken to have the same volume of the inhomogeneity and the radius equal to that
of the largest sphere (namely, as = D/2), the half height bs of the spheroid in its aspect ratio read

(5.4)

As shown in Fig. 6, the first assumption leads to rough predictions as the axial component Rzz is significantly underestimate
whereas the transverse components Ryy (and Rxx) are highly overestimated with respect the exact formulation. Vice versa, according
to Eq. (5.4), the adoption of equivalent prolate spheroids having the same radius of that of the major sphere leads to reasonably accu-

Fig. 6. Normalized variations of the components of the resistivity contribution tensor varying the ratio ρ = R1 / R2. Solid lines refer to touching spheres, whereas dash-
dotted and dashed curves are provided by approximating spheroids with aspect ratios given by (5.3) and (5.4), respectively.
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rate predictions for ρ > 3/2. In such cases, the approximated values of Rzz are slightly overrated whereas components Ryy (and Rxx)
are slightly underrated with respect the results provided by the tangent sphere modelization. It is worth noticing that, for a couple of
equal touching sphere (e.g. for ρ → 1), the approximation through equivalent spheroids leads to incorrect predictions. This confirms
the needing to accounting for the precise geometrical layout of this kind of inhomogeneities.

6. Concluding remarks

Temperature and heat flux fields around a inhomogeneity formed by a couple of unequal touching spheres embedded in an
isotropic conductive matrix under an arbitrarily oriented and remotely applied steady state heat flux have been found in the present
work. Then, the temperature distribution on the surfaces of the spheres has been used to assess the symmetric second-rank resistivity
contribution tensor, which allows assessing the overall thermal conductivity of a composite embedding this kind of inhomogeneity
according to the usual homogenization schemes (e.g. non-interaction approximation, Maxwell scheme, self-consistent approach,
etc.). In particular, the variation of the principal components of the resistivity contribution tensor varying the aspect ratio of the inho-
mogeneity has been assessed, finding the extrema when the touching sphere take the same size (ρ = 1). The approximation provided
by “equivalent” prolate spheroids having the same radius of the largest sphere (namely, as = D / 2) has been discussed also, finding
good accuracy when the touching spheres are far to have the same size (let's say ρ > 1.5).

The present study completes a previous one about composites embedding nonconductive couples of unequal intersecting spheres,
thus allowing to assess properly the effective thermal properties of composites with coalescing spherical during the entire coalescence
process. Forthcoming works will be devoted to the evaluation of the overall elastic properties of materials containing inhomogeneities
of the aforementioned shape.
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Appendix. Differential operators in tangent sphere coordinates

The gradient of a scalar function ψ and the divergence and curl of a vector field q in the tangent sphere coordinate system are
(Moon & Spencer, 2012)

(A.1)

(A.2)

(A.3)

respectively, where eη, eξ and eφ are the unit vectors of the tangent sphere coordinate system.
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